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■ Lecture 1: Motivation and Background (confinement,
large N , holographic bound, basic CFT, anti de-Sitter
space)

■ Lecture 2: Main statement of AdS/CFT, derivation, how
to do computations, generalizations



Introduction
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The AdS/CFT correspondence
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The AdS/CFT correspondence is a duality (an exact
equivalence) between two seemingly different theories

1. A four dimensional quantum field theory (a gauge
theory-like QCD)

2. Gravity (string theory) in a higher dimensional spacetime

• Discovered in 1997 by J. Maldacena and elaborated by
Gubser, Klebanov, Polyakov, Witten,...



Applications
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Use Gravity to learn about QFT

■ QCD ⇒ strong coupling phenomena (confinement, chiral
symmetry breaking etc.)

■ Fluid dynamics, condensed matter systems

Use QFT to learn about Gravity

■ Black Holes (singularities, entropy, Hawking radiation....)

■ Cosmology (Big Bang, inflation, c.c. problem, ...)



Fundamental Physics
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■ (so far the only) Non-perturbative definition of string
theory/quantum gravity

■ SPACE AND TIME ARE EMERGENT CONCEPTS !!!

■ Is our world a hologram?



Origins
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1. Confinement in gauge theories, large N expansion

2. Black Holes and Holography



Confinement in QCD
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• QCD: SU(3) gauge theory + fermions

• In the UV: quarks + gluons

• Coupling constant runs with energy scale (asymptotic freedom)

• Theory becomes strongly coupled at low energies

• Strong coupling ⇒ ”color confinement” : asymptotic states
are SU(3) singlets

• In the IR we see mesons, baryons, glueballs etc.

• Confinement difficult to understand analytically:

NO EXPANSION PARAMETER



Flux-tubes and string theory
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• Consider two charges in U(1) gauge theory

field lines spread out ⇒ force ∼ 1/r2

• In non-abelian gauge theories

chromoelectric field independent of r ⇒ energy in field linear
with r ⇒ confinement



Flux-tubes and string theory
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• Fluxtube behaves like a string of constant tension

• Mesons can be understood as excitations of the fluxtube ∼
open strings (Regge trajectories)

• Glueballs ∼ closed strings



The large N expansion
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• QCD has no obvious expansion parameter

• What if we replace SU(3) → SU(N)?

• ’t Hooft: theory simplifies in the large N limit

• In order to have good behavior we need to scale

N → ∞

gYM → 0

keeping
λ ≡ g2YMN

fixed. The parameter λ is called the ”’t Hooft coupling”



Double-line diagrams at large N
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• Consider U(N) gauge theory. The gauge field has the form

Aµ = AI
µT

I

where T I are the generators of the Lie algebra in the adjoint
representation

• The adjoint representation can be understood as N⊗N.
Hence we can trade the index I → (i, j)

• The gluon propagator can then be represented as

M
j
i i

j

and vertices of the gauge theory are

. . . .



Double-line diagrams at large N
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• Feynman diagrams can be rewritten as double-line diagrams
where the arrows have to be connected consistently

2

N

N
0

• Different diagrams contribute with different power of N in the
large N limit.
• The double-line notation makes the counting of factors of N
easier.



Double-line diagrams as “discretized” surfaces
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Gauge index loop ⇔ Face of surface

Propagator ⇔ Edge of surface

Interaction Vertex ⇔ Vertex of surface



Counting powers of N
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The lagrangian has the form

L = −
1

4g2YM

Tr (FµνF
µν)

where 1/g2YM = N
λ .

• Every propagator carries a factor of λ
N . Every vertex carries a

factor of N
λ . The summation over each closed line gives a factor

of N

• If we have a diagram with V vertices, E propagators and F
loops we find that it scales like

NV−E+FλE−V

the quantity V − E + F = χ is the Euler character of a surface
corresponding to the diagram

• For closed, oriented surfaces χ = 2− 2g where g is the genus



Counting powers of N
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• Power of N depends only on topology of the diagram. If g is
the genus then the N -dependence is

N2−2g

EXAMPLES
genus 0:

3N (g N2)   ~   2 (g2N)

N (g N2)   ~   2 (g2N)2 24

genus 1:
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Simplifications at large N
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• Only planar (genus zero) diagrams contribute

• There is a systematic 1/N expansion

• Gauge singlets (mesons, glueballs etc.) become stable and free

• Large N limit is a ”classical limit”

