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Prologue, current status of Supersymmetry

Putting stops aside, what are the bounds on first 2-
generation “light” squarks? 



Prologue, current status of Supersymmetry
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Figure 7: 95% CLs exclusion limits obtained by using the signal region with the best expected sensitiv-
ity at each point in a simplified MSSM scenario with only strong production of gluinos and first- and
second-generation squarks, and direct decays to jets and neutralinos (left); and in the (m0 ; m1/2) plane of
MSUGRA/CMSSM for tan � = 10, A0 = 0 and µ > 0 (right). The red lines show the observed limits, the
dashed-blue lines the median expected limits, and the dotted blue lines the ±1� variation on the expected
limits. ATLAS EPS 2011 limits are from [17] and LEP results from [59].

7 Summary

This note reports a search for new physics in final states containing high-pT jets, missing transverse
momentum and no electrons or muons, based on the full dataset (4.7 fb�1) recorded by the ATLAS
experiment at the LHC in 2011. Good agreement is seen between the numbers of events observed in the
data and the numbers of events expected from SM processes.

The results are interpreted in both a simplified model containing only squarks of the first two genera-
tions, a gluino octet and a massless neutralino, as well as in MSUGRA/CMSSM models with tan � = 10,
A0 = 0 and µ > 0. In the simplified model, gluino masses below 940 GeV and squark masses be-
low 1380 GeV are excluded at the 95% confidence level. In the MSUGRA/CMSSM models, values of
m1/2 < 300 GeV are excluded for all values of m0, and m1/2 < 680 GeV for low m0. Equal mass squarks
and gluinos are excluded below 1400 GeV in both scenarios.
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dashed-blue lines the median expected limits, and the dotted blue lines the ±1� variation on the expected
limits. ATLAS EPS 2011 limits are from [17] and LEP results from [59].
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Assumptions?

What is driving the limit?

Holes in the net?

State of the art from ATLAS & CMS: 

Putting stops aside, what are the bounds on first 2-
generation “light” squarks? 

3rd lecture: big loop hole, because of 
misinterpretation of flavor constraints.

Some light squarks can be as light as few 100GeV !



Introduction (uniqueness of SM)

• SM fermions: 3 x  

• This brings with it a whole kind of phys. called flavor/gen’ phys.;

• It has a unique structure & thus comes with sharp predictions:

• Kobayashi-Maskawa Mechanism: 1 CP violating (CPV) phase; 

• Mixings is controlled by only 3 real parameters (CKM angles).



Introduction (uniqueness of SM)

• Flavor is violated dominantly via charged current interactions (int’s);

• Flavor violation, @leading order, only via left-handed (LH) currents;

• Dominantly, flavor violation is controlled by the top int’s; 

• Flavor sector posses an approximate U(2)Q x U(2)U x U(3)D symmetry;

• SM lepton sector which posses a global a U(1)l3  (beyond our scope).



SM Kobayashi-Maskawa (KM) Mechanism of Flavor & CP  Violation

• We now have an experimental (exp’) support that the KM picture 
described nature (up to possibly small corrections):

• Based on several exp’ observation (started in 64 many came in the 
last 10 years or so). 

• CPV in the Kaon and B system => within the SM correlated => 
consistent with SM.

• Flavor conversion => precision data confirmed the SM.

• New bounds on CPV in the D mixing also confirms SM picture.

This implies: Severe bounds on non-SM flavor physics.

(2008 Nobel Prize)



Is this the end of the story?

The flavor NP hierachy “problem” (puzzle not a problem)

(otherwise, rapid proton-antip-protons annihilation of yield baryon asym’ of < 10-18 )
• Baryogenesis => SM cannot be the only source of 

CPV                                                                                              

• Almost any SM extension give new sources of flavor 
and CPV.

• What about the up frontier (charm “anomaly”)?

• Integrating out new phys.=> dim. 6 Ops.: 

• Precision measurements=>        

(d̄idj)2/�2
NP

�NP � 104TeV
.
�MW



What is flavor phys, in the int’ basis?

• The SM fermions appear in 3 generations. 
• Flavor phys. describes int’ that distinguish between the 

generations.
• The fermions experience 2 types of int’: 
• gauge int’, where two fermions couple to a gauge boson, & 

Yukawa interactions, where 2 fermions couple to a scalar.
• canonical basis: no gauge couplings between fermions of 

different generations => int’ basis
• Yuakawa interactions are complicated in the int’ basis, 

inter-gen’ couplings.
• But masses are from the Yukawa int’. 
• Thus, int’ eigenstates do not have well-defined masses
• Flavor Phys. refers to the part of the SM that depends on 

Yukawa couplings.



What is flavor phys, mass basis?

•In the mass basis, Yukawa interactions are, 
simple, diagonal (not universal/degenerate). 
•Eigenstates have, well-defined masses. 
•Gauge interactions related to spontaneously 

broken symmetries can be quite complicated!
•the SU(2)L gauge couplings are not diagonal, 

they mix quarks of different generations. 
•Flavor physics refers to fermion masses 

(Yukawa) and mixings (gauge).



The SM quark flavor sector,  int’ basis

Int’ basis, the gauge part is trivial:

Yukawa sector is interesting:

global sym’: U(1)3D � U(1)3U ⇥ U(1)B

global sym’:

q̄I
LiD/qI

Lj �ij, q � Q, U, D

U(3)Q � U(3)U � U(3)D

.
qi � U (3�3)

ij qj

(see later)



End of the 1st part



How many flavor parameters in the SM?

The int’ basis is not unique !

Ex.: can use flavor sym’ to rotate the fields and get different form of 
Yukawa matrices; for ex. we can bring one of them to a diag’ form.

 => mass basis for up or down quarks. (very useful for neutrino experimental 
physics, this is called the neutrino flavor basis where the charged lepton are brought 

to their mass eigenstate)

Do the counting in 2 ways, int’ basis (sym’ oriented) 
and mass basis (explicit).

Counting flavor parameters, int’ basis



SM flavor sym’ breaking- 

How many flavor para (Int’ basis)?

6 masses + 3mixings +1CPVphase

Can use the freedom to eliminate unphysical 
parameters and count the physical ones:

Remove: 3U(3)=3(3Re+6Im)=>9Re +(18Im-1      )  parametersU(1)B

Thus altogether: (18-9)Re+(18-17)Im

U(3)Q � U(3)U � U(3)D



Counting flavor parameters, mass basis

��0⇥ = v/
⇤

2Setting the Higgs field to its vev, we find:



flavor in weak int’(charged current), mass basis

The quarks-W+- couplings are now complicated:



The form of the CKM matrix (i)



The form of the CKM matrix (ii)



The quarks-W+- couplings are now complicated:

SM: weak int’ is only source of flavor and effectively CPV

remove 6 phases -1 U(1)B
� VCKM contains 3 real mixing angles

& 1 CP violating (CPV) phase

i) Only in charged current;  ii) Dominantly via LH quarks.

(         aside)
.
�QCD

The minimal form of the CKM matrix



The SM flavor parameters

� � 0.23 and A, ⇥, � � 0.8, 0.2, 0.3

~

             mu=0.001-3; md=0.003-7; ms=0.1GeV;   
 mc=1.3; mb=4.2; mt=170GeV;

        me=.00055; mμ=0.11; mτ=1.8GeV.

masses in GeV <=> ;
;

.



The flavor puzzle, small & hierarchical parameters

The flavor parameters span many order magnitudes 
and have a clear hierarchy,  why (is it natural)?

= O(10�5)

= O(10�19)J = det[YUY †
U , YDY †

D] = 1
v12 O�

10�22
�



End of the 2nd part



SM Flavor Structure, Spurion (sym’) Analysis 

We promote YU,D to spurions, transform
under the flavor group � flavor invariant LSM .

The maximal global sym’ consistent \w SM gauge sym’ is:

.
Under SM flavor group: Q(3,1,1), u(1,3,1), d(1,1,3)

more precisely: GSM
g2/

= U(3)Qu � U(3)Qd � U(3)u � U(3)d

⇤ �W ⇥ �W (3, 3̄, 1, 1)

YU (3, 3̄, 1) , YD(3, 1, 3̄)

General Minimal Flavor Violation
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1Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
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A model independent study of the minimal flavor violation (MFV) framework is presented, where
the only sources of flavor breaking at low energy are the up and down Yukawa matrices. Two limits
are identified for the Yukawa coupling expansion: linear MFV, where it is truncated at the leading
terms, and nonlinear MFV, where such a truncation is not possible due to large third generation
Yukawa couplings. These are then resummed to all orders using non-linear �-model techniques
familiar from models of collective breaking. Generically, flavor diagonal CP violating (CPV) sources
in the UV can induce O(1) CPV in processes involving third generation quarks. Due to a residual
U(2) symmetry, the extra CPV in Bd�B̄d mixing is bounded by CPV in Bs�B̄s mixing. If operators
with right-handed light quarks are subdominant, the extra CPV is equal in the two systems, and is
negligible in processes involving only the first two generations. We find large enhancements in the
up type sector, both in CPV in D � D̄ mixing and in top flavor violation.

GSM ⇤ U(3)Qu � U(3)Qd � U(3)U � U(3)D

Fields : UL(3, 1, 1, 1), DL(1,3, 1, 1), U(1, 1,3, 1), D(1, 1, 1,3)

Spurions : g2(3, 3̄, 1, 1), YU (3, 1, 3̄, 1), YD(1,3, 1, 3̄)

Introduction. Precision flavor and CP violation measurements provide very strong constraints on models of new
physics (NP) beyond the Standard Model (SM). For instance, ⇥K constrains the scale of maximally flavor violating
NP to be >⇥ 104 TeV. Therefore, TeV scale NP which stabilizes the electroweak scale and is accessible at the LHC has
to have a highly non generic flavor structure.

The tension with precision flavor tests is relaxed if the SM Yukawa matrices are the only source of flavor breaking,
even in the presence of new particles and interactions [1–3]. This hypothesis goes under the name of Minimal Flavor
Violation (MFV). Sometimes additional assumptions are made — that the SM Yukawa couplings are also the only
source of CP violation (CPV ), e.g. in [1], or that NP does not change the Lorentz structure of the e�ective weak
hamiltonian [4]. We will not make these assumptions, but will discuss their consequences below.

A useful language for discussing MFV was introduced in [1]. It relies on the observation that for vanishing Yukawa
couplings the SM has an enhanced global symmetry. Focusing on the quark sector this is

GSM = U(3)Q � U(3)u � U(3)d, (1)

where Q, u, d stand for quark doublets and up and down type quark singlets respectively. The SM Yukawa couplings

HuQ̄LYuuR + HdQ̄LYddR, (2)

are formally invariant under GSM, if the Yukawa matrices are promoted to spurions that transform as Y �
u,d =

VQYu,dV
†
u,d, while the quark fields are in the fundamental representations, (Q�, u�, d�) = VQ,u,d(Q, u, d). Weak scale NP

models are then of the MFV class if they are formally invariant under GSM, when treating the SM Yukawa couplings
as spurions. Similarly, the low energy flavor observables are formally invariant under GSM. Practically, this means
that only certain insertions of Yukawa couplings are allowed in the quark bilinears. For example, in Q̄Q bilinears
insertions such as Q̄(YuY †

u )nQ are allowed, while Q̄Y †
d (YuY †

u )nQ are not.
The above definition of MFV is only useful if flavor invariant operators such as Q̄f(⇥uYu, ⇥dYd)Q can be expanded

in powers of Yu,d. In the large tan� limit both Yu and Yd have O(1) eigenvalues yt,b. The convergence radius is then
given by the size of ⇥u,d. We distinguish between two limiting cases
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Introduction. Precision flavor and CP violation measurements provide very strong constraints on models of new
physics (NP) beyond the Standard Model (SM). For instance, ⇥K constrains the scale of maximally flavor violating
NP to be >⇥ 104 TeV. Therefore, TeV scale NP which stabilizes the electroweak scale and is accessible at the LHC has
to have a highly non generic flavor structure.

The tension with precision flavor tests is relaxed if the SM Yukawa matrices are the only source of flavor breaking,
even in the presence of new particles and interactions [1–3]. This hypothesis goes under the name of Minimal Flavor
Violation (MFV). Sometimes additional assumptions are made — that the SM Yukawa couplings are also the only
source of CP violation (CPV ), e.g. in [1], or that NP does not change the Lorentz structure of the e�ective weak
hamiltonian [4]. We will not make these assumptions, but will discuss their consequences below.

A useful language for discussing MFV was introduced in [1]. It relies on the observation that for vanishing Yukawa
couplings the SM has an enhanced global symmetry. Focusing on the quark sector this is

GSM = U(3)Q � U(3)u � U(3)d, (1)

where Q, u, d stand for quark doublets and up and down type quark singlets respectively. The SM Yukawa couplings

HuQ̄LYuuR + HdQ̄LYddR, (2)

are formally invariant under GSM, if the Yukawa matrices are promoted to spurions that transform as Y �
u,d =

VQYu,dV
†
u,d, while the quark fields are in the fundamental representations, (Q�, u�, d�) = VQ,u,d(Q, u, d). Weak scale NP

models are then of the MFV class if they are formally invariant under GSM, when treating the SM Yukawa couplings
as spurions. Similarly, the low energy flavor observables are formally invariant under GSM. Practically, this means
that only certain insertions of Yukawa couplings are allowed in the quark bilinears. For example, in Q̄Q bilinears
insertions such as Q̄(YuY †

u )nQ are allowed, while Q̄Y †
d (YuY †

u )nQ are not.
The above definition of MFV is only useful if flavor invariant operators such as Q̄f(⇥uYu, ⇥dYd)Q can be expanded

in powers of Yu,d. In the large tan� limit both Yu and Yd have O(1) eigenvalues yt,b. The convergence radius is then
given by the size of ⇥u,d. We distinguish between two limiting cases

MFV (minimal flavor violation) theories defined

as an e↵ective theory where only source

of flavor breaking is given by powers of YU,D.
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Introduction. Precision flavor and CP violation
measurements provide very strong constraints on models
of new physics (NP) beyond the Standard Model (SM).
For instance, ⇥K constrains the scale of maximally flavor
violating NP to be >⇤ 104 TeV. Therefore, TeV scale NP
which stabilizes the electroweak scale and is accessible at
the LHC has to have a highly non generic flavor structure.

The tension with precision flavor tests is relaxed if the
SM Yukawa matrices are the only source of flavor break-
ing, even in the presence of new particles and interac-
tions [? ? ? ]. This hypothesis goes under the name of
Minimal Flavor Violation (MFV). Sometimes additional
assumptions are made — that the SM Yukawa couplings
are also the only source of CP violation (CPV ), e.g. in [?
], or that NP does not change the Lorentz structure of the
e⇥ective weak hamiltonian [? ]. We will not make these
assumptions, but will discuss their consequences below.

A useful language for discussing MFV was introduced
in [? ]. It relies on the observation that for vanishing
Yukawa couplings the SM has an enhanced global sym-
metry. Focusing on the quark sector this is

GSM = U(3)Q � U(3)u � U(3)d, (1)

where Q, u, d stand for quark doublets and up and down
type quark singlets respectively. The SM Yukawa cou-
plings

HuQ̄LYuuR + HdQ̄LYddR, (2)

are formally invariant under GSM, if the Yukawa matri-
ces are promoted to spurions that transform as Y �

u,d =
VQYu,dV

†
u,d, while the quark fields are in the fundamental

representations, (Q�, u�, d�) = VQ,u,d(Q, u, d). Weak scale
NP models are then of the MFV class if they are formally
invariant under GSM, when treating the SM Yukawa cou-
plings as spurions. Similarly, the low energy flavor ob-
servables are formally invariant under GSM. Practically,
this means that only certain insertions of Yukawa cou-
plings are allowed in the quark bilinears. For example, in
Q̄Q bilinears insertions such as Q̄(YuY †

u )nQ are allowed,
while Q̄Y †

d (YuY †
u )nQ are not.

The above definition of MFV is only useful if flavor
invariant operators such as Q̄f(⇥uYu, ⇥dYd)Q can be ex-
panded in powers of Yu,d. In the large tan� limit both
Yu and Yd have O(1) eigenvalues yt,b. The convergence
radius is then given by the size of ⇥u,d. We distinguish
between two limiting cases

• Linear MFV (LMFV): ⇥u,d ⌅ 1 and the dominant
flavor breaking e⇥ects are captured by the lowest
order polynomials of Yu,d.

• Non-linear MFV (NLMFV): ⇥u,d ⇤ O(1), higher
powers of Yu,d are important, and a truncated ex-
pansion in yt,b is not possible.

Examples of NLMFV are: low energy supersymmetric
models in which large tan� e⇥ects need to be resummed
(large ⇥d), and models obeying MFV at a UV scale
�F ⇧ µW , where large ⇥u,d ⌃ log(µW /�F ) are gener-
ated from sizable anomalous dimensions in the renormal-
ization group running [? ]. Another example is warped
extra dimension models with alignment [? ], in cases
where right handed up-quark currents are subdominant.

In this letter we show that even in NLMFV there
is a systematic expansion in small quantities, Vtd, Vts,
and light quark masses, while resumming in yt, yb ⇤
O(1). This is achieved via a non-linear ⌅-model–like
parametrization. Namely, in the limit of vanishing weak
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Next, LH flavor sym’ structure is more involved 
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A useful language for discussing MFV was introduced in [1]. It relies on the observation that for vanishing Yukawa
couplings the SM has an enhanced global symmetry. Focusing on the quark sector this is

GSM = U(3)Q � U(3)u � U(3)d, (1)

where Q, u, d stand for quark doublets and up and down type quark singlets respectively. The SM Yukawa couplings

HuQ̄LYuuR + HdQ̄LYddR, (2)

are formally invariant under GSM, if the Yukawa matrices are promoted to spurions that transform as Y �
u,d =

VQYu,dV
†
u,d, while the quark fields are in the fundamental representations, (Q�, u�, d�) = VQ,u,d(Q, u, d). Weak scale NP

models are then of the MFV class if they are formally invariant under GSM, when treating the SM Yukawa couplings
as spurions. Similarly, the low energy flavor observables are formally invariant under GSM. Practically, this means
that only certain insertions of Yukawa couplings are allowed in the quark bilinears. For example, in Q̄Q bilinears
insertions such as Q̄(YuY †

u )nQ are allowed, while Q̄Y †
d (YuY †

u )nQ are not.
The above definition of MFV is only useful if flavor invariant operators such as Q̄f(⇥uYu, ⇥dYd)Q can be expanded

in powers of Yu,d. In the large tan� limit both Yu and Yd have O(1) eigenvalues yt,b. The convergence radius is then
given by the size of ⇥u,d. We distinguish between two limiting cases

6

first. We can construct polynomial of the Yukawas with simple transformation properties under the flavor group. For
instance, consider the transformation tules of the objects

AU,D ⇤ Y †
U,DYU,D �

1
3
tr

⇤
Y †

U,DYU,D

⌅
I3 , (22)

under the flavor group the AX tranform as

AU,D ⌅ VU,DAU,DV †
U,D . (23)

Thus, AU,D are adjoints of U(3)U,D and singlets of the rest of the flavor group [while tr(Y †
U,DYU,D) are flavor sin-

glets]. Via similarity transformation we can bring AU,D to a diagonal form, simultaneously. Thus, we learn that the
background value of each of the Yukawa matrices separately breaks the U(3)U,D down to a residual U(1)3U,D group,
as illustrated in Fig. 2.

We can, in principle, apply the same analysis in the LH flavor group, U(3)Q, via defining the adjoints,

AQu,Qd ⇤ YU,DY †
U,D �

1
3
tr

⇤
YU,DY †

U,D

⌅
I3 , (24)

However, in this case the breaking is more involved since AQu,d are adjoint of the same flavor group. This is a direct
consequence of the SU(2) weak gauge interaction which relates the two components of the SU(2) doublets. This
actually motivates one to extend the global flavor group as follows. If we switch of the electroweak interactions the
SM global flavor group is actually enlarged to

GSM
weakless = U(6)Q ⇥ U(3)U ⇥ U(3)D , (25)

since now each SU(2) doublet, Qi can be split into two independent flavors, Qu,d
i with identical SU(3)⇥ U(1) gauge

quantum numbers [25]. This limit, however is not very illuminating since it does not allow for flavor violation at all.
To make a progress it is instructing to distinguish between the W 3 flavor universal interactions, which couple up and
down quarks separately, from the W± couplings, g±2 , which links between up and down LH quarks. In the presence
of only W 3 couplings the residual flavor group is given by[32]

GSM
exten = U(3)Qu ⇥ U(3)Qd ⇥ U(3)U ⇥ U(3)D . (26)

In this limit, even in the presence of the Yukawa matrices flavor conversion is forbidden since we have already saw
explicitly that only the charged currents links between di�erent flavors [see Eq. (7)]. It is thus evident that to
formally characterize flavor violation we can extend the flavor group from GSM ⌅ GSM

exten where now we break the
quark doublets to their isospin components, UL, DL, and add another spurion, g±2

Fields : UL(3, 1, 1, 1), DL(1,3, 1, 1), U(1, 1,3, 1), D(1, 1, 1,3)
Spurions : g±2 (3, 3̄, 1, 1), YU (3, 1, 3̄, 1), YD(1,3, 1, 3̄) . (27)

Flavor breaking within the SM occurs only when GSM
exten is fully broken via the Yukawa background value but also due

to the fact that g±2 has a background value. Unlike YU,D, g±2 is a special spurion in the sense that its eigen values are
degenerate as required by the weak gauge symmetry hence it breaks the U(3)Qu ⇥ U(3)Qd down to a diagonal group
which is nothing but U(3)Q. We can identify two bases where g±2 has an interesting background value: The weak
interaction basis where the background value of g±2 is simply a unit matrix

�
g±2

⇥
int
⇧ 13 . (28)

The mass basis where (after removing all unphysical parameters) the background value of g±2 is the CKM matrix
�
g±2

⇥
mass

⇧ V CKM . (29)

Now we are at position to understand the way flavor conversion is obtained in the SM. Three spurions must be
involved YU,D and g±2 . Since g±2 is involved it is clear that generation transitions has to involve LH charged current
interactions. These transitions can be characterize by the spurions, AQu,Qd [see Eq. (24)] which characterize the
breaking of of the individual LH flavor symmetries, U(3)Qu,Qd . Flavor conversion occurs because of the fact that in
general we cannot diagonalize simultaneously AQu,Qd and g±2 , this is illustrated in Fig. 3. It shows that the flavor
breaking within the SM goes through collective breaking [24] a term often used in the context of little Higgs models
(see e.g [? ] and Refs. therein).



SM Flavor Structure, Quarks Doublets (LH)

General Minimal Flavor Violation

Alexander L. Kagan,1 Gilad Perez,2, 3 Tomer Volansky,4 and Jure Zupan5, 6

1Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
2Department of Particle Physics, Weizmann Institute of Science, Rehovot 76100, Israel

3YITP, Stony Brook University, Stony Brook, NY 11794-3840, USA
4School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540

5Theory Division, Department of Physics, CERN, CH-1211 Geneva 23, Switzerland
6Faculty of mathematics and physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

A model independent study of the minimal flavor violation (MFV) framework is presented, where
the only sources of flavor breaking at low energy are the up and down Yukawa matrices. Two limits
are identified for the Yukawa coupling expansion: linear MFV, where it is truncated at the leading
terms, and nonlinear MFV, where such a truncation is not possible due to large third generation
Yukawa couplings. These are then resummed to all orders using non-linear �-model techniques
familiar from models of collective breaking. Generically, flavor diagonal CP violating (CPV) sources
in the UV can induce O(1) CPV in processes involving third generation quarks. Due to a residual
U(2) symmetry, the extra CPV in Bd�B̄d mixing is bounded by CPV in Bs�B̄s mixing. If operators
with right-handed light quarks are subdominant, the extra CPV is equal in the two systems, and is
negligible in processes involving only the first two generations. We find large enhancements in the
up type sector, both in CPV in D � D̄ mixing and in top flavor violation.

GSM ⇤ U(3)Qu � U(3)Qd � U(3)U � U(3)D

Fields : UL(3, 1, 1, 1), DL(1,3, 1, 1), U(1, 1,3, 1), D(1, 1, 1,3)

Spurions : g2(3, 3̄, 1, 1), YU (3, 1, 3̄, 1), YD(1,3, 1, 3̄)
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to have a highly non generic flavor structure.

The tension with precision flavor tests is relaxed if the SM Yukawa matrices are the only source of flavor breaking,
even in the presence of new particles and interactions [1–3]. This hypothesis goes under the name of Minimal Flavor
Violation (MFV). Sometimes additional assumptions are made — that the SM Yukawa couplings are also the only
source of CP violation (CPV ), e.g. in [1], or that NP does not change the Lorentz structure of the e�ective weak
hamiltonian [4]. We will not make these assumptions, but will discuss their consequences below.

A useful language for discussing MFV was introduced in [1]. It relies on the observation that for vanishing Yukawa
couplings the SM has an enhanced global symmetry. Focusing on the quark sector this is

GSM = U(3)Q � U(3)u � U(3)d, (1)

where Q, u, d stand for quark doublets and up and down type quark singlets respectively. The SM Yukawa couplings

HuQ̄LYuuR + HdQ̄LYddR, (2)

are formally invariant under GSM, if the Yukawa matrices are promoted to spurions that transform as Y �
u,d =

VQYu,dV
†
u,d, while the quark fields are in the fundamental representations, (Q�, u�, d�) = VQ,u,d(Q, u, d). Weak scale NP

models are then of the MFV class if they are formally invariant under GSM, when treating the SM Yukawa couplings
as spurions. Similarly, the low energy flavor observables are formally invariant under GSM. Practically, this means
that only certain insertions of Yukawa couplings are allowed in the quark bilinears. For example, in Q̄Q bilinears
insertions such as Q̄(YuY †

u )nQ are allowed, while Q̄Y †
d (YuY †

u )nQ are not.
The above definition of MFV is only useful if flavor invariant operators such as Q̄f(⇥uYu, ⇥dYd)Q can be expanded

in powers of Yu,d. In the large tan� limit both Yu and Yd have O(1) eigenvalues yt,b. The convergence radius is then
given by the size of ⇥u,d. We distinguish between two limiting cases
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AU,D ⇤ Y †
U,DYU,D �

1
3
tr

⇤
Y †

U,DYU,D

⌅
I3 , (22)

under the flavor group the AX tranform as

AU,D ⌅ VU,DAU,DV †
U,D . (23)

Thus, AU,D are adjoints of U(3)U,D and singlets of the rest of the flavor group [while tr(Y †
U,DYU,D) are flavor sin-

glets]. Via similarity transformation we can bring AU,D to a diagonal form, simultaneously. Thus, we learn that the
background value of each of the Yukawa matrices separately breaks the U(3)U,D down to a residual U(1)3U,D group,
as illustrated in Fig. 2.

We can, in principle, apply the same analysis in the LH flavor group, U(3)Q, via defining the adjoints,

AQu,Qd ⇤ YU,DY †
U,D �

1
3
tr

⇤
YU,DY †

U,D

⌅
I3 , (24)

However, in this case the breaking is more involved since AQu,d are adjoint of the same flavor group. This is a direct
consequence of the SU(2) weak gauge interaction which relates the two components of the SU(2) doublets. This
actually motivates one to extend the global flavor group as follows. If we switch of the electroweak interactions the
SM global flavor group is actually enlarged to

GSM
weakless = U(6)Q ⇥ U(3)U ⇥ U(3)D , (25)

since now each SU(2) doublet, Qi can be split into two independent flavors, Qu,d
i with identical SU(3)⇥ U(1) gauge

quantum numbers [25]. This limit, however is not very illuminating since it does not allow for flavor violation at all.
To make a progress it is instructing to distinguish between the W 3 flavor universal interactions, which couple up and
down quarks separately, from the W± couplings, g±2 , which links between up and down LH quarks. In the presence
of only W 3 couplings the residual flavor group is given by[32]

GSM
exten = U(3)Qu ⇥ U(3)Qd ⇥ U(3)U ⇥ U(3)D . (26)

In this limit, even in the presence of the Yukawa matrices flavor conversion is forbidden since we have already saw
explicitly that only the charged currents links between di�erent flavors [see Eq. (7)]. It is thus evident that to
formally characterize flavor violation we can extend the flavor group from GSM ⌅ GSM

exten where now we break the
quark doublets to their isospin components, UL, DL, and add another spurion, g±2

Fields : UL(3, 1, 1, 1), DL(1,3, 1, 1), U(1, 1,3, 1), D(1, 1, 1,3)
Spurions : g±2 (3, 3̄, 1, 1), YU (3, 1, 3̄, 1), YD(1,3, 1, 3̄) . (27)

Flavor breaking within the SM occurs only when GSM
exten is fully broken via the Yukawa background value but also due

to the fact that g±2 has a background value. Unlike YU,D, g±2 is a special spurion in the sense that its eigen values are
degenerate as required by the weak gauge symmetry hence it breaks the U(3)Qu ⇥ U(3)Qd down to a diagonal group
which is nothing but U(3)Q. We can identify two bases where g±2 has an interesting background value: The weak
interaction basis where the background value of g±2 is simply a unit matrix

�
g±2

⇥
int
⇧ 13 . (28)

The mass basis where (after removing all unphysical parameters) the background value of g±2 is the CKM matrix
�
g±2

⇥
mass

⇧ V CKM . (29)

Now we are at position to understand the way flavor conversion is obtained in the SM. Three spurions must be
involved YU,D and g±2 . Since g±2 is involved it is clear that generation transitions has to involve LH charged current
interactions. These transitions can be characterize by the spurions, AQu,Qd [see Eq. (24)] which characterize the
breaking of of the individual LH flavor symmetries, U(3)Qu,Qd . Flavor conversion occurs because of the fact that in
general we cannot diagonalize simultaneously AQu,Qd and g±2 , this is illustrated in Fig. 3. It shows that the flavor
breaking within the SM goes through collective breaking [24] a term often used in the context of little Higgs models
(see e.g [? ] and Refs. therein).
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CPV (Kobayashi-Maskawa) 

Note: C, P change the Lorentz rep from SU(2)L to SU(2)R but not CP

C⇤C�1 = i⇥c(⇤̄�0�2)T , P⇤(t, x)P�1 = ⇥p�
0⇤(t,�x)

If field redef’ yield basis in where Y’s are real => no CPV!

