Particles and the Universe Corfu, 20.09.2012

THE LARGE SCALE STRUCTURE OF WARM DARK MATTER

Katarina Markovic

University Observatory Munich (USM)

with Jochen Weller (USM),

Robert Smith (Zurich), Marco Baldi (USM), Matteo Viel (Trieste) and Martin Kilbinger (Paris)

Thursday, 20 September, 2012

OUTLINE

- free-streaming
- the halo model
- simulations dark matter only
- degeneracies: WDM+b & WDM+ ν

ACDM, PRESENTTIME

73% Dark Energy or Λ
23% Cold Dark Matter
4.5% Baryonic matter
negligible radiation and other standard model matter

ACDM, PRESENTTIME

73% Dark Energy or Λ23% Cold Dark Matter

4.5% Baryonic matter

negligible radiation and other standard model matter

WARM DARK MATTER PARTICLE

- DM: elementary particles
- DM: here assume thermal or sterile v
- We have: $\Omega_{\rm dm}(m_{\rm dm},g^*(T_{\rm d}),\langle\sigma v\rangle)$
- choose a DM model → get rid of one variable

CONSTRAINTS

• I measurement: Dark Matter abundance from CMB experiments (WMAP7, assuming standard Λ CDM):

 $\Omega_{\rm dm}=0.227\pm0.014$

CONSTRAINTS

• I measurement: Dark Matter abundance from CMB experiments (WMAP7, assuming standard Λ CDM):

 $\Omega_{\rm dm}=0.227\pm0.014$

I constraint: Choose a heavy DM particle á la WIMP

 → constraints from DM high-density regions

CONSTRAINTS

• I measurement: Dark Matter abundance from CMB experiments (WMAP7, assuming standard Λ CDM):

 $\Omega_{\rm dm}=0.227\pm0.014$

- I constraint: Choose a heavy DM particle á la WIMP

 → constraints from DM high-density regions
- I constraint: Choose a light particle (m ~ I keV)
 - → Warm Dark Matter
 - → constraints from Large Scale Structure

FREE-STREAMING

- early relativistic particles \Rightarrow free-streaming
- .: the linear matter power spectrum small scale suppression
- How does this translate to non-linearities?

Smith & Markovic (PRD; 2011)

in CDM, assume:
 all of density field ← haloes

$$\rho(\boldsymbol{x}) = \sum_{i=1}^{N} M_i u_{\rm h}(|\boldsymbol{x} - \boldsymbol{x}_{0,i}|, M_i)$$

Smith & Markovic (PRD; 2011)

in CDM, assume:
 all of density field ← haloes

$$ho(m{x}) = \sum_{i=1}^{N} M_i \, u_{
m h}(|m{x} - m{x}_{0,i}|, M_i) +
ho_{
m s}(m{x})$$

in WDM, split:
 clumped + smooth

Smith & Markovic (PRD; 2011)

- volume average
- get background values

$$\langle \rho(\boldsymbol{x}) \rangle = \langle \rho_{\rm s}(\boldsymbol{x}) \rangle + \langle \rho_{\rm c}(\boldsymbol{x}) \rangle$$

define a "clumped fraction"

Smith & Markovic (PRD; 2011)

- volume average
- get background values

 $\bar{\rho} = \bar{\rho}_{\rm s} + \bar{\rho}_{\rm c}$

define a "clumped fraction"

Smith & Markovic (PRD; 2011)

- volume average
- get background values

$$\bar{\rho} = \bar{\rho}_{\rm s} + \bar{\rho}_{\rm c}$$

define a "clumped fraction"

$$f = \bar{\rho}_{\rm c}/\bar{\rho} = \frac{1}{\bar{\rho}} \int_{M_{\rm cut}}^{\infty} dMM \frac{dn}{dM}$$

Smith & Markovic (PRD; 2011)

- volume average
- get background values

$$\bar{\rho} = \bar{\rho}_{\rm s} + \bar{\rho}_{\rm c}$$

define a "clumped fraction"

mass function / (no. density of haloes per dM)

$$f = \bar{\rho}_{\rm c} / \bar{\rho} = \frac{1}{\bar{\rho}} \int_{M_{\rm cut}}^{\infty} dM M \frac{dn}{dM}$$

