Research roject

Simulation Methodology

X-ray Galaxy Cluster Properties with eROSITA

Katharina Borm

T. H. Reiprich, L. Lovisari

20 September 2012

Introduction OO O

Overview

Introduction

X-ray Emission from Galaxy Clusters Cosmology The eROSITA mission

Research project

Simulation Methodology

Results

 $t_{exp} = 1.6$ ks, known redshift $t_{exp} = 1.6$ ks, unknown redshift Interpretation

Introduction	
• O O O	
Galaxy Cluster Emission	

Introduction - Galaxy Cluster Emission

Galaxy Clusters:

- largest gravitationally bound objects
- hydrostatic equilibrium
- X-ray emission from the ICM
 - \blacktriangleright temperatures of kT ≈ 1 10 keV
 - highly ionised metals

emission mechanisms:

- thermal bremsstrahlung emission (ff)
- line emission (bb)
- fb-emission

Galaxy Cluster Abell 1689; Credit: www.chandra.harvard.edu

Introduction		
00		

Introduction - Galaxy Cluster Emission

Research roject

Simulation Methodolog

Results 00 00

Introduction - Cosmology

Evolution of the large scale structure (LSS)

Credit: VIRGO Collaboration, 1996

Galaxy Cluster Properties

Introduction

Research roject O Simulation Methodology 00

Introduction - The eROSITA Mission

- German X-ray instrument aboard the Russian SRG satellite
- 7 mirror modules
- energy range: 0.1 10 keV
- expected launch date: 2014 to an L2 orbit
- 4-year all sky survey

Main science goals:

- \blacktriangleright study large samples of galaxy clusters up to z>1
- trace the large scale structure of the Universe
- test the nature of dark energy!

Credit: Merloni et al. 2012

Research Project

 $\label{eq:project aim: forecasts of the precision and accuracy of eROSITA galaxy cluster characteristics$

What relative uncertainties can be expected for the cluster properties?

 \Rightarrow concentrating on the cluster temperature and redshift

What biases arise due to the finite resolution of the instrument and the data analysis?

Motivation:

- tight constraints on the cosmological parameters
- precise and accurate interpretation of future eROSITA data
- optimizing optical follow-up observations

Simulation Methodology

Strategy to obtain the precision and accuracy of the cluster properties:

- 1. simulate cluster+background emission for defined cluster parameters
- 2. remove background emission
- 3. fit model of cluster emission to the data
- 4. repeat all steps 1,000 times for good statistics

To obtain cluster parameters: define a cluster mass and move it in redshift

 applying the scaling relations by Reichert et al. (2011) and Vikhlinin et al. (2009)

	Simulation Methodology	
	00	00 00 000
/lethodology		

Simulation Methodology

analysing four different cases:

exposure time

- $t_{exp} = 1.6$ ks: effective exposure time for the all sky survey
- $t_{exp} = 20$ ks: eROSITA deep fields at the ecliptic poles

fit parameters

- frozen redshift: redshift is known from optical follow-up observations
- variable redshift: redshift needs to be determined from X-ray data

Introduction

Research roject

Simulation Methodology

Results - $t_{exp} = 1.6$ ks, known redshift

Relative temperature uncertainty

06

05

		Results
00 0 0		00 00 000

Results - $t_{exp} = 1.6$ ks, known redshift

Comparison of the best fit temperature and the true cluster temperature

$t_{\text{exp}} = 1.6$ ks, unknown redshift

Relative temperature uncertainty

08

Introduction

Research roject

Simulation Methodology

$t_{exp} = 1.6$ ks, unknown redshift

Relative redshift uncertainty

Katharina Borm

Ű6

		Results
		00
0		000
Interpretation		

Results - Interpretation

- high precision in temperature and redshift for local clusters
 - optimize optical follow-up observations
- relative uncertainties do not depend on the number of photon counts, but mainly on the cluster redshift
- for high precision clusters no bias needs to be corrected for
 - no bias in temperature and redshift
 - no bias in the uncertainties

Research roject

Simulation Methodolog

Results - Interpretation

Credit: M. Irshad et al., in preparation

	Results
	00 00 000

Results - Interpretation

Interpretation: number of high precision clusters

	$t_{\rm exp} = 1.6$ ks, $f_{\rm sky} = 0.658$	$t_{\mathrm{exp}}=20$ ks, $f_{\mathrm{sky}}=0.0034$
total	$\sim 164,400$	$\sim 5,800$
known z	$\sim 17,400~(\sim 10\%)$	\sim 2,500 (\sim 44%)
unknown z	\sim 12,600 (\sim 8%)	\sim 1,600 (\sim 27%)

Credit: in cooperation with M. Irshad

Simulation Methodology - Applied Astrophysics

Relative temperature uncertainty depending on redshift

The eROSITA X-ray Background

Katharina Borm

Galaxy Cluster Properties

$t_{exp} = 1.6$ ks, unknown redshift

1 M_{cluster}=5*10¹³ M_{sun} Mcluster=5 10 Msun Mcluster=1*10¹⁴ Msun Mcluster=5*10¹⁴ Msun Mcluster=1*10¹⁵ Msun Mcluster=5*10¹⁵ Msun 0.9 **8.0** 0.7 0.6 <∆T/T∰> 0 0.5 0 8 0.4 8 0.3 0.2 0.1 0 0.2 0.4 0.8 1.2 0 0.6 1 1.4 1.6 redshift

Relative temperature uncertainty

$t_{exp} = 20$ ks, known redshift

Relative temperature uncertainty

Katharina Borm

002