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Non-Minimal Inflation (nMI)

Coupling non-minimally the Inflaton to Gravity (The non-SUSY Case)

• The Action Of A Scalar Field φ with Potential V (φ) non-Minimally Coupled to the Ricci Scalar Curvature, R, Through A
Frame Function fR(φ) in the Jordan Frame (JF) is:

S =

∫
d4 x
√
−g

(
−

1
2

m2
P fR(φ)R +

fK (φ)
2

gµν∂µφ∂νφ − V (φ)
)
,

where g is the Determinant Of The Background Friedmann-Robertson-Walker Metric and fR(〈φ〉) ' 1 to Recover Einstein
Gravity At Low Energy. We Allow Also for a Kinetic Mixing Through the Function fK (φ).
•We can write S in the Einstein Frame (EF) as follows

S =

∫
d4 x

√
−ĝ

(
−

1
2

m2
PR̂ +

1
2

fK ĝ
µν∂µφ̂∂νφ̂ − V̂

(
φ̂
))

Performing a Conformal Transformation1 DuringWhichWe define the EF metric:

ĝµν = fR gµν ⇒


√
−ĝ = f 2

R

√
−g and ĝµν = gµν/ fR ,

R̂ =
(
R + 3� ln fR + 3gµν∂µ fR∂ν fR/2 f 2

R

)
/ fR

and Introduce the EF Canonically Normalized Field, φ̂, and Potential, V̂, Defined As Follows: dφ̂
dφ

2

= J2 =
fK

fR
+

3
2

m2
P

(
fR,φ
fR

)2

and V̂(φ̂) =
V

(
φ̂(φ)

)
fR

(
φ̂(φ)

)2 ·

• The Analysis of nMI in the EF Using The Standard Slow-Roll Approximation is Equivalent2 With The Analysis in JF.

1K. Maeda (1989)
2D.S. Salopek, J.R. Bond and J.M. Bardeen (1989); D.I. Kaiser (1995); T. Chiba and M. Yamaguchi (2008).
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Non-Minimal Inflation (nMI)

Inflationary Observables - Requirements
• The Number of e-foldings, N̂∗, that the Scale k∗ = 0.002/Mpc Suffers During nMI has to be Sufficient to Resolve the

Horizon and Flatness Problems of Standard Big Bang

N̂∗ =
1

m2
P

∫ φ̂∗

φ̂f

dφ̂
V̂

V̂,̂φ
=

1
m2

P

∫ φ∗

φf

dφ J2 V̂

V̂,φ
' 22.5 + 2 ln

V(φ∗)1/4

1 GeV
−

4
3

ln
V(φf )1/4

1 GeV
+

1
3

ln
Trh

1 GeV
+

1
2

ln
fR(φf )
fR(φ∗)

·

Where φ∗ [φ̂∗] is The Value of φ [φ̂] When k∗ Crosses Outside The Inflationary Horizon;
φf [φ̂f ] is the Value of φ [φ̂] at the end of nMI Which Can Be Found From The Condition

max{̂ε(φf ), |̂η(φf )|} = 1, With ε̂ =
m2

P

2

 V̂,̂φ

V̂


2

=
m2

P

2J2

 V̂,φ

V̂

2

and η̂ = m2
P

V̂,̂φφ̂

V̂
=

m2
P

J2

 V̂,φφ

V̂
−

V̂,φ

V̂

J,φ
J

 ·
• The Power Spectrum ∆2

R
(φ = φ∗) of the Curvature Perturbations is To Be Consistent withWMAP7 Normalization:

∆R =
1

2
√

3 πm3
P

V̂(φ̂∗)3/2

|V̂,̂φ(φ̂∗)|
=
|J(φ∗)|

2
√

3 πm3
P

V̂(φ∗)3/2

|V̂,φ(φ∗)|
= 4.93 · 10−5

• The (Scalar) Spectral Index, ns, Its Running, as, And The Scalar-To-Tensor Ratio r are to be ConsistentWith the
Fitting of theWMAP7 Results by the ΛCDM Model:

ns = 1−6̂ε∗ + 2̂η∗ = 0.968±0.024, −0.062 ≤ αs =
2
3

(
4̂η2
∗ − (ns − 1)2

)
−2̂ξ∗ ≤ 0.018 and r = 16̂ε < 0.24, at 95% c.l.

Where ξ̂ = m4
PV̂,̂φV̂,̂φφ̂φ̂/V̂

2 = m2
P V̂,φ η̂,φ/V̂ J2 + 2̂η̂ε And The VariablesWith Subscript ∗ Are Evaluated at φ = φ∗.

• We Have To Check The Hierarchy Between The Ultraviolet cut-off, Λ, of the Effective Theory And The Inflationary
Scale.3 In Particular, The Validity Of The Effective Theory Implies

(a) V̂(φ∗)1/4 ≤ Λ or (b) Ĥ(φ∗) = V̂(φ∗)1/2/
√

3mP ≤ Λ with Λ = mP/cR
3C.P. Burgess, H.M. Lee and M. Trott (2009); J.F. Barbon and J.R. Espinosa (2009); R. Lerner and J. McDonald (2010); F. Bezrukov et al.(2011).
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Non-Minimal Inflation (nMI)

The Quartic Potential, V = λφ4/4

• If fR(φ) = 1, i.e., With Minimal Coupling to Gravity. We Find:

ε '
8m2

P

φ2 and η '
12m2

P

φ2 · Therefore max{̂ε(φf ), |̂η(φf )|} = 1 ⇒ φf = 2
√

3mP And N∗ '
φ2
∗

8m2
P

⇒ φ∗ = 2
√

2N∗mP.