Smith & Markovic (PRD; 2011)

$$\langle \rho_i(\boldsymbol{x}) \rho_j(\boldsymbol{x} + \boldsymbol{r}) \rangle = \bar{\rho}_i \bar{\rho}_j \left(1 + \langle \delta_i(\boldsymbol{x}) \delta_j(\boldsymbol{x} + \boldsymbol{r}) \rangle \right)$$

 $\rho_i(\boldsymbol{x}) \equiv \bar{\rho}_i \left(1 + \delta_i(\boldsymbol{x}) \right)$

Smith & Markovic (PRD; 2011)

• we want statistic of clustering, so as always:

 $\begin{array}{l} \langle \rho_i(\boldsymbol{x})\rho_j(\boldsymbol{x}+\boldsymbol{r})\rangle = \bar{\rho}_i\bar{\rho}_j\left(1+\xi_{ij}(\boldsymbol{r})\right) \\ \rho_i(\boldsymbol{x}) \equiv \bar{\rho}_i\left(1+\delta_i(\boldsymbol{x})\right) \\ \xi_{ij}(|\boldsymbol{r}|) \equiv \xi_{ij}(\boldsymbol{r}) \equiv \langle \delta_i(\boldsymbol{x})\delta_j(\boldsymbol{x}+\boldsymbol{r})\rangle \\ + \text{ statistical} \\ \text{ isotropy } \& \\ \text{ homogeneity} \end{array}$

Smith & Markovic (PRD; 2011)

$$\begin{array}{l} \langle \rho_i(\boldsymbol{x})\rho_j(\boldsymbol{x}+\boldsymbol{r})\rangle = \bar{\rho}_i\bar{\rho}_j\left(1+\xi_{ij}(\boldsymbol{r})\right) \\ \rho_i(\boldsymbol{x}) \equiv \bar{\rho}_i\left(1+\delta_i(\boldsymbol{x})\right) \\ & \downarrow \\ & \xi_{ij}(|\boldsymbol{r}|) \equiv \xi_{ij}(\boldsymbol{r}) \equiv \langle \delta_i(\boldsymbol{x})\delta_j(\boldsymbol{x}+\boldsymbol{r})\rangle \\ & \downarrow \\ & + \text{ statistical isotropy & } \\ & \text{homogeneity } \end{array}$$

Smith & Markovic (PRD; 2011)

$$\langle
ho_i(\boldsymbol{x})
ho_j(\boldsymbol{x}+\boldsymbol{r})
angle = ar{
ho}_iar{
ho}_j(1+\xi_{ij}(r))$$

= $\langle
ho_{\mathrm{s}}(\boldsymbol{x})
ho_{\mathrm{s}}(\boldsymbol{x}+\boldsymbol{r})
angle + \langle
ho_{\mathrm{c}}(\boldsymbol{x})
ho_{\mathrm{c}}(\boldsymbol{x}+\boldsymbol{r})
angle + 2 \langle
ho_{\mathrm{c}}(\boldsymbol{x})
ho_{\mathrm{s}}(\boldsymbol{x}+\boldsymbol{r})
angle$

Smith & Markovic (PRD; 2011)

$$\langle \rho_i(\boldsymbol{x}) \rho_j(\boldsymbol{x} + \boldsymbol{r}) \rangle = \bar{\rho}_i \bar{\rho}_j (1 + \xi_{ij}(r))$$

= $\bar{\rho}_s^2 (1 + \xi_{ss}(r)) + \bar{\rho}_c^2 (1 + \xi_{cc}(r)) + 2\bar{\rho}_c \bar{\rho}_s (1 + \xi_{cs}(r))$

Smith & Markovic (PRD; 2011)

• we want statistic of clustering, so as always:

$$\langle \rho_i(\boldsymbol{x}) \rho_j(\boldsymbol{x} + \boldsymbol{r}) \rangle = \bar{\rho}_i \bar{\rho}_j (1 + \xi_{ij}(r))$$

= $\bar{\rho}_s^2 (1 + \xi_{ss}(r)) + \bar{\rho}_c^2 (1 + \xi_{cc}(r)) + 2\bar{\rho}_c \bar{\rho}_s (1 + \xi_{cs}(r))$

 $\xi(r) = (1 - f)^2 \xi_{\rm ss}(r) + 2f(1 - f)\xi_{\rm sc}(r) + f^2 \xi_{\rm cc}(r)$

 \downarrow

Smith & Markovic (PRD; 2011)

• we want statistic of clustering, so as always:

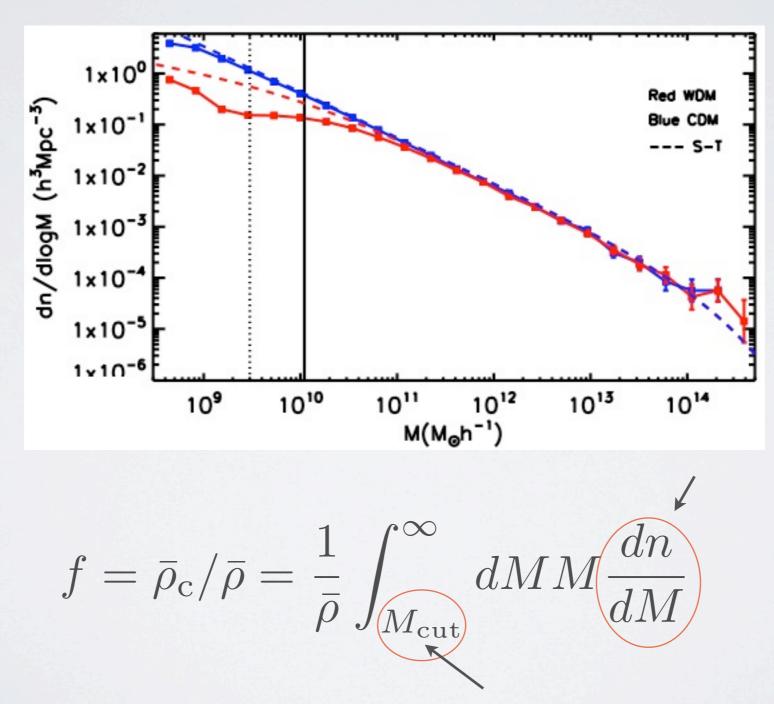
$$\langle \rho_i(\boldsymbol{x}) \rho_j(\boldsymbol{x} + \boldsymbol{r}) \rangle = \bar{\rho}_i \bar{\rho}_j (1 + \xi_{ij}(r))$$

= $\bar{\rho}_s^2 (1 + \xi_{ss}(r)) + \bar{\rho}_c^2 (1 + \xi_{cc}(r)) + 2\bar{\rho}_c \bar{\rho}_s (1 + \xi_{cs}(r))$

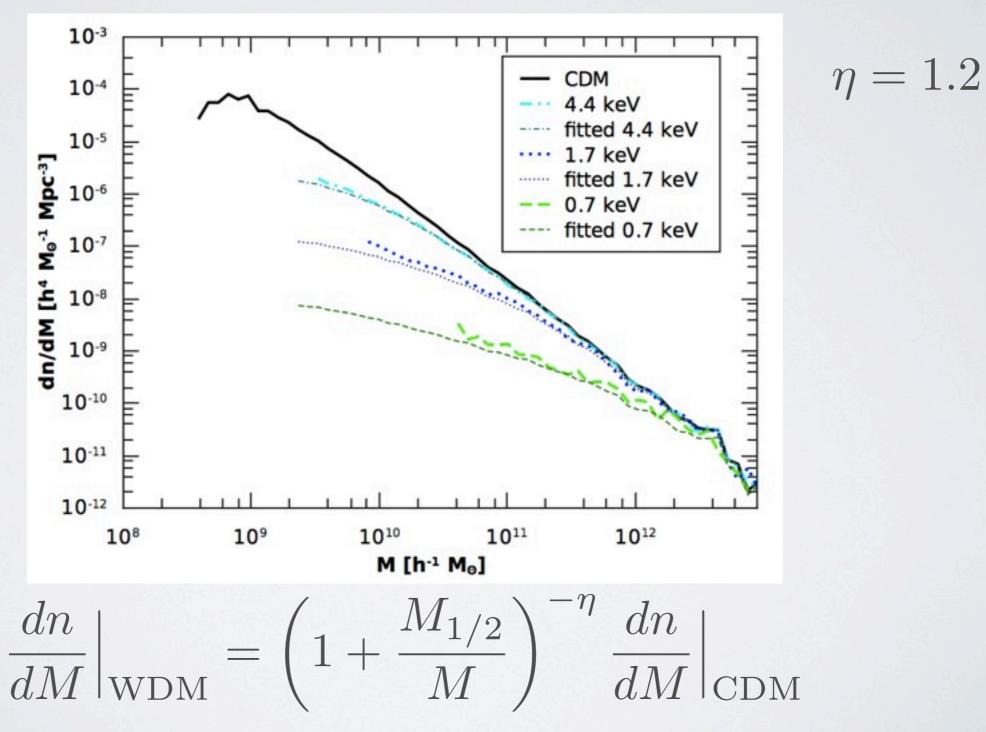
 $P(k) = (1 - f)^2 P_{\rm ss}(k) + 2(1 - f) f P_{\rm sc}(k) + f^2 P_{\rm cc}(k)$ $P_{\rm cc}^{\rm 2h}(k) + P_{\rm cc}^{\rm 1h}(k)$