In the SM 3 gen => explicit CP breaking! 
Any CPV obser’ requires going through 3 gen’



How is CP broken in the SM (flavor sector)?

Im(J ) = Im{det[YUY †
U , YDY †

D]}

We can ignore the RH flavor sector (unbroken             ).

Can construct to adjoint of the U(3)Q flavor group:

CP violation is due to missalignment between the two 
(recall each breaks to         ).

YUY †
U & YDY †

D

U(1)3qR

U(1)3Q
Also CPV requires complex flavor parameters,

in term of reparameterization invariant: 

We saw that J is tiny so even though the
phase is large the SM cannot yield baryogenesis.



Theory of meson decay and mixings
All the above is obscured by QCD!

We need effective description + identify clean obser’ (ratios are better)



Theory of neutral meson decay and mixings
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Theory of neutral meson decay and mixings



CPV



Three types of CPV



Three types of CPV

CPV in interference between mixing & decay.

(occur when both B and

¯B decay

to a common CP final state).



Three types of CPV



Three types of CPV

Tale of  2 phases:



tiny smaller by a loop factor

& �2
C factor, �2

C ⇠ 5%.

�B is the phase of M12

the Bd � ¯Bd mixing amplitude;

Case study: 3rd type CPV in B !  KS



Case study: 3rd type CPV in B !  KS

⇢
ei2� =

V ⇤
tbVtdVcbV ⇤

cd

VtbV ⇤
tdV

⇤
cbVcd

, � = arg


V ⇤
tbVtd]

V ⇤
cbVcd

��
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1st & 2nd geneneration 
squark limits
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Figure 7: 95% CLs exclusion limits obtained by using the signal region with the best expected sensitiv-
ity at each point in a simplified MSSM scenario with only strong production of gluinos and first- and
second-generation squarks, and direct decays to jets and neutralinos (left); and in the (m0 ; m1/2) plane of
MSUGRA/CMSSM for tan � = 10, A0 = 0 and µ > 0 (right). The red lines show the observed limits, the
dashed-blue lines the median expected limits, and the dotted blue lines the ±1� variation on the expected
limits. ATLAS EPS 2011 limits are from [17] and LEP results from [59].

7 Summary

This note reports a search for new physics in final states containing high-pT jets, missing transverse
momentum and no electrons or muons, based on the full dataset (4.7 fb�1) recorded by the ATLAS
experiment at the LHC in 2011. Good agreement is seen between the numbers of events observed in the
data and the numbers of events expected from SM processes.

The results are interpreted in both a simplified model containing only squarks of the first two genera-
tions, a gluino octet and a massless neutralino, as well as in MSUGRA/CMSSM models with tan � = 10,
A0 = 0 and µ > 0. In the simplified model, gluino masses below 940 GeV and squark masses be-
low 1380 GeV are excluded at the 95% confidence level. In the MSUGRA/CMSSM models, values of
m1/2 < 300 GeV are excluded for all values of m0, and m1/2 < 680 GeV for low m0. Equal mass squarks
and gluinos are excluded below 1400 GeV in both scenarios.
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Why really should the first 2 generation squark need 
to be degenerate?

Blum, Grossman, Nir and GP (09);

Gedalia, Grossman, Nir and GP (09);

Gedalia, Kamenik, Ligeti & Perez (12).

M

8 dof

(ũ, d̃)L, ũR, d̃R,

(c̃, s̃)L, c̃R, s̃R

Everything degenerate         
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(ũ, d̃)L, ũR, d̃R,

(c̃, s̃)L, c̃R, s̃R

Everything degenerate         

M

ũR, c̃R

d̃R, s̃R

Split, but MFV !

(ũ, d̃)L, (c̃, s̃)L

Why really should the first 2 generation squark need 
to be degenerate?

Blum, Grossman, Nir and GP (09);

Gedalia, Grossman, Nir and GP (09);

Gedalia, Kamenik, Ligeti & Perez (12).

What if they are not degenerate?

Mahbubani, Papucci, GP, Ruderman & Weiler, to appear. 



Effective Field Theory (EFT)
Model independent approach

 microscopic dynamics above few x 100 GeV is unknown.

Can parameterize our ignorance by set of higher dim’ 
operators suppressed by the scale of new physics (NP).

Almost any NP model can be described  at low E by this set 
of operators (above Op’ are most dangerous & yet clean).

H�S,C,B=2
e⇥ =

5⇤

i=1

�
Osd

i /�2 + Ocu
i /�2 + Ob,sd

i /�2
⇥

(see e.g.: UTFit, 0707.03535)
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Operator Bounds on ⇥ in TeV (cij = 1) Bounds on cij (⇥ = 1 TeV) Observables

Re Im Re Im
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(b̄L�µsL)2 1.1� 102 7.6� 10�5 �mBs

(b̄R sL)(b̄LsR) 3.7� 102 1.3� 10�5 �mBs

(t̄L�µuL)2

TABLE I: Bounds on representative dimension-six �F = 2 operators. Bounds on ⇥ are quoted assuming an

e⇤ective coupling 1/⇥2, or, alternatively, the bounds on the respective cij ’s assuming ⇥ = 1 TeV. Observables

related to CPV are separated from the CP conserving ones with semicolons. In the Bs system we only quote

a bound on the modulo of the NP amplitude derived from �mBs (see text). For the definition of the CPV

observables in the D system see Ref. [15].

(3.4) where there is an independent constraint on the level of degeneracy [16]. We here briefly

explain this point.

Consider operators of the form

1
⇥2

NP

(QLi(XQ)ij�µQLj)(QLi(XQ)ij�
µQLj), (3.6)

where XQ is an hermitian matrix. Without loss of generality, we can choose to work in the basis

defined in Eq. (2.10):

Y d = ⌅d, Y u = V †⌅u, XQ = V †
d ⌅QVd, (3.7)

where ⌅Q is a diagonal real matrix, and Vd is a unitary matrix which parametrizes the misalignment

of the operator (3.6) with the down mass basis.

The experimental constraints that are most relevant to our study come from K0–K0 and D0–D0

mixing, which involve only the first two generation quarks. When studying new physics e⇤ects,

ignoring the third generation is often a good approximation to the physics at hand. Indeed, even

when the third generation does play a role, our two generation analysis is applicable as long as there

are no strong cancellations with contributions related to the third generation. In a two generation

framework, V depends on a single mixing angle (the Cabibbo angle ⇤c), while Vd depends on a
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Adding Leptons?

Flavor anecdotes

Daniel Grossman, Yonit Hochberg, Gilad Perez and Yotam Soreq

I. BOUNDS ON EFFECTIVE OPERATORS

Operator cij = 1 [TeV] LMFV [TeV] GMFV [TeV] Observables

Re Im Re Im

(s̄LγµdL)2 9.8 × 102 1.6 × 104 4.0 × 10−1 5.6 4.0 × 10−1 5.6 ∆mK ; εK

(s̄RdL)2 7.7 × 103 1.3 × 105 1.3 × 10−3 3.0 × 10−2 3.6 × 10−2 6.9 × 10−1 ∆mK ; εK

(s̄R dL)(s̄LdR) 1.7 × 104 3.0 × 105 < GeV 8.8 × 10−2 1.3 × 10−2 2.5 × 10−1 ∆mK ; εK

(c̄LγµuL)2 1.2 × 103 2.8 × 103 < GeV < GeV 2.4 × 10−1 < GeV ∆mD; |q/p|, φD

(c̄R uL)2 3.2 × 103 7.4 × 103 − − − − ∆mD; |q/p|, φD

(c̄R uL)(c̄LuR) 6.2 × 103 1.5 × 104 − − − − ∆mD; |q/p|, φD

(b̄LγµdL)2 5.1 × 102 9.3 × 102 4.8 4.6 × 10−1 4.8 8.7 ∆mBd
; SψKS

(b̄R dL)2 1.0 × 103 1.8 × 103 3.6 × 10−1 6.7 × 10−1 7.9 15 ∆mBd
; SψKS

(b̄R dL)(b̄LdR) 1.9 × 103 3.5 × 103 1.3 × 10−2 < GeV 3.5 × 10−1 6.7 × 10−1 ∆mBd
; SψKS

(b̄LγµsL)2 1.1 × 102 4.6 5 ∆mBs

(b̄R sL)2 2.1 × 102 5.2 × 10−3 1.3 × 10−1 ∆mBs

(b̄R sL)(b̄LsR) 4.0 × 102 6.9 × 10−2 1.7 ∆mBs

L̄iσµνeRjHFµν

1.7 × 104 Br (µ → eγ)

3.3 × 102 Br (τ → µγ)

2.6 × 102 Br (τ → eγ)

(µ̄γµPLe) (ūγµPLu) 1.9 × 102 σ(µ−Ti→e−Ti)
σ(µ−Ti→capture)

TABLE I: Bounds on the scale Λ of representative dimension-six ∆F = 2 operators in the quark and lepton

sectors. Bounds on Λ are quoted assuming an effective coupling cij/Λ2, where the coefficients are either

generic or structured via linear MFV (LMFV) or GMFV. Observables related to CPV are separated from

the CP conserving ones with semicolons. In the Bs system we only quote a bound on the modulo of the NP

amplitude derived from ∆mBs
. For the definition of the CPV observables in the D system see Ref. [1]. The

bounds in the lepton sector are on the modulo of the NP amplitude.

The effects of new physics at a high energy scale (Λ $ mW ) on the various meson mixing

systems can be studied in an effective operator language. A complete set of four quark operators
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e⇤ective coupling 1/⇥2, or, alternatively, the bounds on the respective cij ’s assuming ⇥ = 1 TeV. Observables

related to CPV are separated from the CP conserving ones with semicolons. In the Bs system we only quote

a bound on the modulo of the NP amplitude derived from �mBs (see text). For the definition of the CPV

observables in the D system see Ref. [15].

(3.4) where there is an independent constraint on the level of degeneracy [16]. We here briefly

explain this point.

Consider operators of the form
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⇥2

NP

(QLi(XQ)ij�µQLj)(QLi(XQ)ij�
µQLj), (3.6)

where XQ is an hermitian matrix. Without loss of generality, we can choose to work in the basis

defined in Eq. (2.10):

Y d = ⌅d, Y u = V †⌅u, XQ = V †
d ⌅QVd, (3.7)

where ⌅Q is a diagonal real matrix, and Vd is a unitary matrix which parametrizes the misalignment

of the operator (3.6) with the down mass basis.

The experimental constraints that are most relevant to our study come from K0–K0 and D0–D0

mixing, which involve only the first two generation quarks. When studying new physics e⇤ects,

ignoring the third generation is often a good approximation to the physics at hand. Indeed, even

when the third generation does play a role, our two generation analysis is applicable as long as there

are no strong cancellations with contributions related to the third generation. In a two generation

framework, V depends on a single mixing angle (the Cabibbo angle ⇤c), while Vd depends on a
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. For the definition of the CPV observables in the D system see Ref. [1]. The
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(3.4) where there is an independent constraint on the level of degeneracy [16]. We here briefly

explain this point.

Consider operators of the form

1
⇥2

NP

(QLi(XQ)ij�µQLj)(QLi(XQ)ij�
µQLj), (3.6)

where XQ is an hermitian matrix. Without loss of generality, we can choose to work in the basis

defined in Eq. (2.10):

Y d = ⌅d, Y u = V †⌅u, XQ = V †
d ⌅QVd, (3.7)

where ⌅Q is a diagonal real matrix, and Vd is a unitary matrix which parametrizes the misalignment

of the operator (3.6) with the down mass basis.

The experimental constraints that are most relevant to our study come from K0–K0 and D0–D0

mixing, which involve only the first two generation quarks. When studying new physics e⇤ects,

ignoring the third generation is often a good approximation to the physics at hand. Indeed, even

when the third generation does play a role, our two generation analysis is applicable as long as there

are no strong cancellations with contributions related to the third generation. In a two generation

framework, V depends on a single mixing angle (the Cabibbo angle ⇤c), while Vd depends on a
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Isidori, Nir & GP, Ann. Rev. Nucl. Part. Sci.  (10) 

Operator
Bounds on ⇥ in TeV (cij

= 1) Bounds on cij
(⇥ = 1 TeV) Observab

les

Re
Im

Re
Im
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9
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11
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TABLE I: Bounds on representative
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coupling 1/⇥

2 , or, altern
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, the bounds on the respective
cij’s assuming ⇥ = 1 TeV. Observab

les

related
to CPV are separated

from the CP conserving ones with semicolon
s. In the Bs system we only quote

a bound on the modulo of the NP amplitude derived
from �mBs

(see text). For the definition of the CPV

observab
les in the D system see Ref. [15].

(3.4) where there is an independent constraint on the level of degeneracy
[16].

We here briefly

explain this point.
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What do we conclude ?
♦ SM mechanism to induce flavor & CPV 

is successful.
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�F = 2 status
Isidori, Nir & GP, Ann. Rev. Nucl. Part. Sci.  (10) 

Operator
Bounds on ⇥ in TeV (cij

= 1) Bounds on cij
(⇥ = 1 TeV) Observab

les

Re
Im

Re
Im

(s̄L�µdL)2 9.8� 102
1.6� 104

9.0� 10�
7 3.4� 10�

9
�mK; ⇥K

(s̄R dL)(s̄LdR) 1.8� 104
3.2� 105

6.9� 10�
9 2.6� 10�

11
�mK; ⇥K

(c̄L�µuL)2 1.2� 103
2.9� 103

5.6� 10�
7 1.0� 10�

7 �mD; |q/p|,⇧D

(c̄R uL)(c̄LuR) 6.2� 103
1.5� 104

5.7� 10�
8 1.1� 10�

8 �mD; |q/p|,⇧D

(̄bL�µdL)2 5.1� 102
9.3� 102

3.3� 10�
6 1.0� 10�

6 �mBd
; S�KS

(̄bR dL)(̄bLdR) 1.9� 103
3.6� 103

5.6� 10�
7 1.7� 10�

7 �mBd
; S�KS

(̄bL�µ sL)2
1.1� 102

7.6� 10�
5

�mBs

(̄bR sL)(̄bLsR)
3.7� 102

1.3� 10�
5

�mBs

(t̄L�µuL)2

TABLE I: Bounds on representative
dimension-six �F = 2 operator

s. Bounds on ⇥ are quoted assuming an

e⇤ective
coupling 1/⇥

2 , or, altern
atively

, the bounds on the respective
cij’s assuming ⇥ = 1 TeV. Observab

les

related
to CPV are separated

from the CP conserving ones with semicolon
s. In the Bs system we only quote

a bound on the modulo of the NP amplitude derived
from �mBs

(see text). For the definition of the CPV

observab
les in the D system see Ref. [15].

(3.4) where there is an independent constraint on the level of degeneracy
[16].

We here briefly

explain this point.

Consider operator
s of the form

1
⇥2

NP

(QLi(XQ)ij�µQLj)(QLi(XQ)ij�
µ QLj),

(3.6)

where XQ
is an hermitian matrix. Without loss of generality

, we can choose to work in the basis

defined in Eq. (2.10)
:

Y
d = ⌅d,

Y
u = V

†⌅u,
XQ

= V
†
d
⌅QVd,

(3.7)

where ⌅Q is a diagonal real matrix, and Vd is a unitary matrix which parametrizes
the misalign

ment

of the operator
(3.6) with the down mass basis.

The experimental constraints that are most releva
nt to our study come from K

0–K
0 and D

0–D0

mixing, which involve
only the first two generatio

n quarks. When studying new physics e⇤ects,

ignoring the third generatio
n is often

a good approximation
to the physics at hand. Indeed, even

when the third generatio
n does play a role, our two generatio

n analysis is applicable as long as there

are no strong cancellati
ons with contributions related

to the third generatio
n. In a two generatio

n

framework, V depends on a single mixing angle (the Cabibbo angle ⇤c), while Vd depends on a

9

6

What do we conclude ?
♦ SM mechanism to induce flavor & CPV 

is successful.
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♦ Bounds are too strong to allow for NP to be directly probed.
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�F = 2 status
Isidori, Nir & GP, Ann. Rev. Nucl. Part. Sci.  (10) 

Operator
Bounds on ⇥ in TeV (cij

= 1) Bounds on cij
(⇥ = 1 TeV) Observab

les

Re
Im

Re
Im

(s̄L�µdL)2 9.8� 102
1.6� 104

9.0� 10�
7 3.4� 10�

9
�mK; ⇥K

(s̄R dL)(s̄LdR) 1.8� 104
3.2� 105

6.9� 10�
9 2.6� 10�

11
�mK; ⇥K

(c̄L�µuL)2 1.2� 103
2.9� 103

5.6� 10�
7 1.0� 10�

7 �mD; |q/p|,⇧D
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TABLE I: Bounds on representative
dimension-six �F = 2 operator

s. Bounds on ⇥ are quoted assuming an

e⇤ective
coupling 1/⇥

2 , or, altern
atively

, the bounds on the respective
cij’s assuming ⇥ = 1 TeV. Observab

les

related
to CPV are separated

from the CP conserving ones with semicolon
s. In the Bs system we only quote

a bound on the modulo of the NP amplitude derived
from �mBs

(see text). For the definition of the CPV

observab
les in the D system see Ref. [15].

(3.4) where there is an independent constraint on the level of degeneracy
[16].

We here briefly

explain this point.

Consider operator
s of the form

1
⇥2

NP

(QLi(XQ)ij�µQLj)(QLi(XQ)ij�
µ QLj),

(3.6)

where XQ
is an hermitian matrix. Without loss of generality

, we can choose to work in the basis

defined in Eq. (2.10)
:

Y
d = ⌅d,

Y
u = V

†⌅u,
XQ

= V
†
d
⌅QVd,

(3.7)

where ⌅Q is a diagonal real matrix, and Vd is a unitary matrix which parametrizes
the misalign

ment

of the operator
(3.6) with the down mass basis.

The experimental constraints that are most releva
nt to our study come from K

0–K
0 and D

0–D0

mixing, which involve
only the first two generatio

n quarks. When studying new physics e⇤ects,

ignoring the third generatio
n is often

a good approximation
to the physics at hand. Indeed, even

when the third generatio
n does play a role, our two generatio

n analysis is applicable as long as there

are no strong cancellati
ons with contributions related

to the third generatio
n. In a two generatio

n

framework, V depends on a single mixing angle (the Cabibbo angle ⇤c), while Vd depends on a

9

6

What do we conclude ?
♦ SM mechanism to induce flavor & CPV 

is successful.

♦ Hint for underlying structure of microscopic laws of nature.
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♦ Bounds are too strong to allow for NP to be directly probed.

X



Alternatively, assume 1TeV & bound coefficients

2

⇤3,8 =
1⌦
2

diag(1,�1, 0),
1⌦
6

diag(1, 1,�2)

L�F=2 =
zsd

(1 TeV)2
(dL�µsL)2 +

zcu

(1 TeV)2
(cL�µuL)2

+
z4
sd

(1 TeV)2
(dLsR)(dRsL) +

z4
cu

(1 TeV)2
(uLcR)(uRcL).

cos ⇥ud ⌅
✓A · ✓B

| ✓A| | ✓B|
=

tr
⇤�

YUY †
U

⇥

tr/

�
YDY †

D

⇥

tr/

⌅

⌦

tr
⇤�

YUY †
U

⇥2

tr/

⌅
tr
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YDY †
D

⇥2

tr/

⌅ ⇧ 1� c ⇤4 ⌃ ⇥ud = O(⇤2)

(YUY †
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CKM(YUY †
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t V ti
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⇤
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3

13 �
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Flavor structure of TeV NP is highly non-generic!

recent, will be 
further improved
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What kind of NP survives?

♦ Flavor blind/universal NP, for sure, but very restrictive.
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What kind of NP survives?

♦ Flavor blind/universal NP, for sure, but very restrictive.

♦ NP flavor structure is controlled by SM one, effective minimal 

flavor violation (MFV) => more exciting than guessed, see later ...

(spoiled by RGE)

♦ Maybe NP is anarchic but aligned. 
Nir-Seiberg (92);  Fitzpatrick-Perez-Randall (07); Csaki-Surujon-Perez-Weiler (09). 



Aligning away NP & the power of the D system

The bounds from            are much more severe.
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Fields : UL(3, 1, 1, 1), DL(1,3, 1, 1), U(1, 1,3, 1), D(1, 1, 1,3)

Spurions : g2(3, 3̄, 1, 1), YU (3, 1, 3̄, 1), YD(1,3, 1, 3̄)

Introduction. Precision flavor and CP violation measurements provide very strong constraints on models of new
physics (NP) beyond the Standard Model (SM). For instance, ⇥K constrains the scale of maximally flavor violating
NP to be >⇤ 104 TeV. Therefore, TeV scale NP which stabilizes the electroweak scale and is accessible at the LHC has
to have a highly non generic flavor structure.

The tension with precision flavor tests is relaxed if the SM Yukawa matrices are the only source of flavor breaking,
even in the presence of new particles and interactions [1–3]. This hypothesis goes under the name of Minimal Flavor
Violation (MFV). Sometimes additional assumptions are made — that the SM Yukawa couplings are also the only
source of CP violation (CPV ), e.g. in [1], or that NP does not change the Lorentz structure of the e⇥ective weak
hamiltonian [4]. We will not make these assumptions, but will discuss their consequences below.

A useful language for discussing MFV was introduced in [1]. It relies on the observation that for vanishing Yukawa
couplings the SM has an enhanced global symmetry. Focusing on the quark sector this is

GSM = U(3)Q � U(3)u � U(3)d, (3)

where Q, u, d stand for quark doublets and up and down type quark singlets respectively. The SM Yukawa couplings

HuQ̄LYuuR + HdQ̄LYddR, (4)

are formally invariant under GSM, if the Yukawa matrices are promoted to spurions that transform as Y �
u,d =

VQYu,dV
†
u,d, while the quark fields are in the fundamental representations, (Q�, u�, d�) = VQ,u,d(Q, u, d). Weak scale NP

models are then of the MFV class if they are formally invariant under GSM, when treating the SM Yukawa couplings
as spurions. Similarly, the low energy flavor observables are formally invariant under GSM. Practically, this means
that only certain insertions of Yukawa couplings are allowed in the quark bilinears. For example, in Q̄Q bilinears
insertions such as Q̄(YuY †

u )nQ are allowed, while Q̄Y †
d (YuY †

u )nQ are not.
The above definition of MFV is only useful if flavor invariant operators such as Q̄f(⇥uYu, ⇥dYd)Q can be expanded

in powers of Yu,d. In the large tan� limit both Yu and Yd have O(1) eigenvalues yt,b. The convergence radius is then
given by the size of ⇥u,d. We distinguish between two limiting cases

• Linear MFV (LMFV): ⇥u,d ⌅ 1 and the dominant flavor breaking e⇥ects are captured by the lowest order
polynomials of Yu,d.

• Non-linear MFV (NLMFV): ⇥u,d ⇤ O(1), higher powers of Yu,d are important, and a truncated expansion in yt,b

is not possible.

Examples of NLMFV are: low energy supersymmetric models in which large tan� e⇥ects need to be resummed (large
⇥d), and models obeying MFV at a UV scale �F ⇧ µW , where large ⇥u,d ⌥ log(µW /�F ) are generated from sizable
anomalous dimensions in the renormalization group running [5]. Another example is warped extra dimension models
with alignment [6], in cases where right handed up-quark currents are subdominant.

In this letter we show that even in NLMFV there is a systematic expansion in small quantities, Vtd, Vts, and light
quark masses, while resumming in yt, yb ⇤ O(1). This is achieved via a non-linear ⌅-model–like parametrization.
Namely, in the limit of vanishing weak gauge coupling (or mW ⌃�), U(3)Q is enhanced to U(3)Qu � U(3)Qd . The
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Two generation covariance description
XQ  is 2x2 Hermitian matrix, can be described as a 
vector in SU(2) 3D flavor space.

The space can be span by using the SM Yukawas (very useful 
for CPV, see later):

violation is given in Sec. 3. In Sec. 4 we use our formalism to constrain NP models in an
assumption-free manner, based on third generation ¢F = 1 decays. Sec. 5 similarly deals with
¢F = 2 processes involving the third generation quarks. For the latter two sections, current
experimental data is used for the down sector constraints, while the up sector bounds are mostly
based on LHC prospects. Secs. 6 and 7 present concrete examples for the application of the
analysis to supersymmetry and warped extra dimension, respectively. Finally, we conclude in
Sec. 8.

2 Two Generations

We start with the simpler two generations case, which is actually very useful in constraining
new physics, as a result of the richer experimental data. Any hermitian traceless 2£ 2 matrix
can be expressed as a linear combination of the Pauli matrices æ

i

. This combination can be
naturally interpreted as a vector in three dimensional real space, which applies to A

d

and A
u

.
We can then define a length of such a vector, a scalar product, a cross product and an angle
between two vectors, all of which are basis-independent2:
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(3)

These definitions allow for an intuitive understanding of the flavor and CP violation induced
by a new physics source. Consider a dimension six SU(2)

L

-invariant operator, involving only
quark doublets,
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where §NP is some high energy scale and z1 is the Wilson coe±cient. X
Q

is a traceless hermitian
matrix, transforming as an adjoint of SU(3)

Q

(or SU(2)
Q

for two generations), so it “lives” in
the same space as A

d

and A
u

.3 In the down sector for example, the operator above is relevant
for flavor violation through K0°K0 mixing. To analyze its contribution, we define a covariant
basis for each sector, with the following unit vectors
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Then the contribution of the operator in Eq. (4) to ¢c, s = 2 processes is given by the mis-
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, which is equal to
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This result is manifestly invariant under a change of basis. The meaning of Eq. (6) can be
understood as follows: We can choose an explicit basis, for example the down mass basis,
where A

d

is proportional to æ3. ¢s = 2 transitions are induced by the oÆ-diagonal element of
X

Q

, so that
Ø

ØzK

1

Ø
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)12|2. Furthermore, |(X
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)12| is simply the combined size of the æ1 and
æ2 components of X

Q

. Its size is given by the length of X
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times the sine of the angle between
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and A
d

(see Fig 1). This is exactly what Eq. (6) describes.

2The factor of °i/2 in the cross product is required in order to have the standard geometrical interpretation
Ø

Ø

Ø

~A£ ~B
Ø

Ø

Ø

= | ~A|| ~B| sin µAB , with µAB defined through the scalar product as in Eq. (3).
3This operator can always be written as a product of two identical adjoints, as explained in Appendix A.
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Two generation covariance description, cont’

violation is given in Sec. 3. In Sec. 4 we use our formalism to constrain NP models in an
assumption-free manner, based on third generation ¢F = 1 decays. Sec. 5 similarly deals with
¢F = 2 processes involving the third generation quarks. For the latter two sections, current
experimental data is used for the down sector constraints, while the up sector bounds are mostly
based on LHC prospects. Secs. 6 and 7 present concrete examples for the application of the
analysis to supersymmetry and warped extra dimension, respectively. Finally, we conclude in
Sec. 8.
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Figure 1: The contribution of X
Q

to K0 °K0 mixing, ¢m
K

, given by the solid blue line. In
the down mass basis, Â

d

corresponds to æ3, Ĵ is æ2 and Ĵ
d

is æ1.

Next we discuss CPV, which is given by

Im
≥

zK,D

1

¥

= 2
≥

X
Q

· Ĵ
¥≥

X
Q

· Ĵ
u,d

¥

. (7)

The above expression is easy to understand in the down basis, for instance. In addition to
diagonalizing A

d

, we can also choose A
u

to reside in the æ1 ° æ3 plane (Fig. 2) without loss of
generality, since there is no CPV in the SM for two generations. As a result, all of the potential
CPV originates from X

Q

in this basis. zK

1 is the square of the oÆ-diagonal element in X
Q

,
(X

Q

)12, thus Im
°

zK

1

¢

is simply twice the real part (æ1 component) times the imaginary part

(æ2 component). In this basis we have Ĵ / æ1 and Ĵ
d

/ æ2, this proves the validity of Eq. (7).

Figure 2: CP violation in the Kaon system induced by X
Q

. Im(zK

1 ) is twice the product of the
two solid orange lines, which are the projections of X

Q

on the Ĵ and Ĵ
d

axes. Note that the
angle between A

d

and A
u

is twice the Cabibbo angle, µ
C

.

The weakest unavoidable bound coming from measurements in the K and D systems was
derived in [6] using a specific parameterization of X

Q

. In the covariant bases defined in Eq. (5),
X

Q

can be written as
X

Q

= Xu,dÂ
u,d

+ XJ Ĵ + XJu,d Ĵ
u,d

, (8)

and the two bases are related through

Xu = cos 2µCXd ° sin 2µCXJd , XJu = ° sin 2µCXd ° cos 2µCXJd , (9)

while XJ remains invariant. Plugging Eqs. (8) and (9) into Eqs. (6) and (7), we obtain explicit
results. It is then easy to see that in the parameterization employed in [6], §12 sin ∞ is equal to
XJ , §12 sin Æ cos ∞ is equal to XJd etc., therefore their results coincide with ours.
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Combining K0 � K0 mixing and D0 � D0 mixing
to constrain the flavor structure of new physics

Kfir Blum,1, ⇥ Yuval Grossman,2, † Yosef Nir,1, ‡ and Gilad Perez1, §

1Department of Particle Physics, Weizmann Institute of Science, Rehovot 76100, Israel
2Institute for High Energy Phenomenology, Newman Laboratory of

Elementary Particle Physics, Cornell University, Ithaca, NY 14853, USA

New physics at high energy scale often contributes to K0�K0 and D0�D0 mixings in an approxi-
mately SU(2)L invariant way. In such a case, the combination of measurements in these two systems
is particularly powerful. The resulting constraints can be expressed in terms of misalignments and
flavor splittings.

Introduction. Measurements of flavor changing
neutral current processes put strong constraints on new
physics at the TeV scale and provide a crucial guide for
model building. In particular, measurements of the mass
splitting and CP violation in the neutral K system [1],

�mK/mK = (7.01 ± 0.01)⇥ 10�15,

⇥K = (2.23 ± 0.01)⇥ 10�3, (1)

require a highly non-generic flavor structure to any such
theory. Recently, huge progress has been made in mea-
surements of the mass splitting and in the search for CP
violation in the neutral D system [2]:

�mD/mD = (8.6 ± 2.1)⇥ 10�15,

A� = (1.2 ± 2.5)⇥ 10�3. (2)

These measurements are particularly useful in constrain-
ing models where the main flavor changing e⇤ects occur
in the up sector [3].

