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Motivation: Mathematics

• String theory is a “theory” for which we do not have sophisticated math-

ematical tools to address and solve.

• In QFT we can easily find perturbative ground states.

• We can also do perturbation theory rather straightforwardly around each

of them.

• Given a few ingredients at weak coupling (gauge group, matter content

, interactions) most of the generic features of weakly coupled physics is

evident without detailed calculations.

♠ None of the above is doable in string theory except is some VERY

SPECIAL CASES!

• An important reason is that the relevant mathematic tools are not known

or have not been developed.
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• String theory provides many interesting new problems in mathematics.

• It is not an accident that about half of the Field’s medals given in the
last twenty years go to topics inspired by string theory.

• Riemannian geometry is enough to describe a point particle moving on a
manifold. It is not for a string moving on a manifold.

• The classical physics of the string is the “quantum physics” of a two
dimensional CFT (the σ-model)

• The classification of 2-d CFTs is a classification of a class of string vacua.
This is an non-trivial mathematical problem.

• The classification of 4d CFTs is a classification of another class of vacua
of string theory (see Kyriakos’ lectures)

• Point particle propagation defines standard geometry. String propaga-
tion vis 2d CFTs provides an infinite dimensional generalization: stringy
geometry. No good way is known on how to describe it unless we solve the
CFTs.
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• As geometry generates topology, the same way CFTs generate “quan-

tum topology”. Several examples are known, but the general rules and

techniques for this are not known.

• When D-branes enter the game, the spectrum of mathematical problems

becomes an order of magnitude more complex.

• Mathematicians already have developed K-theory that is the proper tool

for topologically classifying D-banes

• The general classification of supersymmetric D-brane embeddings is an

infinite-dimensional generalization of the theory of vector bundles on man-

ifolds.

• In the case of non-supersymmetric embeddings the general formulation

of the mathematical problem is not known at all.

• All of this make the connection between string theory, and physical ob-

servables a nightmare.
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Applications: Physics Beyond the standard Model

• The original motivation for string theory in the seventies was to ex-

plain/describe the strong interactions.

• The focus shifted in the 80’s: a unifying theory of all interactions including

gravity.

• Physicists hoped for uniqueness of predictions based on enthusiasm and

short-sightedness (always there when we do not understand a theory)

• It took twenty more years for people to realize that string theory has a

large number of “vacua”.

• The theory was hoped to provide (together with a quantum theory of

gravity) a solution to the hierarchy and the cosmological constant problems

and a unification of all known interactions.
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• As we understand today:

♠ The theory has not provided a solution (but several “translations”) of

the hierarchy problem.

♠ The theory suggests a solution to the cosmological constant problem

that many physicists have a difficulty in accepting (the anthropic solution).

♠ The theory naturally unified all interactions.

• We have not been able to scan even a tiny spec of such a number of

vacua.
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• The traditional approach to make contact with low energy physics has

included some ingredients:

♠ A vacuum or class of vacua where one can control the zero mass spec-

trum, and where the cosmological constant is zero at the tree and one loop

level. This is done by requiring supersymmetry.

♠ The low energy field theory (a supergravity) is written down by matching

string calculations to effective interactions.

♠ The scalar potential is minimized (moduli)

♠ The rest of the interactions in the ”visible” sector is analyzed.

♠ Supersymmetry is broken dynamically (rare) or by fiat.

♠ Several old supergravity models were reproduced, and many new ones

proposed this way for the low energy theory.
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The landscape

• We lack the toold to survey large classes of string vacua.

• The most extensive effort that was done in that direction used solvable

CFTs, and computerized vacuum construction, using orientifolds and D-

branes
Anastasopoulos+Dijkstra+Kiritsis+Schellekens

• Closed string vacua were constructed using Gepner CFTs.

• Orientifold projections using the symmetries, generated D-branes.

• Finally tadpoles were solved.
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Scope of the search

• 168 Gepner model combinations

• 5403 MIPFs

• 49322 different orientifold projections.

• 45761187347637742772 (∼ 5× 1019 )combinations of four boundary la-

bels (four brane-stacks).

