

CORFU 2012

Summer Institute "Particles and the Universe"

Probing Dark Matter with Monojets in ATLAS at the LHC

Johanna Gramling

University of Geneva

johanna.gramling@cern.ch

Outline

- Dark Matter at Colliders
 - Why look at colliders?
 - Effective field theory description of SM particle WIMP interaction
- Monojet Analysis
 - What to look for and how?
 - Backgrounds
 - Results
- Interpretation of results
 - Limits on WIMP production
 - Limits on WIMP-nucleon cross-sections
 - Limits on WIMP annihilation cross-sections

- Evidence for Dark Matter: mass determined by light emission ≠ mass determined by motion ⇒ Dark 'Mass'
- Baryonic Dark Matter? Non-luminous gas, MACHOs (black holes, neutron stars, ...)
 - Total amount inferred from Big Bang nucleosynthesis and CMB
 - Much smaller than the total amount of DM!
- Hot Dark Matter? Neutrinos
 - Thermally produced ultrarelativistic particles (m<keV):
 - large free-streaming length prevents early formation of small structures like galaxies!
- Non-baryonic cold Dark Matter!
 - Light: axions, sterile neutrinos, ... created through phase transition or mixing
 - Massive: weakly Interacting massive particles (**WIMP**) (10 GeV-1 TeV)
 - Created thermally in early universe: SUSY LSP, KK states, ...

- Evidence for Dark Matter: mass determined by light emission ≠ mass determined by motion ⇒ Dark 'Mass'
- Baryonic Dark Matter? Non-luminous gas, MACHOs (black holes, neutron stars, ...)
 - Total amount inferred from Big Bang nucleosynthesis and CMB
 - Much smaller than the total amount of DM!
- Hot Dark Matter? Neutrinos
 - Thermally produced ultrarelativistic particles (m<keV):
 - large free-streaming length prevents early formation of small structures like galaxies!
 In reach of LHC!
- Non-baryonic cold Dark Matter!
 - Light: axions, sterile neutrinos, ... created through phase transition or mixing
 - Massive: weakly Interacting massive particles (WIMP) (10 GeV-1 TeV)
 - Created thermally in early universe: SUSY LSP, KK states, ...

• Different experimental approaches for WIMP DM searches:

- Colliders provide an independent and complementary approach!
- Assumption about SM-DM interaction needed: To predict signals, to interpret results, to compare collider limits to (in)direct detection experiments

- Model-independent approach (T.Tait, et al., arXiv:1008.1783v2)
 - x is only new particle in LHC reach, SM-x mediator very heavy
 - → Effective field theory approach: **Contact interaction!** Coupling set by m(x) and cut-off scale M_*
 - *x* is Dirac Fermion (conclusions for Majorana Fermions also possible)
 - \rightarrow 14 operators possible pick characteristic set

	Name	Initial state	Туре	Operator
	D1	qq	scalar	$rac{m_q}{M_\star^3} \bar{\chi} \chi \bar{q} q$
	D5	qq	vector	$rac{1}{M_{\star}^2}ar{\chi}\gamma^\mu\chiar{q}\gamma_\mu q$
	D8	qq	axial-vector	$\frac{1}{M_{\star}^2} \bar{\chi} \gamma^{\mu} \gamma^5 \chi \bar{q} \gamma_{\mu} \gamma^5 q$
	D9	qq	tensor	$\frac{1}{M_{\star}^2} \bar{\chi} \sigma^{\mu\nu} \chi \bar{q} \sigma_{\mu\nu} q$
	D11	<u>gg</u>	scalar	$\frac{1}{4M_{\star}^3}\bar{\chi}\chi\alpha_s(G^a_{\mu\nu})^2$
ΓÉ	17.09.201	2	Johanna Cramli	na

What are we looking for?

1. leading jet $p_T > 120$ GeV, $|\eta| < 2$ 2. missing E_T (MET) > 120 GeV, $|\Delta \varphi$ (jet₂, MET)| > 0.5 (suppress back-to-back di-jet events) 3. ≤ 2 jets with $p_T > 30$ GeV and $|\eta| < 4.5$, no leptons

- Further: data quality, primary vertex with \geq 2 associated tracks
- MET trigger used (70 GeV)
- Define 4 Signal Regions (SR): p_{T} , MET > 120, 220, 350, 450 GeV

Monojet Analysis in ATLAS

DE GENÈVE

Backgrounds

Control

Data-driven:

Regions (CR)