By ‘non-generic flavor structure’ we mean either align-
ment or degeneracies or both. Each of the set of con-
straints (1) and (2) can be satisfied by aligning the new
physics contributions with specific directions in flavor
space. However, contributions that involve only quark
doublets cannot be simultaneously aligned in both the
down and the up sectors. Thus, the combination of the
measurements related to K0 � K0 mixing (1) and to
D0�D0 mixing (2) leads to unavoidable bounds on new
physics degeneracies.

In this work, we develop the formalism that is nec-
essary to obtain these unavoidable bounds, explain the
qualitative implications and derive the actual quantita-
tive constraints from the present experimental bounds.

Theoretical and experimental background. The
e⇤ects of new physics at a high scale ⇥NP ⇧ mW on low
energy phenomena can be expressed in terms of an ef-
fective Hamiltonian, composed of Standard Model (SM)
fields and obeying the SM symmetries. In particular,
four-quark operators contribute to �S = 2 and �C = 2
processes. We are interested in the operators that involve

only quark doublets:

1
⇥2

NP
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zsd(dL�µsL)(dL�µsL) + zcu(uL�µcL)(uL�µcL)

⇥
.

(3)
We constrain new physics by requiring that contributions
of the form (3) do not exceed the experimental value
of �mK and the one-sigma upper bounds on �mD and
on CP violation in D0 � D0 mixing. As concerns ⇥K ,
since the SM contribution has only little uncertainties
and should be taken into account, we require that the new
physics is smaller than 0.6 times the experimental bound
[4]. We update the calculations of Ref. [5] (the details are
presented in [3]) and obtain the following upper bounds
on |zsd| and |zcu|:

|zsd| ⌅ zK
exp = 8.8⇥ 10�7

⇤
⇥NP

1 TeV

⌅2

,

|zcu| ⌅ zD
exp = 5.9⇥ 10�7

⇤
⇥NP

1 TeV

⌅2

, (4)

and on Im(zsd) and Im(zcu):

Im(zsd) ⌅ zIK
exp = 3.3⇥ 10�9

⇤
⇥NP

1 TeV

⌅2

,

Im(zcu) ⌅ zID
exp = 1.0⇥ 10�7

⇤
⇥NP

1 TeV

⌅2

. (5)

When e⇤ects of SU(2)L breaking are small, the terms
that lead to zsd and zcu have the form

1
⇥2

NP

(QLi(XQ)ij�µQLj)(QLi(XQ)ij�
µQLj), (6)

where XQ is an hermitian matrix. The matrix XQ pro-
vides a source of flavor violation beyond the Yukawa ma-
trices of the SM, Yd and Yu:

QLi(Yd)ijdj⇧d + QLi(Yu)ijuj⇧u. (7)

Here ⇧d,u are Higgs doublets of opposite hypercharges.
(Within the SM, ⇧u = ⌅2⇧

†
d.) Without loss of generality,

we can choose to work in a basis where

Yd = ⇤d, Yu = V †⇤u, XQ = V †
d ⇤QVd, (8)

Assuming SU(2)L  :

3

where

v̂⇥ =

⌃

⌦�
cos 2⌅c 0 � sin 2⌅c

0 1 0
sin 2⌅c 0 cos 2⌅c

⌥

↵ v̂. (20)

Our formalism is motivated by the fact that it puts all
CPV in v̂2. The v̂2 parameter is the projection of XQ

onto the direction perpendicular to the 1�3 plane where,
without loss of generality, YDY †

D and YUY †
U reside. This

can be clearly seen from the expression for the Jarlskog
invariant for our framework:

J = Tr
�

X
�
YDY †

D, YUY †
U

�✏
(21)

= i(y2
s � Y 2

D)(y2
c � Y 2

U )�12 sin 2⌅c v̂2.

Using this parametrization, we obtain

zsd = �2
12(v̂1 � iv̂2)2, (22)

zcu = �2
12(cos 2⌅cv̂1 � sin 2⌅cv̂3 � iv̂2)2. (23)

Note that, among the three v̂i, there are only two inde-
pendent parameters. We thus study the constraints as a
function of

sin ⇥ ⇤ v̂2 ⌥ [0, 1], (24)

sin � ⇤ v̂1⇣
v̂2
1 + v̂2

3

⌥ [�1, 1].

In terms of � and ⇥, we obtain

|zsd| = �2
12

�
cos2 ⇥ sin2 � + sin2 ⇥

⇥
, (25)

|zcu| = �2
12

�
cos2 ⇥ sin2(�� 2⌅c) + sin2 ⇥

⇥
,

Im(zsd) = ��2
12 sin� sin 2⇥,

Im(zcu) = ��2
12 sin(�� 2⌅c) sin 2⇥.

As a first check of our results, note that when we take
⇥ = 0, we reproduce Eq. (13). (The identification of �
with 2⌅d is correct only in the CPC case.) The bound
(17) remains the weakest bound on the flavor degeneracy.
In the presence of a CPV phase in Vd, the bound becomes
stronger. The weakest �12-bound as a function of sin ⇥
is presented in Fig. 1.

At 0.03 ⇧< | sin ⇥| ⇧< 0.98, the constraints from the CPV
observables are dominant, and the combination of zIK

exp

and zID
exp is responsible for the unavoidable bound on �12.

Defining

rI
KD ⇤ zIK

exp/zID
exp, (26)

the weakest bound on �12 corresponds to

tan� =
rI
KD sin 2⌅c

1 + rI
KD cos 2⌅c

, (27)

and is given by

�2
12 ⌅

zID
exp

sin 2⌅c sin 2⇥

⌘
1 + rI2

KD + 2rI
KD cos 2⌅c. (28)

Using Eq. (5), we find that the weakest bound occurs at
sin� ⌃ 0.014 and it is given by

�12 ⌅
4.8⇥ 10�4

↵
sin 2⇥

⇤
�NP

1 TeV

⌅
. (29)

Eq. (29) explains the sin ⇥ dependence of the curve in
Fig. 1 in the relevant range.

Comparison with Eq. (17) reveals the power of the
upper bound on CPV in D0�D0 mixing in constraining
the flavor structure of new physics. For maximal phases
(sin 2⇥ = 1), it implies degeneracy stronger by a fac-
tor of 8 compared to the bound from CPC observables.
For �NP ⌅ 1 TeV and large phases, the flavor-diagonal
and flavor-degeneracy factors should provide a suppres-
sion stronger than O(10�3). With loop suppression of
order ⇧12 ⇧ �2, the degeneracy should be stronger than
0.02.

Supersymmetry. An explicit example of the con-
straints on new physics parameters obtained by combin-
ing measurements of K0 � K0 mixing and of D0 � D0

mixing is provided by supersymmetry. Any supersym-
metric model generates the operator (6) via box diagrams
with intermediate gluinos and squark-doublets. The var-
ious factors that enter zsd and zcu can be identified as
follows:

�NP = m̃Q ⇤ (mQ̃1
+ mQ̃2

)/2,

⇧2
12 =

�2
s

54
g(m2

g̃/m̃2
Q),

⇤12 = (mQ̃2
�mQ̃1

)/(mQ̃1
+ mQ̃2

), (30)

where mQ̃i
is the squark-doublet mass, mg̃ is the gluino

mass, and g(m2
g̃/m̃2

Q) is a known function (see e.g. [6])
with, for example g(1) = 1. Taking m̃Q ⌅ 1 TeV, and
mg̃ ⌃ m̃Q (which gives ⇧12 ⌃ 0.014), leads to

mQ̃2
�mQ̃2

mQ̃1
+ mQ̃2

⌅
⇧

0.034 maximal phases
0.27 vanishing phases

(31)

FIG. 1: The weakest �12-bound as function of sin �.
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New physics at high energy scale often contributes to K0�K0 and D0�D0 mixings in an approxi-
mately SU(2)L invariant way. In such a case, the combination of measurements in these two systems
is particularly powerful. The resulting constraints can be expressed in terms of misalignments and
flavor splittings.

Introduction. Measurements of flavor changing
neutral current processes put strong constraints on new
physics at the TeV scale and provide a crucial guide for
model building. In particular, measurements of the mass
splitting and CP violation in the neutral K system [1],

�mK/mK = (7.01 ± 0.01)⇥ 10�15,

⇥K = (2.23 ± 0.01)⇥ 10�3, (1)

require a highly non-generic flavor structure to any such
theory. Recently, huge progress has been made in mea-
surements of the mass splitting and in the search for CP
violation in the neutral D system [2]:

�mD/mD = (8.6 ± 2.1)⇥ 10�15,

A� = (1.2 ± 2.5)⇥ 10�3. (2)

These measurements are particularly useful in constrain-
ing models where the main flavor changing e⇤ects occur
in the up sector [3].

By ‘non-generic flavor structure’ we mean either align-
ment or degeneracies or both. Each of the set of con-
straints (1) and (2) can be satisfied by aligning the new
physics contributions with specific directions in flavor
space. However, contributions that involve only quark
doublets cannot be simultaneously aligned in both the
down and the up sectors. Thus, the combination of the
measurements related to K0 � K0 mixing (1) and to
D0�D0 mixing (2) leads to unavoidable bounds on new
physics degeneracies.

In this work, we develop the formalism that is nec-
essary to obtain these unavoidable bounds, explain the
qualitative implications and derive the actual quantita-
tive constraints from the present experimental bounds.

Theoretical and experimental background. The
e⇤ects of new physics at a high scale ⇥NP ⇧ mW on low
energy phenomena can be expressed in terms of an ef-
fective Hamiltonian, composed of Standard Model (SM)
fields and obeying the SM symmetries. In particular,
four-quark operators contribute to �S = 2 and �C = 2
processes. We are interested in the operators that involve

only quark doublets:

1
⇥2

NP

�
zsd(dL�µsL)(dL�µsL) + zcu(uL�µcL)(uL�µcL)
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We constrain new physics by requiring that contributions
of the form (3) do not exceed the experimental value
of �mK and the one-sigma upper bounds on �mD and
on CP violation in D0 � D0 mixing. As concerns ⇥K ,
since the SM contribution has only little uncertainties
and should be taken into account, we require that the new
physics is smaller than 0.6 times the experimental bound
[4]. We update the calculations of Ref. [5] (the details are
presented in [3]) and obtain the following upper bounds
on |zsd| and |zcu|:

|zsd| ⌅ zK
exp = 8.8⇥ 10�7

⇤
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1 TeV

⌅2

,

|zcu| ⌅ zD
exp = 5.9⇥ 10�7
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, (4)

and on Im(zsd) and Im(zcu):
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,
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When e⇤ects of SU(2)L breaking are small, the terms
that lead to zsd and zcu have the form
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µQLj), (6)

where XQ is an hermitian matrix. The matrix XQ pro-
vides a source of flavor violation beyond the Yukawa ma-
trices of the SM, Yd and Yu:

QLi(Yd)ijdj⇧d + QLi(Yu)ijuj⇧u. (7)

Here ⇧d,u are Higgs doublets of opposite hypercharges.
(Within the SM, ⇧u = ⌅2⇧

†
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we can choose to work in a basis where

Yd = ⇤d, Yu = V †⇤u, XQ = V †
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Our formalism is motivated by the fact that it puts all
CPV in v̂2. The v̂2 parameter is the projection of XQ

onto the direction perpendicular to the 1�3 plane where,
without loss of generality, YDY †

D and YUY †
U reside. This

can be clearly seen from the expression for the Jarlskog
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12(cos 2⌅cv̂1 � sin 2⌅cv̂3 � iv̂2)2. (23)

Note that, among the three v̂i, there are only two inde-
pendent parameters. We thus study the constraints as a
function of
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As a first check of our results, note that when we take
⇥ = 0, we reproduce Eq. (13). (The identification of �
with 2⌅d is correct only in the CPC case.) The bound
(17) remains the weakest bound on the flavor degeneracy.
In the presence of a CPV phase in Vd, the bound becomes
stronger. The weakest �12-bound as a function of sin ⇥
is presented in Fig. 1.

At 0.03 ⇧< | sin ⇥| ⇧< 0.98, the constraints from the CPV
observables are dominant, and the combination of zIK
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and zID
exp is responsible for the unavoidable bound on �12.

Defining
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sin� ⌃ 0.014 and it is given by
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Eq. (29) explains the sin ⇥ dependence of the curve in
Fig. 1 in the relevant range.

Comparison with Eq. (17) reveals the power of the
upper bound on CPV in D0�D0 mixing in constraining
the flavor structure of new physics. For maximal phases
(sin 2⇥ = 1), it implies degeneracy stronger by a fac-
tor of 8 compared to the bound from CPC observables.
For �NP ⌅ 1 TeV and large phases, the flavor-diagonal
and flavor-degeneracy factors should provide a suppres-
sion stronger than O(10�3). With loop suppression of
order ⇧12 ⇧ �2, the degeneracy should be stronger than
0.02.

Supersymmetry. An explicit example of the con-
straints on new physics parameters obtained by combin-
ing measurements of K0 � K0 mixing and of D0 � D0

mixing is provided by supersymmetry. Any supersym-
metric model generates the operator (6) via box diagrams
with intermediate gluinos and squark-doublets. The var-
ious factors that enter zsd and zcu can be identified as
follows:
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where mQ̃i
is the squark-doublet mass, mg̃ is the gluino

mass, and g(m2
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Q) is a known function (see e.g. [6])
with, for example g(1) = 1. Taking m̃Q ⌅ 1 TeV, and
mg̃ ⌃ m̃Q (which gives ⇧12 ⌃ 0.014), leads to
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FIG. 1: The weakest �12-bound as function of sin �.
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Figure 1: The contribution of X
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to K0 °K0 mixing, ¢m
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Next we discuss CPV, which is given by

Im
≥

zK,D

1

¥

= 2
≥

X
Q

· Ĵ
¥≥
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Q
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u,d

¥

. (7)

The above expression is easy to understand in the down basis, for instance. In addition to
diagonalizing A

d

, we can also choose A
u

to reside in the æ1 ° æ3 plane (Fig. 2) without loss of
generality, since there is no CPV in the SM for two generations. As a result, all of the potential
CPV originates from X

Q

in this basis. zK

1 is the square of the oÆ-diagonal element in X
Q

,
(X

Q

)12, thus Im
°

zK

1

¢

is simply twice the real part (æ1 component) times the imaginary part

(æ2 component). In this basis we have Ĵ / æ1 and Ĵ
d

/ æ2, this proves the validity of Eq. (7).

Figure 2: CP violation in the Kaon system induced by X
Q

. Im(zK

1 ) is twice the product of the
two solid orange lines, which are the projections of X

Q

on the Ĵ and Ĵ
d

axes. Note that the
angle between A

d

and A
u

is twice the Cabibbo angle, µ
C

.

The weakest unavoidable bound coming from measurements in the K and D systems was
derived in [6] using a specific parameterization of X

Q

. In the covariant bases defined in Eq. (5),
X

Q

can be written as
X

Q

= Xu,dÂ
u,d

+ XJ Ĵ + XJu,d Ĵ
u,d

, (8)

and the two bases are related through

Xu = cos 2µCXd ° sin 2µCXJd , XJu = ° sin 2µCXd ° cos 2µCXJd , (9)

while XJ remains invariant. Plugging Eqs. (8) and (9) into Eqs. (6) and (7), we obtain explicit
results. It is then easy to see that in the parameterization employed in [6], §12 sin ∞ is equal to
XJ , §12 sin Æ cos ∞ is equal to XJd etc., therefore their results coincide with ours.

4

Projection of XQ onto

ˆJ is measuring the physical CPV phase.
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a cross product and an angle between two vectors, all of which are basis
independent‡:

| ~A| ⌘
r

1
2
tr(A2) , ~A · ~B ⌘ 1

2
tr(A B) , ~A⇥ ~B ⌘ � i

2
[A, B] ,

cos(✓AB) ⌘
~A · ~B

| ~A|| ~B|
=

tr(A B)
p

tr(A2)tr(B2)
.

(38)

These definitions allow for an intuitive understanding of the flavor and
CP violation induced by a new physics source, based on simple geometric
terms. Consider a dimension six SU(2)L-invariant operator, involving only
quark doublets,

C
1

⇤2

NP

O
1

=
1

⇤2

NP

⇥

Qi(XQ)ij�µQj

⇤ ⇥

Qi(XQ)ij�
µQj

⇤

, (39)

where ⇤
NP

is some high energy scale.§ XQ is a traceless hermitian matrix,
transforming as an adjoint of SU(3)Q (or SU(2)Q for two generations), so it
“lives” in the same space as AQd and AQu . In the down sector for example,
the operator above is relevant for flavor violation through K�K mixing. To
analyze its contribution, we define a covariant orthonormal basis for each
sector, with the following unit vectors

ÂQu,Qd ⌘
AQu,Qd

�

�AQu,Qd

�

�

, Ĵ ⌘ AQd ⇥AQu

�

�AQd ⇥AQu

�

�

, Ĵu,d ⌘ ÂQu,Qd ⇥ Ĵ . (40)

Then the contribution of the operator in Eq. (39) to �c, s = 2 processes is
given by the misalignment between XQ and AQu,Qd , which is equal to

�

�

�

CD,K
1

�

�

�

=
�

�

�

XQ ⇥ ÂQu,Qd

�

�

�

2

. (41)

This result is manifestly invariant under a change of basis. The meaning
of Eq. (41) can be understood as follows: We can choose an explicit basis,
for example the down mass basis, where AQd is proportional to �

3

. �s = 2
transitions are induced by the o↵-diagonal element of XQ, so that

�

�CK
1

�

� =
|(XQ)

12

|2. Furthermore, |(XQ)
12

| is simply the combined size of the �
1

and
�

2

components of XQ. Its size is given by the length of XQ times the sine of

‡The factor of �i/2 in the cross product is required in order to have the standard

geometrical interpretation
˛̨
˛ ~

A⇥ ~

B

˛̨
˛ = | ~

A|| ~B| sin ✓AB , with ✓AB defined through the scalar

product as in Eq. (38).
§This use of e↵ective field theory to describe NP contributions will be explained in detail
in the next section. Note also that we employ here a slightly di↵erent notation, more
suitable for the current needs, than in the next section.
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the angle between XQ and AQd (see Fig. 6). This is exactly what Eq. (41)
describes.

Fig. 6. The contribution of XQ to K

0�K

0 mixing, �mK , given by the solid blue line.

In the down mass basis, ÂQd

corresponds to �3, Ĵ is �2 and Ĵd is �1. The figure is taken

from.59

Fig. 6. The contribution of XQ to K

0 �K

0 mixing, �mK , given by the solid blue line. In the down mass basis, ÂQd

corresponds to �3, Ĵ is �2 and Ĵd is �1. The figure is taken from.59

Next we discuss CPV, which is given by

Im
⇣

CK,D
1

⌘

= 2
⇣

XQ · Ĵ
⌘ ⇣

XQ · Ĵu,d

⌘

. (42)

The above expression is easy to understand in the down basis, for instance.
In addition to diagonalizing AQd , we can also choose AQu to reside in the
�

1

� �
3

plane (Fig. 7) without loss of generality, since there is no CPV in
the SM for two generations. As a result, all of the potential CPV originates
from XQ in this basis. CK

1

is the square of the o↵-diagonal element in XQ,
(XQ)

12

, thus Im
�

CK
1

�

is simply twice the real part (�
1

component) times
the imaginary part (�

2

component). In this basis we have Ĵ / �
1

and
Ĵd / �

2

, this proves the validity of Eq. (42).
An interesting conclusion can be inferred from the analysis above: In

addition to the known necessary condition for CPV in two generation23

XJ / tr
�

XQ

⇥

AQd , AQu

⇤�

6= 0 , (43)

we identify a second necessary condition, exclusive for �F = 2 processes:

XJ
u,d / tr

�

XQ

⇥

AQu,Qd ,
⇥

AQd , AQu

⇤⇤�

6= 0 , (44)
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a cross product and an angle between two vectors, all of which are basis
independent‡:

| ~A| ⌘
r

1
2
tr(A2) , ~A · ~B ⌘ 1

2
tr(A B) , ~A⇥ ~B ⌘ � i

2
[A, B] ,

cos(✓AB) ⌘
~A · ~B

| ~A|| ~B|
=

tr(A B)
p

tr(A2)tr(B2)
.

(38)

These definitions allow for an intuitive understanding of the flavor and
CP violation induced by a new physics source, based on simple geometric
terms. Consider a dimension six SU(2)L-invariant operator, involving only
quark doublets,

C
1

⇤2

NP

O
1

=
1

⇤2

NP

⇥

Qi(XQ)ij�µQj

⇤ ⇥

Qi(XQ)ij�
µQj

⇤

, (39)

where ⇤
NP

is some high energy scale.§ XQ is a traceless hermitian matrix,
transforming as an adjoint of SU(3)Q (or SU(2)Q for two generations), so it
“lives” in the same space as AQd and AQu . In the down sector for example,
the operator above is relevant for flavor violation through K�K mixing. To
analyze its contribution, we define a covariant orthonormal basis for each
sector, with the following unit vectors

ÂQu,Qd ⌘
AQu,Qd

�

�AQu,Qd

�

�

, Ĵ ⌘ AQd ⇥AQu

�

�AQd ⇥AQu

�

�

, Ĵu,d ⌘ ÂQu,Qd ⇥ Ĵ . (40)

Then the contribution of the operator in Eq. (39) to �c, s = 2 processes is
given by the misalignment between XQ and AQu,Qd , which is equal to

�

�

�

CD,K
1

�

�

�

=
�

�

�

XQ ⇥ ÂQu,Qd

�

�

�

2

. (41)

This result is manifestly invariant under a change of basis. The meaning
of Eq. (41) can be understood as follows: We can choose an explicit basis,
for example the down mass basis, where AQd is proportional to �

3

. �s = 2
transitions are induced by the o↵-diagonal element of XQ, so that

�

�CK
1

�

� =
|(XQ)

12

|2. Furthermore, |(XQ)
12

| is simply the combined size of the �
1

and
�

2

components of XQ. Its size is given by the length of XQ times the sine of

‡The factor of �i/2 in the cross product is required in order to have the standard

geometrical interpretation
˛̨
˛ ~

A⇥ ~

B

˛̨
˛ = | ~

A|| ~B| sin ✓AB , with ✓AB defined through the scalar

product as in Eq. (38).
§This use of e↵ective field theory to describe NP contributions will be explained in detail
in the next section. Note also that we employ here a slightly di↵erent notation, more
suitable for the current needs, than in the next section.
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the angle between XQ and AQd (see Fig. 6). This is exactly what Eq. (41)
describes.

Fig. 6. The contribution of XQ to K

0�K

0 mixing, �mK , given by the solid blue line.

In the down mass basis, ÂQd

corresponds to �3, Ĵ is �2 and Ĵd is �1. The figure is taken

from.59

Fig. 6. The contribution of XQ to K

0 �K

0 mixing, �mK , given by the solid blue line. In the down mass basis, ÂQd

corresponds to �3, Ĵ is �2 and Ĵd is �1. The figure is taken from.59

Next we discuss CPV, which is given by

Im
⇣

CK,D
1

⌘

= 2
⇣

XQ · Ĵ
⌘ ⇣

XQ · Ĵu,d

⌘

. (42)

The above expression is easy to understand in the down basis, for instance.
In addition to diagonalizing AQd , we can also choose AQu to reside in the
�

1

� �
3

plane (Fig. 7) without loss of generality, since there is no CPV in
the SM for two generations. As a result, all of the potential CPV originates
from XQ in this basis. CK

1

is the square of the o↵-diagonal element in XQ,
(XQ)

12

, thus Im
�

CK
1

�

is simply twice the real part (�
1

component) times
the imaginary part (�

2

component). In this basis we have Ĵ / �
1

and
Ĵd / �

2

, this proves the validity of Eq. (42).
An interesting conclusion can be inferred from the analysis above: In

addition to the known necessary condition for CPV in two generation23

XJ / tr
�

XQ

⇥

AQd , AQu

⇤�

6= 0 , (43)

we identify a second necessary condition, exclusive for �F = 2 processes:

XJ
u,d / tr

�

XQ

⇥

AQu,Qd ,
⇥

AQd , AQu

⇤⇤�

6= 0 , (44)

(Sorry Au,d ⌘ AQu,Qd)
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mass basis. In general, low energy measurements can only constrain the
product of these two factors. An interesting exception occurs, however, for
the left-left (LL) operators of the type defined in Eq. (39), where there is
an independent constraint on the level of degeneracy.23 The crucial point
is that operators involving only quark doublets cannot be simultaneously
aligned with both the down and the up mass bases. For example, we can
take XQ from Eq. (39) to be proportional to AQd . Then it would be diagonal
in the down mass basis, but it would induce flavor violation in the up sector.
Hence, these types of theories can still be constrained by measurements. The
“best” alignment is obtained by choosing the NP contribution such that it
would minimize the bounds from both sectors. The strength of the resulting
constraint, which is the weakest possible one, is that it is unavoidable in
the context of theories with only one set of quark doublets. Here we briefly
discuss this issue, and demonstrate how to obtain such bounds.

5.2.1. Two generation �F = 2 transitions

As mentioned before, the strongest experimental constraints involve transi-
tions between the first two generations. When studying NP e↵ects, ignoring
the third generation is often a good approximation to the physics at hand.
Indeed, even when the third generation does play a role, a two generations
framework is applicable, as long as there are no strong cancelations with
contributions related to the third generation. Hence, for this analysis we
can use the formalism of Sec. (4.1).

The operator defined in Eq. (39), when restricted to the first two gen-
erations, induces mixing in the K and D systems, and possibly also CP
violation. We can use the covariant bases defined in Eq. (40) to parameter-
ize XQ,

XQ = L
⇣

Xu,dÂQu,Qd + XJ Ĵ + XJ
u,d Ĵu,d

⌘

, (78)

and the two bases are related through

Xu = cos 2✓
C

Xd� sin 2✓
C

XJ
d , XJ

u = � sin 2✓
C

Xd� cos 2✓
C

XJ
d , (79)

while XJ remains invariant. We choose the Xi coe�cients to be normalized,
�

Xd
�

2

+
�

XJ
�

2

+
�

XJ
d

�

2

= (Xu)2 +
�

XJ
�

2

+
�

XJ
u

�

2

= 1 , (80)

such that L signifies the “length” of XQ under the definitions in Eq. (38),

L = |XQ| =
�

X2

Q �X1

Q

�

/2 , (81)

where X1,2
Q are the eigenvalues of XQ before removing the trace.
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Q

�
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where X1,2
Q are the eigenvalues of XQ before removing the trace.

The covariant expansion of the new physics: 
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Plugging Eqs. (78) and (79) into Eq. (41), we obtain expressions for the
contribution of XQ to �mK and �mD, without CPV,

CK
1

= L2

h

�

XJ
�

2

+
�

XJ
d

�

2

i

,

CD
1

=
L2

2

h

2
�

XJ
�

2

+
�

Xd
�

2

+
�

XJ
d

�

2

+
⇣

�

XJ
d

�

2 �
�

Xd
�

2

⌘

cos(4✓
C

) + 2XdXJ
d sin(4✓

C

)
i

.

(82)

In order to minimize both contributions, we first need to set XJ = 0. Next
we define

tan↵ ⌘ XJ
d

Xd
, rKD ⌘

v

u

u

t

�

CK
1

�

exp

�

CD
1

�

exp

, (83)

where the experimental constraints
�

CK
1

�

exp

and
�

CD
1

�

exp

can be extracted
from Table ??. Then the weakest bound is obtained for

tan↵ =
rKD sin(2✓

C

)
1 + rKD cos(2✓

C

)
, (84)

and is given by

L  3.8⇥ 10�3

✓

⇤
NP

1 TeV

◆

. (85)

A similar process can be carried out for the CPV in K and D mixing,
by plugging Eqs. (78) and (79) into Eq (42). Now we do not set XJ = 0,
otherwise there would be no CPV (since XQ would reside in the same plane
as AQd and AQu). Moreover, there are many types of models in which we
can tweak the alignment, but we do not control the phase (we do not expect
the NP to be CP-invariant), hence they might give rise to CPV. The weakest
bound in this case, as a function of XJ , is given by

L  3.4⇥ 10�4

h

(XJ)2 � (XJ)4
i

1/4

✓

⇤
NP

1 TeV

◆

. (86)

The combination of the above two bounds is presented in Fig. 10.
We should note that L is simply the di↵erence between the eigenvalues

of XQ (see Eq. (81)), thus the bounds above put limits on the degeneracy
of the NP contribution.

.
YdY

†
d

.
YuY †

u

)
.
2�C

.
XQ

)
.
2�d

ÂQd

Ĵd
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A similar process can be carried out for the CPV in K and D mixing,
by plugging Eqs. (78) and (79) into Eq (42). Now we do not set XJ = 0,
otherwise there would be no CPV (since XQ would reside in the same plane
as AQd and AQu). Moreover, there are many types of models in which we
can tweak the alignment, but we do not control the phase (we do not expect
the NP to be CP-invariant), hence they might give rise to CPV. The weakest
bound in this case, as a function of XJ , is given by
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The combination of the above two bounds is presented in Fig. 10.
We should note that L is simply the di↵erence between the eigenvalues

of XQ (see Eq. (81)), thus the bounds above put limits on the degeneracy
of the NP contribution.
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A similar process can be carried out for the CPV in K and D mixing,
by plugging Eqs. (78) and (79) into Eq (42). Now we do not set XJ = 0,
otherwise there would be no CPV (since XQ would reside in the same plane
as AQd and AQu). Moreover, there are many types of models in which we
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The combination of the above two bounds is presented in Fig. 10.
We should note that L is simply the di↵erence between the eigenvalues

of XQ (see Eq. (81)), thus the bounds above put limits on the degeneracy
of the NP contribution.
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A similar process can be carried out for the CPV in K and D mixing,
by plugging Eqs. (78) and (79) into Eq (42). Now we do not set XJ = 0,
otherwise there would be no CPV (since XQ would reside in the same plane
as AQd and AQu). Moreover, there are many types of models in which we
can tweak the alignment, but we do not control the phase (we do not expect
the NP to be CP-invariant), hence they might give rise to CPV. The weakest
bound in this case, as a function of XJ , is given by
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The combination of the above two bounds is presented in Fig. 10.
We should note that L is simply the di↵erence between the eigenvalues

of XQ (see Eq. (81)), thus the bounds above put limits on the degeneracy
of the NP contribution.
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Fig. 10. The weakest upper bound on L coming from flavor and CPV in the K and D

systems, as a function of the CP violating parameter X

J , assuming ⇤NP = 1 TeV. The
figure is taken from.23

Fig. 10. The weakest upper bound on L coming from flavor and CPV in the K and D systems, as a function of the CP violating parameter X

J , assuming ⇤NP = 1 TeV. The figure is taken from.23

5.2.2. Third generation �F = 1 transitions

Similar to the analysis of the previous subsection, we can use other types of
processes to obtain model independent constrains on new physics. Here we
consider flavor violating decays of third generation quarks in both sectors,
utilizing the three generations framework discussed in Sec. 4.2. Since the
existing bound on top decay is rather weak, we use the projection for the
LHC bound, assuming that no positive signal is obtained.