For more than 4 SM-stacks, the numbers grow exponentially.

♠ 19345 distinct realizations of the SM were found

♠ In only 1900 the tadpoles were solved
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The distribution of chiral A+S tensors

A key fact in order to explain the frequency of certain vacua is the that of chiral tensors,

required in some case by (generalized) anomaly cancellation.
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Tensors versus bifundamentals
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The distribution of tensor representations
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The distribution of potential Higgs pairs
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The distribution of right-handed neutrino singlets
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The distribution of mirrors
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BSM Outlook

• It is not clear how to proceed further, without serious help from mathe-

matics

• It is not clear if we are looking at a single theory with many vacua or a

collections of theories that are interconnected like QFTs

• AdS/CFT suggests that the second point of view may be the case, but.....

• New ideas, new tools, and young people are needed to tackle these

problems!
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Applications: Holography and QCD

• The AdS/CFT correspondence opened the way to understand N=4 sYM

in d=4 at strong coupling and large Nc.

• Progress has been made to reduce the theory to an integrable string

model.

• How is this helping with QCD?

♠ Two approaches → The N=4 extrapolation: study N=4 and deforma-

tions, and try to calculate in these observables relevant to QCD: give an

idea on what strong coupling effects do.

♠ Example: consider a finite temperature N=4 plasma, and study energy

loss of a heavy quark: This is not the same as QCD but the mechanism is

new and tells us also what to qualitatively expect in QCD.

♠ The Effective Holographic Theory approach (Bottom Up): construct

(super) gravity models that come close to QCD using effective reasoning:
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For YM, ihQCD is a well-tested holographic, string-inspired bottom-up

model with action
Gursoy+Kiritsis+Nitti, 2007, Gubser+Nelore, 2008

Sg =M3N2
c

∫
d5x

√
g

[
R−

4

3
(∂ϕ)2 + Vg(ϕ)

]
• gµν is dual to Tµν

• ϕ is dual to tr[F2].

We expect that these two operators capture the important part of the

dynamics of the YM vacuum. The vacuum saddle point is given by a

Poincaré-invariant metric, and radially depended dilaton.

ds2 = e2A(r)(dr2 + ηµνdx
µdxν)

• The potential Vg ↔ QCD β-function

• A→ logµ energy scale.

• eϕ → λ ’t Hooft coupling

15-



In the UV λ→ 0 and

Vg(λ) = V0 + V1 λ+ V2 λ+O(λ3)

In the IR λ→ ∞ and

Vg ∼ λ
4
3
√
logλ+ · · ·

• This was chosen after analysing all possible asymptotics and characteris-

ing their behavior.

The IR asymptotics is uniquely fixed by asking for confinement, discrete

spectra and asymptotically linear glueball trajectories.
Gursoy+Kiritsis+Nitti

• With an appropriate tuning of two parameters in Vg the model describes

well both T = 0 properties (spectra) as well as thermodynamics.
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YM Entropy

From M. Panero, arXiv:0907.3719
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Equation of state

From M. Panero, arXiv:0907.3719
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The sound speed
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The holographic models: flavor

• Fundamental quarks arise from D4-D̄4 branes in 5-dimensions.

D4−D4 strings → ALµ ↔ JLµ = ψ̄LσµψL

D4−D4 strings → ARµ ↔ JRµ = ψ̄Rσ̄µψR

D4−D4 strings → T ↔ ψ̄LψR

• For the vacuum structure only the tachyon is relevant.

• An action for the tachyon motivated by the Sen action has been advocated
as the proper dynamics of the chiral condensate, giving in general all the
expected features of χSB.

Casero+Kiritsis+Paredes

STDBI = −NfNcM3
∫
d5x Vf(T ) e

−ϕ
√
−det(gab+ ∂aT∂bT )

• It has been tested in a 6d asymptotically-AdS confining background (with
constant dilaton) due to Kuperstein+Sonneschein.

Iatrakis+Kiritsis+Paredes
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It was shown to have the following properties:

• Confining asymptotics of the geometry trigger chiral symmetry breaking.

