

Corfu TR33 meeting Sep 17-21, 2012

<u>The APEX-SZ weak lensing</u> <u>follow-up project</u>

APEX-SZ Group (Bonn): Frank Bertoldi Kaustuv Basu Sandra Burkutean Matthias Klein Aarti Nagarajan Martin Nord Florian Pacaud Matthias Klein AlfA, Bonn University

19/09/2012

What is APEX-SZ?

 Bolometer camera mounted on the APEX telescope

 Camera consisting of 330 bolometers

 Sensitive in the SZ regime (at 150 GHz)

What is APEX-SZ?

Bolometer camera mounted on the APEX telescope

Camera consisting of 330 bolometers

Sensitive in the SZ
 regime (at 150 GHz)

What is APEX-SZ?

Bolometer camera mounted on the APEX telescope

 Camera consisting of 330 bolometers

 Sensitive in the SZ regime (at 150 GHz)

The APEX-SZ project:

* Targeted observations of known clusters
* About 42 detections in SZ
* Redshift range from 0.1 to 1.4
* X-ray coverage of 38 clusters
* Optical coverage for all detections

The weak lensing project (goals):

Complete lensing follow up of all SZ detections with z < 1.0 for ...

Scaling between SZ, WL and X-ray observables

• Detailed analysis of individual cluster mergers

 Multi-wavelength studies combining WL, SZ and X-Ray measurements (3D structure)

The weak lensing project (data):

- * Own observations with WFI at 2.2 m MPG/ESO telescope (La Silla, Chile)
- Archival data from WFI and Suprime-Cam at Subaru telescope (Manua Kea, USA)
- Homogeneous data reduction & analysis of all clusters

Challenges for the weak lensing project

1. observing strategy:

- * Number of filter band vs. Depth min. 3 Filters
- ★ Usage of archival data

2. measurements:

- * Quality requirements
- * Shear measurement code

3. analysis methods:

- * Homogeneous methods
- * Minimizing biases

background selection & data analysis individual redshift estimates

max. 2 Instruments

Redshift distribution in the cc-plane

Redshift distribution in the cc-plane

Bright galaxies around RXCJ0532

Background selection

Deriving the angular diameter distance ratio $\beta = D_{ds}/D_{s}$ for each galaxy:

$$\beta_{g} = \frac{\sum_{i=1}^{N} w(\Delta_{col1,i}, \Delta_{col2,i})\beta(z_{i})}{w(\Delta_{col1,i}, \Delta_{col2,i})}$$

★ cut out galaxies with low β
 ★ find cut (β_{max}) with maximum S/N
 ★ starting at β_{max} searching for a cut which suggest the optimal clean cut (β_{opt})
 ★ in most cases β_{opt} ≈ β_{max}

Background selection

Check plots:

- * number density profile
 * shear profile for low & high redshift sub-samples
 using individual β_G can correct for ...
 * remaining contamination
 - * local variation

Single source sheet:

Number density profile:

using individual β

<u>Applying color color magnitude</u> <u>selection on a galaxy cluster</u>

Color Color Magnitude Selection

Interesting clusters: 1.4 Mpc = 5.2 arcmin

SZ map by M. Nord

Interesting clusters:

1 arcmin

0 1

16

6

 \bigcirc

 $\widehat{}$

Reflections around bright stars:

- critical assumptions:
- flux changes on larger scales than typical source size
 Reflections are faint enough that sources are not saturated

Reflections around bright stars:

- 1st Attempt using sextractor background images:
- Increase of the total number of galaxies by ~15% !

Increase of peak S/N from 8.4 to 10.1

<u>To do:</u>

- Check for flux loss for extended sources
- Verify effect on shear
 - measurements

<u>Cluster redshifts using color color</u> <u>magnitude space:</u>

1 [
1								RXC0532	•
0.0									
0.0						1.1.1.1.1.	1 A A 1 A A		
0.6	•							·. ·.	
	•	· . · .						· · · ·	*
0.4	· · · · · · · · · · · · · · · · · · ·								
0.2									3
U								2.45	
-0.2	+	· · · ·				******			
	1		*	*		lay		seter and	
-	0.2	0 C	0.2 0	.4 0	.6 0	.8	1 1	.2 1	.4

B-V

-19

Cluster redshifts using color color magnitude space:

Position of red cluster galaxies in cc-space are strongly redshift dependent
Use over density of red ellipticals in cc-space to trace cluster redshift
Different optimal filter combinations for different redshifts

<u>Cluster redshifts using color color</u> <u>magnitude space:</u>

Result for 13 clusters:

 $\rightarrow \overline{\Delta z} = 0.002$ $\rightarrow \sigma = 0.004$

Other photometric methods yield σ =0.007 (for z<0.25) and σ =0.02 (0.15<z<0.99) (High et al. 2009 & 2010)!

- Complete lensing follow up of all APEX-SZ detections with z<1
- * Homogeneous treatment of the full data set
- Minimizing biases by using individual redshifts
 Investigation of individual clusters
- New method for photometric redshift estimates of galaxy clusters