 \downarrow

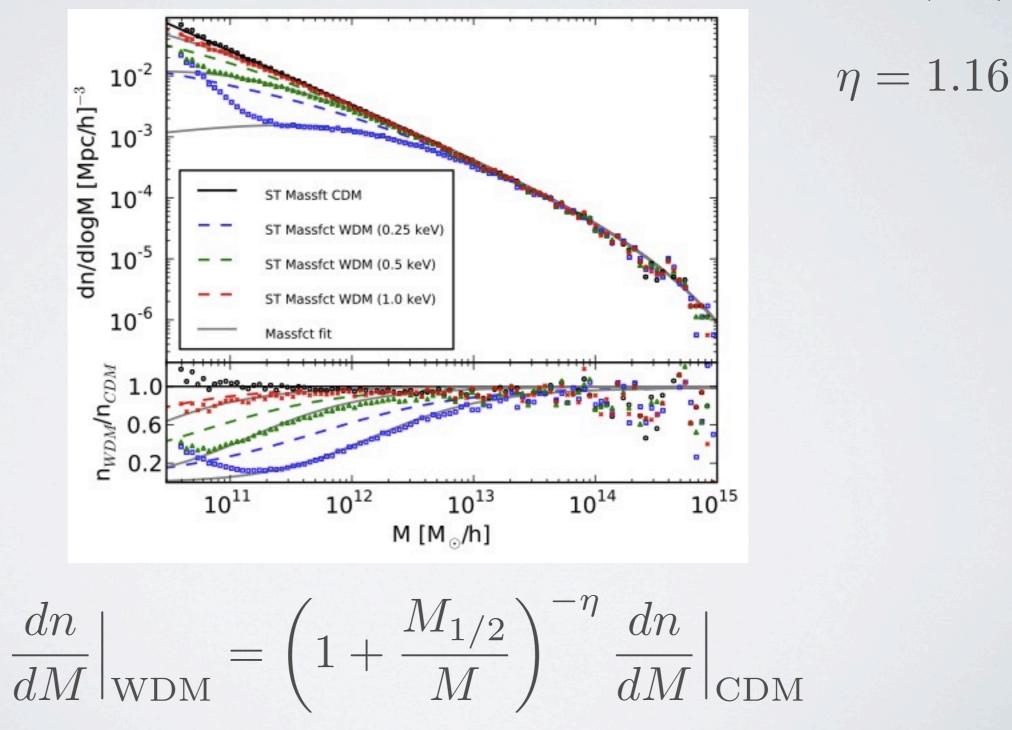
Zavala et al. (2009)



Dunstan, Abazajian, Polisensky & Ricotti (2011)



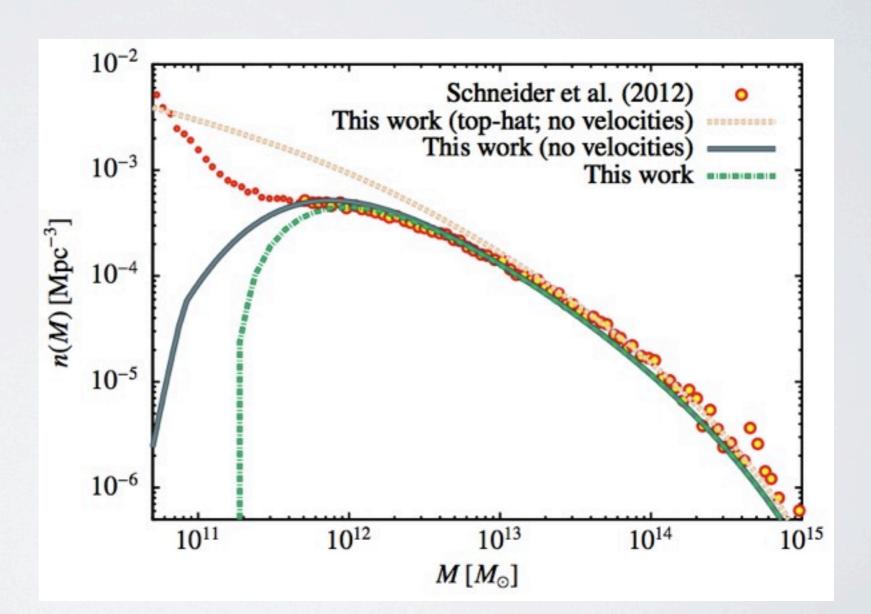
Schneider, Smith, Maccio & Moore (2012)