∆R '

√
λφ3
∗

16
√

3πm3
P

= 4.93 · 10−5 ⇒ λ '
3
2

4.932 · 10−10π2N−3
∗ ⇒ λ ' 2 · 10−13 (!?) for N̂∗ ' 55

ns ' 1 − 3/N∗ ' 0.947, αs ' −3/N2
∗ = 9.5 · 10−4 and r ' 16/N∗ ' 0.28 > 0.24:WMAP Requirement

• If fR(φ) = 1 + cR(φ/mP)2, i.e., With the Standard non-Minimal Coupling to Gravity. For cR � 1, we Find

V̂ =
λφ4

4 f 2
R

'
λm4

P

c2
R

, ε̂ '
4m4

P

3c2
R
φ4
and η̂ ' −

4m2
P

3cRφ2 Therefore max{̂ε(φf ), |̂η(φf )|} = 1 ⇒ φf =
4
√

4
3

mP
√

cR

N̂∗ '
3cRφ2

∗

4m2
P

⇒ φ∗ = 2mP

√
N̂∗
3cR
· Also ∆R '

√
λN̂∗

6
√

2πcR
= 4.93 · 10−5 ⇒ cR ' 41850

√
λ for N̂∗ ' 55

ns ' 1 − 2/N̂∗ ' 0.965, αs ' −2/N̂2
∗ ' −6.4 · 10−4 and r ' 12/N̂2

∗ ' 4 · 10−3 In AgreementWith Observations.

Status of the Standard Model Higgs Inflation (See Also Talk of Prof. Ross)

In the Presence of a non-Minimal Coupling The Higgs Boson of Standard Model (SM) Can Act as Inflaton. BUT The Required
Mass of Higgs Boson Seems To Be Heavier Than The ONE Recently Announced by CMS and ATLAS and the Reheating
Process4 Is Rather Complicate And Uncertain.

4J. Garcia-Bellido, D.G. Figueroa and J. Rubio (2008); F. Bezrukov, D. Gorbunov and M. Shaposhnikov (2009)

C. Pallis Models of Non-Minimal Chaotic Inflation in Supergravity 4 / 20



Introduction Quartic Potential for a Gauge Singlet Inflaton Quartic Potential for a Gauge non-Singlet Inflaton Quadratic Potential Conclusions

Non-Minimal Inflation (nMI)

The Quartic Potential, V = λφ4/4

• If fR(φ) = 1, i.e., With Minimal Coupling to Gravity. We Find:

ε '
8m2

P

φ2 and η '
12m2

P

φ2 · Therefore max{̂ε(φf ), |̂η(φf )|} = 1 ⇒ φf = 2
√

3mP And N∗ '
φ2
∗

8m2
P

⇒ φ∗ = 2
√

2N∗mP.

∆R '

√
λφ3
∗

16
√

3πm3
P

= 4.93 · 10−5 ⇒ λ '
3
2

4.932 · 10−10π2N−3
∗ ⇒ λ ' 2 · 10−13 (!?) for N̂∗ ' 55

ns ' 1 − 3/N∗ ' 0.947, αs ' −3/N2
∗ = 9.5 · 10−4 and r ' 16/N∗ ' 0.28 > 0.24:WMAP Requirement

• If fR(φ) = 1 + cR(φ/mP)2, i.e., With the Standard non-Minimal Coupling to Gravity. For cR � 1, we Find

V̂ =
λφ4

4 f 2
R

'
λm4

P

c2
R

, ε̂ '
4m4

P

3c2
R
φ4
and η̂ ' −

4m2
P

3cRφ2 Therefore max{̂ε(φf ), |̂η(φf )|} = 1 ⇒ φf =
4
√

4
3

mP
√

cR

N̂∗ '
3cRφ2

∗

4m2
P

⇒ φ∗ = 2mP

√
N̂∗
3cR
· Also ∆R '

√
λN̂∗

6
√

2πcR
= 4.93 · 10−5 ⇒ cR ' 41850

√
λ for N̂∗ ' 55

ns ' 1 − 2/N̂∗ ' 0.965, αs ' −2/N̂2
∗ ' −6.4 · 10−4 and r ' 12/N̂2

∗ ' 4 · 10−3 In AgreementWith Observations.

Status of the Standard Model Higgs Inflation (See Also Talk of Prof. Ross)

In the Presence of a non-Minimal Coupling The Higgs Boson of Standard Model (SM) Can Act as Inflaton. BUT The Required
Mass of Higgs Boson Seems To Be Heavier Than The ONE Recently Announced by CMS and ATLAS and the Reheating
Process4 Is Rather Complicate And Uncertain.