• While theory simplifies, still non-trivial dynamics ⇒ we still
have confinement



Large N expansion and string theory
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• The genus expansion of large N gauge theories ∼ genus
expansion of string theory, if we identify

1

N
∼ gs

• This suggests that a large N gauge theory is dual to a string
theory

• At large λ the ”holes” in double line diagrams close ⇒ they
become smooth surfaces (string worldsheet)

• String theory is inconsistent in four-dimensions, hence the dual
string theory lives in higher dimensions



Black Hole entropy
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• Schwarzchild black hole:

ds2 = −

(
1−

2GM

r

)
dt2 +

(
1−

2GM

r

)−1

dr2 + r2dΩ2
2

• Event Horizon at r = 2GM , singularity at r = 0.

• Black Hole dynamics + Hawking radiation ⇒

BLACK HOLES HAVE ENTROPY

S =
A

4G

This has far-reaching implications for the nature of space-time.



The holographic bound
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• Consider region of spacetime of size R. How many degrees of
freedom do we need to describe it?

• # of degrees of freedom ∼ (maximal) entropy contained in
region.

• In conventional local systems we entropy scales like volume

S ∼ R3



A Gedanken experiment

21 / 69

• Imagine adding matter to region. Entropy cannot decrease.

• If sufficient amount of matter ⇒ collapse and black hole
formation

• Entropy of final black hole goes like the area of the region!

S ∼ R2

in contrast our expectations for systems with local degrees of
freedom



Quantum gravity is holographic
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• Black hole entropy + 2nd law of thermodynamics ⇒ in
theories of gravity # of degrees of freedom scales like the area,
not volume

How is this possible?

• A natural mechanism to guarantee this would be to assume
that somehow the degrees of freedom necessary to describe
physics in a region M , live on the boundary of the region ∂M .

• These degrees of freedom on the boundary completely encode
what happens in the interior.

• Gravity is holographic.



AdS/CFT: gravity and gauge theories
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The two aforementioned ideas

1. That large N gauge theories can be described by string
theories.

2. That quantum gravity is holographic.

have found a precise realization with the discovery of the
AdS/CFT correspondence

Large N gauge theory in d dimensions

⇔

Quantum gravity (string theory) in ≥ d+ 1dimensions

• Applications and fundamental physics

• Simplest case: gauge theory is conformal and gravity is in AdS

• N = 4 Yang −Mills ⇔ IIB string theory on AdS5 × S5



Conformal Field Theory
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Scale invariance
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• Most QFTs have scales (masses, couplings, etc.) ⇒ non-trivial
RG-flow

• Cutoff ⇒ quantum violation of scale invariance

• Dynamically generated scales (like ΛQCD)

HOWEVER

• There are QFTs which have no scale and where β = 0 ⇒ exact
scale invariance.

• New symmetry generator: dilatation operator D

[D,Pµ] = −iPµ, [D,Mµν ] = 0



Conformal invariance
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• In most cases scale invariant QFTs are invariant under a larger
symmetry group, the conformal group

• In addition to Pµ,Mµν and D it contains new symmetry
generators

special conformal transformations Kµ

Poincare xµ → Λµ
ν x

ν + aµ

scale xµ → λxµ

special conformal xµ →
xµ − bµx2

1− 2b · x+ b2x2

(1)

• In d spacetime dimensions the conformal group is isomorphic
to SO(d, 2).



No S-matrix in CFTs, correlation functions
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• In theories with no mass gap ⇒ no well defined asymptotic
states

• ⇒ No S-matrix. What are the physical observables?

• Correlation functions of ”local operators” (gauge invariant
ones)

φk, φ∂µφ, FµνF
µν , Tr (FµνF

µν) , . . .

• In CFTs we would like to compute

〈O1(x1)...On(xn)〉

where Oi are local operators like those mentioned above

• ”Solving the CFT” ⇔ computing such correlation functions



Classification of local operators
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• Usual QFT ⇒ classify states under Poincare group

• in CFT ⇒ classify local operators under conformal group

[D,O(0)] = −i∆O(0)

∆ is the ”conformal dimension of the operator”.

From the algebra we have

[D,Pµ] = −iPµ, [D,Kµ] = iKµ

so Pµ raises the dimension of an operator while Kµ lowers it.