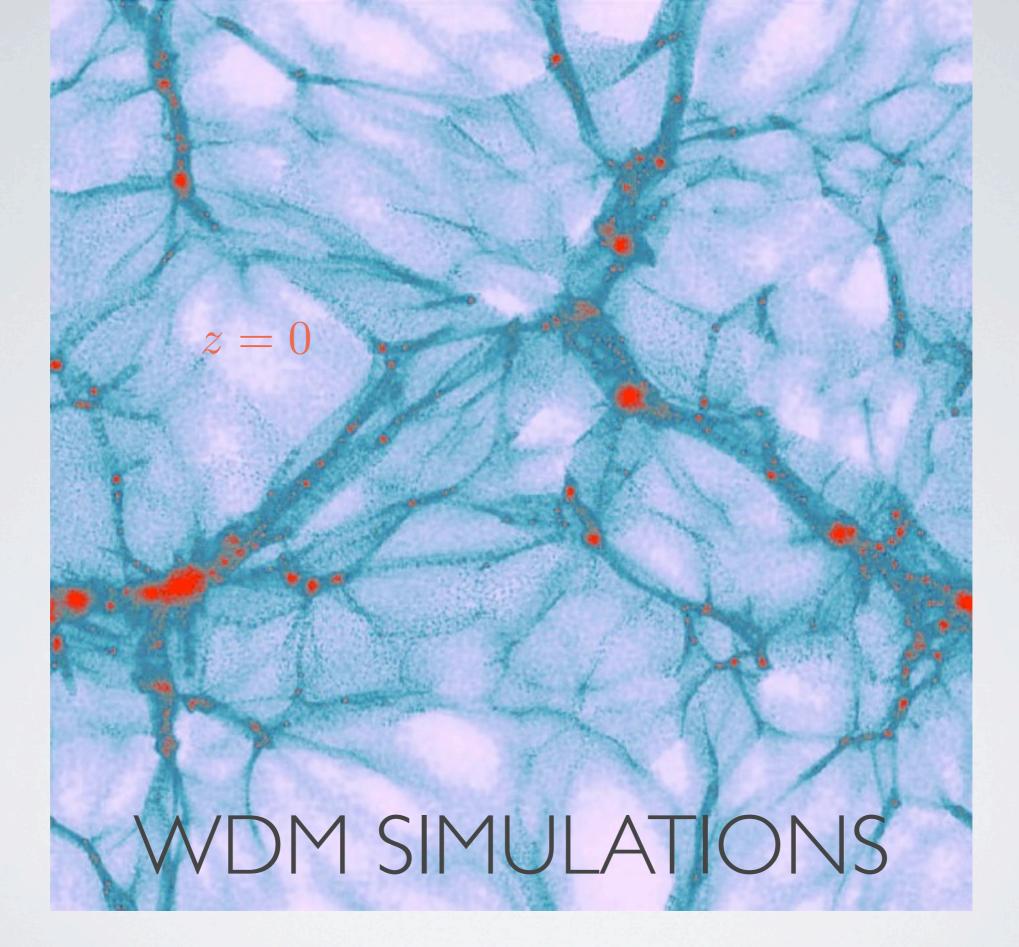


Thursday, 20 September, 2012

Benson et al. (2012)

- arXiv, Monday
- merger trees
- no top-down
- smooth accretion!

