Unbalanced Holographic Superconductor & Spintronics

Daniele Musso

Université Libre de Bruxelles

XVIII European Workshop on String Theory

Bigazzi, Cotrone, Musso, Pinzani, Seminara JHEP 1202, 078 (2012), arXiv:1111.6601 [hep-th]

Outline

- Unbalanced Superconductor & Spintronics
- A Holographic Model
- Results (at & out of equilibrium)
- Future Perspectives

Outline

- Unbalanced Superconductor & Spintronics
- A Holographic Model
- Results (at & out of equilibrium)
- Future Perspectives

"Unbalanced Fermi mixtures"

Relevant for both Condensed Matter and QCD

(superconductors, spintronics, cold atoms, neutron stars,...)

General framework & context

- AdS/CFT Correspondence (gauge/gravity)
- Holography: Classical gravity as an analytic tool to compute correlation functions in the dual, strongly coupled quantum field theory (strongly coupled plasmas, quantum phase transitions,...)
- Holographic superconductor (Hartnoll-Horowitz- Herzog, 2008)

High Tc (i.e. non BCS) superconductors and superconducting mechanism at strong coupling ??

Unbalance Fermi mixtures (standard lore)

- Fermions "pile up" because of the Pauli exclusion principle and give rise to Fermi surfaces.
- Different fermionic species in a system can have different Fermi surfaces: "imbalance".

Unbalanced Superconductor

Different Fermi surfaces for spin "up" and "down" electrons. (Magnetic impurities and doping, external fields,...)

Effective chemical potential mismatch δμ

$$\mathcal{H}_I = H\mu_b \ \overline{\Psi}\gamma^3\Psi = \delta\mu \ \overline{\Psi}\gamma^3\Psi$$

Zeeman splitting of single electron energy levels

*

Relevant not only for condensed matter

→ QCD: *baryon* and *isospin* symmetries

Cooper Pairing

Cooper condensate:

$$\langle \mathcal{O} \rangle = \langle \psi^{\uparrow}(\vec{k}) \ \psi^{\downarrow}(-\vec{k}) \rangle \longrightarrow \langle \mathcal{O}(\vec{x}) \rangle = \Delta$$

- The chemical potential imbalance hinders the Cooper pairs formation
- Large imbalance brings loss of homogeneous superconductivity (*Chandrasekar-Clogston 1962*)
- Inhomogeneous, finite momentum condensate (Larkin-Ovchinnikov 1964, Fulde-Ferrel 1964)

$$\langle \mathcal{O} \rangle = \langle \psi^{\uparrow}(\vec{k}) \ \psi^{\downarrow}(-\vec{k} + \vec{q}) \rangle \longrightarrow \langle \mathcal{O}(\vec{x}) \rangle = \Delta \ e^{i\vec{q}\cdot\vec{x}}$$

Why Now?

Stringent experimental conditions required Low spin relaxation

1st PROBLEM: Phase diagram at strong coupling??

Spintronics

- Mixed spin-electric transport properties.
- Theoretical basis: *"Two-current model"* (*Mott, 1936*).

Giant Magneto Resistance

(2007 Nobel Prize to Fert and Grünberg)

- GMR: great change in electric resistance depending on the applied external magnetic field.
- Usage: common hard disk read heads.

Macroscopic picture

- Superconductivity: zero DC resistivity arising directly from the spontaneous breaking of $U(1)_e$ (Weinberg 1985). Condensation of electrically charged operator $\langle \mathcal{O} \rangle$.
- Unbalance: $\delta\mu$ chemical potential for $U(1)_s$ (decoupled from space-time symmetries in IR).