• Local operators annihilated by the Kµ’s are called conformal
primaries. The are characterized by ∆ and their spin.

• All other local operators can be derived from primaries by
acting with Pµ ∼ −i∂µ. They are called descendants.



Spectrum of operators in CFT
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Correlation functions in CFTs
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• Conformal invariance fixes form of 2-point function of
conformal primaries

〈O(x)O(y)〉 =
1

|x− y|2∆

• and also the 3-point function

〈O(x)O(y)O(z)〉 =
C

|x− y|∆|y − z|∆|x− z|∆

• 4- and higher-point correlation functions are constrained but
NOT fixed by conformal invariance



The N = 4 SYM theory
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• 4d QFT with maximum amount of supersymmetry (16
supercharges). The field content is

gauge field Aµ

fermions λi, i = 1, ..., 4

scalars ΦI , I = 1, ..., 6

(2)

all in the adjoint of the gauge group G.

• The Lagrangian of the theory has the schematic form

L = −
1

4g2
Tr

(
FµνF

µν + (DµΦ
I)2 + λ /Dλ+ [ΦI ,ΦJ ]2 + . . .

)

• For given gauge group G ⇒ Unique 4d QFT with N = 4 SUSY



Basic properties of the N = 4 SYM
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• The theory is conformal (β function is exactly zero).

• Theory is invariant under the superconformal group. Its
bosonic subgroup is

SO(4, 2)× SO(6)

The SO(6) = SU(4) is the R-symmetry of the theory.

• Exact SL(2, Z) duality. Define complexified coupling
τ = θ

2π + i4π
g2
. Theory invariant under

τ →
aτ + b

cτ + d
, (a, b, c, d) ∈ SL(2, Z)



Anti de-Sitter space
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Geometry of AdS
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• AdSd+1 is the maximally symmetric spacetime in d+ 1
dimensions

• It has constant negative curvature and is a solution of Einstein
equations with negative cosmological constant

• The isometry group of AdSd+1 is SO(d, 2) (notice that it
coincides with the conformal group in d dimensions!)

• There are various coordinate systems which can be used, each
with its own advantages



Geometry of AdS
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• One useful coordinate system is the so-called ”Poincare patch”,
where the coordinates are (z, t, ~x) and the metric has the form

ds2 =
−dt2 + d~x2 + dz2

z2

• We have Minkowski-space slices along t, ~x which are warped
along the direction z

• Only the Poincare invariance along d directions and scaling is
manifestly visible (not the full isometry group SO(d, 2)).



Geometry of AdS
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• Another useful coordinate system is the ”global patch”, with
coordinates t, ρ,Ωd−1 and the metric

ds2 = − cosh2 ρdt2 + dρ2 + sinh2 ρ dΩ2
d−1

Now the SO(d)×R isometry is manifest



Particles in AdS
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• Attractive gravitational potential towards the ”center” i.e.
ρ = 0

• Penrose diagram of AdS ⇒ ”conformal boundary is Sd−1 ×R

• Massless particles can reach the boundary (ρ = ∞) in finite
time, massive particles never reach the boundary

(a) (b) (c)

Light
RayTime

Solid S3

ρ = ∞

ρ = 0

Massive
ParticleCylinder



String theory on AdS
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• (Super)string theory is consistent in 10 dimensions

• Consider the space AdS5×S5 (with F5 flux)

• It is a consistent background for IIB string theory

• At low energies ⇒ IIB supergravity on AdS5×S5

• Is equivalent to the 4d N = 4 gauge theory



p-branes and D-branes
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• For example, 3-brane solution

ds2 =

(
1 +

R4

r4

)−1/2

(−dt2+d~x2)+

(
1 +

R4

r4

)1/2

(dr2+r2dΩ2
5)

• Same R-charge, mass, SUSYs...

• Scattering computations



The decoupling argument
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• Consider IIB string theory in 10d flat space and stack of N
D3-branes

• Low energy limit ⇒

x
in  4d

IIB supergravity

10d flat spacetime

in 

N=4 Super 

Yang-Mills



The decoupling argument
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• Supergravity solution for 3-branes

flat space

AdS x S5

5

• Low energy limit ⇒

x
IIB string theory

in

AdS x S
5

5

IIB supergravity

10d flat spacetime

in 



The decoupling argument
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x
in 4d

IIB supergravity

10d flat spacetime

in

N=4 Super

Yang-Mills

x
IIB string theory

in

AdS x S
5

5

IIB supergravity

10d flat spacetime

in

flat space

AdS x S5

5



Main statement
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N = 4 SYM gauge theory in 4d

⇔

IIB string theory in AdS5×S5

Parameters:

N units of F5 flux ⇔ SU(N) gauge group

gs ⇔ g2YM



The holographic correspondence
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• Anti de Sitter space (AdS)

ds2 =
−dt2 + d~x2 + dz2

z2

• Quantum filed theory lives on the the “boundary” of AdS
(z = 0).