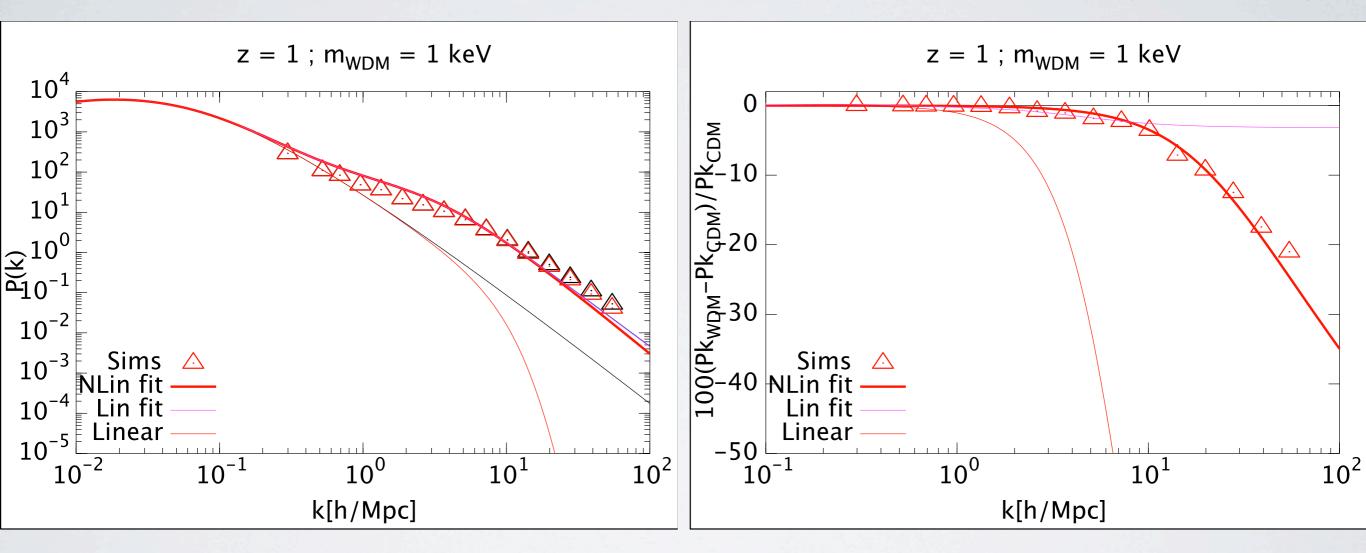




Viel, Markovic, Baldi & Weller (MNRAS; 2012)

WDM SIMULATIONS

Viel, Markovic, Baldi & Weller (MNRAS; 2012)

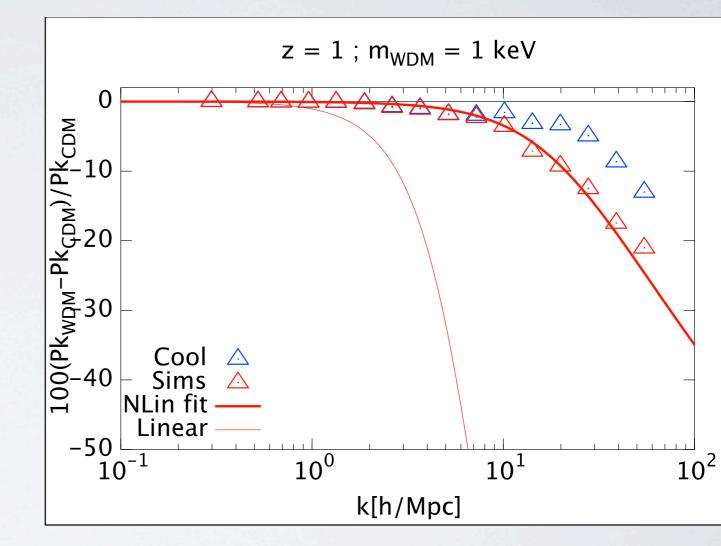


 $T_{\rm nlin}^2(k) \equiv P_{\rm WDM}(k) / P_{\Lambda {\rm CDM}}(k) = (1 + (\alpha \, k)^{\nu l})^{-s/\nu}$

Depends on particle mass

WDM+b

Viel, Markovic, Baldi & Weller (MNRAS; 2012)