 $U(1)_e \times U(1)_s$ with order parameter $\langle \mathcal{O} \rangle$ electrically charged under U(1)

Mott two-current model

At "small" T , "up" and "down" electron currents treated separately (*Mott 1936, Fert-Campbell 1968*)

$$J^{e} \sim J^{\uparrow} + J^{\downarrow} \qquad J^{\text{spin}} \sim J^{\uparrow} - J^{\downarrow}$$
$$J^{e} = \sigma_{e} E^{e} \qquad J^{\text{spin}} = \sigma_{\text{spin}} E^{\text{spin}}$$
$$E^{e} \leftrightarrow U(1)_{e} \qquad E^{\text{spin}} \leftrightarrow U(1)_{\text{spin}}$$
$$E^{\text{spin}} \leftarrow U(1)_{\text{spin}}$$

Dynamical magnetization, "spin motive field": $E^{\rm spin} \sim \nabla \delta \mu$

Spin-electric response

• In the presence of a net spin density (i.e. imbalance up/down), then an external electric field produces also a spin current (*Aronov 1976*).

$$J^{\rm spin} = \gamma E^{\rm e}$$

• <u>Opposite also true</u>: an external "spin-motive field" induces also an electric current spin (Berger 1986, van Son-van Kempen-Wyder 1987, Johnson-Silsbee 1987) $J^{\rm e} = \gamma E^{\rm spin}$

It is possible to induce spin transport with electric fields and electric transport with spin motive forces

Optical Conductivities

$$\begin{pmatrix} J^{e} \\ Q \\ J^{\text{spin}} \end{pmatrix} = \begin{pmatrix} \sigma_{e} & \alpha T & \gamma \\ \alpha T & \kappa T & \beta T \\ \gamma & \beta T & \sigma_{\text{spin}} \end{pmatrix} \cdot \begin{pmatrix} E^{e} \\ -\frac{\nabla T}{T} \\ E^{\text{spin}} \end{pmatrix}$$

Electrical current J^e Electric conductivity $\sigma_{
m e}$ Heat current Q Thermal conductivity κ Spin current $J^{
m spin}$ Thermo-electric conductivity lpha

2nd PROBLEM: Transport at strong coupling??

We build the simplest holographic model of s-wave unbalanced (2+1 dim → layered) "superconductor" and of Mott's "twocurrent model".

(Bigazzi-Cotrone-Musso-Pinzani-Fokeeva-Seminara 2011)

p-wave unbalanced holographic superconductor has been considered in the literature

(Erdmenger-Grass-Kerner-Hai Ngo 2011)

Holographic Model (ingredients)

Minimal holographic set of dual ingredients to describe a superconductor (Gubser 2008, Hartnoll-Herzog-Horowitz 2008)

Effective Q.F.T. describing the Su.Co. at "the bounday":

• U(1) symmetry (global) • Charged scalar ψ

<u>Dual gravitational model in</u> <u>AAdS "bulk":</u>

16/26

• U(1) gauge field
$$A$$

• Charged scalar
$$\psi$$

IMBALANCE: Extra dual ingredient:

Another gravity gauge field B associated to the U(1)s

(Bigazzi-Cotrone-Musso-Pinzani-Fokeeva-Seminara 2011)

 $\psi\;$ chargerd w.r.t. $A\;$ and uncharged w.r.t. $B\;$

Holographic Model

Dual gravitational action:

$$S = \frac{1}{2\kappa_4^2} \int dx^4 \sqrt{-g} \left[R + \frac{6}{L^2} - \frac{1}{4} F_{ab} F^{ab} - \frac{1}{4} Y_{ab} Y^{ab} - V(|\psi|) - |\partial\psi - iqA\psi|^2 \right]$$
$$F = dA , \qquad Y = dB , \qquad V(|\psi|) = -\frac{m^2}{L^2} \psi^{\dagger} \psi$$

