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Overview

• General properties of the 4D RG flow.

• R-symmetric RG flows: particle physics motivation and canon-

ical non-perturbative operator multiplets (Rµ, U).

• Canonical soft masses.

• Emergent SUSY and light sparticles.

• Universality of emergent SUSY and the flow of soft masses.

• Model building directions.
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RG Generalities

• Under rather general assumptions, UV-complete QFTs can be

understood as interpolations between UV and IR scale-invariant

limits (may also be gapped and hence empty in IR).

• Given well-defined operators and correlation functions of the

UV theory, can we say something about the corresponding ob-

jects in the IR?

• What are the emergent symmetries of the IR fixed points?

What are the broken symmetries?

• In general, new internal and space-time symmetries. What are

they? How do we get a handle on them?
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RG Generalities (cont...)

• Non-perturbative dynamics along the RG flow make these ques-
tions hard to answer. Although, we do have powerful tools
like the a-theorem [Cardy, ’88], [Komargodski and Schwimmer, ’11],
[Komargodski, ’11], [Intriligator and Wecht, ’03], [Anselmi et.

al.], [Kutasov et. al.].

• We will specialize to four-dimensional R-symmetric theories.

• As we will see SUSY, and, in particular, R-symmetry give us
strong handles to use to answer a lot of these questions in con-
trolled settings. Additional tools that compare UV and IR be-
havior beyond the a-theorem [M. B., ’11]?

• Furthermore, studying such RG flows may lead to interesting
applications to particle physics.
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The R-Symmetric RG Flow and Particle Physics

• LHC ⇒ light Higgs ⇒ SUSY?

• If SUSY exists, then it is broken, and need hidden sector.

Should have some type of (approximate) R-symmetry [Nelson

and Seiberg, ’93], [Intriligator, Seiberg, and Shih, ’07].

• If SUSY is broken dynamically, there will be some type of strong

coupling involved ⇒ study general non-perturbative aspects of

R-symmetric theories.

• Also, we frequently have some emergent bosonic symmetries in

such theories (ISS, etc.) ⇒ Constraints on emergent symmetries

should lead to constraints on DSB.
5



Particle physics motivation (cont...)

• ... But sparticles still haven’t been observed. If SUSY is to

remain “natural,” we need light stops. This suggests a sector in

which SUSY breaking is suppressed.

• We will suggest a new non-perturbative RG rule (an inequality

in the spirit of the a-theorem) applicable to a broad class of R-

symmetric theories (with and without holographic descriptions).

• This rule will be related to the emergence of accidental sym-

metries (both bosonic and fermionic) in the IR and will constrain

the emergence of light sparticles.
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Canonical Non-Perturbative D.O.F.’s

• Our theories have a conserved R-current at all energy scales.

• Since [R,Q] ∼ Q, {Q, Q̄} ∼ P , the R-current transforms in a
multiplet with Sµα and Tµν.

D̄α̇Rα̇α = χα , Dαχα − D̄α̇χ̄α̇ = D̄α̇χα = 0 . (1)

• For χα 6= 0, not the usual Ferrara-Zumino (FZ) supercurrent
multiplet. Note that χα contains the trace anomaly.

• When χα = 0, this is the superconformal R-symmetry.

• There is an ambiguity in the above equation under Rαα̇ →
Rαα̇ +

[
Dα, D̄α̇

]
J and χα → χα + 3

2D̄
2DαJ for conserved J, i.e.,

D̄2J = 0. This affects the supercurrent and stress tensor through
improvements.
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Canonical Non-Perturbative D.O.F.’s (cont...)

• For the theories we will consider (those that also have an FZ
multiplet), can write [Komargodski and Seiberg, ’10]

χα = D̄2DαU , (2)

for a well-defined (and away from the endpoints of the RG flow,
non-conserved) U . U contains the trace anomaly.

• Solving the above equations in the UV of an asymptotically
free theory, we find

RUVαα̇ =
∑
i

(
2DαΦiD̄α̇Φ̄i − ri[Dα, D̄α̇]ΦiΦ̄

i
)
,

UUV = −
3

2

∑
i

(
ri −

2

3

)
Φ̄iΦi . (3)

More generally: UUVµ = 3
2

(
RUVµ − R̃UVµ

)
.
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The R-symmetry Current and the RG Flow

• Idea: Study R, U along RG. Conserved R gives handle on U .

