

Nabila Aghanim Institut d'Astrophysique Spatiale, CNRS-Univ. Paris Sud on behalf of the Planck collaboration

AS

Planck \rightarrow 3rd generation of CMB space mission

Primary goals \rightarrow CMB temperature anisotropies to fundamental limits down to 5' & CMB polarisation anisotropies

- Separate CMB from foregrounds
- Observe the sky over many frequencies → A lot of ancillary science (subject of Planck early and intermediate results)

Technological achievements

 Intensity in 9 channels, 30- 857GHz with HFI & LFI

• Polarisation from 30 to 353GHz

- Complex cryogenic cooling chain: 5 stages (4 active) including 100mK helium 3 & 4 dilution cooler
- Sensitive and fast bolometers

•Nominal mission (2 surveys) achieved November 2010

- Extended cryogenic mission (5 surveys) achieved ~ mid January 2012
- Warm mission ~1 more year

May 14th 2009 \rightarrow Launch July 2nd 2009 \rightarrow @L2, 45 days \rightarrow Planck-HFI is cool

August 13th 2009 \rightarrow Survey starts December 23rd 2011 \rightarrow increase pressure in He3 tank \rightarrow stability of dilution not maintained

\rightarrow Planck-HFI warmed up

January 14th 2012: last observation in HFI's 5th sky survey: Jupiter

Data analysis challenge

9 channels, 56 bolometers, ~10 billions of samples per bolometer, ~0.5 billions of pixels per map Not to mention polarisation!

First Planck product

Early Release Compact Source Catalogue (ERCSC) (Details in arXiv1101.2041)

Released catalogue ~15000 sources

Available from www.rssd.esa.int/Planck

- 9 frequency lists 30-857GHz
- 2 multi-channel lists
 - Cold clumps, selected by their temperature (<14K)</p>
 - Clusters selected by Sunyaev-Zeldovich effect

DMR			WMAP		lanck	Akari		IR	IRAS		WISE	
V	FWHM	V	FWHM	ν	FWHM	γ	FWHM	ν	FWHM	ν	FWHM	
		23	53									
32	420	33	40	30	32.65							
		41	31	44	27.00							
53	420	61	21	70	13.01							
90	420	94	13	100	0.04							
				143	7.04	Firet al		catalo	auo	100 000		
				217	4.66	Flist a	1-3NY	Calaiu	yue	100- 300	GHZ	
				353	4.41							
				545	4.47							
				857	4.23							
						1.9×10^{3}	0.8					
						2.1×10^{3}	0.7					
						3.3×10^{3}	0.45	3×10^{3}	5.2			
						4.6×10^{3}	0.32	5×10^{3}	3.9			
						16.7×10^{3}	0.09	12×10^{3}	4.5	13.6×10^{3}	0.2	
						33×10^{3}	0.05	25×10^{3}	4.7	25×10^{3}	0.11	
										65×10^{3}	0.11	
										88×10^{3}	0.1	

Planck Early Release Compact Source Catalogue

Planck results on point sources: ERCSC

• IR galaxies & Radio galaxies

- Most radio sources have flat spectra
- Radio galaxies detected down to 353GHz, ~equal number of dusty & synch sources at 353 GHz
- Model over-predicts bright counts by factor 2
- Distant sources & proto-clusters?
 - Color based selection → coldest points
 - Follow-up with Herschel or ground based telescopes for confirmation and redshifts
- Fluctuations dominated by IR sources (>217GHz)

Extragalactic sources

Colours consistent with $z \sim 3 \rightarrow Observed$ at IRAM z=3.259

Planck results on Cosmic Infra-red Background

 $\text{CIB} \rightarrow \text{cumulative IR emission}$ from reprocessed light in dusty galaxies \rightarrow probes much of cosmic star formation

- Analysis of 6 cleaned high galactic latitude fields (~40 sq.deg):
 - CMB cleaning \rightarrow Planck 143GHz
 - Dust cleaning → HI from GBT tracer of diffude dust emission
 - Sub-degree clustered structure at all freq. partially correlated across freq.
 - Agrees with other measurements

AG Bootes 1 HP2 SP N1 Bootes 2

(details in arXiv1101.2028)