Above the BF bound for AdS4 $m^2 = -2$

Gravitional background

Ansatz: $ds^{2} = -g(r)e^{-\chi(r)}dt^{2} + \frac{r^{2}}{L^{2}}(dx^{2} + dy^{2}) + \frac{dr^{2}}{g(r)}$ $\psi = \psi(r)$, $A_a dx^a = \phi(r) dt$, $B_a dx^a = v(r) dt$ **IR:** $q(r_H) = \phi(r_H) = v(r_H) = 0$, $\psi(r_H), \chi(r_H)$ const. **UV:** $\psi(r) = \frac{C_1}{r} + \frac{C_2}{r^2} + \dots, \quad \phi(r) = \mu - \frac{\rho}{r} + \dots,$ $v(r) = \delta \mu - \frac{\delta \rho}{r} + \dots, \quad g(r) = r^2 - \frac{\epsilon}{2r} + \dots,$ $\chi(r) = 0 + \dots$ $C_1 = 0 \rightarrow \text{SPONTANEOUS}$

Fluctuations

Electric current

Spin current

Heat current

RESULTS

The BH instability leading to scalar hair formation corresponds to the dual Cooper condensation.

- $T > T_c$: no hair, no condensate.
- $T < T_c^c$: $\langle \mathcal{O} \rangle \neq 0$ breaks spontaneously $U(1)_{E.M.}$
- Around T_c we have a 2-nd order phase transition

Phase Diagram at weak coupling

21/26

Above a maximum value for $\delta\mu$ the system is too unbalanced to develop a superconducting phase (*Chandrasekar-Clogston bound*).

The holographic minimal model presents NO Chandrasekar-Clogston bound and NO inhomogeneous (LOFF) phase. BUT the features of the phase diagram depend (strongly) on the parameters (*e.g. the potential for the scalar field, backreaction strength, ...*).

Conductivities (Normal phase)

Carriers?

 $\sigma_A = f(\omega)\rho^2 + 1$ $\sigma_B = f(\omega)\delta\rho^2 + 1$ $\gamma = f(\omega)\rho \ \delta\rho$

• $f(\omega)$

The spin-electric part of the conductivity matrix can be parametrized in terms of a single, suggestive function, the **optical mobility function**

Superconducting Phase

Authentic superconductive contribution to the DC conductivity

Summary

- Backreaction and gravity lead in general to spin-electric mixed effects
- Strongly coupled spintronics (Mott's model) and carrier-like mobility function

- No C.C. bound for the minimal model
- No LOFF phase for the minimal model

Future perspective

Generalizations

. . .

- Momentum dependent fluctuations (Neg. refraction, Additional Light Waves, ...)
- Spontaneous Ferromagnetic/Superconductor
- Space dependent studies
 - Direct look at LOFF
 - Momentum relaxation and holographic lattice

THANKS!

Comparison with hep-th/1208.4582

Different realization of the effective magnetic field

$$\mathcal{A}_x = \mathcal{B}x \ , \quad \mathcal{A}_t = \mathcal{A}_x = \mathcal{A}_z = 0$$

$$B_t = \delta \mu - \delta \rho z + \dots , \quad B_x = B_y = B_z = 0$$

NEW INGREDIENT: Interaction between the complex scalar and the magnetic field

$$S_{\rm int} = \xi \int d^4x \ \sqrt{-g} \ |\mathcal{F}^{AB}\partial_B\phi|^2$$

Sufficient condition for instability

Smaller radius \rightarrow smaller "AdS box" \rightarrow higher "confinement energy" \rightarrow more stable

What do we know about high Tc superconductors? (Leggett 2006)

•Superconductivity in the copper oxides is a result of the formation of Cooper pairs. (unit flux: h/2e)

•The principal locus of superconductivity is the copper oxide planes.

•To a 0th order approximation, pairs form independently in the different copper oxide multilayers.

•The dominant mechanism of Cooper-pair formation in the copper oxide materials does not involve a net saving of ionic kinetic energy as in BCS superconductor. (zero isotope effect)

•The spin state of the pairs is a singlet.