We focus on the following operator

Oh
LL = i

⇥

Qi�
µ(XQ)ijQj

⇤

h

H†

 !
D µH

i

+ h.c. , (87)

which contributes at tree level to both top and bottom decays.83 We omit
an additional operator for quark doublets, Ou

LL = i
h

Q
3

H̃
i h

�

D/H̃
�

†

Q
2

i

�

i
h

Q
3

�

D/H̃
�

i h

H̃†Q
2

i

, which induces bottom decays only at one loop, but in
principle it should be included in a more detailed analysis.

Blum-Grossman-Nir-Perez (09)



q ij (⇥q
ij)MM ⌃⇥q

ij⌥
d 12 0.03 0.002
d 13 0.2 0.07
d 23 0.6 0.2
u 12 0.1 0.008

Table 4: The phenomenological upper bounds on (⇥q
ij)MM and on ⌃⇥q

ij⌥, where q = u, d and
M = L, R. The constraints are given for m̃q = 1 TeV and x ⇤ m2

g̃/m̃
2
q = 1. We assume that

the phases could suppress the imaginary parts by a factor ⇧ 0.3. The bound on (⇥d
23)RR is about

3 times weaker than that on (⇥d
23)LL (given in table). The constraints on (⇥d

12,13)MM , (⇥u
12)MM

and (⇥d
23)MM are based on, respectively, Refs. [143], [17] and [144].

q ij (⇥q
ij)LR

d 12 2⇥ 10�4

d 13 0.08
d 23 0.01
d 11 4.7⇥ 10�6

u 11 9.3⇥ 10�6

u 12 0.02

Table 5: The phenomenological upper bounds on chirality-mixing (⇥q
ij)LR, where q = u, d. The

constraints are given for m̃q = 1 TeV and x ⇤ m2
g̃/m̃

2
q = 1. The constraints on ⇥d

12,13, ⇥u
12, ⇥d

23

and ⇥q
ii are based on, respectively, Refs. [143], [17], [144] and [147] (with the relation between

the neutron and quark EDMs as in [148]).

For large tan �, some constraints are modified from those in Table 4. For instance, the
e⇥ects of neutral Higgs exchange in Bs and Bd mixing give, for tan � = 30 and x = 1 (see [140,
145, 146] and refs. therein for details):

⌃⇥d
13⌥ < 0.01

�
MA0

200 GeV

⇥
, ⌃⇥d

23⌥ < 0.04

�
MA0

200 GeV

⇥
, (132)

where MA0 denotes the pseudoscalar Higgs mass, and the above bounds scale roughly as
(30/ tan �)2.

The experimental constraints on the (⇥q
ij)LR parameters in the quark-squark sector are

presented in Table 5. The bounds are the same for (⇥q
ij)LR and (⇥q

ij)RL, except for (⇥d
12)MN ,

where the bound for MN = LR is 10 times weaker. Very strong constraints apply for the
phase of (⇥q

11)LR from EDMs. For x = 4 and a phase smaller than 0.1, the EDM constraints on
(⇥u,d,�

11 )LR are weakened by a factor ⇧ 6.
While, in general, the low energy flavor measurements constrain only the combinations of

the suppression factors from degeneracy and from alignment, such as Eq. (130), an interesting
exception occurs when combining the measurements of K0–K0 and D0–D0 mixing to test the
first two generation squark doublets (based on the analysis in Sec. 5.2.1). Here, for masses
below the TeV scale, some level of degeneracy is unavoidable [23]:

m eQ2
�m eQ1

m eQ2
+ m eQ1

⌅
⇤

0.034 maximal phases

0.27 vanishing phases
(133)

Similarly, using �F = 1 processes involving the third generation (Sec. 5.2.2), the following

42

Taking [29] m̃Q = 1
2(m̃Q1 + m̃Q2) and similarly for the SU(2)-singlet squarks, we find that

we thus have an upper bound on the splitting between the first two squark generations:

mQ̃2
�mQ̃1

mQ̃2
+ mQ̃1

⇥< 0.05� 0.14,

mũ2 �mũ1

mũ2 + mũ1
⇥< 0.02� 0.04. (6.12)

The first bound applies to the up squark doublets, while the second to the average of the

doublet mass splitting and the singlet mass splitting. The range in each of the bounds

corresponds to values of the phase between zero and maximal. We can thus make the

following conclusions concerning models of alignment:

1. The mass splitting between the first two squark doublet generations should be below

14%. For phases of order one, the bound is about 2� 3 times stronger.

2. In the simplest models of alignment, the mass splitting between the first two squark

generations should be smaller than about four percent.

3. The second (stronger) bound can be avoided in more complicated models of alignment,

where holomorphic zeros suppress the mixing in the singlet sector.

4. While RGE e⇥ects can provide some level of universality, even for anarchical boundary

conditions, the upper bound (6.12) requires not only a high scale of mediation [30] but

also that, at the scale of mediation, the gluino mass is considerably higher than the

squark masses.

In any model where the splitting between the first two squark doublet generations is larger

than O(y2
c ), |K

uL
21 �KdL

21 | = sin ⇥c = 0.23. Given the constraints from �mK and �K on |KdL
12 |,

one arrives at a constraint very similar to the first bound in Eq. (6.12). We conclude that

the constraints on the level of degeneracy between the squark doublets (stronger than five

to fourteen percent) applies to any supersymmetric model where the mass of the first two

squark doublet generations is below TeV. It is suggestive that the mechanism that mediates

supersymmetry breaking is flavor-universal, as in gauge mediation.

13

(squark doublets, 1TeV)                                                

SUSY implications, naively looks like alignment is dead!!

	  K.	  Blum,	  Y.	  Grossman,	  Y.	  Nir	  and	  G.	  Perez,	  PRL	  (2009)	  

However ...  

With phases, first 2 gen’ squark need to have 
almost equal masses.

Looks like squark anarchy/alignment is dead!

What is XQ in the SUSY case?



Degeneracy of Squarks 

NPKI workshop 17 

How alignment models work?

• The	  maximal	  phase	  case	  does	  not	  correspond	  to	  an	  
alignment	  model.
• Alignment	  makes	  both	  real	  and	  imaginary	  parts	  small.



Degeneracy of Squarks 

NPKI workshop 18 



Degeneracy of Squarks 

• No strong degeneracy required! 

• Ex.:      =1.3 TeV,       =550 GeV,       =950 GeV 

• This can be generated by*: 
– Anarchy at the SUSY breaking mediation scale 

– SUSY renormalization group flow to the TeV scale 
– Can lead to modest level of degeneracy 

NPKI workshop 19 

* Y. Nir and G. Raz, PRD 66, 035007 (2002) [hep-ph/0206064]  
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Is there a 300 GeV squark 
hiding in the data?

Papucci, Ruderman, Perez, Mahbubani, Perez & Weiler, to appear. 
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A model independent study of the minimal flavor violation (MFV) framework is presented, where
the only sources of flavor breaking at low energy are the up and down Yukawa matrices. Two limits
are identified for the Yukawa coupling expansion: linear MFV, where it is truncated at the leading
terms, and nonlinear MFV, where such a truncation is not possible due to large third generation
Yukawa couplings. These are then resummed to all orders using non-linear �-model techniques
familiar from models of collective breaking. Generically, flavor diagonal CP violating (CPV) sources
in the UV can induce O(1) CPV in processes involving third generation quarks. Due to a residual
U(2) symmetry, the extra CPV in Bd�B̄d mixing is bounded by CPV in Bs�B̄s mixing. If operators
with right-handed light quarks are subdominant, the extra CPV is equal in the two systems, and is
negligible in processes involving only the first two generations. We find large enhancements in the
up type sector, both in CPV in D � D̄ mixing and in top flavor violation.
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Spurions : g2(3, 3̄, 1, 1), YU (3, 1, 3̄, 1), YD(1,3, 1, 3̄)

Introduction. Precision flavor and CP violation measurements provide very strong constraints on models of new
physics (NP) beyond the Standard Model (SM). For instance, �K constrains the scale of maximally flavor violating
NP to be >⇥ 104 TeV. Therefore, TeV scale NP which stabilizes the electroweak scale and is accessible at the LHC has
to have a highly non generic flavor structure.

The tension with precision flavor tests is relaxed if the SM Yukawa matrices are the only source of flavor breaking,
even in the presence of new particles and interactions [1–3]. This hypothesis goes under the name of Minimal Flavor
Violation (MFV). Sometimes additional assumptions are made — that the SM Yukawa couplings are also the only
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A model independent study of the minimal flavor violation (MFV) framework is presented, where
the only sources of flavor breaking at low energy are the up and down Yukawa matrices. Two limits
are identified for the Yukawa coupling expansion: linear MFV, where it is truncated at the leading
terms, and nonlinear MFV, where such a truncation is not possible due to large third generation
Yukawa couplings. These are then resummed to all orders using non-linear �-model techniques
familiar from models of collective breaking. Generically, flavor diagonal CP violating (CPV) sources
in the UV can induce O(1) CPV in processes involving third generation quarks. Due to a residual
U(2) symmetry, the extra CPV in Bd�B̄d mixing is bounded by CPV in Bs�B̄s mixing. If operators
with right-handed light quarks are subdominant, the extra CPV is equal in the two systems, and is
negligible in processes involving only the first two generations. We find large enhancements in the
up type sector, both in CPV in D � D̄ mixing and in top flavor violation.
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first. We can construct polynomial of the Yukawas with simple transformation properties under the flavor group. For
instance, consider the transformation tules of the objects

AU,D ⇤ Y †
U,DYU,D �

1
3
tr

⇤
Y †

U,DYU,D

⌅
I3 , (22)

under the flavor group the AX tranform as

AU,D ⌅ VU,DAU,DV †
U,D . (23)

Thus, AU,D are adjoints of U(3)U,D and singlets of the rest of the flavor group [while tr(Y †
U,DYU,D) are flavor sin-

glets]. Via similarity transformation we can bring AU,D to a diagonal form, simultaneously. Thus, we learn that the
background value of each of the Yukawa matrices separately breaks the U(3)U,D down to a residual U(1)3U,D group,
as illustrated in Fig. 2.

We can, in principle, apply the same analysis in the LH flavor group, U(3)Q, via defining the adjoints,

AQu,Qd ⇤ YU,DY †
U,D �

1
3
tr

⇤
YU,DY †

U,D

⌅
I3 , (24)

However, in this case the breaking is more involved since AQu,d are adjoint of the same flavor group. This is a direct
consequence of the SU(2) weak gauge interaction which relates the two components of the SU(2) doublets. This
actually motivates one to extend the global flavor group as follows. If we switch of the electroweak interactions the
SM global flavor group is actually enlarged to

GSM
weakless = U(6)Q ⇥ U(3)U ⇥ U(3)D , (25)

since now each SU(2) doublet, Qi can be split into two independent flavors, Qu,d
i with identical SU(3)⇥ U(1) gauge

quantum numbers [25]. This limit, however is not very illuminating since it does not allow for flavor violation at all.
To make a progress it is instructing to distinguish between the W 3 flavor universal interactions, which couple up and
down quarks separately, from the W± couplings, g±2 , which links between up and down LH quarks. In the presence
of only W 3 couplings the residual flavor group is given by[32]

GSM
exten = U(3)Qu ⇥ U(3)Qd ⇥ U(3)U ⇥ U(3)D . (26)

In this limit, even in the presence of the Yukawa matrices flavor conversion is forbidden since we have already saw
explicitly that only the charged currents links between di�erent flavors [see Eq. (7)]. It is thus evident that to
formally characterize flavor violation we can extend the flavor group from GSM ⌅ GSM

exten where now we break the
quark doublets to their isospin components, UL, DL, and add another spurion, g±2

Fields : UL(3, 1, 1, 1), DL(1,3, 1, 1), U(1, 1,3, 1), D(1, 1, 1,3)
Spurions : g±2 (3, 3̄, 1, 1), YU (3, 1, 3̄, 1), YD(1,3, 1, 3̄) . (27)

Flavor breaking within the SM occurs only when GSM
exten is fully broken via the Yukawa background value but also due

to the fact that g±2 has a background value. Unlike YU,D, g±2 is a special spurion in the sense that its eigen values are
degenerate as required by the weak gauge symmetry hence it breaks the U(3)Qu ⇥ U(3)Qd down to a diagonal group
which is nothing but U(3)Q. We can identify two bases where g±2 has an interesting background value: The weak
interaction basis where the background value of g±2 is simply a unit matrix

�
g±2

⇥
int
⇧ 13 . (28)

The mass basis where (after removing all unphysical parameters) the background value of g±2 is the CKM matrix
�
g±2

⇥
mass

⇧ V CKM . (29)

Now we are at position to understand the way flavor conversion is obtained in the SM. Three spurions must be
involved YU,D and g±2 . Since g±2 is involved it is clear that generation transitions has to involve LH charged current
interactions. These transitions can be characterize by the spurions, AQu,Qd [see Eq. (24)] which characterize the
breaking of of the individual LH flavor symmetries, U(3)Qu,Qd . Flavor conversion occurs because of the fact that in
general we cannot diagonalize simultaneously AQu,Qd and g±2 , this is illustrated in Fig. 3. It shows that the flavor
breaking within the SM goes through collective breaking [24] a term often used in the context of little Higgs models
(see e.g [? ] and Refs. therein).



What is the flavor puzzle (1st ingredient)?

The flavor puzzle is of 2 ingredients:

3

• Non-linear MFV (NLMFV): ⇥u,d ⌅ O(1), higher powers of Yu,d are important, and a truncated expansion in yt,b

is not possible.

Examples of NLMFV are: low energy supersymmetric models in which large tan� e⇥ects need to be resummed (large
⇥d), and models obeying MFV at a UV scale �F ⌃ µW , where large ⇥u,d � log(µW /�F ) are generated from sizable
anomalous dimensions in the renormalization group running [? ]. Another example is warped extra dimension models
with alignment [? ], in cases where right handed up-quark currents are subdominant.

In this letter we show that even in NLMFV there is a systematic expansion in small quantities, Vtd, Vts, and light
quark masses, while resumming in yt, yb ⌅ O(1). This is achieved via a non-linear ⌃-model–like parametrization.
Namely, in the limit of vanishing weak gauge coupling (or mW ⌥ ), U(3)Q is enhanced to U(3)Qu ⇥ U(3)Qd . The
two groups are broken down to U(2)⇥ U(1) by large third generation eigenvalues in Yu,dY

†
u,d, so that the low energy

theory is described by a [U(3)/U(2)⇥U(1)]2 non-linear ⌃-model. Flavor violation arises due to the misalignment of Yu

and Yd, given by Vtd and Vts once the weak interaction is turned on. We can then prove with complete generality that
in MFV: (i) extra CPV can only arise from flavor diagonal CPV sources in the UV theory; (ii) the extra CP phases
in Bs � B̄s mixing provide an upper bound on the amount of CPV in Bd � B̄d mixing; (iii) if operators containing
right-handed light quarks are subdominant then the extra CPV is equal in the two systems, and is negligible in
2 ⌥ 1 transitions. Conversely, these operators can break the correlation between CPV in the Bs and Bd systems,
and can induce significant new CPV in ⇥K . Combinations of observables which are sensitive to LMFV vs. NLMFV
are also identified. Another non-linear parameterization of MFV was presented in [? ]. We focus on exploiting the
general control obtained by our formalism in order to study its model independent implications. A modification of
the formalism is needed for yb ⇧ 1, as discussed below.

Formalism. To realize GSM non-linearly, we promote the Yukawa matrices to spurions, with the transformation
properties given below Eq. (??). These flavor transformations are broken once the Yukawa couplings obtain their
background values. The eigenvalues of the latter are hierarchical and the two matrices are approximately aligned. We
therefore take Yu ⌅ diag (0, 0, yt) and Yd ⌅ diag (0, 0, yb). The breaking of the flavor group is dominated by the top
and bottom Yukawa couplings which break it down to HSM = U(2)Q ⇥ U(2)u ⇥ U(2)d ⇥ U(1)3.

The broken symmetry generators live in GSM/HSM cosets. It is useful to factor them out of the Yukawa matrices.
We thus use the parameterization

Yu,d = ei�̂Qe±i⇥̂/2Ỹu,de
�i�̂u,d , (3)

where the reduced Yukawa spurions, Ỹu,d, are

Ỹu,d =
�

⌥u,d 0
0 yt,b

⇥
. (4)

Here ⌥u,d are 2 ⇥ 2 complex spurions, while �̂ and ⇧̂i, i = Q, u, d, are the 3 ⇥ 3 matrices spanned by the broken
generators. Explicitly,

�̂ =
�

0 �
�† 0

⇥
, ⇧̂i =

�
0 ⇧i

⇧†i ⇤i

⇥
, i = Q, u, d, (5)

where � and ⇧i are two dimensional vectors. The ⇧i shift under the broken generators and therefore play the role
of spurion ”Goldstone bosons”. Thus the ⇧i have no physical significance. �, on the other hand, parametrizes the
misalignment of the up and down Yukawa couplings and will therefore correspond to Vtd and Vts in the low energy
e⇥ective theory [see Eq. (??)].

Under the flavor group the above spurions transform as,

ei�̂�
i = Vie

i�̂iU†
i , ei⇥̂�

= UQei⇥̂U†
Q, Ỹ ⌅

i = UQỸiU
†
i . (6)

Here Ui = Ui(Vi, ⇧̂i) are (reducible) unitary representations of the unbroken flavor subgroup U(2)i ⇥ U(1)3,

Ui =
�

U2⇥2
i 0
0 ei⇤3

⇥
, i = Q, u, d. (7)

For Vi ⌦ HSM, Ui = Vi. Otherwise the Ui depend on the broken generators and ⇧̂i. They form a nonlinear realization
of the full flavor group. In particular, Eq. (??) defines Ui(Vi, ⇧̂i) by requiring that ⇧̂⌅i is of the same form as ⇧̂i,
Eq. (??). Consequently ⇧̂i is shifted under GSM/HSM and can be set to a convenient value as discussed below. Under

(i) Smallness of eigenvalues of 

General Minimal Flavor Violation

Alexander L. Kagan,1 Gilad Perez,2, 3 Tomer Volansky,4 and Jure Zupan5, 6

1Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
2Department of Particle Physics, Weizmann Institute of Science, Rehovot 76100, Israel

3YITP, Stony Brook University, Stony Brook, NY 11794-3840, USA
4School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540

5Theory Division, Department of Physics, CERN, CH-1211 Geneva 23, Switzerland
6Faculty of mathematics and physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

A model independent study of the minimal flavor violation (MFV) framework is presented, where
the only sources of flavor breaking at low energy are the up and down Yukawa matrices. Two limits
are identified for the Yukawa coupling expansion: linear MFV, where it is truncated at the leading
terms, and nonlinear MFV, where such a truncation is not possible due to large third generation
Yukawa couplings. These are then resummed to all orders using non-linear �-model techniques
familiar from models of collective breaking. Generically, flavor diagonal CP violating (CPV) sources
in the UV can induce O(1) CPV in processes involving third generation quarks. Due to a residual
U(2) symmetry, the extra CPV in Bd�B̄d mixing is bounded by CPV in Bs�B̄s mixing. If operators
with right-handed light quarks are subdominant, the extra CPV is equal in the two systems, and is
negligible in processes involving only the first two generations. We find large enhancements in the
up type sector, both in CPV in D � D̄ mixing and in top flavor violation.

U(1)B

U(1)3U

U(1)3D

U(3)Q

U(1)3YD�0

U(1)3YU�0

Y †
U

YD

YU & YD .

g2

3

• Non-linear MFV (NLMFV): ⇥u,d ⌅ O(1), higher powers of Yu,d are important, and a truncated expansion in yt,b

is not possible.

Examples of NLMFV are: low energy supersymmetric models in which large tan� e⇥ects need to be resummed (large
⇥d), and models obeying MFV at a UV scale �F ⌃ µW , where large ⇥u,d � log(µW /�F ) are generated from sizable
anomalous dimensions in the renormalization group running [? ]. Another example is warped extra dimension models
with alignment [? ], in cases where right handed up-quark currents are subdominant.

In this letter we show that even in NLMFV there is a systematic expansion in small quantities, Vtd, Vts, and light
quark masses, while resumming in yt, yb ⌅ O(1). This is achieved via a non-linear ⌃-model–like parametrization.
Namely, in the limit of vanishing weak gauge coupling (or mW ⌥ ), U(3)Q is enhanced to U(3)Qu ⇥ U(3)Qd . The
two groups are broken down to U(2)⇥ U(1) by large third generation eigenvalues in Yu,dY

†
u,d, so that the low energy

theory is described by a [U(3)/U(2)⇥U(1)]2 non-linear ⌃-model. Flavor violation arises due to the misalignment of Yu

and Yd, given by Vtd and Vts once the weak interaction is turned on. We can then prove with complete generality that
in MFV: (i) extra CPV can only arise from flavor diagonal CPV sources in the UV theory; (ii) the extra CP phases
in Bs � B̄s mixing provide an upper bound on the amount of CPV in Bd � B̄d mixing; (iii) if operators containing
right-handed light quarks are subdominant then the extra CPV is equal in the two systems, and is negligible in
2 ⌥ 1 transitions. Conversely, these operators can break the correlation between CPV in the Bs and Bd systems,
and can induce significant new CPV in ⇥K . Combinations of observables which are sensitive to LMFV vs. NLMFV
are also identified. Another non-linear parameterization of MFV was presented in [? ]. We focus on exploiting the
general control obtained by our formalism in order to study its model independent implications. A modification of
the formalism is needed for yb ⇧ 1, as discussed below.

Formalism. To realize GSM non-linearly, we promote the Yukawa matrices to spurions, with the transformation
properties given below Eq. (??). These flavor transformations are broken once the Yukawa couplings obtain their
background values. The eigenvalues of the latter are hierarchical and the two matrices are approximately aligned. We
therefore take Yu ⌅ diag (0, 0, yt) and Yd ⌅ diag (0, 0, yb). The breaking of the flavor group is dominated by the top
and bottom Yukawa couplings which break it down to HSM = U(2)Q ⇥ U(2)u ⇥ U(2)d ⇥ U(1)3.

The broken symmetry generators live in GSM/HSM cosets. It is useful to factor them out of the Yukawa matrices.
We thus use the parameterization

Yu,d = ei�̂Qe±i⇥̂/2Ỹu,de
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U(3)U � U(3)Qu � U(3)Qd � U(3)D

GSM ⇤ U(3)Qu � U(3)Qd � U(3)U � U(3)D

U(3)U ⌅ U(1)3U

U(3)D ⌅ U(1)3D

Y †
UYU

Y †
DYD

Fields : UL(3, 1, 1, 1), DL(1,3, 1, 1), U(1, 1,3, 1), D(1, 1, 1,3)

Spurions : g2(3, 3̄, 1, 1), YU (3, 1, 3̄, 1), YD(1,3, 1, 3̄)

Introduction. Precision flavor and CP violation measurements provide very strong constraints on models of new
physics (NP) beyond the Standard Model (SM). For instance, �K constrains the scale of maximally flavor violating
NP to be >⇥ 104 TeV. Therefore, TeV scale NP which stabilizes the electroweak scale and is accessible at the LHC has
to have a highly non generic flavor structure.

The tension with precision flavor tests is relaxed if the SM Yukawa matrices are the only source of flavor breaking,
even in the presence of new particles and interactions [1–3]. This hypothesis goes under the name of Minimal Flavor
Violation (MFV). Sometimes additional assumptions are made — that the SM Yukawa couplings are also the only
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first. We can construct polynomial of the Yukawas with simple transformation properties under the flavor group. For
instance, consider the transformation tules of the objects

AU,D ⇤ Y †
U,DYU,D �

1
3
tr

⇤
Y †

U,DYU,D

⌅
I3 , (22)

under the flavor group the AX tranform as

AU,D ⌅ VU,DAU,DV †
U,D . (23)

Thus, AU,D are adjoints of U(3)U,D and singlets of the rest of the flavor group [while tr(Y †
U,DYU,D) are flavor sin-

glets]. Via similarity transformation we can bring AU,D to a diagonal form, simultaneously. Thus, we learn that the
background value of each of the Yukawa matrices separately breaks the U(3)U,D down to a residual U(1)3U,D group,
as illustrated in Fig. 2.

We can, in principle, apply the same analysis in the LH flavor group, U(3)Q, via defining the adjoints,

AQu,Qd ⇤ YU,DY †
U,D �

1
3
tr

⇤
YU,DY †

U,D

⌅
I3 , (24)

However, in this case the breaking is more involved since AQu,d are adjoint of the same flavor group. This is a direct
consequence of the SU(2) weak gauge interaction which relates the two components of the SU(2) doublets. This
actually motivates one to extend the global flavor group as follows. If we switch of the electroweak interactions the
SM global flavor group is actually enlarged to

GSM
weakless = U(6)Q ⇥ U(3)U ⇥ U(3)D , (25)

since now each SU(2) doublet, Qi can be split into two independent flavors, Qu,d
i with identical SU(3)⇥ U(1) gauge

quantum numbers [25]. This limit, however is not very illuminating since it does not allow for flavor violation at all.
To make a progress it is instructing to distinguish between the W 3 flavor universal interactions, which couple up and
down quarks separately, from the W± couplings, g±2 , which links between up and down LH quarks. In the presence
of only W 3 couplings the residual flavor group is given by[32]

GSM
exten = U(3)Qu ⇥ U(3)Qd ⇥ U(3)U ⇥ U(3)D . (26)

In this limit, even in the presence of the Yukawa matrices flavor conversion is forbidden since we have already saw
explicitly that only the charged currents links between di�erent flavors [see Eq. (7)]. It is thus evident that to
formally characterize flavor violation we can extend the flavor group from GSM ⌅ GSM

exten where now we break the
quark doublets to their isospin components, UL, DL, and add another spurion, g±2

Fields : UL(3, 1, 1, 1), DL(1,3, 1, 1), U(1, 1,3, 1), D(1, 1, 1,3)
Spurions : g±2 (3, 3̄, 1, 1), YU (3, 1, 3̄, 1), YD(1,3, 1, 3̄) . (27)

Flavor breaking within the SM occurs only when GSM
exten is fully broken via the Yukawa background value but also due

to the fact that g±2 has a background value. Unlike YU,D, g±2 is a special spurion in the sense that its eigen values are
degenerate as required by the weak gauge symmetry hence it breaks the U(3)Qu ⇥ U(3)Qd down to a diagonal group
which is nothing but U(3)Q. We can identify two bases where g±2 has an interesting background value: The weak
interaction basis where the background value of g±2 is simply a unit matrix

�
g±2

⇥
int
⇧ 13 . (28)

The mass basis where (after removing all unphysical parameters) the background value of g±2 is the CKM matrix
�
g±2

⇥
mass

⇧ V CKM . (29)

Now we are at position to understand the way flavor conversion is obtained in the SM. Three spurions must be
involved YU,D and g±2 . Since g±2 is involved it is clear that generation transitions has to involve LH charged current
interactions. These transitions can be characterize by the spurions, AQu,Qd [see Eq. (24)] which characterize the
breaking of of the individual LH flavor symmetries, U(3)Qu,Qd . Flavor conversion occurs because of the fact that in
general we cannot diagonalize simultaneously AQu,Qd and g±2 , this is illustrated in Fig. 3. It shows that the flavor
breaking within the SM goes through collective breaking [24] a term often used in the context of little Higgs models
(see e.g [? ] and Refs. therein).
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zcu
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+
z4
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z4
cu

(1 TeV)2
(uLcR)(uRcL).

Im(zsd, z
4
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U(3)U ⌅ U(1)3U

U(3)D ⌅ U(1)3D

Y †
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DYD

Fields : UL(3, 1, 1, 1), DL(1,3, 1, 1), U(1, 1,3, 1), D(1, 1, 1,3)

Spurions : g2(3, 3̄, 1, 1), YU (3, 1, 3̄, 1), YD(1,3, 1, 3̄)

Introduction. Precision flavor and CP violation measurements provide very strong constraints on models of new
physics (NP) beyond the Standard Model (SM). For instance, �K constrains the scale of maximally flavor violating
NP to be >⇥ 104 TeV. Therefore, TeV scale NP which stabilizes the electroweak scale and is accessible at the LHC has
to have a highly non generic flavor structure.