- pp \rightarrow Z $\rightarrow \nu\nu$ + jets
- Electroweak:
 - pp \rightarrow W \rightarrow Iv + jets,
 - pp \rightarrow Z/ $\gamma \rightarrow$ II + jets
 - Very large cross-section, but small MET

$$N_{\text{SR}}^{\text{predicted}} = (N_{\text{CR}}^{\text{Data}} - N_{\text{Bkg}}) \cdot C \cdot \frac{N_{\text{SR}}^{\text{MC}}}{N_{\text{jet/E}_{\text{T}}}^{\text{MC}}}$$

$$\frac{\text{SR}}{Z \rightarrow v\bar{v}+\text{jets}} = (N_{\text{CR}}^{\text{Data}} - N_{\text{Bkg}}) \cdot C \cdot \frac{N_{\text{SR}}^{\text{MC}}}{N_{\text{jet/E}_{\text{T}}}^{\text{MC}}}$$

$$\frac{\text{SR}}{V \rightarrow v\bar{v}+\text{jets}} = \frac{W \rightarrow \tau v+\text{jets}}{W \rightarrow \mu v+\text{jets}} = W \rightarrow ev+\text{jets}} = \frac{Z \rightarrow \tau^{+}\tau^{-}+\text{jets}}{Z \rightarrow \mu^{+}\mu^{-}+\text{jets}}$$

$$\frac{W \rightarrow ev+\text{jets}}{Z \rightarrow e^{+}e^{-}+\text{jets}} = W \rightarrow \mu v+\text{jets}} = W \rightarrow ev+\text{jets}} = \frac{Z \rightarrow \mu^{+}\mu^{-}+\text{jets}}{Z \rightarrow \mu^{+}\mu^{-}+\text{jets}}}$$

- QCD multijets:
 - Estimated from di-, tri-jet events in data
- Dibosons:
 - Leptons, MET from W decay
 - Estimated from MC

- Non-collision background: noise, cosmic rays, beaminduced fake jets
 - Estimated from data
- (Double) top:
 - Leptons, large MET, many jets
 - Estimated from MC

Results

DE GENÈVE

Results – in Numbers

	SR1	SR2	SR3	SR4
$Z \rightarrow v\bar{v}$ +jets	63000 ± 2100	5300 ± 280	500 ± 40	58 ± 9
$W \rightarrow \tau \nu + jets$	31400 ± 1000	1853 ± 81	133 ± 13	13 ± 3
$W \rightarrow ev + jets$	14600 ± 500	679 ± 43	40 ± 8	5 ± 2
$W \rightarrow \mu \nu + jets$	11100 ± 600	704 ± 60	55 ± 6	6 ± 1
$t\bar{t} + \text{single } t$	1240 ± 250	57 ± 12	4 ± 1	-
Multijets	1100 ± 900	64 ± 64	8 ± 9	-
Non-coll. Background	575 ± 83	25 ± 13	-	-
$Z/\gamma^* \rightarrow \tau \tau + jets$	421 ± 25	15 ± 2	2 ± 1	-
Di-bosons	302 ± 61	29 ± 5	5 ± 1	1 ± 1
$Z/\gamma^* \rightarrow \mu\mu + jets$	204 ± 19	8 ± 4	-	-
Total Background	124000 ± 4000	8800 ± 400	748 ± 60	83 ± 14
Events in Data (4.7 fb^{-1})	124703	8631	785	77

• Observed number of events agrees well with SM expectation

 \rightarrow Set 90% and 95% confidence level upper limits on the visible cross section ($\sigma \times A \times \epsilon$) of new physics:

$\sigma_{ m vis}^{ m obs}$ at 90% [pb]	1.63	0.13	0.026	0.006
$\sigma_{ m vis}^{ m exp}$ at 90% [pb]	1.54	0.15	0.020	0.006
$\sigma_{ m vis}^{ m obs}$ at 95% [pb]	1.92	0.16	0.030	0.007
$\sigma_{ m vis}^{ m exp}$ at 95% [pb]	1.82	0.17	0.024	0.008

Johanna Gramling

17.09.2012

WIMP limits

DE GENÈVE

WIMP-Nucleon limits

• LHC limits on visible cross-section \rightarrow interpreted with specific m(χ) gives limit on M^{*} \rightarrow limit on WIMP-nucleon cross-section

WIMP-Nucleon limits

- Comparison with direct dark matter detection experiments
 - spin-dependent (SIMPLE, Picasso)
 - spin-independent (XENON100, CDMSII, CoGeNT)
- ATLAS limits competitive: especially strong for low m(*x*)
 - \rightarrow complementary: different systematics!

Relic abundance of WIMPs

 Limits on vector and axial-vector interactions can be translated into upper limits on WIMP annihilation cross-section to light quarks assuming the interactions are flavor-universal

 \rightarrow compared to annihilations to $b\overline{b}$ from galactic high-energy gamma ray observations by FERMI LAT

- Results are comparable
- For m(x) < 10 GeV (D5) and m(x) < 70 GeV (D8):
- ATLAS limits are below the values needed for WIMPs to make up CDM abundance in the early universe

(assuming WIMPs annihilate exclusively via the particular operator)

Summary

- If dark matter in the universe consists out of WIMPs in reach of LHC energies, they can be pair-produced in collisons and probably detected through signatures of MET and an ISR jet
- A search for physics beyond Standard Model in events with such a monojet signature was carried out with 4.7 fb⁻¹ of pp data.
- In each of the four signal regions, distinguished by MET and jet $p_{_{\!T\!,}}$ data agree with the SM predictions and limits on the visible cross section of BSM signals are set
- Effective field theory is used to derive limits for WIMP pair production on a mass suppression scale M*
- Results are converted into WIMP-nucleon scattering and WIMP annihilation cross sections and compared to dedicated dark matter experiments
 - Results are competitive and complementary
- 8 TeV analysis is ongoing: will be optimized for WIMP searches, up to 6 times more data expected