4J. Garcia-Bellido, D.G. Figueroa and J. Rubio (2008); F. Bezrukov, D. Gorbunov and M. Shaposhnikov (2009)

C. Pallis Models of Non-Minimal Chaotic Inflation in Supergravity 4 / 20



Introduction Quartic Potential for a Gauge Singlet Inflaton Quartic Potential for a Gauge non-Singlet Inflaton Quadratic Potential Conclusions

Non-Minimal Inflation (nMI)

The Quartic Potential, V = λφ4/4

• If fR(φ) = 1, i.e., With Minimal Coupling to Gravity. We Find:

ε '
8m2

P

φ2 and η '
12m2

P

φ2 · Therefore max{̂ε(φf ), |̂η(φf )|} = 1 ⇒ φf = 2
√

3mP And N∗ '
φ2
∗

8m2
P

⇒ φ∗ = 2
√

2N∗mP.

∆R '

√
λφ3
∗

16
√

3πm3
P

= 4.93 · 10−5 ⇒ λ '
3
2

4.932 · 10−10π2N−3
∗ ⇒ λ ' 2 · 10−13 (!?) for N̂∗ ' 55

ns ' 1 − 3/N∗ ' 0.947, αs ' −3/N2
∗ = 9.5 · 10−4 and r ' 16/N∗ ' 0.28 > 0.24:WMAP Requirement

• If fR(φ) = 1 + cR(φ/mP)2, i.e., With the Standard non-Minimal Coupling to Gravity. For cR � 1, we Find

V̂ =
λφ4

4 f 2
R

'
λm4

P

c2
R

, ε̂ '
4m4

P

3c2
R
φ4
and η̂ ' −

4m2
P

3cRφ2 Therefore max{̂ε(φf ), |̂η(φf )|} = 1 ⇒ φf =
4
√

4
3

mP
√

cR

N̂∗ '
3cRφ2

∗

4m2
P

⇒ φ∗ = 2mP

√
N̂∗
3cR
· Also ∆R '

√
λN̂∗

6
√

2πcR
= 4.93 · 10−5 ⇒ cR ' 41850

√
λ for N̂∗ ' 55

ns ' 1 − 2/N̂∗ ' 0.965, αs ' −2/N̂2
∗ ' −6.4 · 10−4 and r ' 12/N̂2

∗ ' 4 · 10−3 In AgreementWith Observations.

Status of the Standard Model Higgs Inflation (See Also Talk of Prof. Ross)

In the Presence of a non-Minimal Coupling The Higgs Boson of Standard Model (SM) Can Act as Inflaton. BUT The Required
Mass of Higgs Boson Seems To Be Heavier Than The ONE Recently Announced by CMS and ATLAS and the Reheating
Process4 Is Rather Complicate And Uncertain.

4J. Garcia-Bellido, D.G. Figueroa and J. Rubio (2008); F. Bezrukov, D. Gorbunov and M. Shaposhnikov (2009)
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Is Possible To Obtain A Realization Of These Inflationary ModelsWithin SUGRA?
(Where the Hierarchy ProblemWithin GUTs Is Solved)?

5C.P (2010)
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Realization of nMI Within SUGRA

Selecting the Convenient Kähler Potential

• The General EF Action For The Scalar Fields Φα Plus Gravity In Four Dimensional, N = 1 SUGRA is:

S =

∫
d4 x

√
−ĝ

(
−

1
2

m2
PR̂ + Kαβ̄ĝ

µνDµΦ
αDνΦ

∗β̄ − V̂
)

Where V̂ = V̂F + V̂D,

K is The Kähler Potential, With Kαβ̄ =
∂2K

∂Φα∂Φ∗β̄
> 0, and K β̄αKαγ̄ = δ

β̄
γ̄; DµΦ

α = ∂µΦ
α − AA

µ kαA;

(AA
µ : The Vector Gauge Fields and kαA: the Killing Vector, Defining The Gauge Transformations Of The Scalars.)

V̂F = eK/m2
P

Kαβ̄FαF∗
β̄
− 3
|W |2

m2
P

 with Fα = W,Φα + K,ΦαW/m2
P; V̂D =

1
2
g2DaDa with Da = Φα (Ta)αβ K,Φβ .

Here, W is an Holomorphic Function Called Superpotential.

• IfWe Adopt 6 Ω = −3e−K/3m2
P ⇒ K = −3m2

P ln (−Ω/3) and Perform a Conformal Transformation, S In JF Reads

S =

∫
d4 x
√
−g

 m2
P

6
ΩR + m2

PΩαβ̄DµΦ
αDµΦ∗β̄ −ΩAµA

µ/m2
P − V

 , Where Aµ = −im2
P

(
DµΦ

αΩα − DµΦ
∗ᾱΩᾱ

)
/2Ω

the On-Shell Value Of The Auxiliary Field Aµ.
•We Observe that Ω Enters The Kinetic Terms of the Φα ’s too. S Can Exhibit Non-Minimal Couplings of Φα ’s to R If
• Aµ = 0 Which HappensWhen Φα = |Φα | or Φα = 0 During nMI;
• FR � FK ' δαβΦ

αΦβ/m2
P Where

Ω = −3 + FK − 3
(
FR(Φα) + F∗

R
(Φ∗ᾱ)

)
⇒ K = −3m2

P ln
(
1 − FK/3 + FR(Φα) + F∗

R
(Φ∗ᾱ)

)
.