The tension with precision flavor tests is relaxed if the SM Yukawa matrices are the only source of flavor breaking,
even in the presence of new particles and interactions [1–3]. This hypothesis goes under the name of Minimal Flavor
Violation (MFV). Sometimes additional assumptions are made — that the SM Yukawa couplings are also the only
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What is the flavor puzzle (2nd ingredient)?
(ii) Smallness of the CKM mixing angles (Yu,d quasi-alignment) - 
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In diagonal basis can expand Y’s via Gel-Mann matrices: 
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To leading order only the rotation in the (13) & (23) 
matters, hence, say in the down mass basis we find:
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The amount of alignment can be extracted from the 
scalar product of two vectors (in any flavor basis):
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The flavor puzzle, breaking & naturalness 
Flavor puzzle: The parameters’ are small and hierarchical!
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Light masses are protected by residual                      sym’.
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Back to the bounds from flavor precision

Flavor anecdotes

Daniel Grossman, Yonit Hochberg, Gilad Perez and Yotam Soreq

I. BOUNDS ON EFFECTIVE OPERATORS

Operator cij = 1 [TeV] LMFV [TeV] GMFV [TeV] Observables

Re Im Re Im

(s̄LγµdL)2 9.8 × 102 1.6 × 104 4.0 × 10−1 5.6 4.0 × 10−1 5.6 ∆mK ; εK

(s̄RdL)2 7.7 × 103 1.3 × 105 1.3 × 10−3 3.0 × 10−2 3.6 × 10−2 6.9 × 10−1 ∆mK ; εK

(s̄R dL)(s̄LdR) 1.7 × 104 3.0 × 105 < GeV 8.8 × 10−2 1.3 × 10−2 2.5 × 10−1 ∆mK ; εK

(c̄LγµuL)2 1.2 × 103 2.8 × 103 < GeV < GeV 2.4 × 10−1 < GeV ∆mD; |q/p|, φD

(c̄R uL)2 3.2 × 103 7.4 × 103 − − − − ∆mD; |q/p|, φD

(c̄R uL)(c̄LuR) 6.2 × 103 1.5 × 104 − − − − ∆mD; |q/p|, φD

(b̄LγµdL)2 5.1 × 102 9.3 × 102 4.8 4.6 × 10−1 4.8 8.7 ∆mBd
; SψKS

(b̄R dL)2 1.0 × 103 1.8 × 103 3.6 × 10−1 6.7 × 10−1 7.9 15 ∆mBd
; SψKS

(b̄R dL)(b̄LdR) 1.9 × 103 3.5 × 103 1.3 × 10−2 < GeV 3.5 × 10−1 6.7 × 10−1 ∆mBd
; SψKS

(b̄LγµsL)2 1.1 × 102 4.6 5 ∆mBs

(b̄R sL)2 2.1 × 102 5.2 × 10−3 1.3 × 10−1 ∆mBs

(b̄R sL)(b̄LsR) 4.0 × 102 6.9 × 10−2 1.7 ∆mBs

L̄iσµνeRjHFµν

1.7 × 104 Br (µ → eγ)

3.3 × 102 Br (τ → µγ)

2.6 × 102 Br (τ → eγ)

(µ̄γµPLe) (ūγµPLu) 1.9 × 102 σ(µ−Ti→e−Ti)
σ(µ−Ti→capture)

TABLE I: Bounds on the scale Λ of representative dimension-six ∆F = 2 operators in the quark and lepton

sectors. Bounds on Λ are quoted assuming an effective coupling cij/Λ2, where the coefficients are either

generic or structured via linear MFV (LMFV) or GMFV. Observables related to CPV are separated from

the CP conserving ones with semicolons. In the Bs system we only quote a bound on the modulo of the NP

amplitude derived from ∆mBs
. For the definition of the CPV observables in the D system see Ref. [1]. The

bounds in the lepton sector are on the modulo of the NP amplitude.

The effects of new physics at a high energy scale (Λ $ mW ) on the various meson mixing

systems can be studied in an effective operator language. A complete set of four quark operators

1

Operator Bounds on ⇥ in TeV (cij = 1) Bounds on cij (⇥ = 1 TeV) Observables

Re Im Re Im

(s̄L�µdL)2 9.8� 102 1.6� 104 9.0� 10�7 3.4� 10�9 �mK ; ⇥K

(s̄R dL)(s̄LdR) 1.8� 104 3.2� 105 6.9� 10�9 2.6� 10�11 �mK ; ⇥K

(c̄L�µuL)2 1.2� 103 2.9� 103 5.6� 10�7 1.0� 10�7 �mD; |q/p|, ⇧D

(c̄R uL)(c̄LuR) 6.2� 103 1.5� 104 5.7� 10�8 1.1� 10�8 �mD; |q/p|, ⇧D

(b̄L�µdL)2 5.1� 102 9.3� 102 3.3� 10�6 1.0� 10�6 �mBd ; S�KS

(b̄R dL)(b̄LdR) 1.9� 103 3.6� 103 5.6� 10�7 1.7� 10�7 �mBd ; S�KS

(b̄L�µsL)2 1.1� 102 7.6� 10�5 �mBs

(b̄R sL)(b̄LsR) 3.7� 102 1.3� 10�5 �mBs

(t̄L�µuL)2

TABLE I: Bounds on representative dimension-six �F = 2 operators. Bounds on ⇥ are quoted assuming an

e⇤ective coupling 1/⇥2, or, alternatively, the bounds on the respective cij ’s assuming ⇥ = 1 TeV. Observables

related to CPV are separated from the CP conserving ones with semicolons. In the Bs system we only quote

a bound on the modulo of the NP amplitude derived from �mBs (see text). For the definition of the CPV

observables in the D system see Ref. [15].

(3.4) where there is an independent constraint on the level of degeneracy [16]. We here briefly

explain this point.

Consider operators of the form

1
⇥2

NP

(QLi(XQ)ij�µQLj)(QLi(XQ)ij�
µQLj), (3.6)

where XQ is an hermitian matrix. Without loss of generality, we can choose to work in the basis

defined in Eq. (2.10):

Y d = ⌅d, Y u = V †⌅u, XQ = V †
d ⌅QVd, (3.7)

where ⌅Q is a diagonal real matrix, and Vd is a unitary matrix which parametrizes the misalignment

of the operator (3.6) with the down mass basis.

The experimental constraints that are most relevant to our study come from K0–K0 and D0–D0

mixing, which involve only the first two generation quarks. When studying new physics e⇤ects,

ignoring the third generation is often a good approximation to the physics at hand. Indeed, even

when the third generation does play a role, our two generation analysis is applicable as long as there

are no strong cancellations with contributions related to the third generation. In a two generation

framework, V depends on a single mixing angle (the Cabibbo angle ⇤c), while Vd depends on a

9

same sign t’sVery very strong ...
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With new physics new flavor problem arises



What about the fine tuning problem ?
 What is the fine tuning problem (personal view)?

Imagine that they were equal to 1:1032 ! sun
moon

• Higgs mass & EW scale are ultra sensitive to quantum corrections. 

 The top & the fine tuning problem

Largest contributions are due to the top couplings.

    085  |  

על הבעיה הדמיונית הנ"ל, אם ניתן להראות שחיים על כדור הארץ לא 
ייתכנו כלל אם לא יתקיים הקשר הייחודי והנדיר בין מסלול הירח סביב 
ידוע  (למשל,  שלהם  והרדיוסים  השמש  סביב  הארץ  למסלול  הארץ 
שהירח מסייע לייצוב האקלים על פני כדור הארץ). כלומר, אם לא היה 
מתקיים יחס כזה בדיוק בין השמש, הירח וכדור הארץ, ממילא לא היינו 
כאן ולא יכולנו לזהות ולגלות אותו. מדובר בכוונון עדין שרק בזכותו יש 

חיים על כדור הארץ, והעולם שלנו לא יכול היה להיראות אחרת. 

בעיית הקבוע הקוסמולוגי
כמו שכבר ציינו, הכוונון העדין קשור גם לנושא הכוח החלש וגם 
כפי  זו,  בעיה  בקצרה  להבין  ננסה  הקוסמולוגי.  הקבוע  לשאלת 
הקוסמולוגי  הקבוע  בהקשר  התיאורטית  בפיזיקה  מטופלת  שהיא 

(המתקשים יכולים לדלג על השורות הבאות אל ראש הפרק הבא).
שמשלבת  שדות,  תורת  על–ידי  מתוארת  חלקיקים  של  פיזיקה 
היחסות  תורת  את  בתוכה 
הקוונטים.  תורת  עם  הפרטית 
פיזיקליים  גדלים  זו,  במסגרת 
הקוסמולוגי  הקבוע  כדוגמת 
(ובמסגרת "המודל הסטנדרטי" 
גם עוצמת הכוח החלש) רגישים באופן דרמטי לאפקטים קוונטיים 

(הנקראים תיקונים קרינתיים), וערכם מוגדר רק כאשר אפקטים 
אלו נלקחים בחשבון.

לדוגמה, תופעות הקשורות לכבידה קוונטית צפויות להתאפיין בסקלת 
 10109eV4 מסת פלנק השקולה למנת צפיפות אנרגיה פנטסטית של
מצפים  אנו  גס,  ובאופן  ברביעית),  אלקטרון–וולט  (מיליארד–גוגול 
שהתיקונים הקוונטיים לקבוע הקוסמולוגי יהיו מסדר גודל של מסה 
זו. אבוי, כי כמו שמתואר בהמשך, ערך זה של הקבוע הקוסמולוגי 
גדול פי 10 בחזקת 120 מגודלו הנצפה במדידות של הקבוע, השווה 

 .(0.001eV)4 בערך למילי אלקטרון–וולט ברביעית
יוצא מכך שעלינו להוסיף לתיאוריה שלנו קבוע נוסף מסדר גודל 
של מיליארד–גוגול אלקטרון–וולט ברביעית, ובסימן הפוך לתרומה 
המצופה מהתיקונים הקוונטיים, כך ששתי התרומות האסטרונומיות 
בגודלן יבטלו זו את זו עד כדי השארית הקטנטנה המתאימה לתצפית 
- כמו במקרה הדמיוני של גודלם הנצפה של השמש והירח. בצורה 

סכמטית, אם כן, הכוונון העדין של הקבוע הקוסמולוגי נראה כך: 
 

(0.001eV)4 = (10000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000
0000000000000000000.000000000001 - 1000000000000000
000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000) eV4

כינוי שניתן על–ידי פיזיקאים של 
אנרגיות גבוהות לתיאוריה המקובלת 

כיום, אשר מתארת את הכוחות 
הבסיסיים והחלקיקים היסודיים 

המרכיבים את עולמנו.   

מדענים נבוכים  לנוכח החפיפה המדוייקת של הירח את השמש. 
אנלוגיה לכוונון העדין בעולם הדמיוני

<<

The moon subtends an angle of ~ 0.54° while the sun of ~ 0.52°.

What if they were equal to 1:1032 ??

It would raise two questions:
(i) What set their precise distance?  <=> Tuning problem ().
(ii) Why perturbations not destabilize the system? <=> Fine tuning problem

(why is �⇥/⇥
max

⌧ 1 ?)
(why is m2

H/m2
Pl ⌧ 1 ?)

Coincidence of 1:102 - moon subtends an angle 
                                    of ~ 0.52° while sun of ~ 0.53°.
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היחסות  תורת  את  בתוכה 
הקוונטים.  תורת  עם  הפרטית 
פיזיקליים  גדלים  זו,  במסגרת 
הקוסמולוגי  הקבוע  כדוגמת 
(ובמסגרת "המודל הסטנדרטי" 
גם עוצמת הכוח החלש) רגישים באופן דרמטי לאפקטים קוונטיים 

(הנקראים תיקונים קרינתיים), וערכם מוגדר רק כאשר אפקטים 
אלו נלקחים בחשבון.

לדוגמה, תופעות הקשורות לכבידה קוונטית צפויות להתאפיין בסקלת 
 10109eV4 מסת פלנק השקולה למנת צפיפות אנרגיה פנטסטית של
מצפים  אנו  גס,  ובאופן  ברביעית),  אלקטרון–וולט  (מיליארד–גוגול 
שהתיקונים הקוונטיים לקבוע הקוסמולוגי יהיו מסדר גודל של מסה 
זו. אבוי, כי כמו שמתואר בהמשך, ערך זה של הקבוע הקוסמולוגי 
גדול פי 10 בחזקת 120 מגודלו הנצפה במדידות של הקבוע, השווה 

 .(0.001eV)4 בערך למילי אלקטרון–וולט ברביעית
יוצא מכך שעלינו להוסיף לתיאוריה שלנו קבוע נוסף מסדר גודל 
של מיליארד–גוגול אלקטרון–וולט ברביעית, ובסימן הפוך לתרומה 
המצופה מהתיקונים הקוונטיים, כך ששתי התרומות האסטרונומיות 
בגודלן יבטלו זו את זו עד כדי השארית הקטנטנה המתאימה לתצפית 
- כמו במקרה הדמיוני של גודלם הנצפה של השמש והירח. בצורה 

סכמטית, אם כן, הכוונון העדין של הקבוע הקוסמולוגי נראה כך: 
 

(0.001eV)4 = (10000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000
0000000000000000000.000000000001 - 1000000000000000
000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000) eV4

כינוי שניתן על–ידי פיזיקאים של 
אנרגיות גבוהות לתיאוריה המקובלת 

כיום, אשר מתארת את הכוחות 
הבסיסיים והחלקיקים היסודיים 

המרכיבים את עולמנו.   

מדענים נבוכים  לנוכח החפיפה המדוייקת של הירח את השמש. 
אנלוגיה לכוונון העדין בעולם הדמיוני

<<

The moon subtends an angle of ~ 0.54° while the sun of ~ 0.52°.

What if they were equal to 1:1032 ??

It would raise two questions:
(i) What set their precise distance?  <=> Tuning problem ().
(ii) Why perturbations not destabilize the system? <=> Fine tuning problem

(why is �⇥/⇥
max

⌧ 1 ?)
(why is m2

H/m2
Pl ⌧ 1 ?)

Coincidence of 1:102 - moon subtends an angle 
                                    of ~ 0.52° while sun of ~ 0.53°.

♦ The most severe problem is due to top coupling:

!&Reinhard Schwienhorst, Michigan State University
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• Higgs mass & EW scale are ultra sensitive to quantum corrections. 

 The top & the fine tuning problem

Largest contributions are due to the top couplings.
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על הבעיה הדמיונית הנ"ל, אם ניתן להראות שחיים על כדור הארץ לא 
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כפי  זו,  בעיה  בקצרה  להבין  ננסה  הקוסמולוגי.  הקבוע  לשאלת 
הקוסמולוגי  הקבוע  בהקשר  התיאורטית  בפיזיקה  מטופלת  שהיא 

(המתקשים יכולים לדלג על השורות הבאות אל ראש הפרק הבא).
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היחסות  תורת  את  בתוכה 
הקוונטים.  תורת  עם  הפרטית 
פיזיקליים  גדלים  זו,  במסגרת 
הקוסמולוגי  הקבוע  כדוגמת 
(ובמסגרת "המודל הסטנדרטי" 
גם עוצמת הכוח החלש) רגישים באופן דרמטי לאפקטים קוונטיים 

(הנקראים תיקונים קרינתיים), וערכם מוגדר רק כאשר אפקטים 
אלו נלקחים בחשבון.
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מצפים  אנו  גס,  ובאופן  ברביעית),  אלקטרון–וולט  (מיליארד–גוגול 
שהתיקונים הקוונטיים לקבוע הקוסמולוגי יהיו מסדר גודל של מסה 
זו. אבוי, כי כמו שמתואר בהמשך, ערך זה של הקבוע הקוסמולוגי 
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What if they were equal to 1:1032 ??
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!&Reinhard Schwienhorst, Michigan State University
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Operator Bounds on ⇥ in TeV (cij = 1) Bounds on cij (⇥ = 1 TeV) Observables

Re Im Re Im

(s̄L�µdL)2 9.8� 102 1.6� 104 9.0� 10�7 3.4� 10�9 �mK ; ⇥K

(s̄R dL)(s̄LdR) 1.8� 104 3.2� 105 6.9� 10�9 2.6� 10�11 �mK ; ⇥K

(c̄L�µuL)2 1.2� 103 2.9� 103 5.6� 10�7 1.0� 10�7 �mD; |q/p|, ⇧D

(c̄R uL)(c̄LuR) 6.2� 103 1.5� 104 5.7� 10�8 1.1� 10�8 �mD; |q/p|, ⇧D

(b̄L�µdL)2 5.1� 102 9.3� 102 3.3� 10�6 1.0� 10�6 �mBd ; S�KS

(b̄R dL)(b̄LdR) 1.9� 103 3.6� 103 5.6� 10�7 1.7� 10�7 �mBd ; S�KS

(b̄L�µsL)2 1.1� 102 7.6� 10�5 �mBs

(b̄R sL)(b̄LsR) 3.7� 102 1.3� 10�5 �mBs

(t̄L�µuL)2

TABLE I: Bounds on representative dimension-six �F = 2 operators. Bounds on ⇥ are quoted assuming an

e⇤ective coupling 1/⇥2, or, alternatively, the bounds on the respective cij ’s assuming ⇥ = 1 TeV. Observables

related to CPV are separated from the CP conserving ones with semicolons. In the Bs system we only quote

a bound on the modulo of the NP amplitude derived from �mBs (see text). For the definition of the CPV

observables in the D system see Ref. [15].
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where ⌅Q is a diagonal real matrix, and Vd is a unitary matrix which parametrizes the misalignment
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ignoring the third generation is often a good approximation to the physics at hand. Indeed, even
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♦ How large of non-univ. cutoff to sustain < 1:100 fine tuning?

sunmoon

• Higgs mass & EW scale are ultra sensitive to quantum corrections. 

 The top & the fine tuning problem

Largest contributions are due to the top couplings.

    085  |  

על הבעיה הדמיונית הנ"ל, אם ניתן להראות שחיים על כדור הארץ לא 
ייתכנו כלל אם לא יתקיים הקשר הייחודי והנדיר בין מסלול הירח סביב 
ידוע  (למשל,  שלהם  והרדיוסים  השמש  סביב  הארץ  למסלול  הארץ 
שהירח מסייע לייצוב האקלים על פני כדור הארץ). כלומר, אם לא היה 
מתקיים יחס כזה בדיוק בין השמש, הירח וכדור הארץ, ממילא לא היינו 
כאן ולא יכולנו לזהות ולגלות אותו. מדובר בכוונון עדין שרק בזכותו יש 

חיים על כדור הארץ, והעולם שלנו לא יכול היה להיראות אחרת. 

בעיית הקבוע הקוסמולוגי
כמו שכבר ציינו, הכוונון העדין קשור גם לנושא הכוח החלש וגם 
כפי  זו,  בעיה  בקצרה  להבין  ננסה  הקוסמולוגי.  הקבוע  לשאלת 
הקוסמולוגי  הקבוע  בהקשר  התיאורטית  בפיזיקה  מטופלת  שהיא 

(המתקשים יכולים לדלג על השורות הבאות אל ראש הפרק הבא).
שמשלבת  שדות,  תורת  על–ידי  מתוארת  חלקיקים  של  פיזיקה 
היחסות  תורת  את  בתוכה 
הקוונטים.  תורת  עם  הפרטית 
פיזיקליים  גדלים  זו,  במסגרת 
הקוסמולוגי  הקבוע  כדוגמת 
(ובמסגרת "המודל הסטנדרטי" 
גם עוצמת הכוח החלש) רגישים באופן דרמטי לאפקטים קוונטיים 

(הנקראים תיקונים קרינתיים), וערכם מוגדר רק כאשר אפקטים 
אלו נלקחים בחשבון.

לדוגמה, תופעות הקשורות לכבידה קוונטית צפויות להתאפיין בסקלת 
 10109eV4 מסת פלנק השקולה למנת צפיפות אנרגיה פנטסטית של
מצפים  אנו  גס,  ובאופן  ברביעית),  אלקטרון–וולט  (מיליארד–גוגול 
שהתיקונים הקוונטיים לקבוע הקוסמולוגי יהיו מסדר גודל של מסה 
זו. אבוי, כי כמו שמתואר בהמשך, ערך זה של הקבוע הקוסמולוגי 
גדול פי 10 בחזקת 120 מגודלו הנצפה במדידות של הקבוע, השווה 

 .(0.001eV)4 בערך למילי אלקטרון–וולט ברביעית
יוצא מכך שעלינו להוסיף לתיאוריה שלנו קבוע נוסף מסדר גודל 
של מיליארד–גוגול אלקטרון–וולט ברביעית, ובסימן הפוך לתרומה 
המצופה מהתיקונים הקוונטיים, כך ששתי התרומות האסטרונומיות 
בגודלן יבטלו זו את זו עד כדי השארית הקטנטנה המתאימה לתצפית 
- כמו במקרה הדמיוני של גודלם הנצפה של השמש והירח. בצורה 

סכמטית, אם כן, הכוונון העדין של הקבוע הקוסמולוגי נראה כך: 
 

(0.001eV)4 = (10000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000
0000000000000000000.000000000001 - 1000000000000000
000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000) eV4

כינוי שניתן על–ידי פיזיקאים של 
אנרגיות גבוהות לתיאוריה המקובלת 

כיום, אשר מתארת את הכוחות 
הבסיסיים והחלקיקים היסודיים 

המרכיבים את עולמנו.   

מדענים נבוכים  לנוכח החפיפה המדוייקת של הירח את השמש. 
אנלוגיה לכוונון העדין בעולם הדמיוני

<<

The moon subtends an angle of ~ 0.54° while the sun of ~ 0.52°.

What if they were equal to 1:1032 ??

It would raise two questions:
(i) What set their precise distance?  <=> Tuning problem ().
(ii) Why perturbations not destabilize the system? <=> Fine tuning problem

(why is �⇥/⇥
max

⌧ 1 ?)
(why is m2

H/m2
Pl ⌧ 1 ?)

 The fine tuning problem

(ii) Why perturbations not destabilize system? <=> Fine tuning issue.
(displacing the sun by ⇠ 10�19 m ) �✓ ⇠ 10�32 )
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“Additive” sensitivity / fine tuning due to top-Higgs coupling:

b,c,s

Reverse the logic with light flavors
D. Grossman, Hochberg, GP & Soreq, to appear; see also: Barbieri et al. JHEP (10). 

s : ) ⇤s . 2⇥ 104 TeV

c : ) ⇤c . 2⇥ 103 TeV

b : ) ⇤b . 4⇥ 102 TeV
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000000000000000000000000000000000000000000) eV4

כינוי שניתן על–ידי פיזיקאים של 
אנרגיות גבוהות לתיאוריה המקובלת 

כיום, אשר מתארת את הכוחות 
הבסיסיים והחלקיקים היסודיים 

המרכיבים את עולמנו.   

מדענים נבוכים  לנוכח החפיפה המדוייקת של הירח את השמש. 
אנלוגיה לכוונון העדין בעולם הדמיוני

<<

The moon subtends an angle of ~ 0.54° while the sun of ~ 0.52°.

What if they were equal to 1:1032 ??

It would raise two questions:
(i) What set their precise distance?  <=> Tuning problem ().
(ii) Why perturbations not destabilize the system? <=> Fine tuning problem

(why is �⇥/⇥
max

⌧ 1 ?)
(why is m2

H/m2
Pl ⌧ 1 ?)

 The fine tuning problem

(ii) Why perturbations not destabilize system? <=> Fine tuning issue.
(displacing the sun by ⇠ 10�19 m ) �✓ ⇠ 10�32 )
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“Additive” sensitivity / fine tuning due to top-Higgs coupling:

b,c,s

Reverse the logic with light flavors�F = 2 status
Isidori, Nir & GP,  Ann. Rev. Nucl. Part. Sci. (10) 

Operator Bounds on ⇥ in TeV (cij = 1) Bounds on cij (⇥ = 1 TeV) Observables

Re Im Re Im

(s̄L�µdL)2 9.8� 102 1.6� 104 9.0� 10�7 3.4� 10�9 �mK ; ⇥K

(s̄R dL)(s̄LdR) 1.8� 104 3.2� 105 6.9� 10�9 2.6� 10�11 �mK ; ⇥K

(c̄L�µuL)2 1.2� 103 2.9� 103 5.6� 10�7 1.0� 10�7 �mD; |q/p|, ⇧D

(c̄R uL)(c̄LuR) 6.2� 103 1.5� 104 5.7� 10�8 1.1� 10�8 �mD; |q/p|, ⇧D

(b̄L�µdL)2 5.1� 102 9.3� 102 3.3� 10�6 1.0� 10�6 �mBd ; S�KS

(b̄R dL)(b̄LdR) 1.9� 103 3.6� 103 5.6� 10�7 1.7� 10�7 �mBd ; S�KS

(b̄L�µsL)2 1.1� 102 7.6� 10�5 �mBs

(b̄R sL)(b̄LsR) 3.7� 102 1.3� 10�5 �mBs

(t̄L�µuL)2

TABLE I: Bounds on representative dimension-six �F = 2 operators. Bounds on ⇥ are quoted assuming an

e⇤ective coupling 1/⇥2, or, alternatively, the bounds on the respective cij ’s assuming ⇥ = 1 TeV. Observables

related to CPV are separated from the CP conserving ones with semicolons. In the Bs system we only quote

a bound on the modulo of the NP amplitude derived from �mBs (see text). For the definition of the CPV

observables in the D system see Ref. [15].

(3.4) where there is an independent constraint on the level of degeneracy [16]. We here briefly

explain this point.

Consider operators of the form

1
⇥2

NP

(QLi(XQ)ij�µQLj)(QLi(XQ)ij�
µQLj), (3.6)

where XQ is an hermitian matrix. Without loss of generality, we can choose to work in the basis

defined in Eq. (2.10):

Y d = ⌅d, Y u = V †⌅u, XQ = V †
d ⌅QVd, (3.7)

where ⌅Q is a diagonal real matrix, and Vd is a unitary matrix which parametrizes the misalignment

of the operator (3.6) with the down mass basis.

The experimental constraints that are most relevant to our study come from K0–K0 and D0–D0

mixing, which involve only the first two generation quarks. When studying new physics e⇤ects,

ignoring the third generation is often a good approximation to the physics at hand. Indeed, even

when the third generation does play a role, our two generation analysis is applicable as long as there

are no strong cancellations with contributions related to the third generation. In a two generation

framework, V depends on a single mixing angle (the Cabibbo angle ⇤c), while Vd depends on a
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mixing, which involve only the first two generation quarks. When studying new physics e⇤ects,

ignoring the third generation is often a good approximation to the physics at hand. Indeed, even
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D. Grossman, Hochberg, GP & Soreq, to appear; see also: Barbieri et al. JHEP (10). 

s : ) ⇤s . 2⇥ 104 TeV

c : ) ⇤c . 2⇥ 103 TeV

b : ) ⇤b . 4⇥ 102 TeV



♦ How large of non-univ. cutoff to sustain < 1:100 fine tuning?

sunmoon

• Higgs mass & EW scale are ultra sensitive to quantum corrections. 

 The top & the fine tuning problem

Largest contributions are due to the top couplings.

    085  |  

על הבעיה הדמיונית הנ"ל, אם ניתן להראות שחיים על כדור הארץ לא 
ייתכנו כלל אם לא יתקיים הקשר הייחודי והנדיר בין מסלול הירח סביב 
ידוע  (למשל,  שלהם  והרדיוסים  השמש  סביב  הארץ  למסלול  הארץ 
שהירח מסייע לייצוב האקלים על פני כדור הארץ). כלומר, אם לא היה 
מתקיים יחס כזה בדיוק בין השמש, הירח וכדור הארץ, ממילא לא היינו 
כאן ולא יכולנו לזהות ולגלות אותו. מדובר בכוונון עדין שרק בזכותו יש 

חיים על כדור הארץ, והעולם שלנו לא יכול היה להיראות אחרת. 

בעיית הקבוע הקוסמולוגי
כמו שכבר ציינו, הכוונון העדין קשור גם לנושא הכוח החלש וגם 
כפי  זו,  בעיה  בקצרה  להבין  ננסה  הקוסמולוגי.  הקבוע  לשאלת 
הקוסמולוגי  הקבוע  בהקשר  התיאורטית  בפיזיקה  מטופלת  שהיא 

(המתקשים יכולים לדלג על השורות הבאות אל ראש הפרק הבא).
שמשלבת  שדות,  תורת  על–ידי  מתוארת  חלקיקים  של  פיזיקה 
היחסות  תורת  את  בתוכה 
הקוונטים.  תורת  עם  הפרטית 
פיזיקליים  גדלים  זו,  במסגרת 
הקוסמולוגי  הקבוע  כדוגמת 
(ובמסגרת "המודל הסטנדרטי" 
גם עוצמת הכוח החלש) רגישים באופן דרמטי לאפקטים קוונטיים 

(הנקראים תיקונים קרינתיים), וערכם מוגדר רק כאשר אפקטים 
אלו נלקחים בחשבון.

לדוגמה, תופעות הקשורות לכבידה קוונטית צפויות להתאפיין בסקלת 
 10109eV4 מסת פלנק השקולה למנת צפיפות אנרגיה פנטסטית של
מצפים  אנו  גס,  ובאופן  ברביעית),  אלקטרון–וולט  (מיליארד–גוגול 
שהתיקונים הקוונטיים לקבוע הקוסמולוגי יהיו מסדר גודל של מסה 
זו. אבוי, כי כמו שמתואר בהמשך, ערך זה של הקבוע הקוסמולוגי 
גדול פי 10 בחזקת 120 מגודלו הנצפה במדידות של הקבוע, השווה 

 .(0.001eV)4 בערך למילי אלקטרון–וולט ברביעית
יוצא מכך שעלינו להוסיף לתיאוריה שלנו קבוע נוסף מסדר גודל 
של מיליארד–גוגול אלקטרון–וולט ברביעית, ובסימן הפוך לתרומה 
המצופה מהתיקונים הקוונטיים, כך ששתי התרומות האסטרונומיות 
בגודלן יבטלו זו את זו עד כדי השארית הקטנטנה המתאימה לתצפית 
- כמו במקרה הדמיוני של גודלם הנצפה של השמש והירח. בצורה 

סכמטית, אם כן, הכוונון העדין של הקבוע הקוסמולוגי נראה כך: 
 

(0.001eV)4 = (10000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000
0000000000000000000.000000000001 - 1000000000000000
000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000) eV4

כינוי שניתן על–ידי פיזיקאים של 
אנרגיות גבוהות לתיאוריה המקובלת 

כיום, אשר מתארת את הכוחות 
הבסיסיים והחלקיקים היסודיים 

המרכיבים את עולמנו.   

מדענים נבוכים  לנוכח החפיפה המדוייקת של הירח את השמש. 
אנלוגיה לכוונון העדין בעולם הדמיוני

<<

The moon subtends an angle of ~ 0.54° while the sun of ~ 0.52°.

What if they were equal to 1:1032 ??

It would raise two questions:
(i) What set their precise distance?  <=> Tuning problem ().
(ii) Why perturbations not destabilize the system? <=> Fine tuning problem

(why is �⇥/⇥
max

⌧ 1 ?)
(why is m2

H/m2
Pl ⌧ 1 ?)