• A Gell-Mann-Oakes-Renner relation is generically satisfied.

• The Sen DBI tachyon action with V ∼ e−T
2
asymptotics induces linear

Regge trajectories for mesons.

• The Wess-Zumino (WZ) terms of the tachyon action, computed in

string theory, produce the appropriate flavor anomalies, include the axial

U(1) anomaly and η′-mixing, and implement a holographic version of the

Coleman-Witten theorem.

• The dynamics determines the chiral condensate uniquely as function of

the bare quark mass.

• By adjusting the same parameters as in QCD (ΛQCD, mud) a good fit

can be obtained of the light meson masses.
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The chiral vacuum structure

• We take the potential to be the flat space one

V = V0 e
−T2

with a maximum at T = 0 and a minimum at T = ∞.

• Near the boundary z = 0, the solution can be expanded in terms of two

integration constants as:

τ = c1z+
π

6
c31z

3 log z+ c3z
3 +O(z5)

• c1, c3 are related to the quark mass and condensate.

• At the tip of the cigar, the generic behavior of solutions is

τ ∼ constant1 + constant2
√
z − zΛ

• With special tuned condition there is a one-parameter family of diverging

solutions in the IR depending on a single parameter:

τ =
C

(zΛ − z)
3
20

−
13

6πC
(zΛ − z)

3
20 + . . .
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• This is the correct “regularity condition” in the IR as τ is allowed to

diverge only at the tip.

• Chiral symmetry breaking is manifest.
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Chiral restoration at deconfinement

• In the deconfined phase, the bulk metric is that of a bh.

• The branes now are allowed to enter the horizon without recombining.

String Theory, Elias Kiritsis

21



Applications: Condensed Matter

• In CM physics many interesting systems are strongly coupled:

1. Materials at the border with magnetism (Cuprate high-Tc superconduc-

tors, pnictides, heavy fermion metals, Al-Mn alloys etc)

2. A variety of Quantum Hall systems

3. Graphene

• Almost always, sign-problems and critical behavior make numerical simu-

lation prohibitive.

• In the UV we have a well understood theory=electrons+ions+photons.

Generically

potential energy ≫ kinetic energy → Strong Coupling

• By “luck” sometimes dressed electrons (quasiparticles) are weakly cou-

pled → Landau theory of Fermi-liquids → standard metals.
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• In other cases we may expect emergent IR degrees of freedom, that are

strongly coupled and YM-like:

1. In spin/fermion systems
Laughlin 80’s, Sachdev(2010)

2. Non-abelian CS seems to emerge in several contexts. Coupled to matter

→ M2 class of theories.
Aharony+Bergman+Jafferis+Maldacena (2008)

3. Massless (2+1)-d fermions+EM seem to have a non-abelian large N

structure
S. S. Lee (2009), Metlitski+Sachdev (2010), Mross+McGreevy+Liu+Senthil (2010)

• The behavior generated is known as strange metal (non-fermi liquid), and

exists in all systems at the border with magnetism.

• They are several benchmarks of non-fermi liquid behavior: 2d-behavior,

linear resistivity, linear electronic heat capacity, power scaling of the AC

conductivity, etc.

String Theory, Elias Kiritsis
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Observables

The most generic and (relatively) easy to measure observables are:

• Equilibrium thermodynamics

a) Entropy, specific heat, other susceptibilities.

b) Phase structure (phases, order and characteristics of phase transitions)

• Transport

a) Charge transport, conductivities, DC and AC

b) transport in presence of magnetic fields

String Theory, Elias Kiritsis
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A typical phase diagram

Phase diagram of hole-doped cuprates.In other systems the pseudogap region is much

smaller, the superconducting region can shrink to almost nothing etc.

String Theory, Elias Kiritsis
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Linear Resistivity
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The hope and strategy

• If Quantum Critical (scale invariant) points control the physics, then we

should use such scale invariant theories to to explore the physics.

• Before AdS/CFT, only two such theories were known: free field theory

and Wilson-Fisher fixed point (ϕ4). None gives strange metal behavior.