• Assumption: UV and IR fixed points are SCFTs (can be made
rigorous in “SQCD-like” theories [I. Antoniadis and M.B., ’11])

• At the IR fixed point, we know what should happen to Rαα̇. In-
deed, either this multiplet flows to the superconformal R-multiplet
or to an object that can be improved to the superconformal R-
multiplet:

R̃αα̇ = RIRαα̇ − [Dα, D̄α̇]J , Ũ = UIR −
3

2
J = 0 . (4)

Determine R̃αα̇ from duality or a-maximization.

• Upshot: Therefore, U → 3
2J, where UIRµ = 3

2

(
RIRµ − R̃IRµ

)
.
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The R-symmetry Current and the RG Flow (cont...)

• J may be a conserved current of the full theory or an accidental

symmetry of the IR. We will see an extreme version of this for

SQCD in the free magnetic range.

• In the case of a free magnetic phase, we have

UIR = −
3

2

∑
i

(
ri −

2

3

)
φ̄iφi , (5)

for the “emergent” d.o.f.’s.
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Toward a Unique (Rµ, U) Pair

• As we discussed above, theories with global symmetries contain

an infinite family of R-currents. If we want to make general

statements about the RG flow, which one do we pick?

• We want one sensitive to accidental symmetries.

• Natural candidate: Up to caveats (see [M.B. ’11] and [M.B.

’12]) (Rµ, U) defined by performing a-maximization in the de-

formed UV theory.
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Toward a Unique (Rµ, U) Pair (cont...)

• We start by using a-maximization to find the UV superconfor-

mal R-current; consider Rt∗µ,UV = R(0)∗
µ,UV +

∑
i t
iJUV ∗µ,i , where JUV ∗µ,i

are the full set of non-R symmetries of the UV SCFT.

• Taking ãtUV = 3Tr
(
Rt∗UV

)3
− Tr Rt∗UV , solve ∂tiã

t
UV |ti=ti∗

=

0, ∂2
titj
ãtUV |ti,j=t

i,j
∗
< 0. This defines R̃UVµ .

• Deform the theory by turning on an R-symmetry-preserving rel-

evant deformation and/or an R-symmetry-preserving vev. Now

only
{
ĴUV ∗µ,a

}
⊂
{
JUV ∗µ,i

}
are still conserved currents that respect

the vacuum.
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Toward a Unique (Rµ, U) Pair (cont...)

• Maximizing ã over this subset yields RUVµ = R(0),UV
µ +

∑
a t̂
a
∗Ĵ

UV
µ,a

and UUV which descend from a corresponding pair in the unde-

formed UV SCFT, (RUVµ,vis, U
UV
vis ). See [M.B., ’11] and [M.B., ’12]

for a slightly more general definition (including a way to take into

account massive currents).
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Properties of the Uvis Multiplet

• The two point function 〈Uµvis(x)Uvis(0)〉 is given by one overall

coefficient in the UV and one in the IR, τ IRU and τUVU

〈UUV,IRµ,vis (x)UUV,IRν,vis (0)〉 =
τ
UV,IR
U

(2π)4

(
∂2ηµν − ∂µ∂ν

) 1

x4
. (6)

We work modulo chiral plus anti-chiral terms.

• In a large variety of strongly coupled (and weakly coupled)

theories with dramatically different dynamics (interacting fixed

points, confinement with and without chiral symmetry breaking,

etc.) we find [M.B., ’11]

τUVU > τ IRU . (7)
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Properties of the Uvis Multiplet (cont...)

• In this talk, we will conjecture (but not prove) that τUVU > τ IRU
is true in every R-symmetric theory with an FZ multiplet.

• This law implies that the mixing of accidental symmetries with

the IR superconformal R-current is bounded above by τUVU .

• This law correctly predicts non-trivial phase transitions in the IR

of SQCD and also constrains the theory of Intriligator, Seiberg,

and Shenker, suggesting that it does not break SUSY, [M.B.,

’11].
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Example: SQCD in the Free Magnetic Range

• Consider SU(Nc) with Nc + 1 < Nf ≤ 3Nc/2: this is a flow

between Gaussian fixed points

• The UV (electric) theory:

SU(Nc) SU(Nf)× SU(Nf) U(1)R U(1)B

Q Nc Nf × 1 1− Nc
Nf

1

Q̃ N̄c 1× N̄f 1− Nc
Nf

−1

(8)

• UUVvis = −
(

1
2 −

3Nc
2Nf

) (
QQ̄+ Q̃ ¯̃Q

)
.
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Example: SQCD in the Free Magnetic Range (cont...)

