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General framework & contextGeneral framework & context

● AdS/CFT Correspondence (gauge/gravity)
● Holography: Classical gravity as an analytic 

tool to compute correlation functions in the 
dual, strongly coupled quantum field theory 
(strongly coupled plasmas, quantum phase transitions,...)

● Holographic superconductor                   
(Hartnoll-Horowitz- Herzog, 2008)

High Tc (i.e. non BCS) superconductors   
and superconducting mechanism at 

strong coupling ??
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Specific problemSpecific problem

Unbalanced Fermi 
mixtures at strong 

coupling
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Unbalance Fermi mixtures Unbalance Fermi mixtures 
(standard lore)(standard lore)

● Fermions “pile up” because of the Pauli 
exclusion principle and give rise to Fermi 
surfaces.

● Different fermionic species in a system can 
have different Fermi surfaces: “imbalance”.
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Unbalanced SuperconductorUnbalanced Superconductor
Different Fermi surfaces for spin “up” and “down” 
electrons. (Magnetic impurities and doping, 
external fields,...)

Effective chemical potential mismatch δμ

Zeeman splitting of single electron energy levels
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Relevant not only for condensed matter 

QCD: baryon and isospin symmetries
**



Cooper PairingCooper Pairing

Cooper condensate:

● The chemical potential imbalance hinders the 
Cooper pairs formation

● Large imbalance brings loss of homogeneous 
superconductivity (Chandrasekar-Clogston 1962)

● Inhomogeneous, finite momentum condensate 
(Larkin-Ovchinnikov 1964, Fulde-Ferrel 1964)
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Why Now?Why Now?

● BCS theory for balanced S.C.                       (1957)
● CC bound                                                      (1962)
● LOFF phase and unbalanced S.C.                (1965)
●

● ...
●

● MIT & Rice University experiments               (2006)

Stringent experimental conditions required
                    Low spin relaxation
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Phase Diagram Phase Diagram 

1st PROBLEM: Phase diagram at 
strong coupling??
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SpintronicsSpintronics

● Mixed spin-electric transport properties.
● Theoretical basis: “Two-current model”        

(Mott, 1936).

● GMR: great change in electric resistance depending on 
the applied external magnetic field.

● Usage: common hard disk read heads.

(2007 Nobel Prize to Fert and Grünberg)

                Giant Magneto Resistance
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Macroscopic pictureMacroscopic picture

● Superconductivity: zero DC resistivity arising 
directly from the spontaneous breaking of         
             (Weinberg 1985). Condensation of 
electrically charged operator         .

● Unbalance: δμ chemical potential for   
(decoupled from space-time symmetries in 
IR).

with order parameter  O   
electrically charged under          
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Mott two-current modelMott two-current model
At “small” T , “up” and “down” electron currents 
treated separately (Mott 1936, Fert-Campbell 1968)

Dynamical magnetization, “spin motive field”:

EFFECTIVE
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Spin-electric response Spin-electric response 
● In the presence of a net spin density (i.e. 

imbalance up/down), then an external electric 
field produces also a spin current (Aronov 1976).

It is possible to induce spin transport with 
electric fields and electric transport with 

spin motive forces

● Opposite also true: an external “spin-motive 
field” induces also an electric current spin 
(Berger 1986, van Son-van Kempen-Wyder 1987, Johnson-
Silsbee 1987)
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Optical ConductivitiesOptical Conductivities

2nd PROBLEM: Transport at strong 
coupling??

Electrical current

Heat current

Spin current

Electric conductivity

Thermal conductivity

Thermo-electric conductivity
...
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StatementStatement

We build the simplest holographic model of 
s-wave unbalanced (2+1 dim →layered) 
“superconductor” and of Mott’s “two-

current model”.
(Bigazzi-Cotrone-Musso-Pinzani-Fokeeva-Seminara 2011)

p-wave unbalanced holographic superconductor has been 
considered in the literature  

(Erdmenger-Grass-Kerner-Hai Ngo 2011)
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Holographic Model Holographic Model (ingredients)(ingredients)
Minimal holographic set of dual ingredients to describe a 
superconductor (Gubser 2008, Hartnoll-Herzog-Horowitz 2008) 

IMBALANCE: Extra dual ingredient:

(Bigazzi-Cotrone-Musso-Pinzani-Fokeeva-Seminara 2011)

Another gravity gauge field B associated to the U(1)s 

ψ   chargerd w.r.t. A  and uncharged w.r.t. B

● U(1) symmetry (global)
● Charged scalar

Effective Q.F.T. describing 
the Su.Co. at “the bounday”:

Dual gravitational model in 
AAdS “bulk”:

● U(1) gauge field
● Charged scalar
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Holographic ModelHolographic Model
Dual gravitational action:

Above the BF bound for AdS4
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Gravitional backgroundGravitional background

SPONTANEOUS

UV :

IR :

Ansatz:

18/26



FluctuationsFluctuations

Vector Fluctuations

Electric current Spin current Heat current
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RESULTSRESULTS
The BH instability leading to scalar hair formation  

corresponds to the dual Cooper condensation.

The condensate plotted 
for  different values of 
         : 0 (blue), 1 
(purple) and 1.5 (green). 
The imbalance hinders 
the condensation.

