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Introduction-Motivations

Introduction

The application of the AdS/CFT correspondence to condense matter physics has
developed into one of the most productive topics of string theory.

Holographic principle: understanding strongly coupled phenomena of condensed matter
physics by studying their weakly coupled gravity duals.

Applications to:

Conventional and unconventional superfluids and superconductors
[S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, Phys. Rev. Lett. 101, 031601 (2008)]

Fermi liquids
[S. Bhattacharyya, V. E. Hubeny, S. Minwalla and M. Rangamani, JHEP 0802, 045 (2008)]

Quantum phase transitions
[M. Cubrovic, J. Zaanen and K. Schalm, Science 325, 439 (2009)]
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Introduction-Motivations

In cuprates and iron pnictides which are high-Tc superconductors it was found that
competing orders coexist indicating that there is a breaking of the lattice symmetries.
This breaking introduces inhomogeneities.

Spatially inhomogeneous phases appear in:

Models with spontaneous modulation of the electronic charge (CDW) and spin
density (SDW), below a critical temperature Tc.
[A. Aperis, P. Kotetes, E. Papantonopoulos, G. Siopsis, P. Skamagoulis and G. Varelogiannis, Phys. Lett.

B 702, 181 (2011)]

[ R. Flauger, E. Pajer and S. Papanikolaou, Phys. Rev. D 83, 064009 (2011)]

Strong magnetic field induces inhomogeneous structures in holographic
superconductors.
[ T. Albash and C. V. Johnson, JHEP 0809, 121 (2008), [arXiv:0804.3466 [hep-th]]]

Spatially modulated phases were generated in five-dimensional Einstein-Maxwell
theory with a Chern-Simons term.
[K. Maeda, M. Natsuume and T. Okamura, Phys. Rev. D 81, 026002 (2010), [arXiv:0910.4475 [hep-th]]]

Inhomogeneous structures were also investigated in holographic superconductors
including domain wall like defects.
[V. Keranen, E. Keski-Vakkuri, S. Nowling and K. P. Yogendran, Phys. Rev. D 80, 121901 (2009)

[arXiv:0906.5217 [hep-th]]]
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Introduction-Motivations

Holographic principle: Homogeneous superfuilds

The gravity sector consists of a system with a black hole and a charged scalar field,
in which the black hole admits scalar hair at temperature smaller than a critical
temperature, while there is no scalar hair at larger temperatures.

This breaking of the Abelian U(1) symmetry corresponds in the boundary theory to
a scalar operator which condenses at a critical temperature proportional to the
charged density of the scalar potential.

Fluctuations of the vector potential below the critical temperature give the
frequency dependent conductivity in the boundary theory.
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Introduction-Motivations

Holographic principle: Inhomogeneous superfuilds

Introduce a modulated chemical potential which is translated into a modulated
boundary value for the electrostatic potential in the AdS black hole gravity
background.

From an Einstein-Maxwell scalar system solutions can be obtained, which below a
critical temperature show that the system undergoes a phase transition and a
condensate can develop with a non vanishing modulation. Depending on what
symmetries are broken, the modulated condensate corresponds to ordered states like
CDW or SDW in the boundary.
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FFLO states

FFLO states

▶ Appearance of FFLO states

⋇ Modulated order parameters appear as competing phases with normal superconducting
phases in superconductor-ferromagnetic (S/F) systems.

⋇ Strong magnetic field, coupled to the spins of the conduction electrons, gives rise to a
separation of the Fermi surfaces corresponding to electrons with opposite spins. If the
separation is too high, the pairing is destroyed and there is a transition from the
superconducting state to the normal one (paramagnetic effect).

⋇ A a new state could be formed, close to the transition line. This state, known as the
FFLO state, has the feature of exhibiting an order parameter, which is not a constant,
but has a space variation.
[P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964)]

[A. I. Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47, 1136 (1964) [Sov. Phys. JETP 20, 762 (1965)]]

⋇ The space modulation arises because the electron pair has nonzero total momentum,
and it leads to the possibility of a nonuniform or anisotropic ground state, breaking
translational and rotational symmetries.
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FFLO states

Figure: The (qualitative) phase diagram of holographic superfluids. At zero temperature, a
quantum critical point is found for velocities below a critical value, �c where � = Ax/� is the
superfluid velocity. Above �c the system enters a more anisotropic phase.

(This figure appears in D. Arean, M. Bertolini, C. Krishnan and T. Prochazka, JHEP 1109, 131 (2011) )
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FFLO states

▶ Generalized Ginzburg-Landau expansion: FFLO states

In the standard Ginzburg-Landau functional

F = a∣ ∣2 + 
∣
−→
∇ ∣2 +

b

2
∣ ∣4

where  is the superconducting order parameter, the coefficient a vanishes at the
transition temperature Tc. At T < Tc, the coefficient a is negative and the minimum of
F occurs for a uniform superconducting state with ∣ ∣2 = −a/b.