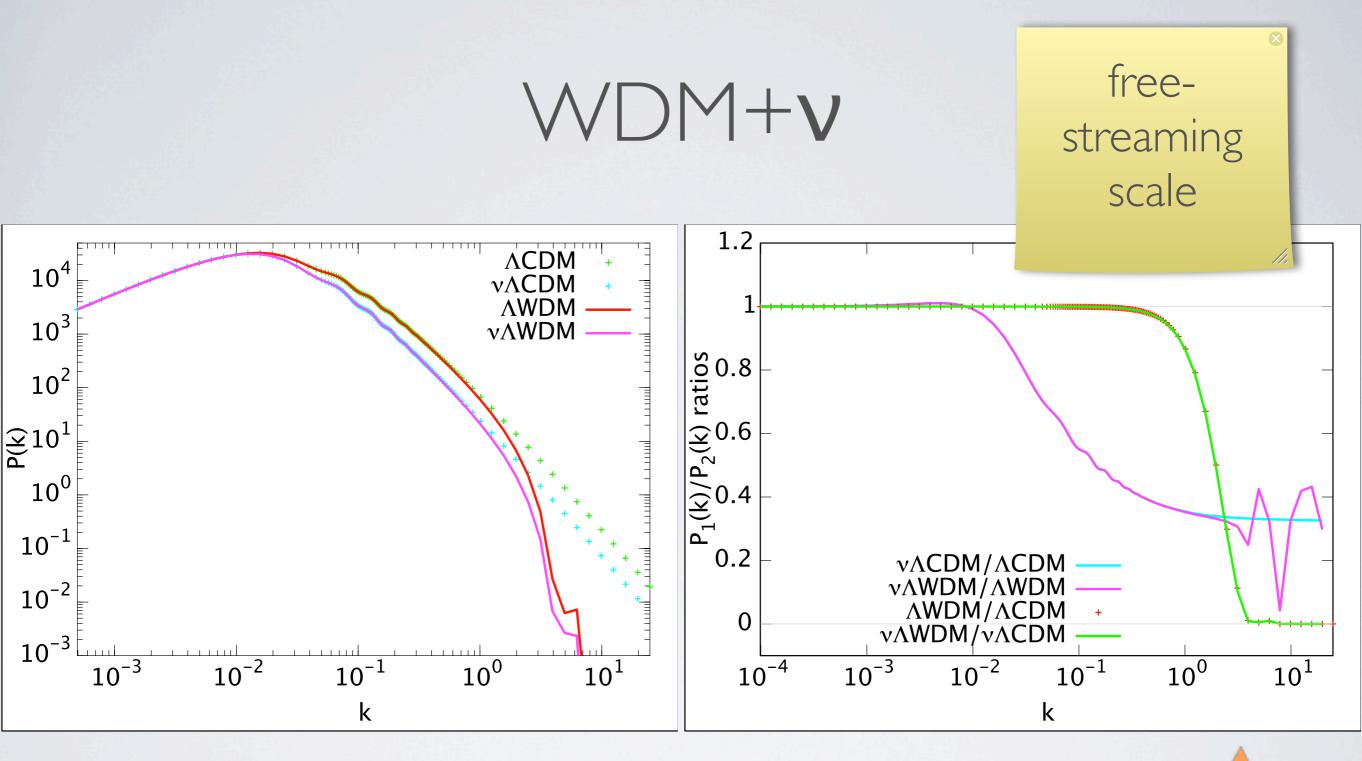


- blue: SF, winds
- cooling erases WDM effect

WDM+v

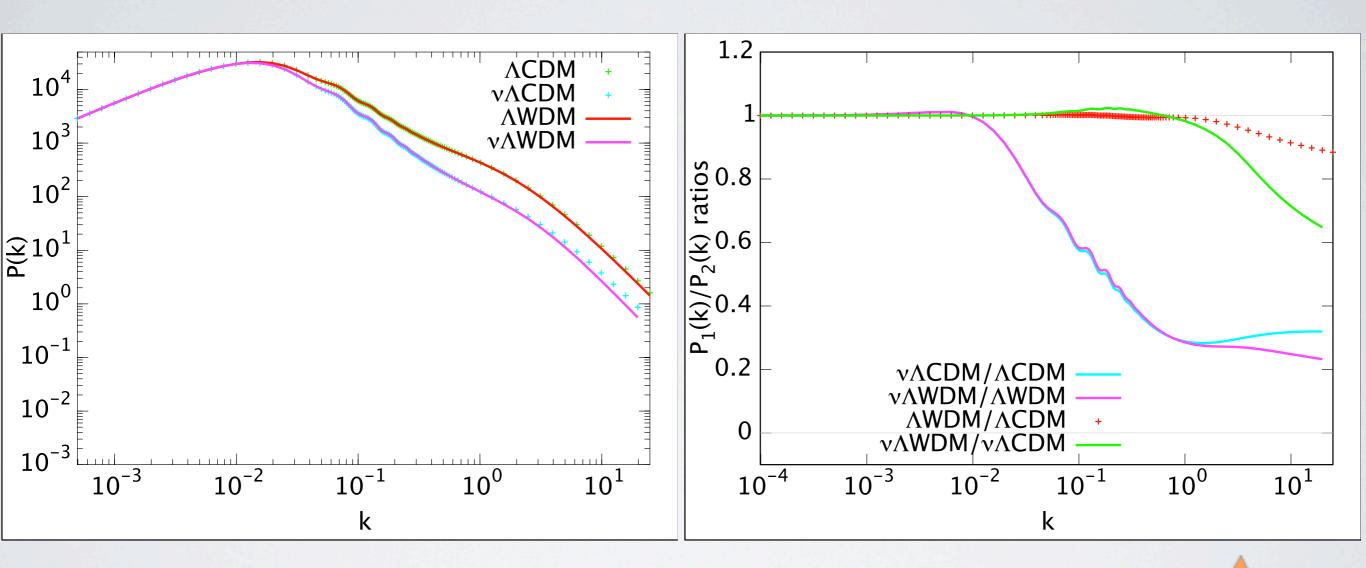
Markovic, Abdalla, Lahav & Weller (in prep)

- neutrinos = HDM
- CLASS code (Lesgourgues, 2011)
- halofit (CDM-based)
- ... new, calibrated halo model



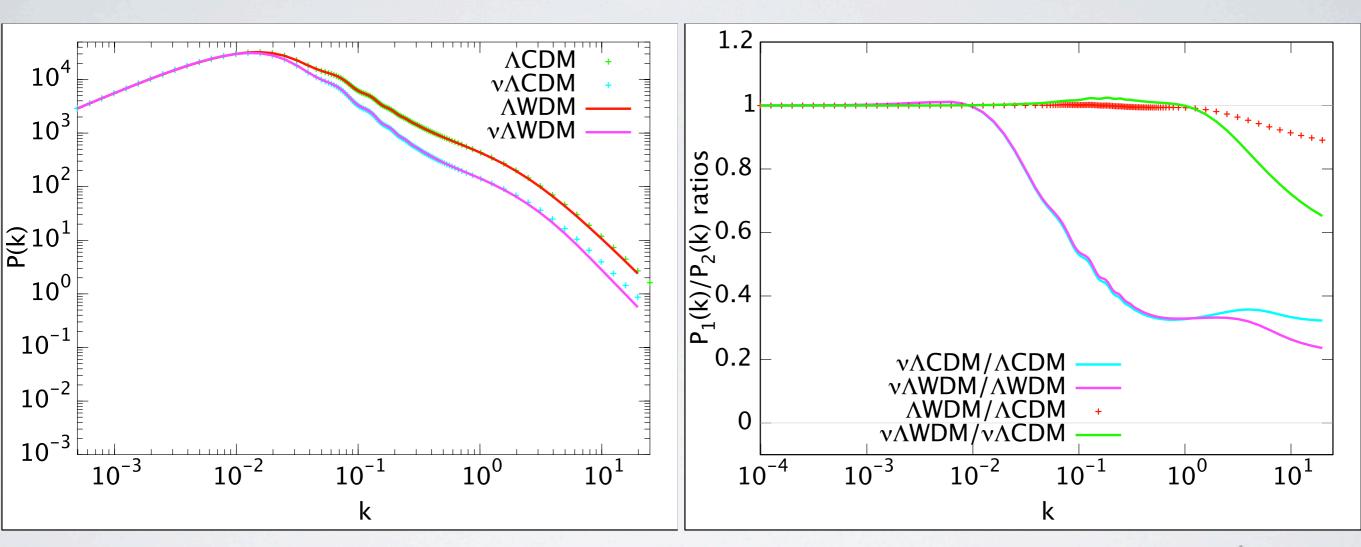
Linear

WDM+v



halofit

WDM+v



halofit +correction

TL;DR

- WDM is a generalisation of CDM.
- We know good prescriptions to calculate non-linear corrections in Λ WDM.
- BUT we need to know baryonic effects!

TL;DL

- WDM is a generalisation of CDM.
- We know good prescriptions to calculate non-linear corrections in Λ WDM.
- BUT we need to know baryonic effects!