● T > Tc :  : no hair, no condensate.
● T < Tc : : O = 0,      breaks spontaneously U(1)em .
● Around Tc  we have a 2-nd order phase transition
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Phase Diagram at weak coupling Phase Diagram at weak coupling 

Above a maximum value for         the system is too unbalanced 
to develop a superconducting phase (Chandrasekar-Clogston 
bound).
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Phase diagram at strong couplingPhase diagram at strong coupling

The holographic minimal model presents NO Chandrasekar-
Clogston bound and NO inhomogeneous (LOFF) phase. BUT the 
features of the phase diagram depend (strongly) on the parameters 
(e.g. the potential for the scalar field, backreaction strength, ...).
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Conductivities (Normal phase)Conductivities (Normal phase)
23/26



Carriers?Carriers?

The spin-electric part of the 
conductivity matrix can be 
parametrized in terms of a 
single, suggestive function, the 
optical mobility function
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Superconducting PhaseSuperconducting Phase

Authentic superconductive contribution to the DC conductivityAuthentic superconductive contribution to the DC conductivity
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SummarySummary

● Backreaction and gravity lead in general to 
spin-electric mixed effects

● Strongly coupled spintronics (Mott's model) 
and carrier-like mobility function

● No C.C. bound for the minimal model
● No LOFF phase for the minimal model
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Future perspectiveFuture perspective

● Generalizations
– Momentum dependent fluctuations                   

(Neg. refraction, Additional Light Waves, ...)

– Spontaneous Ferromagnetic/Superconductor

– ...

● Space dependent studies 
– Direct look at LOFF

– Momentum relaxation and holographic lattice

– ...
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THANKS!THANKS!



Comparison with hep-th/1208.4582Comparison with hep-th/1208.4582

Different realization of the effective magnetic field

NEW INGREDIENT: Interaction between the 
complex scalar and the magnetic field



Near horizon →free 
scalar on AdS2 with 
eff. mass

Sufficient condition for instabilitySufficient condition for instability

Smaller radius →smaller “AdS box” →higher “confinement 
energy”→more stable



What do we know about high Tc What do we know about high Tc 
superconductors?superconductors?

(Leggett 2006)

●Superconductivity in the copper oxides is a result of the 
formation of Cooper pairs. (unit flux: h/2e)
●The principal locus of superconductivity is the copper oxide 
planes.
●To a 0th order approximation, pairs form independently in 
the different copper oxide multilayers.
●The dominant mechanism of Cooper-pair formation in the 
copper oxide materials does not involve a net saving of ionic 
kinetic energy as in BCS superconductor. (zero isotope 
effect)
●The spin state of the pairs is a singlet.



Spontaneous U(1) breaking and Spontaneous U(1) breaking and 
superconductivitysuperconductivity

Goldstone

Gauge invariant

Canonical conjugation

Stationarity implies zero voltage!



Gian Magneto-ResistanceGian Magneto-Resistance
Preliminary studies on alloys containing impurities with 
strongly spin-dependent cross section (Fert 1966)

Layered material with FM 
layers:
Significant change in the 
electric resistance 
depending whether adjacent 
FM layers are parallely or 
anti-parallely polarized    
(Fert, Grünberg 1988)



First experimental evidenceFirst experimental evidence

CeCoIn
5 

● Heavy fermion superconductor
● Layered (quasi 2D system)

The first order transition at upper magnetic, critical field indicates 
that the Pauli paramagnetic effect dominates over the orbital 
effect (Maki parameter α ≈ 5). 

Novel high field superconducting state at the low-T /high-H 
corner of the H–T to be (possibly) identified as the FFLO 
state

Cold atoms?



CupratesCuprates

● Bismuth, Strontium, Calcium Copper Oxide 
(BSCCO)
– first cuprate superconductor (1988)

● Yttrium, Barium, Copper Oxide (YBCO)
– first material to have showed a Tc value above the 

boiling point of liquid nitrogen (77K)

Layered materials with perovskite structure



System with N
c 
D2 branes and a pair of space-filling 

“flavor” brane/antibrane

String embeddings and UV String embeddings and UV 
completion (fund. fermions)completion (fund. fermions)

● Two gauge fields 
● Complex scalar stretching between the branes
● Complex scalar with the “right” charges
● Scalar naturally related to a fundamental 

fermion bilinear

Analogy with holographic QCD models Chiral condensate



String embeddings and UV String embeddings and UV 
completion (adj. fermions)completion (adj. fermions)

● KK truncation of 11d SUGRA on a 7-manifold 
(as for the balanced holographic superconductor)

● 7-manifold isometries →R-symmetry
● Need for a second scalar field!

Gluino bilinears breaking some



MotivationsMotivations

● QCD at finite (but not asymptotic) density, e.g. 
neutron stars
– Perturbative approach fails

– Lattice approach affected by the “sign problem”

● Unbalanced cold atoms systems
– BCS – BEC crossover



P-wave holographic superconductorP-wave holographic superconductor

● model 1: back-reacted Einstein-Yang-Mills in 
4+1 d

● model 2: 9+1 dim D3/D7 brane setup with 2 
coincident D7 brane probes

Differences in the phase diagrams:
How does the order of the phase transition 

depend on the interactions?



Quantum Critical PointQuantum Critical Point

● Occurs for unconventional superconductors (e.g. planar 
cuprates, heavy fermions,...)

● The physics at the QCP is scale invariant → no quasi-
particle description

● Strongly coupled CFT → dual AAdS gravitational model
● At T>0 (within the quantum critical region) AAdS Black Hole





Equations of motionEquations of motion
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