- Longer wavelengths probe higher z
- CIB by Planck \rightarrow Forming galaxies @z~2-3

Planck results on galactic foregrounds

Catalogue of galactic cold clumps:

Prospect for the study of the star formation

Confirmation of anomalous emission:

Spinning dust most plausible scenario "New" regions of anomalous emission

All-sky temperature and dust optical depth from Planck and IRAS:

Emission from diffuse molecular hydrogen, "dark gas"

More accurate model for dust evolution

All-sky CO map @100GHz:

New molecular regions away from the plane \rightarrow role in the star formation Foreground emission w.r.t. CMB analysis

Planck results on galaxy clusters

Clusters = largest formed (gravitationally bound) systems

- Gas²¹0s million K **00s** galaxies
- Witnesses of structure formation history
 - Probes of the cosmological model

The Sunyaev-Zel'dovich (SZ) effect

Planck's uniqueness for SZ detection

Planck's frequency coverage on A2319

 \rightarrow Planck, designed from the start to measure SZ

- All-sky survey
- Frequency range from 30 to 857 GHz
- Blind and simultaneous measurement of "positive" and "negative" SZ effect

SZ detection in Planck

Adapted extraction technique \rightarrow Matched Multi-Filter: F

- known spectrum \rightarrow non-relativistic SZ
- known cluster shape → Generalised NFW pressure profile (Arnaud et al. 2010)
- SZ signal enhanced over other components

Validation to insure high reliability

Validation of the SZ sample

Planck-internal quality assessment

- Redundancy
- Rejection of artifacts, galactic sources

Identification with known clusters from ancillary catalogues (e.g. MCXC, Abell, Zwicky, etc) and search data (e.g. SDSS, RASS)

Multi-frequency **follow up programme for confirmation** of SZ candidates (still ongoing)

- In optical (ESO, ENO, RTT mainly)
- In SZ (AMI)
- In X-rays with XMM-Newton → Backbone of the candidate confirmation of the ESZ sample

XMM-Newton DDT confirmation program

- 500ks total, short snapshot exposures (10ksec)
- ▶ high success rate (>85%)
- 51 new clusters confirmed
- unique capability to unambiguously distinguish between clusters and false detections

Optical follow-up programmes for confirmation

A vigorous optical follow-up effort to confirm Planck candidates and measure redshifts mainly with ESO-MPG, ESO-NTT, ENO and RTT

+ Use of SDSS data, and lately WISE data

A2390

S/N=14.24

A2163

S/N=26.40

S/N=6.31

Illustration: M. Douspis

The all-sky Early SZ (ESZ) cluster sample

ESZ sample = Unique all-sky cluster sample since RASS High reliability S/N>6 & purity 99.5%

ESZ sample = 189 candidates (S/N> 6) 169 identified with known clusters 19 confirmed new clusters (including 7 by SPT,SZA, Bolocam, AMI independently from Planck collaboration) _z 1 false detection Further 10 new clusters (S/N <6) 26 more new detections published since ESZ deliver

- Largest homogeneous SZ sample at moderate redshifts
- First SZ measure for ~80% of the known clusters
- Largest SZ sample of massive clusters detected blindly (up to 1.5×10¹⁵ M_{sol}).

Planck SZ sample vs other surveys

Planck has the unique capability to detect the most massive clusters over the whole sky

- ESZ provides reference sample for z<0.5 massive clusters
- Planck SZ detections complete the high M-z region sparsely-populated by RASS clusters and other SZ surveys

Preview of new Planck cluster properties from XMM-Newton

- Good agreement between predicted Y_x and measured Y_{sz}
- Density profiles shallower than X-ray clusters → under-luminous for their masses
- Large variety of dynamical state → 70% new clusters have disturbed morphologies (compared to 30% in X-ray selected clusters e.g. REXCESS) & 14% new detections are multiple systems (double or triple)

Exploring the cluster content/properties Search of diffuse SZ emission in multiple systems

Low S/N Planck detections confirmed as triple systems by XMM-Newton → Studying forming/interacting systems Dedicated XMM observation (VLT data to be analysed) : 3 components A&B z~0.45, C z~0.48 forming structure

Better agreement with SZ signal from the 3 components

Cluster pair: A399/A401

Search for warm/hot gas between cluster pairs resolved by Planck

Isothermal filament kT~7keV and n~3x10⁻⁴cm³ compatible with XMM data

Gravitational interaction → overlapping cluster tails? or Intercluster filament trapped and compressed?