In the case of the paramagnetic effect all the coefficients in the F functional will be
proportional to the magnetic field B. Then the coefficient 
 changes its sign at a point
in the (B, T ) phase diagram indicating that the minimum of the functional does not
correspond to a uniform state, and a spatial variation of the order parameter decreases
the energy of the system.

To describe such a situation it is necessary to add a higher order derivative term in the
expansion of F :

FG = a(B, T )∣ ∣2 + 
(B, T )∣
−→
∇ ∣2 +

�(B, T )

2
∣
−→
∇2 ∣2 +

b(B, T )

2
∣ ∣4

(See the review A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005) )
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FFLO states

▶ Attemps to generate gravity duals of FFLO states

⋇ A theory resulting from a consistent truncation of low energy type IIB string theory
was considered with action

SIIB =

∫
d5x
√
−g
[
R− L2

3
FabF

ab +
1

4

(
2L

3

)3

�abcdeFabFcdAe +

−1

2

(
(∂a )2 + sinh2  (∂a� − 2Aa)2 − 6

L2
cosh2

(
 

2

)
(5− cosh )

)]
were the scalar was splitted into a phase and its modulus in the form  ei�. The Abelian
gauge field A was dual to an R-symmetry in the boundary field theory and the scalar
field has R-charge R = 2.

They analyzed the theory and they found that when the superfluid velocity � = Ax,0/�
becomes too large the anisotropy becomes too strong to be washed out in the IR. They
conjectured that this behaviour may be connected with anisotropic FFLO phase.

[D. Arean, M. Bertolini, C. Krishnan and T. Prochazka, JHEP 1109, 131 (2011)]]
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FFLO states

⋇ A s-wave unbalanced unconventional superconductor in 2 + 1 dimensions was
considered with action

S =
1

2�2
4

∫
dx4√−g

[
ℛ+

6

L2
− 1

4
FabF

ab − 1

4
YabY

ab − V (∣ ∣)− ∣∂ − iqA ∣2
]

The Maxwell field Aa (resp. Ba) with field strength F = dA (resp. Y = dB) is the
holographic dual of the U(1)A “charge” (resp. U(1)B “spin”) current of the 2 + 1
dimensional field theory. The following ansatz for the fields was considered

 =  (r), Aadx
a = �(r)dt, Badx

a = v(r)dt

and the vector fields at the boundary were given by

�(r) = �− �

r
+ . . . as r →∞ ,

v(r) = ��− ��

r
+ . . . as r →∞

They analyzed the theory but no evidence for a FFLO state was found.

[F. Bigazzi, A. L. Cotrone, D. Musso, N. P. Fokeeva and D. Seminara, JHEP 1202, 078 (2012)

[arXiv:1111.6601 [hep-th]]
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Holographic FFLO states

Holographic FFLO states

Consider the action

S =

∫
d4x
√
−g
[
R+ 6/L2

16�G
− 1

4
FABF

AB − 1

4
ℱABℱAB

]
where FAB = ∂AAB − ∂BAA, ℱAB = ∂AAB − ∂BAA are the field strengths of the U(1)
potentials AA and AA, respectively.
The Einstein-Maxwell equations admit a solution which is a four-dimensional AdS black
hole of two U(1) charges,

ds2 =
1

z2

[
−ℎ(z)dt2 +

dz2

ℎ(z)
+ dx2 + dy2

]
with the horizon radius set at z = 1.
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Holographic FFLO states

The two sets of Maxwell equations admit solutions of the form, respectively,

At = � (1− z) , Az = Ax = Ay = 0

and
Ay = ℬx , At = Ax = Az = 0

with corresponding field strengths having non-vanishing components for an electric and a
magnetic field in the z-direction, respectively,

Ftz = −Fzt = � , ℱxy = −ℱyx = ℬ

Then from the Einstein equations we obtain

ℎ(z) = 1−
(

1 +
ℬ2 + �2

4

)
z3 +

ℬ2 + �2

4
z4

The Hawking temperature is

T = −ℎ
′(1)

4�
=

3

4�

[
1− ℬ

2 + �2

12

]
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Holographic FFLO states

We now consider a scalar field �, of mass m, and U(1)2 charge (q, 0), with the action

S =

∫
d4x
√
−g
[
∣DA�∣2 −m2∣�∣2

]
where DA = ∂A + iqAA.
The asymptotic behavior (as z → 0) of the scalar field is