RG-flow and the holographic dimension
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• Extra dimension ⇒ “scale” in quantum field theory

• Radial evolution ⇒ RG-flow

• Scale invariant theories ⇒

AdS geometry ds2 = −dt2+d~x2+dz2

z2

invariant under (t, ~x, z) → (λt, λ~x, λz).



Hilbert spaces
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• Particles in AdS ⇔ “glueballs, hadrons... in gauge theory

• Matching of spectrum, scattering



Basic Identifications
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STRING THEORY GAUGE THEORY

SO(2, 4) Isometry of AdS5 ⇔ SO(2, 4)Conformal group in 4d

SO(6) ≈ SU(4) Isometry of S5 ⇔ SU(4)RSymmetry ofN = 4

32 supercharges ⇔ 32 = 16 + 16(Q′s andS′s)

τ = C0 + ie−φ ⇔ τ =
θ

2π
+ i

4π

g2YM

SL(2, Z) duality of IIB ⇔ SL(2, Z) duality of N = 4 SYM



Regimes
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• Working in the ’t Hooft limit N → ∞ , λ = g2YMN = fixed we
find

gs ∼
1

N

• Call R the radius of AdS5. Then we have

R

ls
∼ λ1/4

R

lp
∼ N1/4



Regimes
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λ

N

R

ls
∼ λ1/4 ,

R

lp
∼ N1/4



Field-Operator correspondence
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• Fields in gravity ⇔ local operators in dual QFT

φ(x, z) ⇔ O(x)

Aµ(x, z) ⇔ Jµ(x)

gµν(x, z) ⇔ Tµν(x)

• Precise mapping of quantum numbers. For example, for scalars
we have

∆ =
d

2
+

√
d2

4
+ (mR)2

for AdSd+1/CFTd



Correlation functions
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Boundary value φ̃(x) = limz→0φ(x, z) ⇔ “source” for dual
operator O in QFT

〈e
∫
dxφ̃(x)O(x)〉QFT = Zstring(φ → φ̃)



Correlation functions
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• In the gravity limit (N,λ ≫ 1) we have

〈e
∫
dxφ̃(x)O(x)〉QFT = e−Sgravity(φ̃)

Which means

1. Fix boundary values φ̃

2. Find classical solution of EOMS with this boundary value

3. Evaluate classical action on this solution

• This gives us Sgravity(φ̃) and by the equation above, the
generating functional of CFT correlators

QUANTUM correlators in strongly coupled QFT from
(semi-) CLASSICAL gravitational computations !



Example, 2-point functions
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• Consider scalar field obeying

(�−m2)φ = 0

Look for solutions of the form φ(x, z) = f(z)eikx.
• Two linearly independent solutions, for z → 0

f(z) = A(k)
(
zd−∆ + . . .

)
+B(k)

(
z∆ + . . .

)

where ∆ = d
2 +

√
d2

4 + (mR)2.

• CFT 2-point function (in momentum space)

G(k) =
B(k)

A(k)

• Imposing regularity in the interior fixed this ratio.



Witten Diagram Expansion
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• More general correlators can be computed by semi-classical
gravity Feynman diagrams in AdS = “Witten diagrams”

• Loop expansion ∼ 1/N expansion



Witten Diagram Expansion
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• Bulk-to-boundary propagator

K(x, z) =

(
z0

z20 + (~z − ~x)2

)∆

• Bulk-to-bulk propagator

G(z, w) = s∆ 2F1

(
∆

2
,
∆+ 1

2
,∆− 1; s2

)

• Full diagram is

∫
dd+1z

zd+1
0

∫
dd+1w

wd+1
0

K(x1, z)K(x2, z)G(z, w)K(x3, w)K(x4, w)



Matching of the spectrum
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• Field-operator correspondence φ ⇔ O.