6M.B. Einhorn and D.R.T. Jones (2010); S. Ferrara, R. Kallosh, A. Linde, A. Marrani and A. Van Proeyen (2010, 2011); H.M. Lee (2010).
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)
.

6M.B. Einhorn and D.R.T. Jones (2010); S. Ferrara, R. Kallosh, A. Linde, A. Marrani and A. Van Proeyen (2010, 2011); H.M. Lee (2010).

C. Pallis Models of Non-Minimal Chaotic Inflation in Supergravity 6 / 20



Introduction Quartic Potential for a Gauge Singlet Inflaton Quartic Potential for a Gauge non-Singlet Inflaton Quadratic Potential Conclusions

Realization of nMI Within SUGRA

Here FR is a Dimensionless, Holomorphic FunctionWhereas FK is a Dimensionless, Real Function of the Form:

FK

(
|Φα |2

)
= |Φα |2/m2

P + k
ΦαΦβ |Φ

α |2 |Φβ |2/m4
P

With Sufficiently Small Coefficients k
ΦαΦβ . The Inclusion of the 4th Order Term At Least For The Accompanying

Non-Inflaton Field, Φ1 := S , is Obligatory In Order To Evade A Tachyonic Instability Occurring Along This Direction.
• The Realization of nMI in SUGRA Requires Also V̂D = 0 Which HappensWhen

• The Inflaton is a Gauge Singlet Φ2 := Φ;
• The Inflaton is the Radial Part of a Conjugate Pair of Higgs Superfields, Φ2 := Φ and Φ3 := Φ̄, Which are

Parameterized so as V̂D = 0

Selecting the Convenient Superpotential and Coupling Function

• In Both Cases Above IfWe Set S = 0 with The Resulting V̂ = V̂I0 is Equal to7

V̂I0 = eK/m2
P KS S ∗

∣∣∣W,S
∣∣∣2 =

VF

fS Φ f 2
R

Where VF =
∣∣∣W,S

∣∣∣2 , fS Φ = m2
PΩ,S S ∗ , fR = −

Ω

3
, Since eK/m2

P =
1
f 3
R

and KS S ∗ =
fR

fS Φ

·

Given That fS Φ � fR, An Inflationary Plateau is GeneratedWhen V̂I0 ' VF/ f 2
R
∼ const.

• Possible Successful Combinations Are

• W = λS Φ2 and FR = 1 + cRΦ2/m2
P (With Dα = 0). Then VF ∼ Φ4 and f 2

R
' c2
R

Φ4. Therefore V̂I0 ∼ const.

• W = λS
(
ΦΦ̄ − M2

)
and FR = 1 + cRΦ̄Φ/m2

P (With Dα , 0). For Φ = Φ̄, We Get VD = 0, VF ∼ Φ4 and f 2
R
' c2
R

Φ4.

Therefore V̂I0 ∼ const. Also 〈Φ〉 = 〈Φ〉 = M and So, A Gauge Symmetry is Spontaneously Broken at the SUSY vacuum.
• W = λS Φ and FR = 1 + cRΦ/mP (Dα = 0). Then VF ∼ Φ2 and f 2

R
' c2
R

Φ2. Therefore V̂I0 ∼ const.

In The FollowingWe Show Details on the Realization of These Three Scenaria

7R. Kallosh and A. Linde (2010).
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Parameterized so as V̂D = 0

Selecting the Convenient Superpotential and Coupling Function

• In Both Cases Above IfWe Set S = 0 with The Resulting V̂ = V̂I0 is Equal to7

V̂I0 = eK/m2
P KS S ∗

∣∣∣W,S
∣∣∣2 =

VF

fS Φ f 2
R

Where VF =
∣∣∣W,S

∣∣∣2 , fS Φ = m2
PΩ,S S ∗ , fR = −

Ω

3
, Since eK/m2

P =
1
f 3
R

and KS S ∗ =
fR

fS Φ

·

Given That fS Φ � fR, An Inflationary Plateau is GeneratedWhen V̂I0 ' VF/ f 2
R
∼ const.

• Possible Successful Combinations Are

• W = λS Φ2 and FR = 1 + cRΦ2/m2
P (With Dα = 0). Then VF ∼ Φ4 and f 2

R
' c2
R

Φ4. Therefore V̂I0 ∼ const.

• W = λS
(
ΦΦ̄ − M2

)
and FR = 1 + cRΦ̄Φ/m2

P (With Dα , 0). For Φ = Φ̄, We Get VD = 0, VF ∼ Φ4 and f 2
R
' c2
R

Φ4.
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• W = λS Φ and FR = 1 + cRΦ/mP (Dα = 0). Then VF ∼ Φ2 and f 2

R
' c2
R

Φ2. Therefore V̂I0 ∼ const.