� ∼ zΔ , Δ(Δ− 3) = m2

For a given mass, there are, in general, two choices of Δ,

Δ = Δ± =
3

2
±
√

9

4
+m2

leading to two distinct physical systems.
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Holographic FFLO states

As we lower the temperature, an instability arises and the system undergoes a
second-order phase transition with the black hole developing hair. This occurs at a
critical temparture Tc which is found by solving the scalar wave equation in the above
background,

∂2
z�+

[
ℎ′

ℎ
− 2

z

]
∂z�+

1

ℎ
∇2

2�−
1

ℎ

[
m2

z2
− q2A

2
t

ℎ

]
� = 0

Although the above wave equation possesses (x, y)-dependent solutions, the symmetric
solution dominates and the hair that forms has no (x, y) dependence. To see this, let us
introduce x-dependence and consider a static scalar field of the form

�(z, x, y) =  (z)eiQx

The wave equation becomes

 ′′ +

[
ℎ′

ℎ
− 2

z

]
 ′ − Q2

ℎ
 − 1

ℎ

[
m2

z2
− q2A

2
t

ℎ

]
 = 0
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Holographic FFLO states

There is a scaling symmetry

z → �z , x→ �x , Q→ Q/� ,

� → �/� , ℬ → ℬ/�2 , T → T/�

so we work only with scale-invariant quantities, such as T/�, ℬ/�2, Q/�, etc. It is
convenient to introduce the scale-invariant parameter

� =

√
ℬ
q�

to describe the effect of the magnetic field ℬ of the second U(1).
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Holographic FFLO states

The system is defined uniquely by specifying the parameters q and Δ. Then the critical
temperature at which the second-order phase transition occurs is,

Tc
�

=
T

�c
=

3

4��c

[
1− �2

c(1 + q4�4�2
c)

12

]

For Q = 0, we recover the homogeneous solution. As we increase �, the temperature
decreases. For a given � > 0, the black hole is of the Reissner-Nordström form with
effective chemical potential

�2
eff = �2

c(1 + q4�4�2
c)

The scalar wave equation is the same as its counterpart in a Reissner-Nordström
background, but with effective charge

q2
eff =

q2

1 + q4�4�2
c

so that qeff�eff = q�c.
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Holographic FFLO states

An instability occurs for all values of qeff , including qeff = 0, if Δ ≤ Δ∗, where Δ∗ = Δ+

for m2 = − 3
2

, or explicitly,

Δ∗ =
3 +
√

3

2
≈ 2.366

For Δ ≤ Δ∗, � can increase indefinitely. The critical temperature has a minimum value
and as � →∞, Tc diverges.
For Δ > Δ∗, qeff has a minimum value at which the critical temperature vanishes and
the black hole attains extremality. This is found by considering the limit of the near
horizon region. One obtains

qeff ≥ qmin , q2
min =

3 + 2Δ(Δ− 3)

4

At the minimum (Tc = 0), �2
eff = 12, and � attains its maximum value,

� ≤ �max , �4
max =

1

12q2
min

(
1

q2
min

− 1

q2

)
This limit is reminiscent of the Chandrasekhar and Clogston limit in a S/F system, in
which a ferromagnet at T = 0 cannot remain a superconductor with a uniform
condensate.
[B. S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962). A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962)]
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Holographic FFLO states

In the inhomogeneous case (Q ∕= 0), the above argument still holds with the replacement
m2 → m2 +Q2. The effect of this modification is to increase the minimum effective
charge to

q2
min =

3 + 2Δ(Δ− 3) + 2Q2

4

and thus decrease the maximum value of �.

We always obtain a critical temperature which is lower than the corresponding critical
temperature (for same �) in the homogeneous case (Q = 0).

Now let us add a magnetic interaction term to the action,

Sint = �

∫
d4x
√
−g ∣ℱAB∂B�∣2

The wave equation is modified to

 ′′ +

[
ℎ′

ℎ
− 2

z

]
 ′ − Q2

ℎ

[
1− �ℬ2z4] 

− 1

ℎ

[
m2

z2
− q2A

2
t

ℎ

]
 = 0
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Holographic FFLO states

Evidently, if we set Q = 0, the effect of the interaction term (1) disappears, therefore the
homogeneous solution is unaltered. For Q ∕= 0, we obtain modified solutions. The
behavior is shown in figure 4. The figure also displays the effect of Q on �max (1) for
� = 0.

Figure: The critical temperature vs. the magnetic field numerically calculated with q = 10 and
Δ = 5/2. The dotted lines are calculated with � = 0 while the solid use � = .10. Starting from

the top, on the vertical axis, the lines are Q2

(q�)2
= 0, .05, .10, .15, .25, and .35.
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Holographic FFLO states

The interaction term alters the near horizon limit of the theory so that
m2 → m2 +Q2

(
1− �q4�4�4

c

)
.