Spontaneous U(1) breaking and superconductivity

 $A_{\mu} \to A_m u + \partial_{\mu} \alpha$ Goldstone $G \rightarrow G + \alpha$ Gauge invariant A - dG $L = \int d^d x \left[F \cdot F + \mathcal{L}_g (A - dG) \right]$ $J^{0} = \rho = \frac{\delta \mathcal{L}_{g}}{\delta A^{0}} = -\frac{\delta \mathcal{L}_{g}}{\delta(\partial_{t}G)}$ Canonical conjugation $\partial_t G = -\frac{\mathcal{H}}{\delta\rho}$ $\partial_t G = -V$

Stationarity implies zero voltage!

Gian Magneto-Resistance

Preliminary studies on alloys containing impurities with strongly spin-dependent cross section (Fert 1966)

Layered material with FM layers: Significant change in the electric resistance depending whether adjacent FM layers are parallely or anti-parallely polarized (Fert, Grünberg 1988)

First experimental evidence

- Heavy fermion superconductor
- Layered (quasi 2D system)

The first order transition at upper magnetic, critical field indicates that the Pauli paramagnetic effect dominates over the orbital effect (Maki parameter $\alpha \approx 5$).

Novel high field superconducting state at the low-T /high-H corner of the H–T to be (*possibly*) identified as the FFLO state

Cuprates

- Bismuth, Strontium, Calcium Copper Oxide (BSCCO)
 - first cuprate superconductor (1988)

$$\operatorname{Bi}_2\operatorname{Sr}_2\operatorname{Ca}_{n-1}\operatorname{Cu}_n\operatorname{O}_{2n+4+x}$$

- Yttrium, Barium, Copper Oxide (YBCO)
 - first material to have showed a Tc value above the boiling point of liquid nitrogen (77K)

Layered materials with *perovskite* structure

String embeddings and UV completion (fund. fermions)

System with N_c D2 branes and a pair of space-filling "flavor" brane/antibrane

- Two gauge fields
- Complex scalar stretching between the branes
- Complex scalar with the "right" charges
- Scalar naturally related to a fundamental fermion bilinear

String embeddings and UV completion (adj. fermions)

Gluino bilinears breaking some $U(1)_R$

- KK truncation of 11d SUGRA on a 7-manifold (as for the balanced holographic superconductor)
- 7-manifold isometries → R-symmetry
- Need for a second scalar field!

Motivations

- QCD at finite (but not asymptotic) density, e.g. <u>neutron stars</u>
 - Perturbative approach fails
 - Lattice approach affected by the "sign problem"
- Unbalanced <u>cold atoms</u> systems
 - BCS BEC crossover

P-wave holographic superconductor

- model 1: back-reacted Einstein-Yang-Mills in 4+1 d
- model 2: 9+1 dim D3/D7 brane setup with 2 coincident D7 brane probes

Differences in the phase diagrams: How does the order of the phase transition depend on the interactions?

Quantum Critical Point

- Occurs for unconventional superconductors (*e.g. planar cuprates, heavy fermions,...*)
- The physics at the QCP is scale invariant \rightarrow no quasiparticle description
- Strongly coupled CFT → dual AAdS gravitational model
- At T>0 (within the quantum critical region) AAdS Black Hole

Equations of motion

$$\psi'' + \psi' \left(\frac{g'}{g} + \frac{2}{r} - \frac{\chi'}{2}\right) - \frac{V'(\psi)}{2g} + \frac{e^{\chi}q^2\phi^2\psi}{g^2} = 0$$

$$\phi'' + \phi' \left(\frac{2}{r} + \frac{\chi'}{2}\right) - \frac{2q^2\psi^2}{g}\phi = 0$$

$$\frac{1}{2}\psi'^2 + \frac{e^{\chi}(\phi'^2 + v'^2)}{4g} + \frac{g'}{gr} + \frac{1}{r^2} - \frac{3}{gL^2} + \frac{V(\psi)}{2g} + \frac{e^{\chi}q^2\psi^2\phi^2}{2g^2} = 0$$

$$\chi' + r\psi'^2 + r\frac{e^{\chi}q^2\phi^2\psi^2}{g^2} = 0$$

$$v'' + v'\left(\frac{2}{r} + \frac{\chi'}{2}\right) = 0$$