In The FollowingWe Show Details on the Realization of These Three Scenaria

7R. Kallosh and A. Linde (2010).
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Introduction Quartic Potential for a Gauge Singlet Inflaton Quartic Potential for a Gauge non-Singlet Inflaton Quadratic Potential Conclusions

The Inflationary Potential

Definition of the Model

The Inflaton is Uncharged Under a Local Symmetry and so, Dα = 0.
We Impose Just a Global U(1) To Uniquely Determine W.

W = λS Φ2, FR =
cΦ

4
Φ2

Note that FR Violates this U(1) During nMI

Charge Assignments
Superfields: S Φ

U(1) 2 −1

FK =
|S |2

m2
P

+
|Φ|2

m2
P

− kS
|S |4

m4
P

− 2kΦ

|Φ|4

m4
P

− 2kS Φ

|S |2 |Φ|2

m4
P

The F-term SUGRA Potential
• For S = 0, θ = argΦ = 0 and cΦ � 1,

V̂ = V̂I0 and the Corresponding Hubble Parameter ĤHI0 Become Almost Constant And Are Given By

V̂I0 =
λ2φ4

4 fS Φ f 2
R

'
λ2m2

P

2 fS Φc2
R

and ĤI =
V̂1/2

I0
√

3mP
'

λmP

2
√

3 fS ΦcR
, Where cR =

cΦ

4
−

1
6
,

fR = 1 + cRx2
φ + kΦ x4

φ/6 fK = 1 − 4kΦ x2
φ, and fS Φ = 1 − kS Φ x2

φ with xφ = φ/mP

• Expanding Φ and S as Follows:

Φ =
φeiθ

√
2
and S =

s1 + is2
√

2
,

We Can Introduce The EF Canonically Normalized Fields,

dφ̂
dφ

= J '

√
6

xφ
, θ̂ ' Jφθ and ŝi '

√
fS Φ

fR
si with i = 1, 2
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The Inflationary Potential

Stability of the Inflationary Trajectory

The Scalar Mass Spectrum Along The Inflationary Trajectory

Fields Eingestates Mass Squared

1 real scalar θ̂ m2̂ ' λ2 (1 + 6cR) m2
P x4

φ/3 fS Φ f 3
R

J2 ' 4H2
I

2 real scalars ŝ1, ŝ2 m2
ŝ ' λ

2m2
P

(
2 + c2

R
(6kS fR − 1)x4

φ

)
/6c2

R
f 3
S Φ

f 2
R

2 Weyl spinors ψ̂± =
ψ̂Φ±ψ̂S√

2
m2
ψ̂±
' λ2m2

P(2 − kS Φ x2
φ + kS ΦcRx4

φ)2/18 f 3
S Φ

f 2
R

We Observe the Following:
• All mass2 > 0. Especially m2

Ŝ
> 0 ⇔ kS > 1/6 fR,

• All mass2 > Ĥ2
I and So Any Inflationary Perturbations Of The Fields Other Than The Inflaton Are Safely Eliminated.

• The One-Loop Radiative Corrections Have No Significant Effect On The Inflationary Dynamics And Predictions, Since
The Slope Of The Inflationary Path Is Generated At The Classical Level.

Approximating the Inflationary Dynamics

For Simplicity we assume that kS Φ = 0 and kΦ = 0.

• Duration: max{̂ε(φf ), |̂η(φf )|} = 1 ⇒ φf = (4/3)1/4 mP
√

1/cR , where ε̂ '
4m4

P
3c2
R
φ4 and η̂ ' −

4m2
P

3cRφ
2

• Number of e-foldings (φ∗ Decreases as cR or λ Increases): N̂∗ '
3cR

4
φ2
∗−φ

2
f

m2
P
⇒ φ∗ ' 2mP

√
N̂∗/3cR .

• The Power Spectrum Normalization (The Required cR is a little lower than that in the non-SUSY case):

∆R '
λφ2
∗

16
√

2πm2
P
'

λN̂∗
12
√

2πcR
4.93 · 10−5 ⇒ cR ' 20925 λ for N̂∗ ' 55
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The Inflationary Observables - Results

Testing Against Observations

Imposing the Observational Constraints for kS = 1 and kΦ = 0.5 we Obtain the Following Allowed Regions:

• In the λ − kS Φ Plane • In the λ − cR Plane
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We Observe the Following:

• For λ < 0.05⇔ φ∗ > 0.01mP a tuning of the order 0.01 is required in the kS Φ-values

• For λ > 0.05⇔ φ∗ < 0.01mP less tuning as regards the kS Φ-values is required.

• cR Remains proportional to λ and increases as ns decreases.
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The Inflationary Potential

Definition of the Model

The Fields Including the Inflaton Must Be Charged Under a Local Symmetry, e.g. U(1)B−L. Then Inflaton can Be Identified
With the radial part of the Higgs Fields involved in the Breaking GSM × U(1)B−L → GSM.
W Is Uniquely Determined Using U(1)B−L and an R Symmetry.

W = λS
(
Φ̄Φ − M2

BL

)
, FR =

cΦ̄Φ

2
Φ̄Φ

Note that FR Is Invariant Under U(1)B−L and R.