 The fine tuning problem

(ii) Why perturbations not destabilize system? <=> Fine tuning issue.
(displacing the sun by ⇠ 10�19 m ) �✓ ⇠ 10�32 )
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“Additive” sensitivity / fine tuning due to top-Higgs coupling:

b,c,s

Reverse the logic with light flavors�F = 2 status
Isidori, Nir & GP,  Ann. Rev. Nucl. Part. Sci. (10) 

Operator Bounds on ⇥ in TeV (cij = 1) Bounds on cij (⇥ = 1 TeV) Observables

Re Im Re Im

(s̄L�µdL)2 9.8� 102 1.6� 104 9.0� 10�7 3.4� 10�9 �mK ; ⇥K

(s̄R dL)(s̄LdR) 1.8� 104 3.2� 105 6.9� 10�9 2.6� 10�11 �mK ; ⇥K

(c̄L�µuL)2 1.2� 103 2.9� 103 5.6� 10�7 1.0� 10�7 �mD; |q/p|, ⇧D

(c̄R uL)(c̄LuR) 6.2� 103 1.5� 104 5.7� 10�8 1.1� 10�8 �mD; |q/p|, ⇧D

(b̄L�µdL)2 5.1� 102 9.3� 102 3.3� 10�6 1.0� 10�6 �mBd ; S�KS

(b̄R dL)(b̄LdR) 1.9� 103 3.6� 103 5.6� 10�7 1.7� 10�7 �mBd ; S�KS

(b̄L�µsL)2 1.1� 102 7.6� 10�5 �mBs

(b̄R sL)(b̄LsR) 3.7� 102 1.3� 10�5 �mBs

(t̄L�µuL)2

TABLE I: Bounds on representative dimension-six �F = 2 operators. Bounds on ⇥ are quoted assuming an

e⇤ective coupling 1/⇥2, or, alternatively, the bounds on the respective cij ’s assuming ⇥ = 1 TeV. Observables

related to CPV are separated from the CP conserving ones with semicolons. In the Bs system we only quote

a bound on the modulo of the NP amplitude derived from �mBs (see text). For the definition of the CPV

observables in the D system see Ref. [15].

(3.4) where there is an independent constraint on the level of degeneracy [16]. We here briefly

explain this point.

Consider operators of the form

1
⇥2

NP

(QLi(XQ)ij�µQLj)(QLi(XQ)ij�
µQLj), (3.6)

where XQ is an hermitian matrix. Without loss of generality, we can choose to work in the basis

defined in Eq. (2.10):

Y d = ⌅d, Y u = V †⌅u, XQ = V †
d ⌅QVd, (3.7)

where ⌅Q is a diagonal real matrix, and Vd is a unitary matrix which parametrizes the misalignment

of the operator (3.6) with the down mass basis.

The experimental constraints that are most relevant to our study come from K0–K0 and D0–D0

mixing, which involve only the first two generation quarks. When studying new physics e⇤ects,

ignoring the third generation is often a good approximation to the physics at hand. Indeed, even

when the third generation does play a role, our two generation analysis is applicable as long as there

are no strong cancellations with contributions related to the third generation. In a two generation

framework, V depends on a single mixing angle (the Cabibbo angle ⇤c), while Vd depends on a

9
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e⇤ective coupling 1/⇥2, or, alternatively, the bounds on the respective cij ’s assuming ⇥ = 1 TeV. Observables

related to CPV are separated from the CP conserving ones with semicolons. In the Bs system we only quote

a bound on the modulo of the NP amplitude derived from �mBs (see text). For the definition of the CPV

observables in the D system see Ref. [15].

(3.4) where there is an independent constraint on the level of degeneracy [16]. We here briefly

explain this point.

Consider operators of the form

1
⇥2

NP

(QLi(XQ)ij�µQLj)(QLi(XQ)ij�
µQLj), (3.6)

where XQ is an hermitian matrix. Without loss of generality, we can choose to work in the basis

defined in Eq. (2.10):

Y d = ⌅d, Y u = V †⌅u, XQ = V †
d ⌅QVd, (3.7)

where ⌅Q is a diagonal real matrix, and Vd is a unitary matrix which parametrizes the misalignment

of the operator (3.6) with the down mass basis.

The experimental constraints that are most relevant to our study come from K0–K0 and D0–D0

mixing, which involve only the first two generation quarks. When studying new physics e⇤ects,

ignoring the third generation is often a good approximation to the physics at hand. Indeed, even

when the third generation does play a role, our two generation analysis is applicable as long as there

are no strong cancellations with contributions related to the third generation. In a two generation

framework, V depends on a single mixing angle (the Cabibbo angle ⇤c), while Vd depends on a
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Tension with LLRR
CP violation (CPV)!

D. Grossman, Hochberg, GP & Soreq, to appear; see also: Barbieri et al. JHEP (10). 

s : ) ⇤s . 2⇥ 104 TeV

c : ) ⇤c . 2⇥ 103 TeV

b : ) ⇤b . 4⇥ 102 TeV



Reverse the logic with light flavors

♦ How large of cutoff to sustain fine tuning of less than 1:100 ?

sunmoon

• Higgs mass & EW scale are ultra sensitive to quantum corrections. 

 The top & the fine tuning problem

Largest contributions are due to the top couplings.

    085  |  

על הבעיה הדמיונית הנ"ל, אם ניתן להראות שחיים על כדור הארץ לא 
ייתכנו כלל אם לא יתקיים הקשר הייחודי והנדיר בין מסלול הירח סביב 
ידוע  (למשל,  שלהם  והרדיוסים  השמש  סביב  הארץ  למסלול  הארץ 
שהירח מסייע לייצוב האקלים על פני כדור הארץ). כלומר, אם לא היה 
מתקיים יחס כזה בדיוק בין השמש, הירח וכדור הארץ, ממילא לא היינו 
כאן ולא יכולנו לזהות ולגלות אותו. מדובר בכוונון עדין שרק בזכותו יש 

חיים על כדור הארץ, והעולם שלנו לא יכול היה להיראות אחרת. 

בעיית הקבוע הקוסמולוגי
כמו שכבר ציינו, הכוונון העדין קשור גם לנושא הכוח החלש וגם 
כפי  זו,  בעיה  בקצרה  להבין  ננסה  הקוסמולוגי.  הקבוע  לשאלת 
הקוסמולוגי  הקבוע  בהקשר  התיאורטית  בפיזיקה  מטופלת  שהיא 

(המתקשים יכולים לדלג על השורות הבאות אל ראש הפרק הבא).
שמשלבת  שדות,  תורת  על–ידי  מתוארת  חלקיקים  של  פיזיקה 
היחסות  תורת  את  בתוכה 
הקוונטים.  תורת  עם  הפרטית 
פיזיקליים  גדלים  זו,  במסגרת 
הקוסמולוגי  הקבוע  כדוגמת 
(ובמסגרת "המודל הסטנדרטי" 
גם עוצמת הכוח החלש) רגישים באופן דרמטי לאפקטים קוונטיים 

(הנקראים תיקונים קרינתיים), וערכם מוגדר רק כאשר אפקטים 
אלו נלקחים בחשבון.

לדוגמה, תופעות הקשורות לכבידה קוונטית צפויות להתאפיין בסקלת 
 10109eV4 מסת פלנק השקולה למנת צפיפות אנרגיה פנטסטית של
מצפים  אנו  גס,  ובאופן  ברביעית),  אלקטרון–וולט  (מיליארד–גוגול 
שהתיקונים הקוונטיים לקבוע הקוסמולוגי יהיו מסדר גודל של מסה 
זו. אבוי, כי כמו שמתואר בהמשך, ערך זה של הקבוע הקוסמולוגי 
גדול פי 10 בחזקת 120 מגודלו הנצפה במדידות של הקבוע, השווה 

 .(0.001eV)4 בערך למילי אלקטרון–וולט ברביעית
יוצא מכך שעלינו להוסיף לתיאוריה שלנו קבוע נוסף מסדר גודל 
של מיליארד–גוגול אלקטרון–וולט ברביעית, ובסימן הפוך לתרומה 
המצופה מהתיקונים הקוונטיים, כך ששתי התרומות האסטרונומיות 
בגודלן יבטלו זו את זו עד כדי השארית הקטנטנה המתאימה לתצפית 
- כמו במקרה הדמיוני של גודלם הנצפה של השמש והירח. בצורה 

סכמטית, אם כן, הכוונון העדין של הקבוע הקוסמולוגי נראה כך: 
 

(0.001eV)4 = (10000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000
0000000000000000000.000000000001 - 1000000000000000
000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000) eV4

כינוי שניתן על–ידי פיזיקאים של 
אנרגיות גבוהות לתיאוריה המקובלת 

כיום, אשר מתארת את הכוחות 
הבסיסיים והחלקיקים היסודיים 

המרכיבים את עולמנו.   

מדענים נבוכים  לנוכח החפיפה המדוייקת של הירח את השמש. 
אנלוגיה לכוונון העדין בעולם הדמיוני

<<

The moon subtends an angle of ~ 0.54° while the sun of ~ 0.52°.

What if they were equal to 1:1032 ??

It would raise two questions:
(i) What set their precise distance?  <=> Tuning problem ().
(ii) Why perturbations not destabilize the system? <=> Fine tuning problem

(why is �⇥/⇥
max

⌧ 1 ?)
(why is m2

H/m2
Pl ⌧ 1 ?)

 The fine tuning problem

(ii) Why perturbations not destabilize system? <=> Fine tuning issue.
(displacing the sun by ⇠ 10�19 m ) �✓ ⇠ 10�32 )
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“Additive” sensitivity / fine tuning due to top-Higgs coupling:

b,c,s

�F = 2 status
Isidori, Nir & GP,  Ann. Rev. Nucl. Part. Sci. (10) 

Operator Bounds on ⇥ in TeV (cij = 1) Bounds on cij (⇥ = 1 TeV) Observables

Re Im Re Im

(s̄L�µdL)2 9.8� 102 1.6� 104 9.0� 10�7 3.4� 10�9 �mK ; ⇥K

(s̄R dL)(s̄LdR) 1.8� 104 3.2� 105 6.9� 10�9 2.6� 10�11 �mK ; ⇥K

(c̄L�µuL)2 1.2� 103 2.9� 103 5.6� 10�7 1.0� 10�7 �mD; |q/p|, ⇧D

(c̄R uL)(c̄LuR) 6.2� 103 1.5� 104 5.7� 10�8 1.1� 10�8 �mD; |q/p|, ⇧D

(b̄L�µdL)2 5.1� 102 9.3� 102 3.3� 10�6 1.0� 10�6 �mBd ; S�KS

(b̄R dL)(b̄LdR) 1.9� 103 3.6� 103 5.6� 10�7 1.7� 10�7 �mBd ; S�KS

(b̄L�µsL)2 1.1� 102 7.6� 10�5 �mBs

(b̄R sL)(b̄LsR) 3.7� 102 1.3� 10�5 �mBs

(t̄L�µuL)2

TABLE I: Bounds on representative dimension-six �F = 2 operators. Bounds on ⇥ are quoted assuming an

e⇤ective coupling 1/⇥2, or, alternatively, the bounds on the respective cij ’s assuming ⇥ = 1 TeV. Observables

related to CPV are separated from the CP conserving ones with semicolons. In the Bs system we only quote

a bound on the modulo of the NP amplitude derived from �mBs (see text). For the definition of the CPV

observables in the D system see Ref. [15].

(3.4) where there is an independent constraint on the level of degeneracy [16]. We here briefly

explain this point.

Consider operators of the form

1
⇥2

NP

(QLi(XQ)ij�µQLj)(QLi(XQ)ij�
µQLj), (3.6)

where XQ is an hermitian matrix. Without loss of generality, we can choose to work in the basis

defined in Eq. (2.10):

Y d = ⌅d, Y u = V †⌅u, XQ = V †
d ⌅QVd, (3.7)

where ⌅Q is a diagonal real matrix, and Vd is a unitary matrix which parametrizes the misalignment

of the operator (3.6) with the down mass basis.

The experimental constraints that are most relevant to our study come from K0–K0 and D0–D0

mixing, which involve only the first two generation quarks. When studying new physics e⇤ects,

ignoring the third generation is often a good approximation to the physics at hand. Indeed, even

when the third generation does play a role, our two generation analysis is applicable as long as there

are no strong cancellations with contributions related to the third generation. In a two generation

framework, V depends on a single mixing angle (the Cabibbo angle ⇤c), while Vd depends on a
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B system: only case with 
tension with LLLL operators;

Improvement in Bs will 
get us there as well.

s : ) ⇤s . 2⇥ 104 TeV

c : ) ⇤c . 2⇥ 103 TeV

b : ) ⇤b . 4⇥ 102 TeV



MFV & quick way to estimate SM strength of 
FCNC & constraints

As we saw, flavor structure of NP not generic, similar to SM. 

Extra protection is obtained if the NP flavor structure
is controlled by same parameters as the SM 

(also, a quick, effortless, way to estimate SM contributions).

(see: D’Ambrosio et. al (02).

YU (3, 3̄, 1) , YD(3, 1, 3̄)

We promote YU,D to spurions, transform
under the flavor group � flavor invariant LSM .

General Minimal Flavor Violation
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A model independent study of the minimal flavor violation (MFV) framework is presented, where
the only sources of flavor breaking at low energy are the up and down Yukawa matrices. Two limits
are identified for the Yukawa coupling expansion: linear MFV, where it is truncated at the leading
terms, and nonlinear MFV, where such a truncation is not possible due to large third generation
Yukawa couplings. These are then resummed to all orders using non-linear σ-model techniques
familiar from models of collective breaking. Generically, flavor diagonal CP violating (CPV) sources
in the UV can induce O(1) CPV in processes involving third generation quarks. Due to a residual
U(2) symmetry, the extra CPV in Bd−B̄d mixing is bounded by CPV in Bs−B̄s mixing. If operators
with right-handed light quarks are subdominant, the extra CPV is equal in the two systems, and is
negligible in processes involving only the first two generations. We find large enhancements in the
up type sector, both in CPV in D − D̄ mixing and in top flavor violation.
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where λd,u,Q are diagonal real matrices, V is the CKM matrix, and Vd is a unitary matrix which parameterizes the
misalignment of XQ with the down mass basis.
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Allow higher dim’ flavor invariant new op’s.



GIM mechanism (Glashow-Iliopoulos-Maiani, 70) suppression of neutral currents 

Gluon & photon protected by gauge univ’; Z ??

So far -> Flavor violation (FV) only in CC.  What about NC?
Unitarity of CKM implies cancellation of divergencies & absence 
of flavor changing neutral currents (FCNC). 



GIM mechanism, SM 1-loop example

d̄s

� �̄

W

(a)

g

W

(b)

g W

(c)

g

W

(d)

g,!,Z

W

W

(e)

FIG. 2. One-loop current-current (a)–(c), penguin (d) and box (e) diagrams in the full theory. For pure

QCD corrections as considered in this section and e.g. in VI the - and -contributions in diagram (d) and

the diagram (e) are absent. Possible left-right or up-down reected diagrams are not shown.

Under the same conditions, the unrenormalized current-current matrix elements of the opera-

tors and are from g. 3 (a)-(c) found to be

(III.45)

(III.46)

Again, the divergences in the rst terms are eliminated through eld renormalization. However, in

contrast to the full amplitude, the resulting expressions are still divergent. Therefore an additional

multiplicative renormalization, refered to as operator renormalization, is necessary:

(III.47)

Since (III.45) and (III.46) each involve both and , the renormalization constant is in this

case a matrix . The relation between the unrenormalized ( ) and the renormalized

amputated Green functions ( ) is then

(III.48)

From (III.45), (III.46) and (III.15) we read off ( -scheme)

(III.49)
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MFV & GIM

As we saw, flavor structure of NP not generic, similar to SM. 

Extra protection is obtained if the NP flavor structure
is controlled by same parameters as the SM 

(also, a quick, effortless, way to estimate SM contributions).

(see: D’Ambrosio et. al (02).

YU (3, 3̄, 1) , YD(3, 1, 3̄)

We promote YU,D to spurions, transform
under the flavor group � flavor invariant LSM .
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A model independent study of the minimal flavor violation (MFV) framework is presented, where
the only sources of flavor breaking at low energy are the up and down Yukawa matrices. Two limits
are identified for the Yukawa coupling expansion: linear MFV, where it is truncated at the leading
terms, and nonlinear MFV, where such a truncation is not possible due to large third generation
Yukawa couplings. These are then resummed to all orders using non-linear σ-model techniques
familiar from models of collective breaking. Generically, flavor diagonal CP violating (CPV) sources
in the UV can induce O(1) CPV in processes involving third generation quarks. Due to a residual
U(2) symmetry, the extra CPV in Bd−B̄d mixing is bounded by CPV in Bs−B̄s mixing. If operators
with right-handed light quarks are subdominant, the extra CPV is equal in the two systems, and is
negligible in processes involving only the first two generations. We find large enhancements in the
up type sector, both in CPV in D − D̄ mixing and in top flavor violation.

σ

XQd = V †
d λQVd = λ12

(

I + δ12V
†
d σ3Vd

)

≡ λ12 (I + δ12v̂ · $σ) ,

abs(zsd) = Λ2
12

(

(v̂2
1 + v̂2

2

)

= Λ2
12(1 − v̂2

3) ∝ sin2 θXQd

cos θXQd =

tr

[

(

YDY †
D

)

tr/
(XQ)tr/

]

√

tr

[

(

YDY †
D

)2

tr/

]

tr
[

(XQ)2tr/

]

σ1

σ2

σ3

θ2gen′

ud ∼ 2λ

where λd,u,Q are diagonal real matrices, V is the CKM matrix, and Vd is a unitary matrix which parameterizes the
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Allow higher dim’ flavor invariant new op’s.



Effective field theory of MFV

The only source of flavor & CPV is due to the SM Yukawas.

YUY †
U & YDY †

D transform as 8+1 of the U(3)Q flavor group
and Qi

L(3, 1, 1), U i
R(1,3, 1), Di

R(1, 1,3).

After symm’ breaking useful to consider the approx’ limit
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A model independent study of the minimal flavor violation (MFV) framework is presented, where
the only sources of flavor breaking at low energy are the up and down Yukawa matrices. Two limits
are identified for the Yukawa coupling expansion: linear MFV, where it is truncated at the leading
terms, and nonlinear MFV, where such a truncation is not possible due to large third generation
Yukawa couplings. These are then resummed to all orders using non-linear �-model techniques
familiar from models of collective breaking. Generically, flavor diagonal CP violating (CPV) sources
in the UV can induce O(1) CPV in processes involving third generation quarks. Due to a residual
U(2) symmetry, the extra CPV in Bd�B̄d mixing is bounded by CPV in Bs�B̄s mixing. If operators
with right-handed light quarks are subdominant, the extra CPV is equal in the two systems, and is
negligible in processes involving only the first two generations. We find large enhancements in the
up type sector, both in CPV in D � D̄ mixing and in top flavor violation.

GSM = U(3)Qu � U(3)Qd � U(3)U � U(3)D

Introduction. Precision flavor and CP violation
measurements provide very strong constraints on models
of new physics (NP) beyond the Standard Model (SM).
For instance, ⇥K constrains the scale of maximally flavor
violating NP to be >⇤ 104 TeV. Therefore, TeV scale NP
which stabilizes the electroweak scale and is accessible at
the LHC has to have a highly non generic flavor structure.

The tension with precision flavor tests is relaxed if the
SM Yukawa matrices are the only source of flavor break-
ing, even in the presence of new particles and interac-
tions [? ? ? ]. This hypothesis goes under the name of
Minimal Flavor Violation (MFV). Sometimes additional
assumptions are made — that the SM Yukawa couplings
are also the only source of CP violation (CPV ), e.g. in [?
], or that NP does not change the Lorentz structure of the
e⇥ective weak hamiltonian [? ]. We will not make these
assumptions, but will discuss their consequences below.

A useful language for discussing MFV was introduced
in [? ]. It relies on the observation that for vanishing
Yukawa couplings the SM has an enhanced global sym-
metry. Focusing on the quark sector this is

GSM = U(3)Q � U(3)u � U(3)d, (1)

where Q, u, d stand for quark doublets and up and down
type quark singlets respectively. The SM Yukawa cou-
plings

HuQ̄LYuuR + HdQ̄LYddR, (2)

are formally invariant under GSM, if the Yukawa matri-
ces are promoted to spurions that transform as Y �

u,d =
VQYu,dV

†
u,d, while the quark fields are in the fundamental

representations, (Q�, u�, d�) = VQ,u,d(Q, u, d). Weak scale
NP models are then of the MFV class if they are formally
invariant under GSM, when treating the SM Yukawa cou-
plings as spurions. Similarly, the low energy flavor ob-
servables are formally invariant under GSM. Practically,
this means that only certain insertions of Yukawa cou-
plings are allowed in the quark bilinears. For example, in
Q̄Q bilinears insertions such as Q̄(YuY †

u )nQ are allowed,
while Q̄Y †

d (YuY †
u )nQ are not.

The above definition of MFV is only useful if flavor
invariant operators such as Q̄f(⇥uYu, ⇥dYd)Q can be ex-
panded in powers of Yu,d. In the large tan� limit both
Yu and Yd have O(1) eigenvalues yt,b. The convergence
radius is then given by the size of ⇥u,d. We distinguish
between two limiting cases

• Linear MFV (LMFV): ⇥u,d ⌅ 1 and the dominant
flavor breaking e⇥ects are captured by the lowest
order polynomials of Yu,d.

• Non-linear MFV (NLMFV): ⇥u,d ⇤ O(1), higher
powers of Yu,d are important, and a truncated ex-
pansion in yt,b is not possible.

Examples of NLMFV are: low energy supersymmetric
models in which large tan� e⇥ects need to be resummed
(large ⇥d), and models obeying MFV at a UV scale
�F ⇧ µW , where large ⇥u,d ⌃ log(µW /�F ) are gener-
ated from sizable anomalous dimensions in the renormal-
ization group running [? ]. Another example is warped
extra dimension models with alignment [? ], in cases
where right handed up-quark currents are subdominant.

In this letter we show that even in NLMFV there
is a systematic expansion in small quantities, Vtd, Vts,
and light quark masses, while resumming in yt, yb ⇤
O(1). This is achieved via a non-linear ⌅-model–like
parametrization. Namely, in the limit of vanishing weak
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A model independent study of the minimal flavor violation (MFV) framework is presented, where
the only sources of flavor breaking at low energy are the up and down Yukawa matrices. Two limits
are identified for the Yukawa coupling expansion: linear MFV, where it is truncated at the leading
terms, and nonlinear MFV, where such a truncation is not possible due to large third generation
Yukawa couplings. These are then resummed to all orders using non-linear �-model techniques
familiar from models of collective breaking. Generically, flavor diagonal CP violating (CPV) sources
in the UV can induce O(1) CPV in processes involving third generation quarks. Due to a residual
U(2) symmetry, the extra CPV in Bd�B̄d mixing is bounded by CPV in Bs�B̄s mixing. If operators
with right-handed light quarks are subdominant, the extra CPV is equal in the two systems, and is
negligible in processes involving only the first two generations. We find large enhancements in the
up type sector, both in CPV in D � D̄ mixing and in top flavor violation.

GSM ⇤ U(3)Qu � U(3)Qd � U(3)U � U(3)D

Fields : UL(3, 1, 1, 1), DL(1,3, 1, 1), U(1, 1,3, 1), D(1, 1, 1,3)

Spurions : g2(3, 3̄, 1, 1), YU (3, 1, 3̄, 1), YD(1,3, 1, 3̄)

Introduction. Precision flavor and CP violation measurements provide very strong constraints on models of new
physics (NP) beyond the Standard Model (SM). For instance, ⇥K constrains the scale of maximally flavor violating
NP to be >⇥ 104 TeV. Therefore, TeV scale NP which stabilizes the electroweak scale and is accessible at the LHC has
to have a highly non generic flavor structure.

The tension with precision flavor tests is relaxed if the SM Yukawa matrices are the only source of flavor breaking,
even in the presence of new particles and interactions [1–3]. This hypothesis goes under the name of Minimal Flavor
Violation (MFV). Sometimes additional assumptions are made — that the SM Yukawa couplings are also the only
source of CP violation (CPV ), e.g. in [1], or that NP does not change the Lorentz structure of the e�ective weak
hamiltonian [4]. We will not make these assumptions, but will discuss their consequences below.

A useful language for discussing MFV was introduced in [1]. It relies on the observation that for vanishing Yukawa
couplings the SM has an enhanced global symmetry. Focusing on the quark sector this is

GSM = U(3)Q � U(3)u � U(3)d, (1)

where Q, u, d stand for quark doublets and up and down type quark singlets respectively. The SM Yukawa couplings

HuQ̄LYuuR + HdQ̄LYddR, (2)

are formally invariant under GSM, if the Yukawa matrices are promoted to spurions that transform as Y �
u,d =

VQYu,dV
†
u,d, while the quark fields are in the fundamental representations, (Q�, u�, d�) = VQ,u,d(Q, u, d). Weak scale NP

models are then of the MFV class if they are formally invariant under GSM, when treating the SM Yukawa couplings
as spurions. Similarly, the low energy flavor observables are formally invariant under GSM. Practically, this means
that only certain insertions of Yukawa couplings are allowed in the quark bilinears. For example, in Q̄Q bilinears
insertions such as Q̄(YuY †

u )nQ are allowed, while Q̄Y †
d (YuY †

u )nQ are not.
The above definition of MFV is only useful if flavor invariant operators such as Q̄f(⇥uYu, ⇥dYd)Q can be expanded

in powers of Yu,d. In the large tan� limit both Yu and Yd have O(1) eigenvalues yt,b. The convergence radius is then
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A model independent study of the minimal flavor violation (MFV) framework is presented, where
the only sources of flavor breaking at low energy are the up and down Yukawa matrices. Two limits
are identified for the Yukawa coupling expansion: linear MFV, where it is truncated at the leading
terms, and nonlinear MFV, where such a truncation is not possible due to large third generation
Yukawa couplings. These are then resummed to all orders using non-linear �-model techniques
familiar from models of collective breaking. Generically, flavor diagonal CP violating (CPV) sources
in the UV can induce O(1) CPV in processes involving third generation quarks. Due to a residual
U(2) symmetry, the extra CPV in Bd�B̄d mixing is bounded by CPV in Bs�B̄s mixing. If operators
with right-handed light quarks are subdominant, the extra CPV is equal in the two systems, and is
negligible in processes involving only the first two generations. We find large enhancements in the
up type sector, both in CPV in D � D̄ mixing and in top flavor violation.
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Effective field theory of MFV

The only source of flavor & CPV is due to the SM Yukawas.

The amount of flavor violation is calculated via setting the Y’s 
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MFV, estimation of amplitudes, SM approx’ sym’

Homework:  write the leading RR & LR up type flavor violating higher dim’ 
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MFV, connection with SM 

Can use same method to estimate SM contributions!

  Top controls the flavor violation (like charm via GIM).

    mt � 130 GeVB’s K’s-
_
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Factor of  2 smaller than the LO result,
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MFV & the SM contributions

Similarly can be applied to CPV in Kaon system,      :�K�
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Thus, MFV protection is mostly due to “CKM” suppression.

Agreement between Exp’ data & SM implies: �MFV < �SM

For some LLRR, �B,S = 2, operators O(10, 100) enhancement is obtained!
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General MFV, non-linear MFV (NLMFV)

If time permit we shall answer last 2 questions.

The top Yukawa is large (possibly also the bottom one) no 
justification to treat it perturbatively. 

Our “LO” expansion is valid only for ex. for 
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Introduction. Precision flavor and CP violation measurements provide very strong constraints on models of new
physics (NP) beyond the Standard Model (SM). For instance, εK constrains the scale of maximally flavor violating
NP to be >∼ 104 TeV. Therefore, TeV scale NP which stabilizes the electroweak scale and is accessible at the LHC has
to have a highly non generic flavor structure.

The tension with precision flavor tests is relaxed if the SM Yukawa matrices are the only source of flavor breaking,
even in the presence of new particles and interactions [1–3]. This hypothesis goes under the name of Minimal Flavor
Violation (MFV). Sometimes additional assumptions are made — that the SM Yukawa couplings are also the only
source of CP violation (CPV ), e.g. in [1], or that NP does not change the Lorentz structure of the effective weak
hamiltonian [4]. We will not make these assumptions, but will discuss their consequences below.

A useful language for discussing MFV was introduced in [1]. It relies on the observation that for vanishing Yukawa
couplings the SM has an enhanced global symmetry. Focusing on the quark sector this is

GSM = U(3)Q × U(3)u × U(3)d, (3)

where Q, u, d stand for quark doublets and up and down type quark singlets respectively. The SM Yukawa couplings

HuQ̄LYUuR + HdQ̄LYDdR, (4)

are formally invariant under GSM, if the Yukawa matrices are promoted to spurions that transform as Y ′
u,d =

VQYu,dV
†
u,d, while the quark fields are in the fundamental representations, (Q′, u′, d′) = VQ,u,d(Q, u, d). Weak scale NP

models are then of the MFV class if they are formally invariant under GSM, when treating the SM Yukawa couplings
as spurions. Similarly, the low energy flavor observables are formally invariant under GSM. Practically, this means
that only certain insertions of Yukawa couplings are allowed in the quark bilinears. For example, in Q̄Q bilinears
insertions such as Q̄(YUY †

U )nQ are allowed, while Q̄Y †
D(YUY †

U )nQ are not.
The above definition of MFV is only useful if flavor invariant operators such as Q̄f(εuYU , εdYD)Q can be expanded

in powers of Yu,d. In the large tanβ limit both Yu and Yd have O(1) eigenvalues yt,b. The convergence radius is then
given by the size of εu,d. We distinguish between two limiting cases

• Linear MFV (LMFV): εu,d # 1 and the dominant flavor breaking effects are captured by the lowest order
polynomials of Yu,d.

• Non-linear MFV (NLMFV): εu,d ∼ O(1), higher powers of Yu,d are important, and a truncated expansion in yt,b

is not possible.

Examples of NLMFV are: low energy supersymmetric models in which large tanβ effects need to be resummed (large
εd), and models obeying MFV at a UV scale ΛF $ µW , where large εu,d ∝ log(µW /ΛF ) are generated from sizable
anomalous dimensions in the renormalization group running [5]. Another example is warped extra dimension models
with alignment [6], in cases where right handed up-quark currents are subdominant.