• We have the following IR (magnetic) theory [Seiberg, ’94]

SU(Nf −Nc) SU(Nf)× SU(Nf) U(1)R U(1)B
q Nf −Nc N̄f × 1 Nc

Nf
Nc

Nf−Nc
q̃ N̄f − N̄c 1× N̄f

Nc
Nf

− Nc
Nf−Nc

M 1 Nf ×Nf 2− 2NcNf
0

(9)

• UIRvis = 2
(

1− Nc
Nf

)
MM̄ + Nc

Nf

(
qq̄ + q̃¯̃q

)
.

τUVU =
Nc(Nf − 3Nc)2

2Nf
>

(3Nf −Nc)(3Nc − 2Nf)2

2Nf
= τ IRU . (10)

•Many strong coupling checks via anomaly matching [M.B., ’11].
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Canonical SUSY Breaking

• The Uvis multiplet provides also a canonical way to break SUSY:

δSUV |SSB = −
∫
d4x λ · UUVvis | . (11)

• For a general strongly-coupled SCFT, the above deformation is
simply a SUSY-breaking deformation by an operator of dimension
two and does not admit an interpretation in terms of particles
(i.e., it is not a “mass” term).

• When the theory is asymptotically free, however, recall UUVvis =
−
∑
iU

UV
vis (Φi) ·ΦiΦ̄

i, UUVvis (Φi) = 3
2

(
RUVvis (Φi)− 2

3

)
and so

δSUV |SSB = −
∫
d4x (mUV

i )2 · φ̄iφi, (mUV
i )2 ≡ m2 · UUVvis (φi) .

(12)
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Canonical SUSY Breaking (cont...)

• Turn on relevant SUSY deformation too (also can turn on vev)

δSUV = −
∫
d4x

(∫
d2θ λO · O+ h.c.+ λ · UUVvis |

)
, (13)

and work in probe approximation: i.e., don’t allow SUSY-breaking
operator to back-react on the strong dynamics (leading-order
approximation in which we take λ to be parametrically small).
[Arkani-Hamed and Rattazzi, ’98], [Zoupanos et. al., ’98], [Luty
and Ratazzi, ’ 99], [Abel, Komargodski, and M.B., ’11]

• Follow to deep IR and find

δSIR|SSB = −
∫
d4x λ · UIRvis | . (14)

• δτU > 0 ⇒ norm of IR SUSY breaking operator smaller than
UV one ⇒ bound on emergent SUSY!
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Canonical SUSY Breaking (cont...)

• When IR is free, UIRvis = −
∑
aU

IR
vis (Φ̂a) · Φ̂a

¯̂Φ
a
, UIRvis (Φ̂a) =

3
2

(
RIRvis(Φ̂a)− 2

3

)
and have

δSIR|SSB = −
∫
d4x (mIR

a )2·¯̂φaφ̂a, (mIR
a )2 ≡ m2·UIRvis (φ̂a) , (15)

and so δτU > 0⇒ ∑
a

(mIR
a )4 <

∑
i

(mUV
i )4 , (16)

i.e., a bound on leading-order IR scalar masses!
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Example: SUSY Breaking in SQCD and Light Stops

• Since the SUSY-breaking term proportional to Uvis| acquires

anomalous dimension, the heuristic expectation is that it flows

to zero at leading order. However, we see that this is not true

in general since Uvis can mix with accidental symmetries in the

IR (and thus flow to something of IR dimension two).

• Such examples include free-magnetic SQCD, but our formula-

tion in terms of currents makes this simple to understand even

in more general theories (like adjoint SQCD [Abel, Komargodski,

Buican, ’11] with interacting IR fixed points and accidental sym-

metries) that don’t have known duals or sometimes lack even

Lagrangian descriptions. For simplicity will discuss SQCD and

make contact with phenomenology.
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Example: SUSY Breaking in SQCD and Light Stops
(cont...)

•One natural theory to study is SQCD deformed by the canonical
soft term described above

δSUV |SSB =
∫
d4x m2

(
QQ̄+ Q̃ ¯̃Q

)
, (17)

• Since we expect this SUSY breaking to by suppressed in the
IR, can naturally imagine embedding stops (or, more accurately,
their UV ancestors) in the Q, Q̃ fields. If the remaining two
generations are singlets under the SQCD strong dynamics (the
SM gauge group is just a weakly gauged subgroup of the flavor
symmetry) we naturally expect the stops to be light compared to
the first two generations [Csaki, Randall, and Terning, ’12].
We see, however, that this picture is more general!
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Example: SUSY Breaking in SQCD and Light Stops

(cont...)