The modifications are most pronounced for large � leading to temperatures which are
higher than the critical temperature of the corresponding homogeneous solution.

Figure: The top line on the left-hand side of the graph corresponds to the homogeneous solution,

with lines Q2

(q�)2
= .15, .35 below. The critical temperature of the homogeneous solution is found

to decrease below the inhomogeneous lines for large �. We used q = 10, Δ = 5/2, and � = .10.
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Geometrical generation of holographic FFLO states

Geometrical generation of holographic FFLO states

To generate the gravity dual of a FFLO state there must be a direct coupling of the
magnetic field to the scalar field which condenses.

Why not generate this coupling geometrically?

Consider again the action

S =

∫
d4x
√
−g
[
R+ 6/L2

16�G
− 1

4
FABF

AB − 1

4
ℱABℱAB

]
The Maxwell equations have as solutions

At = � (1− z) , Az = Ax = Ay = 0

and
At = ��(1− z) , Az = Ax = Ay = 0

with corresponding field strengths having non-vanishing components for electric fields in
the z-direction, respectively,

Ftz = −Fzt = � , ℱtz = −ℱzt = ��
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Geometrical generation of holographic FFLO states

Then from the Einstein equations we obtain

ℎ(z) = 1−
(

1 +
�2 + ��2

4

)
z3 +

�2 + ��2

4
z4

The Hawking temperature is

T = −ℎ
′(1)

4�
=

3

4�

[
1− �2 + ��2

12

]
In the limit �, ��→ 0 we recover the Schwarzschild black hole.
We now consider a scalar field �, of mass m, and U(1)2 charge (q, 0), coupled to the
Einstein tensor. The action is

S =

∫
d4x
√
−g
[(
gAB + �GAB

)
(DA�)∗DB�−m2∣�∣2

]
where DA = ∂A + iqAA and GAB is the Einstein tensor.

For � = 0 the analysis goes through as before.
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Geometrical generation of holographic FFLO states

Now let us consider the effect of the coupling to the Einstein tensor by setting � ∕= 0

The wave equation is modified to

 ′′ +

[
ℎ′

ℎ
+
f ′+
f+
− 2

z

]
 ′ − �

ℎ

f−
f+
 

− 1

ℎ

[
m2

z2f+
− q2A

2
t

ℎ

]
 = 0

where

f± = 1 + �

[
−3± �2 + ��2

4
z4

]
The boundary behavior is altered. As z → 0, we obtain � ∼ zΔ, where

Δ = Δ± =
3

2
±

√
9

4
+

m2

1− 3�
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Geometrical generation of holographic FFLO states

Figure: The critical temperature vs. the magnetic field numerically calculated with q = 10 and
Δ = 5/2. The dotted lines are calculated with � = 0 while the solid use � = .10. Starting from

the top, on the vertical axis, the lines are Q2

(q�)2
= 0, .05, .10, .15, .25, and .35.
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Geometrical generation of holographic FFLO states

The coupling to the Einstein tensor alters the near horizon limit of the theory so that

m2 → m2 + �f−(1)

f+(1)

The minimum effective charge is found by setting T = 0. Then �2
eff = �2 + ��2 = 12,

and f±(1) = 1 + �(−3± 3). We deduce

q2
min =

3 + 2Δ(Δ− 3) + 2(1− 6�)�

4

For

� >
1

6

the minimum charge, we get the maximum value of �, compared to the value in the
homogeneous case (� = 0).

Thus, there is a neighborhood near zero temperature in which the inhomogeneous
solution has higher critical temperature than the homogeneous one.
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Geometrical generation of holographic FFLO states

Figure: The top line on the left-hand side of the graph corresponds to the homogeneous solution,

with lines Q2

(q�)2
= .15, .35 below. The critical temperature of the homogeneous solution is found

to decrease below the inhomogeneous lines for large �. We used q = 10, Δ = 5/2, and � = .10.

Lefteris Papantonopoulos (NTUA) Corfu 2012 25 / 26



Conclusions

Conclusions

We have developed a gravity dual of a FFLO state.

With an interaction term:

Introduce two gauge fields one electric one magnetic, acting on spins
Introduce inhomogeneities. Temperature always lower than the homogeneous case
Introduce interaction term between magnetic field and scalar field. Temperature of
inhomogeneous case higher than the homogeneous case. Generation of FFLO states.

With a derivative coupling:

Introduce two gauge fields, the second one with unbalanced chemical potential
Introduce inhomogeneities. Temperature always lower than the homogeneous case
Introduce the derivative coupling. Temperature of inhomogeneous case higher than the
homogeneous case. Generation of FFLO states.
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