• After holography and ABJM, we have millions of holographic conformal

theories plus an Effective Field Theory strategy.

• The hope: that some of them will give computable strange metal physics.

String Theory, Elias Kiritsis
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The progress

• The basic Mechanism of Holographic Superconductivity is understood
Gubser, Hartnoll+Herzog+Horowitz

• The strongly-coupled fermionic dynamics in at simple finite density holo-
graphic systems provides new non-Fermi liquid behavior.

S.S.Lee, Faulkner+Liu+McGreevy+Vegh, Cubrovic+Schalm+Zaanen

• The presence of unexpected (AdS2) scaling symmetries at zero temper-
ature and finite density was found.

Faulkner+Liu+McGreevy+Vegh

• Many tools have been developed for the calculation of transport coeffi-
cients, notably conductivities.

Policastro+Son+Starinets, Hartnol+Herzog, Karch+O’Bannon

• A infinite class of finite density QC points have been found in general
characterized by a Lifshitz exponent z and a hyperscaling exponent θ.

Charmousis+Gouteraux+E.K.+BS Kim+Meyer, Gouteraux+E.K.

• A large subclass of them describe normal systems with linear resistivities.

Hartnoll+Polchinski+Silverstein+Tong, Charmousis+Gouteraux+E.K.+BS Kim+Meyer

String Theory, Elias Kiritsis
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A holographic strange metal

.
E.K.+Kim+Panagopoulos

• AdS/Bh in Schrödinger (light cone frame) + probe carriers with light-

cone electric and magnetic fields.

σxx = σ0

√
F+J

2 + t4
√
F+F−

F−
, σxy = σ̄0

B
F−

,

F± =

√(
B2 + t4

)2
+ t4 ∓ B2 + t4 ,

where

σ̄0 =
⟨J+⟩
bEb

, B ≃
Bb
Eb

, t ≃
T

√
Eb
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The exponent of d ln ρ(T )
d lnT

as a function of a tuning parameter 1√
Eb

and temperature T at low temperatures.

Note that the linear temperature dependence of the resistivity extends over the low temperature range,

with ρ ∼ T + T 2. Left plot from Fig. 3 of Science 323, 603 (2009)..
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Left: Temperature (T ) and magnetic field (B) dependence of the exponent of

cotΘH ≡
σxx

σxy

in the low T , low B regions.

Right: the effective power dependence of cotΘH at small magnetic field, as a function of temperature and

1/
√
Eb.
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Plot of the resistivity and inverse Hall angle, in the model, for the low-temperature regime with small

magnetic field. Note that the inverse Hall angle has been scaled by a constant factor a = Bb/(32
√
2⟨J+⟩.

This plot is to be compared with left figure from McKenzie et al. Phys. Rev. B 53, 5848 (1996).
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The plot depicts the magnetoresistance

∆ρ

ρ
≡
ρxx(B)− ρxx(0)

ρxx(0)
.

for a heavily overdoped sample at lower temperature, which is to be contrasted the left figure from

Hussey et al. Phys. Rev. Lett. 76, 122 (1996).
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Temperature dependence of the normalized Hall coefficient.

RH ≡
ρxy

B

We compare this to the plot (left) of the quantity, RH(T/T∗)−RH(∞)
R∗
H

in Hwang et al., Phys. Rev. Lett. 72,

2636 (1994).
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• Köhler rule for metals:

K = ρ2
∆ρ

ρ

is independent of temperature. This is claimed to fail for YBCO and LSCO

above 50 K (Harris et al..) Instead, a modified Köhler rule is valid

(cotΘH)2
∆ρ

ρ

is independent of temperature.

At low temperatures (T < 20 K) however both are correct!!!
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Outlook

• String theory has been around for 44 years.

• In the process it has stimulated enormous progress both for gravity and
QFTs.

• We are far away of controlling string theory, as our tools are still very
primitive.

• It has had an important impact in efforts of unification.

• It has provided mathematics with a load of interesting oroblems to solve.

• It seems to be a new and powerful tool for QCD

• It may have an impact in condensed matter problems,

• and who knows what else...
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Thank you
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