In this letter we show that even in NLMFV there is a systematic expansion in small quantities, Vtd, Vts, and light
quark masses, while resumming in yt, yb ∼ O(1). This is achieved via a non-linear σ-model–like parametrization.
Namely, in the limit of vanishing weak gauge coupling (or mW → ∞), U(3)Q is enhanced to U(3)Qu × U(3)Qd . The

two groups are broken down to U(2) × U(1) by large third generation eigenvalues in Yu,dY
†
u,d, so that the low energy

theory is described by a [U(3)/U(2)×U(1)]2 non-linear σ-model. Flavor violation arises due to the misalignment of YU

and YD, given by Vtd and Vts once the weak interaction is turned on. We can then prove with complete generality that
in MFV: (i) extra CPV can only arise from flavor diagonal CPV sources in the UV theory; (ii) the extra CP phases
in Bs − B̄s mixing provide an upper bound on the amount of CPV in Bd − B̄d mixing; (iii) if operators containing
right-handed light quarks are subdominant then the extra CPV is equal in the two systems, and is negligible in
2 → 1 transitions. Conversely, these operators can break the correlation between CPV in the Bs and Bd systems,
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as spurions. Similarly, the low energy flavor observables are formally invariant under GSM. Practically, this means
that only certain insertions of Yukawa couplings are allowed in the quark bilinears. For example, in Q̄Q bilinears
insertions such as Q̄(YUY †

U )nQ are allowed, while Q̄Y †
D(YUY †

U )nQ are not.
The above definition of MFV is only useful if flavor invariant operators such as Q̄f(εuYU , εdYD)Q can be expanded

in powers of Yu,d. In the large tanβ limit both Yu and Yd have O(1) eigenvalues yt,b. The convergence radius is then
given by the size of εu,d. We distinguish between two limiting cases

• Linear MFV (LMFV): εu,d # 1 and the dominant flavor breaking effects are captured by the lowest order
polynomials of Yu,d.

• Non-linear MFV (NLMFV): εu,d ∼ O(1), higher powers of Yu,d are important, and a truncated expansion in yt,b

is not possible.

Examples of NLMFV are: low energy supersymmetric models in which large tanβ effects need to be resummed (large
εd), and models obeying MFV at a UV scale ΛF $ µW , where large εu,d ∝ log(µW /ΛF ) are generated from sizable
anomalous dimensions in the renormalization group running [5]. Another example is warped extra dimension models
with alignment [6], in cases where right handed up-quark currents are subdominant.

In this letter we show that even in NLMFV there is a systematic expansion in small quantities, Vtd, Vts, and light
quark masses, while resumming in yt, yb ∼ O(1). This is achieved via a non-linear σ-model–like parametrization.
Namely, in the limit of vanishing weak gauge coupling (or mW → ∞), U(3)Q is enhanced to U(3)Qu × U(3)Qd . The

two groups are broken down to U(2) × U(1) by large third generation eigenvalues in Yu,dY
†
u,d, so that the low energy

theory is described by a [U(3)/U(2)×U(1)]2 non-linear σ-model. Flavor violation arises due to the misalignment of YU

and YD, given by Vtd and Vts once the weak interaction is turned on. We can then prove with complete generality that
in MFV: (i) extra CPV can only arise from flavor diagonal CPV sources in the UV theory; (ii) the extra CP phases
in Bs − B̄s mixing provide an upper bound on the amount of CPV in Bd − B̄d mixing; (iii) if operators containing
right-handed light quarks are subdominant then the extra CPV is equal in the two systems, and is negligible in
2 → 1 transitions. Conversely, these operators can break the correlation between CPV in the Bs and Bd systems,

Kagan, GP, Volansky & Zupan (09).

We distinguish between 2 cases LMFV & NLMFV:
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and can induce significant new CPV in εK . Combinations of observables which are sensitive to LMFV vs. NLMFV
are also identified. Another non-linear parameterization of MFV was presented in [7]. We focus on exploiting the
general control obtained by our formalism in order to study its model independent implications. A modification of
the formalism is needed for yb ! 1, as discussed below.

Formalism. To realize GSM non-linearly, we promote the Yukawa matrices to spurions, with the transformation
properties given below Eq. (4). These flavor transformations are broken once the Yukawa couplings obtain their
background values. The eigenvalues of the latter are hierarchical and the two matrices are approximately aligned. We
therefore take YU ∼ diag (0, 0, yt) and YD ∼ diag (0, 0, yb). The breaking of the flavor group is dominated by the top
and bottom Yukawa couplings which break it down to HSM = U(2)Q × U(2)U × U(2)D × U(1)3.

The broken symmetry generators live in GSM/HSM cosets. It is useful to factor them out of the Yukawa matrices.
We thus use the parameterization

Yu,d = eiρ̂Qe±iχ̂/2Ỹu,de
−iρ̂u,d , (5)

where the reduced Yukawa spurions, Ỹu,d, are

Ỹu,d =

(

φu,d 0
0 yt,b

)

. (6)

Here φu,d are 2 × 2 complex spurions, while χ̂ and ρ̂i, i = Q, u, d, are the 3 × 3 matrices spanned by the broken
generators. Explicitly,

χ̂ =

(

0 χ
χ† 0

)

, ρ̂i =

(

0 ρi

ρ†i θi

)

, i = Q, u, d, (7)

where χ and ρi are two dimensional vectors. The ρi shift under the broken generators and therefore play the role
of spurion ”Goldstone bosons”. Thus the ρi have no physical significance. χ, on the other hand, parametrizes the
misalignment of the up and down Yukawa couplings and will therefore correspond to Vtd and Vts in the low energy
effective theory [see Eq. (14)].

Under the flavor group the above spurions transform as,

eiρ̂′

i = Vie
iρ̂iU †

i , eiχ̂′

= UQeiχ̂U †
Q, Ỹ ′

i = UQỸiU
†
i . (8)

Here Ui = Ui(Vi, ρ̂i) are (reducible) unitary representations of the unbroken flavor subgroup U(2)i × U(1)3,

Ui =

(

U2×2
i 0
0 eiϕ3

)

, i = Q, u, d. (9)

For Vi ∈ HSM, Ui = Vi. Otherwise the Ui depend on the broken generators and ρ̂i. They form a nonlinear realization
of the full flavor group. In particular, Eq. (8) defines Ui(Vi, ρ̂i) by requiring that ρ̂′i is of the same form as ρ̂i,
Eq. (7). Consequently ρ̂i is shifted under GSM/HSM and can be set to a convenient value as discussed below. Under
HSM, χ [ρi] are fundamentals of U(2)Q [U(2)i] carrying charge −1 under the U(1)3, while φu,d are bi-fundamentals of
U(2)Q × U(2)u,d.

As a final step we also redefine the quark fields by moding out the ”Goldstone spurions”,

ũL = e−iχ̂/2e−iρ̂QuL, d̃L = eiχ̂/2e−iρ̂QdL, (10)

ũR = e−iρ̂uuR, d̃R = e−iρ̂ddR. (11)

The latter form reducible representations of HSM. Concentrating here and below on the down sector we therefore

define d̃L,R = (d̃(2)
L,R, 0) + (0, b̃L,R). Under flavor transformations d̃(2)

L
′ = U2×2

Q d̃(2)
L and b̃L

′ = exp(iϕ3)b̃L. A similar
definition can be made for the up quarks.

With the redefinitions above, invariance under the full flavor group is captured by the invariance under the unbro-
ken flavor subgroup HSM [8]. Thus, NLMFV can be described without loss of generality as a formally HSM–invariant
expansion in φu,d, χ. This is a straightforward generalization of the known effective field theory description of spon-
taneous symmetry breaking [8]. The only difference in our case is that Yu,d are not aligned, as manifested by χ &= 0.
Since the background field values of the relevant spurions are small, we can expand in them.

We are now in a position to write down the flavor structures of quark bilinears from which low energy flavor
observables can be constructed. We work to leading order in the spurions that break HSM, but to all orders in the

Idea: spearate the small from large eigenvalues, expand
linearly (non-linearly) the small (large) flavor breaking.
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and can induce significant new CPV in εK . Combinations of observables which are sensitive to LMFV vs. NLMFV
are also identified. Another non-linear parameterization of MFV was presented in [7]. We focus on exploiting the
general control obtained by our formalism in order to study its model independent implications. A modification of
the formalism is needed for yb ! 1, as discussed below.

Formalism. To realize GSM non-linearly, we promote the Yukawa matrices to spurions, with the transformation
properties given below Eq. (4). These flavor transformations are broken once the Yukawa couplings obtain their
background values. The eigenvalues of the latter are hierarchical and the two matrices are approximately aligned. We
therefore take YU ∼ diag (0, 0, yt) and YD ∼ diag (0, 0, yb). The breaking of the flavor group is dominated by the top
and bottom Yukawa couplings which break it down to HSM = U(2)Q × U(2)U × U(2)D × U(1)3.
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(
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)
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where χ and ρi are two dimensional vectors. The ρi shift under the broken generators and therefore play the role
of spurion ”Goldstone bosons”. Thus the ρi have no physical significance. χ, on the other hand, parametrizes the
misalignment of the up and down Yukawa couplings and will therefore correspond to Vtd and Vts in the low energy
effective theory [see Eq. (14)].

Under the flavor group the above spurions transform as,
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Q, Ỹ ′

i = UQỸiU
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Here Ui = Ui(Vi, ρ̂i) are (reducible) unitary representations of the unbroken flavor subgroup U(2)i × U(1)3,

Ui =

(

U2×2
i 0
0 eiϕ3

)

, i = Q, u, d. (9)

For Vi ∈ HSM, Ui = Vi. Otherwise the Ui depend on the broken generators and ρ̂i. They form a nonlinear realization
of the full flavor group. In particular, Eq. (8) defines Ui(Vi, ρ̂i) by requiring that ρ̂′i is of the same form as ρ̂i,
Eq. (7). Consequently ρ̂i is shifted under GSM/HSM and can be set to a convenient value as discussed below. Under
HSM, χ [ρi] are fundamentals of U(2)Q [U(2)i] carrying charge −1 under the U(1)3, while φu,d are bi-fundamentals of
U(2)Q × U(2)u,d.

As a final step we also redefine the quark fields by moding out the ”Goldstone spurions”,

ũL = e−iχ̂/2e−iρ̂QuL, d̃L = eiχ̂/2e−iρ̂QdL, (10)

ũR = e−iρ̂uuR, d̃R = e−iρ̂ddR. (11)

The latter form reducible representations of HSM. Concentrating here and below on the down sector we therefore

define d̃L,R = (d̃(2)
L,R, 0) + (0, b̃L,R). Under flavor transformations d̃(2)

L
′ = U2×2

Q d̃(2)
L and b̃L

′ = exp(iϕ3)b̃L. A similar
definition can be made for the up quarks.

With the redefinitions above, invariance under the full flavor group is captured by the invariance under the unbro-
ken flavor subgroup HSM [8]. Thus, NLMFV can be described without loss of generality as a formally HSM–invariant
expansion in φu,d, χ. This is a straightforward generalization of the known effective field theory description of spon-
taneous symmetry breaking [8]. The only difference in our case is that Yu,d are not aligned, as manifested by χ &= 0.
Since the background field values of the relevant spurions are small, we can expand in them.

We are now in a position to write down the flavor structures of quark bilinears from which low energy flavor
observables can be constructed. We work to leading order in the spurions that break HSM, but to all orders in the
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in MFV: (i) extra CPV can only arise from flavor diagonal CPV sources in the UV theory; (ii) the extra CP phases
in Bs − B̄s mixing provide an upper bound on the amount of CPV in Bd − B̄d mixing; (iii) if operators containing
right-handed light quarks are subdominant then the extra CPV is equal in the two systems, and is negligible in
2 → 1 transitions. Conversely, these operators can break the correlation between CPV in the Bs and Bd systems,
and can induce significant new CPV in εK . Combinations of observables which are sensitive to LMFV vs. NLMFV
are also identified. Another non-linear parameterization of MFV was presented in [7]. We focus on exploiting the
general control obtained by our formalism in order to study its model independent implications. A modification of
the formalism is needed for yb # 1, as discussed below.

Formalism. To realize GSM non-linearly, we promote the Yukawa matrices to spurions, with the transformation
properties given below Eq. (4). These flavor transformations are broken once the Yukawa couplings obtain their
background values. The eigenvalues of the latter are hierarchical and the two matrices are approximately aligned. We
therefore take YU ∼ diag (0, 0, yt) and YD ∼ diag (0, 0, yb). The breaking of the flavor group is dominated by the top
and bottom Yukawa couplings which break it down to HSM = U(2)Q × U(2)U × U(2)D × U(1)3.

The broken symmetry generators live in GSM/HSM cosets. It is useful to factor them out of the Yukawa matrices.
We thus use the parameterization

Yu,d = eiρ̂Qe±iχ̂/2Ỹu,de
−iρ̂u,d , (5)

where the reduced Yukawa spurions, Ỹu,d, are

Ỹu,d =

(

φu,d 0
0 yt,b

)

. (6)

Here φu,d are 2 × 2 complex spurions, while χ̂ and ρ̂i, i = Q, u, d, are the 3 × 3 matrices spanned by the broken
generators. Explicitly,

χ̂ =

(

0 χ
χ† 0

)

, ρ̂i =

(

0 ρi

ρ†i θi

)

, i = Q, u, d, (7)

where χ and ρi are two dimensional vectors. The ρi shift under the broken generators and therefore play the role
of spurion ”Goldstone bosons”. Thus the ρi have no physical significance. χ, on the other hand, parametrizes the
misalignment of the up and down Yukawa couplings and will therefore correspond to Vtd and Vts in the low energy
effective theory [see Eq. (14)].

Under the flavor group the above spurions transform as,

eiρ̂′

i = Vie
iρ̂iU †

i , eiχ̂′

= UQeiχ̂U †
Q, Ỹ ′

i = UQỸiU
†
i . (8)

Here Ui = Ui(Vi, ρ̂i) are (reducible) unitary representations of the unbroken flavor subgroup U(2)i × U(1)3,

Ui =

(

U2×2
i 0
0 eiϕ3

)

, i = Q, u, d. (9)

For Vi ∈ HSM, Ui = Vi. Otherwise the Ui depend on the broken generators and ρ̂i. They form a nonlinear realization
of the full flavor group. In particular, Eq. (8) defines Ui(Vi, ρ̂i) by requiring that ρ̂′i is of the same form as ρ̂i,
Eq. (7). Consequently ρ̂i is shifted under GSM/HSM and can be set to a convenient value as discussed below. Under
HSM, χ [ρi] are fundamentals of U(2)Q [U(2)i] carrying charge −1 under the U(1)3, while φu,d are bi-fundamentals of
U(2)Q × U(2)u,d.

As a final step we also redefine the quark fields by moding out the ”Goldstone spurions”,

ũL = e−iχ̂/2e−iρ̂QuL, d̃L = eiχ̂/2e−iρ̂QdL, (10)

ũR = e−iρ̂uuR, d̃R = e−iρ̂ddR. (11)

The latter form reducible representations of HSM. Concentrating here and below on the down sector we therefore

define d̃L,R = (d̃(2)
L,R, 0) + (0, b̃L,R). Under flavor transformations d̃(2)

L
′ = U2×2

Q d̃(2)
L and b̃L

′ = exp(iϕ3)b̃L. A similar
definition can be made for the up quarks.

With the redefinitions above, invariance under the full flavor group is captured by the invariance under the unbro-
ken flavor subgroup HSM [8]. Thus, NLMFV can be described without loss of generality as a formally HSM–invariant
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Y †
DYD

YUY †
U & YDY †

D

Fields : UL(3, 1, 1, 1), DL(1,3, 1, 1), U(1, 1,3, 1), D(1, 1, 1,3)

Spurions : g2(3, 3̄, 1, 1), YU (3, 1, 3̄, 1), YD(1,3, 1, 3̄)

Introduction. Precision flavor and CP violation measurements provide very strong constraints on models of new
physics (NP) beyond the Standard Model (SM). For instance, εK constrains the scale of maximally flavor violating
NP to be >∼ 104 TeV. Therefore, TeV scale NP which stabilizes the electroweak scale and is accessible at the LHC has
to have a highly non generic flavor structure.

The tension with precision flavor tests is relaxed if the SM Yukawa matrices are the only source of flavor breaking,
even in the presence of new particles and interactions [1–3]. This hypothesis goes under the name of Minimal Flavor
Violation (MFV). Sometimes additional assumptions are made — that the SM Yukawa couplings are also the only
source of CP violation (CPV ), e.g. in [1], or that NP does not change the Lorentz structure of the effective weak
hamiltonian [4]. We will not make these assumptions, but will discuss their consequences below.

A useful language for discussing MFV was introduced in [1]. It relies on the observation that for vanishing Yukawa
couplings the SM has an enhanced global symmetry. Focusing on the quark sector this is

GSM = U(3)Q × U(3)U × U(3)D, (3)

where Q, u, d stand for quark doublets and up and down type quark singlets respectively. The SM Yukawa couplings

HuQ̄LYUuR + HdQ̄LYDdR, (4)

are formally invariant under GSM, if the Yukawa matrices are promoted to spurions that transform as Y ′
u,d =

VQYu,dV
†
u,d, while the quark fields are in the fundamental representations, (Q′, u′, d′) = VQ,u,d(Q, u, d). Weak scale NP

models are then of the MFV class if they are formally invariant under GSM, when treating the SM Yukawa couplings
as spurions. Similarly, the low energy flavor observables are formally invariant under GSM. Practically, this means
that only certain insertions of Yukawa couplings are allowed in the quark bilinears. For example, in Q̄Q bilinears
insertions such as Q̄(YUY †

U )nQ are allowed, while Q̄Y †
D(YUY †

U )nQ are not.
The above definition of MFV is only useful if flavor invariant operators such as Q̄f(εuYU , εdYD)Q can be expanded

in powers of Yu,d. In the large tanβ limit both Yu and Yd have O(1) eigenvalues yt,b. The convergence radius is then
given by the size of εu,d. We distinguish between two limiting cases

• Linear MFV (LMFV): εu,d # 1 and the dominant flavor breaking effects are captured by the lowest order
polynomials of Yu,d.

• Non-linear MFV (NLMFV): εu,d ∼ O(1), higher powers of Yu,d are important, and a truncated expansion in yt,b

is not possible.

Examples of NLMFV are: low energy supersymmetric models in which large tanβ effects need to be resummed (large
εd), and models obeying MFV at a UV scale ΛF $ µW , where large εu,d ∝ log(µW /ΛF ) are generated from sizable
anomalous dimensions in the renormalization group running [5]. Another example is warped extra dimension models
with alignment [6], in cases where right handed up-quark currents are subdominant.

In this letter we show that even in NLMFV there is a systematic expansion in small quantities, Vtd, Vts, and light
quark masses, while resumming in yt, yb ∼ O(1). This is achieved via a non-linear σ-model–like parametrization.
Namely, in the limit of vanishing weak gauge coupling (or mW → ∞), U(3)Q is enhanced to U(3)Qu × U(3)Qd . The

two groups are broken down to U(2) × U(1) by large third generation eigenvalues in Yu,dY
†
u,d, so that the low energy

theory is described by a [U(3)/U(2)×U(1)]2 non-linear σ-model. Flavor violation arises due to the misalignment of YU

and YD, given by Vtd and Vts once the weak interaction is turned on. We can then prove with complete generality that
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even in the presence of new particles and interactions [1–3]. This hypothesis goes under the name of Minimal Flavor
Violation (MFV). Sometimes additional assumptions are made — that the SM Yukawa couplings are also the only
source of CP violation (CPV ), e.g. in [1], or that NP does not change the Lorentz structure of the effective weak
hamiltonian [4]. We will not make these assumptions, but will discuss their consequences below.

A useful language for discussing MFV was introduced in [1]. It relies on the observation that for vanishing Yukawa
couplings the SM has an enhanced global symmetry. Focusing on the quark sector this is

GSM = U(3)Q × U(3)U × U(3)D, (3)

where Q, u, d stand for quark doublets and up and down type quark singlets respectively. The SM Yukawa couplings
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models are then of the MFV class if they are formally invariant under GSM, when treating the SM Yukawa couplings
as spurions. Similarly, the low energy flavor observables are formally invariant under GSM. Practically, this means
that only certain insertions of Yukawa couplings are allowed in the quark bilinears. For example, in Q̄Q bilinears
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εd), and models obeying MFV at a UV scale ΛF $ µW , where large εu,d ∝ log(µW /ΛF ) are generated from sizable
anomalous dimensions in the renormalization group running [5]. Another example is warped extra dimension models
with alignment [6], in cases where right handed up-quark currents are subdominant.

In this letter we show that even in NLMFV there is a systematic expansion in small quantities, Vtd, Vts, and light
quark masses, while resumming in yt, yb ∼ O(1). This is achieved via a non-linear σ-model–like parametrization.
Namely, in the limit of vanishing weak gauge coupling (or mW → ∞), U(3)Q is enhanced to U(3)Qu × U(3)Qd . The
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†
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in MFV: (i) extra CPV can only arise from flavor diagonal CPV sources in the UV theory; (ii) the extra CP phases
in Bs − B̄s mixing provide an upper bound on the amount of CPV in Bd − B̄d mixing; (iii) if operators containing
right-handed light quarks are subdominant then the extra CPV is equal in the two systems, and is negligible in
2 → 1 transitions. Conversely, these operators can break the correlation between CPV in the Bs and Bd systems,
and can induce significant new CPV in εK . Combinations of observables which are sensitive to LMFV vs. NLMFV
are also identified. Another non-linear parameterization of MFV was presented in [7]. We focus on exploiting the
general control obtained by our formalism in order to study its model independent implications. A modification of
the formalism is needed for yb # 1, as discussed below.

Formalism. To realize GSM non-linearly, we promote the Yukawa matrices to spurions, with the transformation
properties given below Eq. (4). These flavor transformations are broken once the Yukawa couplings obtain their
background values. The eigenvalues of the latter are hierarchical and the two matrices are approximately aligned. We
therefore take YU ∼ diag (0, 0, yt) and YD ∼ diag (0, 0, yb). The breaking of the flavor group is dominated by the top
and bottom Yukawa couplings which break it down to HSM = U(2)Q × U(2)U × U(2)D × U(1)3.
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02×2 χ
χ† 0

)

, ρ̂i =

(

02×2 ρi

ρ†i θi

)

, i = Q, U, D, (7)

where χ and ρi are two dimensional vectors. The ρi shift under the broken generators and therefore play the role
of spurion ”Goldstone bosons”. Thus the ρi have no physical significance. χ, on the other hand, parametrizes the
misalignment of the up and down Yukawa couplings and will therefore correspond to Vtd and Vts in the low energy
effective theory [see Eq. (14)].

Under the flavor group the above spurions transform as,

eiρ̂′

i = Vie
iρ̂iU †

i , eiχ̂′

= UQeiχ̂U †
Q, Ỹ ′

i = UQỸiU
†
i . (8)

Here Ui = Ui(Vi, ρ̂i) are (reducible) unitary representations of the unbroken flavor subgroup U(2)i × U(1)3,

Ui =

(

U2×2
i 0
0 eiϕ3

)

, i = Q, u, d. (9)

For Vi ∈ HSM, Ui = Vi. Otherwise the Ui depend on the broken generators and ρ̂i. They form a nonlinear realization
of the full flavor group. In particular, Eq. (8) defines Ui(Vi, ρ̂i) by requiring that ρ̂′i is of the same form as ρ̂i,
Eq. (7). Consequently ρ̂i is shifted under GSM/HSM and can be set to a convenient value as discussed below. Under
HSM, χ [ρi] are fundamentals of U(2)Q [U(2)i] carrying charge −1 under the U(1)3, while φu,d are bi-fundamentals of
U(2)Q × U(2)u,d.

As a final step we also redefine the quark fields by moding out the ”Goldstone spurions”,

ũL = e−iχ̂/2e−iρ̂QuL, d̃L = eiχ̂/2e−iρ̂QdL, (10)

ũR = e−iρ̂uuR, d̃R = e−iρ̂ddR. (11)

The latter form reducible representations of HSM. Concentrating here and below on the down sector we therefore

define d̃L,R = (d̃(2)
L,R, 0) + (0, b̃L,R). Under flavor transformations d̃(2)

L
′ = U2×2

Q d̃(2)
L and b̃L

′ = exp(iϕ3)b̃L. A similar
definition can be made for the up quarks.

With the redefinitions above, invariance under the full flavor group is captured by the invariance under the unbro-
ken flavor subgroup HSM [8]. Thus, NLMFV can be described without loss of generality as a formally HSM–invariant
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Fields : UL(3, 1, 1, 1), DL(1,3, 1, 1), U(1, 1,3, 1), D(1, 1, 1,3)

Spurions : g2(3, 3̄, 1, 1), YU (3, 1, 3̄, 1), YD(1,3, 1, 3̄)

Introduction. Precision flavor and CP violation measurements provide very strong constraints on models of new
physics (NP) beyond the Standard Model (SM). For instance, εK constrains the scale of maximally flavor violating
NP to be >∼ 104 TeV. Therefore, TeV scale NP which stabilizes the electroweak scale and is accessible at the LHC has
to have a highly non generic flavor structure.

The tension with precision flavor tests is relaxed if the SM Yukawa matrices are the only source of flavor breaking,
even in the presence of new particles and interactions [1–3]. This hypothesis goes under the name of Minimal Flavor
Violation (MFV). Sometimes additional assumptions are made — that the SM Yukawa couplings are also the only
source of CP violation (CPV ), e.g. in [1], or that NP does not change the Lorentz structure of the effective weak
hamiltonian [4]. We will not make these assumptions, but will discuss their consequences below.

A useful language for discussing MFV was introduced in [1]. It relies on the observation that for vanishing Yukawa
couplings the SM has an enhanced global symmetry. Focusing on the quark sector this is

GSM = U(3)Q × U(3)U × U(3)D, (3)

where Q, u, d stand for quark doublets and up and down type quark singlets respectively. The SM Yukawa couplings

HuQ̄LYUuR + HdQ̄LYDdR, (4)

are formally invariant under GSM, if the Yukawa matrices are promoted to spurions that transform as Y ′
U,D =

VQYU,DV †
u,d, while the quark fields are in the fundamental representations, (Q′, u′, d′) = VQ,u,d(Q, u, d). Weak scale

NP models are then of the MFV class if they are formally invariant under GSM, when treating the SM Yukawa
couplings as spurions. Similarly, the low energy flavor observables are formally invariant under GSM. Practically,
this means that only certain insertions of Yukawa couplings are allowed in the quark bilinears. For example, in Q̄Q
bilinears insertions such as Q̄(YUY †

U )nQ are allowed, while Q̄Y †
D(YUY †

U )nQ are not.
The above definition of MFV is only useful if flavor invariant operators such as Q̄f(εuYU , εdYD)Q can be expanded

in powers of YU,D. In the large tanβ limit both Yu and Yd have O(1) eigenvalues yt,b. The convergence radius is then
given by the size of εu,d. We distinguish between two limiting cases

• Linear MFV (LMFV): εu,d # 1 and the dominant flavor breaking effects are captured by the lowest order
polynomials of YU,D.

• Non-linear MFV (NLMFV): εu,d ∼ O(1), higher powers of YU,D are important, and a truncated expansion in
yt,b is not possible.

Examples of NLMFV are: low energy supersymmetric models in which large tanβ effects need to be resummed (large
εd), and models obeying MFV at a UV scale ΛF $ µW , where large εu,d ∝ log(µW /ΛF ) are generated from sizable
anomalous dimensions in the renormalization group running [5]. Another example is warped extra dimension models
with alignment [6], in cases where right handed up-quark currents are subdominant.

In this letter we show that even in NLMFV there is a systematic expansion in small quantities, Vtd, Vts, and light
quark masses, while resumming in yt, yb ∼ O(1). This is achieved via a non-linear σ-model–like parametrization.
Namely, in the limit of vanishing weak gauge coupling (or mW → ∞), U(3)Q is enhanced to U(3)Qu × U(3)Qd . The

two groups are broken down to U(2)×U(1) by large third generation eigenvalues in YU,DY †
U,D, so that the low energy

theory is described by a [U(3)/U(2)×U(1)]2 non-linear σ-model. Flavor violation arises due to the misalignment of YU

and YD, given by Vtd and Vts once the weak interaction is turned on. We can then prove with complete generality that

Without loss of generality the Y’s can be written as:



The formalism

d-type flavor violation is obtained by shifting to d-mass basis:
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expansion in φu,d,χ. This is a straightforward generalization of the known effective field theory description of spon-
taneous symmetry breaking [8]. The only difference in our case is that YU,D are not aligned, as manifested by χ != 0.
Since the background field values of the relevant spurions are small, we can expand in them.

We are now in a position to write down the flavor structures of quark bilinears from which low energy flavor
observables can be constructed. We work to leading order in the spurions that break HSM, but to all orders in the
top and bottom Yukawa couplings. Beginning with the left-left (LL) bilinears, to second order in χ,φu,d one finds
(omitting gauge and Lorentz indices)

b̃Lb̃L, d̃(2)
L d̃(2)

L , d̃(2)
L φuφ†

ud̃(2)
L , (12)

d̃(2)
L χb̃L, b̃Lχ†χb̃L, d̃(2)

L χχ†d̃(2)
L . (13)

The first two bilinears in Eq. (12) are diagonal in the down-quark mass basis and do not induce flavor violation. In this
basis the Yukawa couplings take the form YU = V †

CKMdiag (mu, mc, mt), YD = diag (md, ms, mb). This corresponds to
spurions taking the background values ρQ = χ/2, ρ̂u,d = 0, φd = diag (md, ms)/mb, while flavor violation is induced
via

χ† = i(Vtd, Vts), φu = V (2)†
CKM diag

(mu

mt
,
mc

mt

)

. (14)

V (2)
CKM stands for a two generation CKM matrix. In terms of λ = sin θC " 0.23, the flavor violating spurions scale as

χ ∼ (λ3,λ2), (φu)12 ∼ λ5. Note that the redefined down quark fields, Eqs. (10,11), coincide with the mass-eigenstate
basis, d̃L,R = dL,R, for the above choice of spurion background values.