Charge Assignments
Superfields: S Φ Φ̄

R 1 0 0
U(1)B−L 0 1 −1

FK =
|S |2

m2
P

+
|Φ|2

m2
P

− kS
|S |4

m4
P

− 2kΦ

|Φ|4

m4
P

− 2k̄Φ

|Φ̄|4

m4
P

− 2kS Φ

|S |2 |Φ|2

m4
P

− 2k̄S Φ

|S |2 |Φ̄|2

m4
P

− 2kΦΦ̄

|Φ|2 |Φ̄|2

m4
P

A D-Flat Direction of the SUGRA Potential

• IfWe Use The Parameterization: Φ = φiθ cos θΦ/
√

2 and Φ̄ = φiθ̄ sin θΦ/
√

2, Where φ is the Inflaton,
We Can Easily Deduce That a D-flat Direction Occurs At

θ = θ̄ = 0, θΦ = π/4 and S = 0, Since VD =
g2

8

(
|Φ|2 − |Φ̄|2

)2
= 0

• The Preservation Of this D-Flat Direction Requires the Imposition of a “Conjugation” Symmetry on Kähler Potential

Φ→ Φ̄ and Φ̄→ Φ ⇒ kΦ = k̄Φ and kS Φ = k̄S Φ Since V̂,θΦ '
λ2m4

P x6
φ

4c3
R

(
kS Φ − k̄S Φ

)
= 0

• Along this Direction, For cR � 1, V̂ = V̂I0 and the Corresponding Hubble Parameter ĤI0 Take the Form

V̂I0 = m4
P

λ2(x2
φ − 4m2

BL)2

16 fS Φ f 2
R

'
λ2m4

P

16 fS Φc2
R

and ĤI0 =
V̂1/2

I0
√

3mP
'

λmP

4
√

3 fS ΦcR
With cR = −

1
6

+
cΦΦ̄

4
,

fR = 1 + cRx2
φ + (kΦ + kΦΦ̄)x4

φ/24, fS Φ = 1 − kS Φ x2
φ, fΦ = 1 − kΦ x2

φ and mBL =
MBL

mP
, xφ =

φ

mP
·
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The Inflationary Potential

Stability of the Inflationary Trajectory

•We Introduce the EF Canonically Normalized Fields, φ̂, θ̂+, θ̂−, θ̂Φ and ŝ, as follows:

dφ̂
dφ

= J '

√
6

xφ
, θ̂+ =

Jφθ+
√

2
, θ̂− =

√
fΦ

2 fR
φθ−, θ̂Φ =

√
fΦ
fR
φ
(
θΦ −

π

4

)
and ŝ =

√
fS Φ

fR
s, with θ± =

θ̄ ± θ
√

2
and s =

S
√

2
·

The Scalar Mass Spectrum Along The Inflationary Trajectory

Fields Eigenstates Masses Squared

2 real scalars θ̂Φ m2
θ̂Φ

= m2
P x2

φ

(
g2 fR fS Φ − 2λ2

)
/4 fS Φ fΦ f 2

R
' gm2

P x2
φ/4 fΦ fS Φ

θ̂+ m2
θ̂+

= λ2m2
P x6

φcR/12 f 3
R

fS Φ ' 4Ĥ2
I

1 complex scalar Ŝ m2
Ŝ

= λ2m2
P

(
12 + x2

φ

(
1 + 6c2

R
x2
φ

)
(6kS − 1) + 36c3

R
kS x6

φ

)
/144c2

R
f 3
S Φ

f 2
R

2 gauge bosons ABL m2
BL = fΦg2m2

P x2
φ/4 fR

4 Weyl spinors ψ̂± =
ψ̂Φ±+ψ̂S√

2
m2
ψ̂±
' λ2m2

P

(
2 + kS Φ x2

φ(cRx2
φ − 1)

)
/36 f 3

S Φ
f 2
R

c2
R

λBL, ψ̂Φ− m2
BL = fΦg2m2

P x2
φ/4 fR

We Observe the Following:
• m2

Ŝ
> 0 ⇔ kS > 1/6 and m2

θ̂Φ
> 0 Since They Include Terms Proportional to g ' 0.7 > λ,

• All mass2 > H2
I0 and So Any Inflationary Perturbations Of The Fields Other Than The Inflaton Are Safely Eliminated.

• ABL becomes massive Absorbing the d.o.f. of θ− and so, U(1)B−L is Broken During nMI and Therefore, Topological
Defects (Cosmic Strings) are not Produced at its end.

• The One-Loop Radiative Corrections may Have a Significant Effect On The Inflationary Dynamics And Predictions for
fΦ , 0, Since an Accidental Cancellation Between mBL and mθ̂Φ

is Removed.
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√
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The Inflationary Observables - Results

Upper Bound on cR

We Can Identify The Lowest Mass Scale of the Model in the SUSY VacuumWith The Unification Scale
MGUT ' 2 · 1016 GeV, Within the MSSM. i.e.√

fΦ0

fR0
gMBL = MGUT ⇒ mBL '

1

2
√

2cmax
R
− cR

with

{
fR0 = fR(xφ = 2mBL)
fΦ0 = fΦ(xφ = 2mBL) , cmax

R
=

g2m2
P

8M2
GUT

and cR < 2cmax
R
' 1.8 ·103

However, This Bound Can Be Even Lowered Since N̂∗ Becomes Monotonically Decreasing Function of cR for cR > cmax
R

where cmax
R

Can Be Found By The Condition

dN̂∗
dcR

'
3φ2
∗

4m2
P

(
cmax
R
− cR

)
cmax
R

= 0 ⇒ cR ' cmax
R
∼ 1000.