• Mass-dimension relation mR ∼ ∆

• Spectrum of IIB string theory on AdS5×S5 should match with
spectrum of operators in N = 4 SYM

At what value of the coupling????

λ

N



Spectrum at strong coupling
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• For λ ≫ 1 we have IIB string theory on AdS5×S5 with
R/ls ∼ λ1/4

• We expect massive string states with msR ∼ λ1/4, so the
corresponding operators have

∆stringy ∼ λ1/4, λ ≫ 1

• Massless modes of IIB string theory ⇒ IIB SUGRA ⇒
Kaluza-Klein tower of supergravitons on S5 ⇒, of mass
mKK ∼ k

R ⇒ tower of supermultiplets with

∆ = k, k = 2, 3, ...



Spectrum at weak coupling
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• Fundamental fields of N = 4 SYM are Aµ, λ
i,ΦI in adjoing of

SU(N)

• We want local, gauge invariant operators

• Traces of products of fields (single-trace operators)

Tr(ΦIΦJλk . . .), Tr(FµνF
µνΦIΦJΦK ...) . . .

or

• Products of traces (multi-trace operators)

Tr(ΦIΦJ)Tr(ΦIΦJΦK)Tr(FµνF
µν), . . .

• Single- and multi-particle states in gravity



Strings from gauge fields
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• Counting single-trace operators at weak coupling

• Toy model: consider 2 adjoint valued fields A,B of dimension
∆ = 1.

• We have single trace operators of the form

Tr(AAA),Tr(ABBA), . . .

• At weak coupling conformal dimensions are additive. Ask: how
many single trace operators are there of dimension ∆ ?

Tr(AAABBBA.....BBABA)

with ∆ “letters”.



Strings from gauge fields

59 / 69

• Counting single-trace operators at weak coupling

• Toy model: consider 2 adjoint valued fields A,B of dimension
∆ = 1.

• We have single trace operators of the form

Tr(AAA),Tr(ABBA), . . .

• At weak coupling conformal dimensions are additive. Ask: how
many single trace operators are there of dimension ∆ ?

Tr(AAABBBA.....BBABA)

with ∆ “letters”. Number of such operators grows like 2∆

• Exponential growth in of states (Hagedorn growth) ⇒ Stringy
spectrum!!



Turning on coupling
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• When we increase λ the dimensions of single-trace operators
become ∆(λ)

Short vs Long multiplets

• N = 4 algebra and unitarity imply “BPS bound”

∆ ≥ R

operators with ∆ = R are “short” or “BPS” operators and
receive no quantum corrections. For them ∆ independent of λ

operators with ∆ > R are “long” and ∆ varies with λ

• In the N = 4 SYM the BPS operators are the chiral primaries

Tr(Zk), k = 2, 3, 4...

with ∆ = k. Here Z = Φ1 + iΦ2.



Picture of the spectrum
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λ

∆



Hilbert spaces
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• Particles in AdS ⇔ “glueballs, hadrons... in gauge theory



Black Holes and Quark Gluon Plasma
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• Black Hole in AdS ⇔ Quark Gluon Plasma in the gauge theory



Black Holes and Quark Gluon Plasma
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ds2 = −
f(z)

z2
dt2 +

1

f(z)z2
dz2 +

1

z2
d~x2 , f(z) = 1−

z4

z40

• Temperature of plasma ⇔ Hawking temperature of BH

• Energy of plasma ⇔ Mass of BH

• Entropy of plasma ⇔ Horizon Area



Black Holes and Quark Gluon Plasma
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⇒ Equation of State for quark-gluon plasma at strong coupling!

S =
π2

2
N2T 3V

⇒ Understanding microscopic structure of black hole quantum
states



Black Holes and Quark Gluon Plasma
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• Estimate black hole entropy from weakly coupled gauge theory

g2N

1

1

4

3π2

2
N2T 3V

S

• Correct entropy up to a factor of 3/4 !

• Numerical simulation of (lower dimensional examples of) gauge
theory ⇒ exact agreement



More on Black Holes
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• Thermal correlation functions

• Real-time processes, transport coefficients

• QGP formation

...

• Hawking radiation/Information paradox

• Infalling observer

...



Generalizations

68 / 69

• Higher/lower dimensions

• Non-conformal

• Less/Non supersymmetric

• Finite N?

...

• flat, de Sitter ??
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Thank you!
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