Exploring the cluster content/properties Study of the COMA cluster

Spatially resolved SZ signal from Planck \rightarrow **Probe the complex cluster physics**

Measured shock fronts, pressure "jump":

- Independent measure of western jump in Planck & X-rays & radio

- Indication of a new pressure jump in the south-east

Exploring the cluster content/properties Pressure content of the COMA cluster

Coma SZ profile detected out to **3-4** R_{500} Pressure profile from SZ data "flatter" at large radii than GNFW profile \rightarrow Sign of non-thermal pressure? Contamination?

Deconvolution & deprojection \rightarrow from SZ to pressure profile

$$P(r) = \frac{m_e c^2}{\sigma_T} \frac{1}{D_A(z)} y(\theta) \frac{d\theta}{dr}$$

Exploring the cluster content/properties Pressure from high S/N SZ clusters

Individual signal

Selection of 62 high S/N clusters from the ESZ sample with high quality X-ray data

SZ signal detected out to 3R₅₀₀

Stacked signal

- Good agreement between GNFW X-ray and SZ pressure profiles within R₅₀₀
- Combined pressure profile slightly "flatter" than GFNW and than predictions from simulation at large radii

Cluster statistical properties: SZ scaling relations

Relating SZ signal to physical properties, in particular M: to probe cluster physics to use cluster counts for cosmological analysis

SZ signal measured 100 to 857 GHz at cluster positions

- Statistical analysis of ~1600 X-ray clusters from MCXC(*Piffaretti et a.* 2010)
- Analysis of 62 selected clusters with high quality X-ray data from XMM
- Statistical analysis of ~13000
 MaxBCG clusters from SDSS (Koester et al. 2007)
- Statistical analysis of clusters' Central galaxy from SDSS (Planck intermediate result)
- Analysis of sample from LoSuSS

Compare measured and predicted SZ signal Y_{sz} from X-ray & optical properties

SZ signal in Planck data (from the first 10 months)

Optical and X-ray statistical studies \rightarrow SZ signal measured coherently in Planck down to ~ 5. $10^{13} M_{sol}$

SZ-optical cluster properties

Y_{sz} from weak-lensing calibrated N₂₀₀-M₅₀₀
 relations (e.g. *Rozo et al. 2009*) + gas
 pressure profile & scaling relations

SZ predicted signal does not agree with measured SZ

Discrepancy between data and prediction \rightarrow combination of:

Mass calibration/estimate

Dispersion in scaling relations, mass scatter

Centering, orientation, volume, purity effects

SZ-X-ray properties

- SZ from Planck & X-ray luminosities agree down to lowest luminosity bins
- SZ from Planck & X-ray pressure measurements agree within R₅₀₀
- Consistant overall view of ICM properties from X-rays and SZ

But gives access to HE mass estimate

Summary

- Consistent view of the hot ICM from SZ and X-ray observable
- Open questions as of optical-gas relations
- SZ signal at large radii as an indication of higher gas pressure
- Complex cluster physics probed with SZ signal
- Detection with SZ in Planck of not only « well established » clusters but also dynamically perturbed « forming » clusters
- In the future: Larger catalgue and Planck maps for the community

Conclusions

Planck: CMB experiment with very wide astrophysical capabilities

- Simultaneous observation from 30 to 857GHz
- First survey between 100-900GHz
- Limited resolution (31' to 4') but excellent sensitivity
- All-sky survey

Challenges

 \rightarrow Control of systematics at the level required for cosmology

 \rightarrow Control of astrophysical contamination for intensity (high I) & polarisation

Agenda

Jan. 2011 \rightarrow Early release (10 months of data): Catalogues & results Early 2013 \rightarrow First major Planck release (2 sky surveys, nominal mission)

Maps, Catalogues & cosmological results

Early 2014 → Second major Planck release (5 surveys,extended mission) Maps, Catalogues & cosmological results