• Note: There will generally be important corrections to the stop

mass from weakly-coupled spectators (i.e., the rest of the SSM

fields including the gauginos). However, we will assume that the

duality scale is low. Compositeness solves hierarchy problem and

SUSY solves little hierarchy problem with light stops.

• We will instead be concerned with the strong-coupling RG

flow of the Uvis = QQ̄ + Q̃ ¯̃Q operator. Consider first 3Nc/2 <

Nf < 3Nc. Conformal window with no accidental symmetries

⇒ Uvis → 0. Uvis → 0 for Nf = 3Nc/2 as well, however, there

are accidental symmetries in this phase.
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Example: SUSY Breaking in SQCD and Light Stops

(cont...)

• Although Uvis → 0, SUSY breaking may still be important in

the IR since the importance of the term LIR ⊃ m2UIR depends

on how Uvis → 0, i.e., as a power-law or logarithmically.

• IR behavior intimately connected to existence and mixings of

accidental symmetries.

• Note: Uvis → 0 logarithmically only if approach to IR CFT is

via a marginally irrelevant operator.

• General SCFT Fact: An operator is marginally irrelevant only

if it breaks a symmetry of the SCFT, [Green et. al., ’10].
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Example: SUSY Breaking in SQCD and Light Stops
(cont...)

• Implication: Uvis → 0 logarithmically only if it mixes with an
accidental symmetry away from the IR fixed point

U = γJ , (18)

γ an anomalous dimension computable (even for strong coupling)
in conformal perturbation theory, [Green et. al., ’10] with γ →
0 in deep IR.

• For Nf = 3Nc/2 (and similar parameter choices for SO and
Sp gauge groups), Uvis → 0 logarithmically because we have
accidental symmetries. Can simply understand this from toy
theory with K = Z(µ)ΦΦ̄ and W = λΦ3. In holomorphic scheme
Uvis ∼ dK/d logµ, and so have logarithmic running with Uvis =
|λ|2ΦΦ̄. Illustration of the power of currents!
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Example: SUSY Breaking in SQCD and Light Stops

(cont...)

• On the other hand, inside conformal window Uvis| ∼ 1
Λd−2O. IR

SUSY breaking is suppressed. Should check whether leads to

symmetry breaking or not!

• Power law and logarithmic behavior possible in both free and

interacting IR theories. For phenomenology may be of interest

to find free IR theory with power-law suppression (although in

tension with need for Yukawas). This might lead to more robust

IR stop mass suppression than in present models.
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Example: SUSY Breaking in SQCD and Light Stops

(cont...)

• Another issue is that SQCD is sensitive to the UV soft masses,

e.g.

δSUV |SSB =
∫
d4x

(
m2

2

(
QQ̄+ Q̃ ¯̃Q

)
+m′2

(
QQ̄− Q̃ ¯̃Q

))
, (19)

where m′ multiplies the bottom component of the Baryon num-

ber current.

• In the IR, this leads to tachyons at leading order in m′

δSIR|SSB =
∫
d4x m′2

(
Nc

Nf −Nc

)(
qq̄ − q̃¯̃q

)
+ · · · . (20)
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Example: SUSY Breaking in SQCD and Light Stops
(cont...)

• Many authors have observed this behavior. Heuristically one
expects it since the mass terms corresponding to conserved cur-
rents do not acquire anomalous dimension (at leading order in
the soft deformation) and so we expect them to remain in the
IR at leading order.

• While the statement about vanishing anomalous dimensions is
true, the conclusion above about the IR behavior is not always
correct!

• Heuristically, this is because the states that currents act on can
be massive⇒ the currents decouple (and so do the corresponding
soft terms at leading order).
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Example: SUSY Breaking in SQCD and Light Stops

(cont...)

• For example, consider SQCD with Nf = 3Nc− 1; turning on a

mass for the first flavor

δW = mQ1Q̃1 (21)

renders current, Ĵ11, acting (only) on these superfields w/ op-

posite phases massive—i.e., Ĵ11 → 0 and soft terms proportional

to Ĵ11| → 0 at leading order! Dynamical examples too.

• We want to study SUSY RG flows with small SUSY breaking

of the form

δSUV |SSB = −
∫
d4x

(
λU · UUVvis |+ λa · ĴUVa |+ λA · JUVA |

)
. (22)

29



So, what’s the general rule for RG behavior in our class of the-

ories? In general additional relevant operators. Specialize to

above. Currents ⇒ powerful constraints.
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The IR Behavior of Conserved Currents

• Want to understand how conserved current soft terms, mĴa|,
behave in IR. Therefore, study corresponding conserved currents.