Approximating the Inflationary Dynamics

For Simplicity we assume that kS Φ = 0, kΦ = 0 and kΦΦ̄ = 0.

• Duration: max{̂ε(φf ), |̂η(φf )|} = 1, ⇒ φ = φf = (4/3)1/4 mP
√

fR0/cR where ε̂ '
4m4

P f 2
R0

3c2
R
φ4 and η̂ ' −

4m2
P fR0

3cRφ
2

• Number of e-foldings (φ∗ Decreases as cR or λ Increases): N̂∗ '
3cR
4 fR0

φ2
∗−φ

2
f

m2
P
⇒ φ∗ ' 2mP

√
N̂∗ fR0/3cR ·

• The Power Spectrum Normalization:
∆R '

λφ2
∗

16
√

2πm2
P fR0

'
λN̂∗

12
√

2πcR
= 4.93 · 10−5 ⇒ λ ' 8.4 · 10−4πcR/N̂∗ ⇒ cR ' 20925 λ for N̂∗ ' 55.
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Testing Against Observations (Preliminary Results)

Imposing the Observational Constraints for kS = 1, kΦ = 0.01 and kΦΦ̄ = 0.5, we Obtain the Following Allowed Regions:

• In the λ − kS Φ Plane • In the λ − cR Plane
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We Observe the Following:
• The Allowed Region is Considerably Shrunk w.r.t that Obtained with a Gauge Singlet Inflaton;
• A Tuning of the Order 0.01 is Required as Regards kS Φ and kΦ (not kΦΦ̄);

• The Allowed Region is Limited in the ĤI < mP/cR Regime;
• cR Remains Proportional to λ and Increases as ns Decreases.
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The Inflationary Potential

Definition of the Model

The Inflaton Must Be Uncharged Under a Local Symmetry (Dα = 0) Since S = 0 During nMI.
We Impose Just a Global U(1) To Uniquely Determine W.

W = mS Φ, FR =
cR
√

2mP
Φ

Note that FR Violates this U(1) During nMI

Charge Assignments
Superfields: S Φ

U(1) 1 −1

FK =
|S |2

m2
P

+
|Φ|2

m2
P

− kS
|S |4

m4
P

− 2kΦ

|Φ|4

m4
P

− 2kS Φ

|S |2 |Φ|2

m4
P

The F-term SUGRA Potential
• For S = 0, θ = argΦ = 0 and cR � 1,

V̂ = V̂I0 and the Corresponding Hubble Parameter ĤI0 Become Almost Constant And Are Given By

V̂I0 =
m2m2

Pφ
2

2 fS Φ f 2
R

'
m2m2

P

2 fS Φc2
R

and ĤI =
V̂1/2

I0
√

3mP
'

mmP

2
√

3 fS ΦcR
, Where

fR = 1 + cRxφ − x2
φ/6 − kΦ x4

φ/6, fK = 1 − 4kΦ x2
φ, and fS Φ = 1 − kS Φ x2

φ with xφ = φ/mP

• Expanding Φ and S as Follows:

Φ =
φeiθ

√
2
and S =

s1 + is2
√

2
,

We Can Introduce The EF Canonically Normalized Fields,

dφ̂
dφ

= J '

√
3
2

1
xφ
, θ̂ ' Jφθ and ŝi '

√
fS Φ

fR
si with i = 1, 2
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√
fS Φ

fR
si with i = 1, 2

C. Pallis Models of Non-Minimal Chaotic Inflation in Supergravity 15 / 20



Introduction Quartic Potential for a Gauge Singlet Inflaton Quartic Potential for a Gauge non-Singlet Inflaton Quadratic Potential Conclusions

The Inflationary Potential

Definition of the Model

The Inflaton Must Be Uncharged Under a Local Symmetry (Dα = 0) Since S = 0 During nMI.
We Impose Just a Global U(1) To Uniquely Determine W.

W = mS Φ, FR =
cR
√

2mP
Φ

Note that FR Violates this U(1) During nMI

Charge Assignments
Superfields: S Φ

U(1) 1 −1

FK =
|S |2

m2
P

+
|Φ|2

m2
P

− kS
|S |4

m4
P

− 2kΦ

|Φ|4

m4
P

− 2kS Φ

|S |2 |Φ|2

m4
P

The F-term SUGRA Potential
• For S = 0, θ = argΦ = 0 and cR � 1,

V̂ = V̂I0 and the Corresponding Hubble Parameter ĤI0 Become Almost Constant And Are Given By
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The Inflationary Potential

Stability of the Inflationary Trajectory

The Scalar Mass Spectrum Along The Inflationary Trajectory

Fields Eingestates Mass Squared

1 real scalar θ̂ m2
θ̂
' cRm2 xφ/ f 3

R
J2 ' 4H2

I

2 real scalars ŝ1, ŝ2 m2
ŝ ' m2

(
2 − c2

R
x2
φ + 12c3

R
kS x2

φ

)
/ f 3

S Φ
f 2
R

(2 + 3c2
R

)