• If want emergent SUSY and light sparticles from strong dy-

namics, want UIRvis → 0. This amounts to studying theories with

R̃IRµ = lim
E→0

Rµ,vis . (23)

• In fact, for the theorem we will prove we don’t even need an

FZ multiplet and so can study

R̃IRµ = lim
E→0

Rµ, D̄α̇Rαα̇ = χα, D̄α̇χα = Dαχα − D̄α̇χ̄α̇ = 0 . (24)

When discuss soft terms continue to assume existence of U .
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The IR Behavior of Conserved Currents (cont...)

• Under these conditions can state a theorem for unitary QFTs:

• Theorem: A necessary and sufficient condition for the unbro-

ken non-R currents, Ĵa, to flow to zero in the deep IR is that all

the ’t Hooft anomalies involving these currents vanish, i.e.

TrĴaĴbĴc = 0, TrRĴaĴb = 0, TrR2Ĵa = 0, TrĴa = 0 . (25)
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The IR Behavior of Conserved Currents (cont...)

• Proof: Necessity is trivial and follows from the following obser-

vation: if one of these anomalies is non-zero, ’t Hooft anomaly

matching forces there to be light fields charged under the corre-

sponding symmetries. Sufficiency follows from the following rea-

soning. First, recall from (24) that Rµ flows to the IR supercon-

formal R current, R̃IRµ . Let us then suppose that Ĵa → ĴIRa 6= 0.

In this case, TrR̃IRĴaĴa < 0 (by unitarity) and so we must have

TrRĴaĴa < 0. This inequality conflicts with the second equation

in (25), and so it must be the case that Ĵa → 0 in the IR. q.e.d.
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The IR Behavior of Conserved Currents (cont...)

• R → 0 and Ĵ → 0 on different footing.

• Corollary: Consider the set of asymptotically free theories

with simple gauge group and vanishing superpotential such that

(24) holds. If such a theory has a set of non-anomalous global

symmetries, Ĵa, then it follows that a non-trivial subgroup of this

symmetry will remain in the IR.

• Sketch of proof: We prove by contradiction. Using the theo-

rem we should try to impose that the ’t Hooft anomalies in (25)

all vanish. A simple exercise in linear algebra reveals that this is

inconsistent with the fact that our theory has a non-anomalous

R symmetry.
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Consequences for Soft Masses

• Leading order soft masses proportional to m2Ĵa| vanish if and
only if all the corresponding ’t Hooft anomalies vanish.

• Corollary assures us that we get leading order soft masses in
generic asymptotically free theories unless we restrict the set of
UV soft terms to a subset of measure zero since (at least for
simple gauge group and vanishing superpotential)

G = U(1)R × U(1)s−1 ×
s∏

i=1

SU(ni) . (26)

⇒ have to often make assumptions about SUSY breaking and
mediation mechanism. Large deformations of these theories
often lead to incalculable soft terms [Abel, M.B., Komargodski,

’11].
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Consequences for Soft Masses

• Upshot: If we want natural and calculable theories of emergent

SUSY and light sparticles, it is perhaps more promising to start

from an interacting UV fixed point since can have less symmetry.

• Interacting fixed point should have some global symmetry

group G ⊃ GSSM (that is weakly gauged) if we want light emer-

gent SSM states.

• Want a minimal embedding so as to avoid too much addi-

tional global symmetry; generically will need relevant deforma-

tions to then get rid of exotics; these deformations generically

break global symmetries and lead to incalculable soft terms.
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Consequences for Soft Masses (cont...)

• To have a space of couplings one can play with that don’t break
global symmetries it is natural to consider conformal manifold
(i.e, the space of exactly marginal deformations), M (these are
often present in interacting N = 1 theories)

M = {λi}/GC , (27)

where the λi are the marginal (holomorphic) couplings [Green et.

al., ’10]. Want submanifold of GC singlets, M̂.

• What is the phenomenological role of the conformal manifold?

• Nice global symmetry group for a conformal manifold that
might allow EWSB and light Higgs: G = SU(2)× SU(2)× U(1).
String theorists will recognize this as the global symmetry group
of the conifold...
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Consequences for Soft Masses (cont...)

• We have seen how general principles of the RG flow (unitarity

and ’t Hooft anomaly matching) as well as a conjectured property

of a large class of four-dimensional R-symmetric RG flows may

provide constraints on theories of light sparticles.

• Clearly a lot remains to be explored, but careful analysis of a

few well-defined QFT degrees of freedom may yield interesting

constraints that (hopefully) help us with our phenomenological

searches at the LHC.
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