2 Weyl spinors ψ̂± =
ψ̂Φ±ψ̂S√

2
m2
ψ̂±
' m2(6 + x2

φ + 6cRkS Φ x3
φ)2/12 f 3

S Φ
f 2
R

(2 + 3c2
R

)

We Observe the Following:

• m2
Ŝ
> 0 ⇔ kS >

(
c2
R
− 2/x2

φ

)
/12c3

R
;

• All mass2 > Ĥ2
I and So Any Inflationary Perturbations Of The Fields Other Than The Inflaton Are Safely Eliminated;

• The One-Loop Radiative Corrections Have No Significant Effect On The Inflationary Dynamics And Predictions, Since
The Slope Of The Inflationary Path Is Generated At The Classical Level.

Approximating the Inflationary Dynamics

For Simplicity we assume that kS Φ = 0 and kΦ = 0.

• Duration: max{̂ε(φf ), |̂η(φf )|} = 1 ⇒ φf = 2mP/
√

3cR , where ε̂ '
4m2

P
3c2
R
φ2 and η̂ ' −

4m2
P

3cRφ

• Number of e-foldings (φ∗ Decreases as cR or m Increases): N̂∗ '
3cR

4
φ∗−φf

mP
⇒ φ∗ ' 4mPN̂∗/3cR .

• The Power Spectrum Normalization: ∆R '
mN̂∗

6πmPcR
= 4.93 · 10−5 ⇒ m = 4.1 · 1013cR GeV for N̂∗ ' 55
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The Inflationary Observables - Results

Testing Against Observations

Imposing the Observational Constraints for kS = 1 and kΦ = 0.5 we Obtain the Following Allowed Regions:

• In the m − kS Φ Plane • In the m − cR Plane
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We Observe the Following:

• For m < 2 · 1016 GeV⇔ φ∗ > 0.01mP a tuning of the order 0.01 is required in the kS Φ-values

• For m > 2 · 1016 GeV⇔ φ∗ < 0.01mP Less Tuning As Regards the kS Φ-Values Is Required.

• cR Remains Proportional To m And Increases As ns Decreases.
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Conclusions

• nMI can Be Realized in SUGRA Adopting a Logarithmic Kähler Potential Including an Holomorphic Function;

• A Tachyonic Instability Occurs Along the Direction of the Accompanying non-inflaton field. This can be cured by a 4rth
order Real Term in the Frame Function;

• Less Tuning As Regards the kS Φ-Values Is Required for φ∗ < 0.01mP.

As Regards nMI Driven by a Higgs Field (nMHI) We Conclude The Following:

• No Topological Defects Are Produced Since The GUT Symmetry is Broken During nMHI;

• The Spontaneous Breaking Of The GUT Gauge Group to the SM one Can Occur At The SUSY GUT Scale;

• A Conjugation Symmetry Has To Be Imposed on Kähler Potential between the Two Higgs Fields in order the
D-Flatness Condition to Remain Valid.
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Comparing nMHI and F-term Hybrid Inflation (FHI)

Non-Minimal Higgs Inflation
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In Both Cases:

• We Need The Same Superpotential Terms and, ConsequentlyWe Have to Impose the Same R-Symmetry;

• The Flat Inflationary Trajectory Is Generated By Freezing Some Fields To Zero;

• Inflaton Can Decay Into Light Degrees Of Freedom Due To Non-Renormalizable Interaction Terms Arising8 In The
SUGRA Langrangian And Due To The Non-Vanishing Vacuum Expectation Value (VEV) of Infaton.

8M. Endo, M. Kawasaki, F. Takahashi and T.T. Yanagida (2006); M. Endo, F. Takahashi and T.T. Yanagida (2007).
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Differences of GUT Scale nMHI and FHI

Non-Minimal Higgs Inflation

• The Radial Part of the Higgs Field Drives Inflation;

• The GUT Symmetry is Broken during nMI ;

• No Cosmological Defects Are Produced;

• The GUT Scale Can Assume its SUSY value;

• The Flatness Of The Potential ArisesWithin SUGRA;

• nMI is Largely Independent From Radiative Corrections;

• The Inflationary Observables LieWithin The Range Of
The Current Data;

• Possible Naturalness ProblemWith The Effective
Theory.

• Possible Complications in the Reheating Process Occur
Due to Instant Preheating9.

Standard F-term Hybrid Inflation

• A Singlet Field Drives Inflation;

• The GUT Symmetry is Broken In The End of FHI;

• Cosmological Defects May Be Produced;

• The GUT Scale Turns Out To Be Mostly Lower Than
Its SUSY value;

• The Flatness Of The Potential ArisesWithin SUSY;

• FHI Dependents Crucially On Radiative Corrections;

• The Spectral Index Lies Mostly Above The Range Of
The Current Data;

• No Naturalness ProblemWith The Effective Theory;

• Possible Complications In The Reheating Process Occur
Due To Tachyonic Preheating10.

9 G.N. Felder, L. Kofman and A.D. Linde (1999).
10Juan García-Bellido and Ester Ruiz Morales (2002).
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