The left-right (LR) and right-right (RR) bilinears which contribute to flavor mixing are in turn (at leading order
in χ,φu,d spurions),

d̃(2)
L χb̃R, d̃(2)

L χχ†φdd̃
(2)
R , b̃Lχ†φdd̃

(2)
R , (15)

d̃(2)
R φ†

dχb̃R, d̃(2)
R φ†

dχχ†φdd̃
(2)
R . (16)

To make contact with the more familiar MFV notation, consider down quark flavor violation from LL bilinears. We
can then expand in the Yukawa couplings,

Q̄
[

a1YuY †
u + a2(YuY †

u )2
]

Q +
[

b2 Q̄YuY †
u YdY

†
d Q + h.c.

]

+ · · · , (17)

with a1,2 = O(ε2,4
u ), b2 = O(ε2uε

2
d). Following the discussion in the Introduction, the LMFV limit corresponds to

a1 $ a2, b2, and the NLMFV limit to a1 ∼ a2 ∼ b2. While a1,2 are real, the third operator in Eq. (17) is not
Hermitian and b2 can be complex [9], introducing a new CP violating phase beyond the SM phase. The leading flavor
violating terms in Eq. (17) for the down quarks are

d̄i
L

[

(a1 + a2y
2
t )ξt

ij + a1ξ
c
ij

]

dj
L +

[

b2y
2
b d̄i

Lξt
ibbL + h.c.

]

=

cb

(

d̃(2)
L χb̃L + h.c

)

+ ctd̃
(2)
L χχ†d̃(2)

L + ccd̃
(2)
L φuφ

†
ud̃(2)

L , (18)

where ξk
ij = y2

kV ∗
kiVkj with i != j. On the RHS we have used the general parameterization in Eqs. (12,13) with

cb " (a1y2
t + a2y4

t + b2y2
b ), ct " a1y2

t + a2y4
t and cc " a1 to leading order. The contribution of the cc bilinear in flavor

changing transitions is O(1%) compared to the ct bilinear, and can be neglected in practice.
LMFV vs. NLMFV. A novel feature of NLMFV is the potential for observable CPV from right-handed currents,

to which we return below. Other important distinctions can be readily understood from Eq. (18). In NLMFV (with
large tanβ) the extra flavor diagonal CPV phase Im(cb) can be large, leading to observable deviations in the Bd,s−B̄d,s

mixing phases, but none in LMFV. Another example is b → sνν̄ and s → dνν̄ transitions. These receive contributions
only from a single operator in Eq. (18) multiplied by the neutrino currents. Thus, new contributions to B → Xsνν̄,
B → Kνν̄ vs. KL → π0νν̄, K+ → π+νν̄ are correlated in LMFV (cb " ct), see e.g., [10], but are independent in
NLMFV with large tanβ. O(1) effects in the rates would correspond to an effective scale ΛMFV ∼ 3 TeV in the four
fermion operators, with smaller effects scaling like 1/ΛMFV due to interference with the SM contributions. Other
interesting NLMFV effects involving the third generation, e.g., large deviations in Br(Bd,s → µ+µ−) and b → sγ,
arise in the MSSM at large tanβ, where resummation is required [11]. Contributions to 1 → 2 transitions which
proceed through the charm (cc) and the top (ct) are correlated within LMFV (ct " ccy2

t ), but are independent in the
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LMFV vs. NLMFV. A novel feature of NLMFV is the potential for observable CPV from right-handed currents,

to which we return below. Other important distinctions can be readily understood from Eq. (18). In NLMFV (with
large tanβ) the extra flavor diagonal CPV phase Im(cb) can be large, leading to observable deviations in the Bd,s−B̄d,s

mixing phases, but none in LMFV. Another example is b → sνν̄ and s → dνν̄ transitions. These receive contributions
only from a single operator in Eq. (18) multiplied by the neutrino currents. Thus, new contributions to B → Xsνν̄,
B → Kνν̄ vs. KL → π0νν̄, K+ → π+νν̄ are correlated in LMFV (cb " ct), see e.g., [10], but are independent in
NLMFV with large tanβ. O(1) effects in the rates would correspond to an effective scale ΛMFV ∼ 3 TeV in the four
fermion operators, with smaller effects scaling like 1/ΛMFV due to interference with the SM contributions. Other
interesting NLMFV effects involving the third generation, e.g., large deviations in Br(Bd,s → µ+µ−) and b → sγ,
arise in the MSSM at large tanβ, where resummation is required [11]. Contributions to 1 → 2 transitions which
proceed through the charm (cc) and the top (ct) are correlated within LMFV (ct " ccy2

t ), but are independent in the
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(                )

Magic, flavor invariance is obtained by moding-out fields:
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in MFV: (i) extra CPV can only arise from flavor diagonal CPV sources in the UV theory; (ii) the extra CP phases
in Bs − B̄s mixing provide an upper bound on the amount of CPV in Bd − B̄d mixing; (iii) if operators containing
right-handed light quarks are subdominant then the extra CPV is equal in the two systems, and is negligible in
2 → 1 transitions. Conversely, these operators can break the correlation between CPV in the Bs and Bd systems,
and can induce significant new CPV in εK . Combinations of observables which are sensitive to LMFV vs. NLMFV
are also identified. Another non-linear parameterization of MFV was presented in [7]. We focus on exploiting the
general control obtained by our formalism in order to study its model independent implications. A modification of
the formalism is needed for yb # 1, as discussed below.

Formalism. To realize GSM non-linearly, we promote the Yukawa matrices to spurions, with the transformation
properties given below Eq. (4). These flavor transformations are broken once the Yukawa couplings obtain their
background values. The eigenvalues of the latter are hierarchical and the two matrices are approximately aligned. We
therefore take YU ∼ diag (0, 0, yt) and YD ∼ diag (0, 0, yb). The breaking of the flavor group is dominated by the top
and bottom Yukawa couplings which break it down to HSM = U(2)Q × U(2)U × U(2)D × U(1)3.

The broken symmetry generators live in GSM/HSM cosets. It is useful to factor them out of the Yukawa matrices.
We thus use the parameterization

YU,D = eiρ̂Qe±iχ̂/2ỸU,De−iρ̂u,d , (5)

where the reduced Yukawa spurions, ỸU,D, are

ỸU,D =

(

φu,d 0
0 yt,b

)

. (6)

Here φu,d are 2 × 2 complex spurions, while χ̂ and ρ̂i, i = Q, U, D, are the 3 × 3 matrices spanned by the broken
generators. Explicitly,

χ̂ =

(

02×2 χ
χ† 0

)

, ρ̂i =

(

02×2 ρi

ρ†i θi

)

, i = Q, U, D, (7)

where χ and ρi are two dimensional vectors. The ρi shift under the broken generators and therefore play the role
of spurion ”Goldstone bosons”. Thus the ρi have no physical significance. χ, on the other hand, parametrizes the
misalignment of the up and down Yukawa couplings and will therefore correspond to Vtd and Vts in the low energy
effective theory [see Eq. (14)].

Under the flavor group the above spurions transform as,

eiρ̂′

i = Vie
iρ̂iU †

i , eiχ̂′

= UQeiχ̂U †
Q, Ỹ ′

i = UQỸiU
†
i . (8)

Here Ui = Ui(Vi, ρ̂i) are (reducible) unitary representations of the unbroken flavor subgroup U(2)i × U(1)3,

Ui =

(

U2×2
i 0
0 eiϕ3

)

, i = Q, u, d. (9)

For Vi ∈ HSM, Ui = Vi. Otherwise the Ui depend on the broken generators and ρ̂i. They form a nonlinear realization
of the full flavor group. In particular, Eq. (8) defines Ui(Vi, ρ̂i) by requiring that ρ̂′i is of the same form as ρ̂i,
Eq. (7). Consequently ρ̂i is shifted under GSM/HSM and can be set to a convenient value as discussed below. Under
HSM, χ [ρi] are fundamentals of U(2)Q [U(2)i] carrying charge −1 under the U(1)3, while φu,d are bi-fundamentals of
U(2)Q × U(2)u,d.

As a final step we also redefine the quark fields by moding out the ”Goldstone spurions”,

ũL = e−iχ̂/2e−iρ̂QuL, d̃L = eiχ̂/2e−iρ̂QdL, (10)

ũR = e−iρ̂uuR, d̃R = e−iρ̂ddR. (11)

The latter form reducible representations of HSM. Concentrating here and below on the down sector we therefore

define d̃L,R = (d̃(2)
L,R, 0) + (0, b̃L,R). Under flavor transformations d̃(2)

L
′ = U2×2

Q d̃(2)
L and b̃L

′ = exp(iϕ3)b̃L. A similar
definition can be made for the up quarks.

With the redefinitions above, invariance under the full flavor group is captured by the invariance under the unbro-
ken flavor subgroup HSM [8]. Thus, NLMFV can be described without loss of generality as a formally HSM–invariant
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Q, Ỹ ′

i = UQỸiU
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Y †
DYD

YUY †
U & YDY †

D

Fields : UL(3, 1, 1, 1), DL(1,3, 1, 1), U(1, 1,3, 1), D(1, 1, 1,3)

Spurions : g2(3, 3̄, 1, 1), YU (3, 1, 3̄, 1), YD(1,3, 1, 3̄)

Also φu,d (χ) form appropriate bi-fundamentals (fundeamental) of HSM.
Introduction. Precision flavor and CP violation measurements provide very strong constraints on models of new

physics (NP) beyond the Standard Model (SM). For instance, εK constrains the scale of maximally flavor violating
NP to be >∼ 104 TeV. Therefore, TeV scale NP which stabilizes the electroweak scale and is accessible at the LHC has
to have a highly non generic flavor structure.

The tension with precision flavor tests is relaxed if the SM Yukawa matrices are the only source of flavor breaking,
even in the presence of new particles and interactions [1–3]. This hypothesis goes under the name of Minimal Flavor
Violation (MFV). Sometimes additional assumptions are made — that the SM Yukawa couplings are also the only
source of CP violation (CPV ), e.g. in [1], or that NP does not change the Lorentz structure of the effective weak
hamiltonian [4]. We will not make these assumptions, but will discuss their consequences below.

A useful language for discussing MFV was introduced in [1]. It relies on the observation that for vanishing Yukawa
couplings the SM has an enhanced global symmetry. Focusing on the quark sector this is

GSM = U(3)Q × U(3)U × U(3)D, (3)

where Q, u, d stand for quark doublets and up and down type quark singlets respectively. The SM Yukawa couplings

HuQ̄LYUuR + HdQ̄LYDdR, (4)

are formally invariant under GSM, if the Yukawa matrices are promoted to spurions that transform as Y ′
U,D =

VQYU,DV †
u,d, while the quark fields are in the fundamental representations, (Q′, u′, d′) = VQ,u,d(Q, u, d). Weak scale

NP models are then of the MFV class if they are formally invariant under GSM, when treating the SM Yukawa
couplings as spurions. Similarly, the low energy flavor observables are formally invariant under GSM. Practically,
this means that only certain insertions of Yukawa couplings are allowed in the quark bilinears. For example, in Q̄Q
bilinears insertions such as Q̄(YUY †

U )nQ are allowed, while Q̄Y †
D(YUY †

U )nQ are not.
The above definition of MFV is only useful if flavor invariant operators such as Q̄f(εuYU , εdYD)Q can be expanded

in powers of YU,D. In the large tanβ limit both Yu and Yd have O(1) eigenvalues yt,b. The convergence radius is then
given by the size of εu,d. We distinguish between two limiting cases

• Linear MFV (LMFV): εu,d # 1 and the dominant flavor breaking effects are captured by the lowest order
polynomials of YU,D.

• Non-linear MFV (NLMFV): εu,d ∼ O(1), higher powers of YU,D are important, and a truncated expansion in
yt,b is not possible.

Examples of NLMFV are: low energy supersymmetric models in which large tanβ effects need to be resummed (large
εd), and models obeying MFV at a UV scale ΛF $ µW , where large εu,d ∝ log(µW /ΛF ) are generated from sizable
anomalous dimensions in the renormalization group running [5]. Another example is warped extra dimension models
with alignment [6], in cases where right handed up-quark currents are subdominant.

In this letter we show that even in NLMFV there is a systematic expansion in small quantities, Vtd, Vts, and light
quark masses, while resumming in yt, yb ∼ O(1). This is achieved via a non-linear σ-model–like parametrization.
Namely, in the limit of vanishing weak gauge coupling (or mW → ∞), U(3)Q is enhanced to U(3)Qu × U(3)Qd . The

two groups are broken down to U(2)×U(1) by large third generation eigenvalues in YU,DY †
U,D, so that the low energy

theory is described by a [U(3)/U(2)×U(1)]2 non-linear σ-model. Flavor violation arises due to the misalignment of YU
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of the full flavor group. In particular, Eq. (8) defines Ui(Vi, ρ̂i) by requiring that ρ̂′i is of the same form as ρ̂i,
Eq. (7). Consequently ρ̂i is shifted under GSM/HSM and can be set to a convenient value as discussed below. Under
HSM, χ [ρi] are fundamentals of U(2)Q [U(2)i] carrying charge −1 under the U(1)3, while φu,d are bi-fundamentals of
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As a final step we also redefine the quark fields by moding out the ”Goldstone spurions”,
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The latter form reducible representations of HSM. Concentrating here and below on the down sector we therefore

define d̃L,R = (d̃(2)
L,R, 0) + (0, b̃L,R). Under flavor transformations d̃(2)

L
′ = U2×2

Q d̃(2)
L and b̃L

′ = exp(iϕ3)b̃L. A similar
definition can be made for the up quarks.

With the redefinitions above, invariance under the full flavor group is captured by the invariance under the unbro-
ken flavor subgroup HSM [8]. Thus, NLMFV can be described without loss of generality as a formally HSM–invariant
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Spurions : g2(3, 3̄, 1, 1), YU (3, 1, 3̄, 1), YD(1,3, 1, 3̄)

Also φu,d (χ) form appropriate bi-fundamentals (fundeamental) of HSM.
Introduction. Precision flavor and CP violation measurements provide very strong constraints on models of new

physics (NP) beyond the Standard Model (SM). For instance, εK constrains the scale of maximally flavor violating
NP to be >∼ 104 TeV. Therefore, TeV scale NP which stabilizes the electroweak scale and is accessible at the LHC has
to have a highly non generic flavor structure.

The tension with precision flavor tests is relaxed if the SM Yukawa matrices are the only source of flavor breaking,
even in the presence of new particles and interactions [1–3]. This hypothesis goes under the name of Minimal Flavor
Violation (MFV). Sometimes additional assumptions are made — that the SM Yukawa couplings are also the only
source of CP violation (CPV ), e.g. in [1], or that NP does not change the Lorentz structure of the effective weak
hamiltonian [4]. We will not make these assumptions, but will discuss their consequences below.

A useful language for discussing MFV was introduced in [1]. It relies on the observation that for vanishing Yukawa
couplings the SM has an enhanced global symmetry. Focusing on the quark sector this is

GSM = U(3)Q × U(3)U × U(3)D, (3)

where Q, u, d stand for quark doublets and up and down type quark singlets respectively. The SM Yukawa couplings

HuQ̄LYUuR + HdQ̄LYDdR, (4)

are formally invariant under GSM, if the Yukawa matrices are promoted to spurions that transform as Y ′
U,D =

VQYU,DV †
u,d, while the quark fields are in the fundamental representations, (Q′, u′, d′) = VQ,u,d(Q, u, d). Weak scale

NP models are then of the MFV class if they are formally invariant under GSM, when treating the SM Yukawa
couplings as spurions. Similarly, the low energy flavor observables are formally invariant under GSM. Practically,
this means that only certain insertions of Yukawa couplings are allowed in the quark bilinears. For example, in Q̄Q
bilinears insertions such as Q̄(YUY †

U )nQ are allowed, while Q̄Y †
D(YUY †

U )nQ are not.
The above definition of MFV is only useful if flavor invariant operators such as Q̄f(εuYU , εdYD)Q can be expanded

in powers of YU,D. In the large tanβ limit both Yu and Yd have O(1) eigenvalues yt,b. The convergence radius is then
given by the size of εu,d. We distinguish between two limiting cases

• Linear MFV (LMFV): εu,d # 1 and the dominant flavor breaking effects are captured by the lowest order
polynomials of YU,D.

• Non-linear MFV (NLMFV): εu,d ∼ O(1), higher powers of YU,D are important, and a truncated expansion in
yt,b is not possible.

Examples of NLMFV are: low energy supersymmetric models in which large tanβ effects need to be resummed (large
εd), and models obeying MFV at a UV scale ΛF $ µW , where large εu,d ∝ log(µW /ΛF ) are generated from sizable
anomalous dimensions in the renormalization group running [5]. Another example is warped extra dimension models
with alignment [6], in cases where right handed up-quark currents are subdominant.

In this letter we show that even in NLMFV there is a systematic expansion in small quantities, Vtd, Vts, and light
quark masses, while resumming in yt, yb ∼ O(1). This is achieved via a non-linear σ-model–like parametrization.
Namely, in the limit of vanishing weak gauge coupling (or mW → ∞), U(3)Q is enhanced to U(3)Qu × U(3)Qd . The

two groups are broken down to U(2)×U(1) by large third generation eigenvalues in YU,DY †
U,D, so that the low energy

theory is described by a [U(3)/U(2)×U(1)]2 non-linear σ-model. Flavor violation arises due to the misalignment of YU
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NLMFV described via requiring solely HSM-invariance!



Predictions

LO flavor violation come from the following operators:
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, i = Q, U, D, (7)

where χ and ρi are two dimensional vectors. The ρi shift under the broken generators and therefore play the role
of spurion ”Goldstone bosons”. Thus the ρi have no physical significance. χ, on the other hand, parametrizes the
misalignment of the up and down Yukawa couplings and will therefore correspond to Vtd and Vts in the low energy
effective theory [see Eq. (14)].

Under the flavor group the above spurions transform as,
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iρ̂iU †

i , eiχ̂′

= UQeiχ̂U †
Q, Ỹ ′

i = UQỸiU
†
i . (8)

Here Ui = Ui(Vi, ρ̂i) are (reducible) unitary representations of the unbroken flavor subgroup U(2)i × U(1)3,

Ui =

(

U2×2
i 0
0 eiϕ3

)

, i = Q, u, d. (9)

For Vi ∈ HSM, Ui = Vi. Otherwise the Ui depend on the broken generators and ρ̂i. They form a nonlinear realization
of the full flavor group. In particular, Eq. (8) defines Ui(Vi, ρ̂i) by requiring that ρ̂′i is of the same form as ρ̂i,
Eq. (7). Consequently ρ̂i is shifted under GSM/HSM and can be set to a convenient value as discussed below. Under
HSM, χ [ρi] are fundamentals of U(2)Q [U(2)i] carrying charge −1 under the U(1)3, while φu,d are bi-fundamentals of
U(2)Q × U(2)u,d.

As a final step we also redefine the quark fields by moding out the ”Goldstone spurions”,

ũL = e−iχ̂/2e−iρ̂QuL, d̃L = eiχ̂/2e−iρ̂QdL, (10)

ũR = e−iρ̂uuR, d̃R = e−iρ̂ddR. (11)

The latter form reducible representations of HSM. Concentrating here and below on the down sector we therefore

define d̃L,R = (d̃(2)
L,R, 0) + (0, b̃L,R). Under flavor transformations d̃(2)

L
′ = U2×2

Q d̃(2)
L and b̃L

′ = exp(iϕ3)b̃L. A similar
definition can be made for the up quarks.

With the redefinitions above, invariance under the full flavor group is captured by the invariance under the unbro-
ken flavor subgroup HSM [8]. Thus, NLMFV can be described without loss of generality as a formally HSM–invariant
expansion in φu,d, χ. This is a straightforward generalization of the known effective field theory description of spon-
taneous symmetry breaking [8]. The only difference in our case is that YU,D are not aligned, as manifested by χ $= 0.
Since the background field values of the relevant spurions are small, we can expand in them.

We are now in a position to write down the flavor structures of quark bilinears from which low energy flavor
observables can be constructed. We work to leading order in the spurions that break HSM, but to all orders in the
top and bottom Yukawa couplings. Beginning with the left-left (LL) bilinears, to second order in χ, φu,d one finds
(omitting gauge and Lorentz indices)

b̃Lb̃L, d̃(2)
L d̃(2)

L , d̃(2)
L φuφ†

ud̃(2)
L , (12)

d̃(2)
L χb̃L, b̃Lχ†χb̃L, d̃(2)

L χχ†d̃(2)
L . (13)

The first two bilinears in Eq. (12) are diagonal in the down-quark mass basis and do not induce flavor violation. In this
basis the Yukawa couplings take the form YU = V †

CKMdiag (mu, mc, mt), YD = diag (md, ms, mb). This corresponds to

B  phys.:
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spurions taking the background values ρQ = χ/2, ρ̂u,d = 0, φd = diag (md, ms)/mb, while flavor violation is induced
via

χ† = i(Vtd, Vts), φu = V (2)†
CKM diag

(

mu

mt
,
mc

mt

)

. (14)

V (2)
CKM stands for a two generation CKM matrix. In terms of λ = sin θC ! 0.23, the flavor violating spurions scale as
χ ∼ (λ3,λ2), (φu)12 ∼ λ5. Note that the redefined down quark fields, Eqs. (10,11), coincide with the mass-eigenstate
basis, d̃L,R = dL,R, for the above choice of spurion background values.

The left-right (LR) and right-right (RR) bilinears which contribute to flavor mixing are in turn (at leading order
in χ,φu,d spurions),

d̃(2)
L χb̃R, d̃(2)

L χχ†φdd̃
(2)
R , b̃Lχ†φdd̃

(2)
R , (15)

d̃(2)
R φ†

dχb̃R, d̃(2)
R φ†

dχχ
†φdd̃

(2)
R . (16)

To make contact with the more familiar MFV notation, consider down quark flavor violation from LL bilinears. We
can then expand in the Yukawa couplings,

Q̄
[

a1YuY †
u + a2(YuY †

u )2
]

Q +
[

b2 Q̄YuY †
u YdY

†
d Q + h.c.

]

+ · · · , (17)

with a1,2 = O(ε2,4
u ), b2 = O(ε2uε

2
d). Following the discussion in the Introduction, the LMFV limit corresponds to

a1 # a2, b2, and the NLMFV limit to a1 ∼ a2 ∼ b2. While a1,2 are real, the third operator in Eq. (17) is not
Hermitian and b2 can be complex [9], introducing a new CP violating phase beyond the SM phase. The leading flavor
violating terms in Eq. (17) for the down quarks are

d̄i
L

[

(a1 + a2y
2
t )ξt

ij + a1ξ
c
ij

]

dj
L +

[

b2y
2
b d̄i

Lξ
t
ibbL + h.c.

]

=

cb

(

d̃(2)
L χb̃L + h.c

)

+ ctd̃
(2)
L χχ†d̃(2)

L + ccd̃
(2)
L φuφ

†
ud̃(2)

L , (18)

where ξk
ij = y2

kV ∗
kiVkj with i $= j. On the RHS we have used the general parameterization in Eqs. (12,13) with

cb ! (a1y2
t + a2y4

t + b2y2
b ), ct ! a1y2

t + a2y4
t and cc ! a1 to leading order. The contribution of the cc bilinear in flavor

changing transitions is O(1%) compared to the ct bilinear, and can be neglected in practice.
LMFV vs. NLMFV. A novel feature of NLMFV is the potential for observable CPV from right-handed currents,

to which we return below. Other important distinctions can be readily understood from Eq. (18). In NLMFV (with
large tanβ) the extra flavor diagonal CPV phase Im(cb) can be large, leading to observable deviations in the Bd,s−B̄d,s

mixing phases, but none in LMFV. Another example is b → sνν̄ and s → dνν̄ transitions. These receive contributions
only from a single operator in Eq. (18) multiplied by the neutrino currents. Thus, new contributions to B → Xsνν̄,
B → Kνν̄ vs. KL → π0νν̄, K+ → π+νν̄ are correlated in LMFV (cb ! ct), see e.g., [10], but are independent in
NLMFV with large tanβ. O(1) effects in the rates would correspond to an effective scale ΛMFV ∼ 3 TeV in the four
fermion operators, with smaller effects scaling like 1/ΛMFV due to interference with the SM contributions. Other
interesting NLMFV effects involving the third generation, e.g., large deviations in Br(Bd,s → µ+µ−) and b → sγ,
arise in the MSSM at large tanβ, where resummation is required [11]. Contributions to 1 → 2 transitions which
proceed through the charm (cc) and the top (ct) are correlated within LMFV (ct ! ccy2

t ), but are independent in the
NLMFV case, even for small tanβ. Unfortunately, the smallness of the cc bilinear prevents tests of this correlation
in the near future, e.g., via comparison of K+ → π+νν̄ and the CPV decay KL → π0νν̄.

CP Violation. Assuming MFV, new CPV effects can be significant if and only if the UV theory contains new
flavor-diagonal CP sources. The proof is as follows. If no flavor diagonal phases are present, CPV only arises from
the CKM phase. In the exact U(2)L limit the CKM phase can be removed and the theory becomes CP invariant (at
all scales). The only spurions that break the U(2)L flavor symmetry are φu,d and χ. CPV in operators linear in χ
is directly proportional to the CKM phase [cf. Eq. (18)]. Any additional contributions are suppressed by at least
[φ†

uφu,φ†
dφd] ∼ (ms/mb)2(mc/mt)2 sin θC ∼ 10−9, and are therefore negligible.

Flavor diagonal weak phases in NLMFV can lead to new CPV effects in 3 → 1 and 3 → 2 decays. An example is
∆B = 1 electromagnetic and chromomagnetic dipole operators constructed from the first bilinear in Eq. (15). The
operators are not Hermitian, hence their Wilson coefficients can contain new CPV phases. Without new phases, the
untagged direct CP asymmetry in B → Xd,sγ would essentially vanish due to the residual U(2) symmetry, as in
the SM [12], and the B → Xsγ asymmetry would be less than a percent. However, in the NLMFV limit (large yb),
non-vanishing phases can yield significant CPV in untagged and B → Xsγ decays, and the new CPV in B → Xsγ

& possibly (Bs only) from
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ij
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dj
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2
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cb
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d̃(2)
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L φuφ
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where ξk
ij = y2

kV ∗
kiVkj with i $= j. On the RHS we have used the general parameterization in Eqs. (12,13) with

cb ! (a1y2
t + a2y4

t + b2y2
b ), ct ! a1y2

t + a2y4
t and cc ! a1 to leading order. The contribution of the cc bilinear in flavor

changing transitions is O(1%) compared to the ct bilinear, and can be neglected in practice.
LMFV vs. NLMFV. A novel feature of NLMFV is the potential for observable CPV from right-handed currents,
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flavor-diagonal CP sources. The proof is as follows. If no flavor diagonal phases are present, CPV only arises from
the CKM phase. In the exact U(2)L limit the CKM phase can be removed and the theory becomes CP invariant (at
all scales). The only spurions that break the U(2)L flavor symmetry are φu,d and χ. CPV in operators linear in χ
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dφd] ∼ (ms/mb)2(mc/mt)2 sin θC ∼ 10−9, and are therefore negligible.
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the SM [12], and the B → Xsγ asymmetry would be less than a percent. However, in the NLMFV limit (large yb),
non-vanishing phases can yield significant CPV in untagged and B → Xsγ decays, and the new CPV in B → Xsγ
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The broken symmetry generators live in GSM/HSM cosets. It is useful to factor them out of the Yukawa matrices.
We thus use the parameterization

YU,D = eiρ̂Qe±iχ̂/2ỸU,De−iρ̂u,d , (5)

where the reduced Yukawa spurions, ỸU,D, are

ỸU,D =

(

φu,d 0
0 yt,b

)

. (6)

Here φu,d are 2 × 2 complex spurions, while χ̂ and ρ̂i, i = Q, U, D, are the 3 × 3 matrices spanned by the broken
generators. Explicitly,

χ̂ =

(

02×2 χ
χ† 0

)

, ρ̂i =

(

02×2 ρi

ρ†i θi

)

, i = Q, U, D, (7)

where χ and ρi are two dimensional vectors. The ρi shift under the broken generators and therefore play the role
of spurion ”Goldstone bosons”. Thus the ρi have no physical significance. χ, on the other hand, parametrizes the
misalignment of the up and down Yukawa couplings and will therefore correspond to Vtd and Vts in the low energy
effective theory [see Eq. (14)].

Under the flavor group the above spurions transform as,

eiρ̂′

i = Vie
iρ̂iU †

i , eiχ̂′

= UQeiχ̂U †
Q, Ỹ ′

i = UQỸiU
†
i . (8)

Here Ui = Ui(Vi, ρ̂i) are (reducible) unitary representations of the unbroken flavor subgroup U(2)i × U(1)3,

Ui =

(

U2×2
i 0
0 eiϕ3

)

, i = Q, u, d. (9)

For Vi ∈ HSM, Ui = Vi. Otherwise the Ui depend on the broken generators and ρ̂i. They form a nonlinear realization
of the full flavor group. In particular, Eq. (8) defines Ui(Vi, ρ̂i) by requiring that ρ̂′i is of the same form as ρ̂i,
Eq. (7). Consequently ρ̂i is shifted under GSM/HSM and can be set to a convenient value as discussed below. Under
HSM, χ [ρi] are fundamentals of U(2)Q [U(2)i] carrying charge −1 under the U(1)3, while φu,d are bi-fundamentals of
U(2)Q × U(2)u,d.

As a final step we also redefine the quark fields by moding out the ”Goldstone spurions”,

ũL = e−iχ̂/2e−iρ̂QuL, d̃L = eiχ̂/2e−iρ̂QdL, (10)

ũR = e−iρ̂uuR, d̃R = e−iρ̂ddR. (11)

The latter form reducible representations of HSM. Concentrating here and below on the down sector we therefore

define d̃L,R = (d̃(2)
L,R, 0) + (0, b̃L,R). Under flavor transformations d̃(2)

L
′ = U2×2

Q d̃(2)
L and b̃L

′ = exp(iϕ3)b̃L. A similar
definition can be made for the up quarks.

With the redefinitions above, invariance under the full flavor group is captured by the invariance under the unbro-
ken flavor subgroup HSM [8]. Thus, NLMFV can be described without loss of generality as a formally HSM–invariant
expansion in φu,d, χ. This is a straightforward generalization of the known effective field theory description of spon-
taneous symmetry breaking [8]. The only difference in our case is that YU,D are not aligned, as manifested by χ $= 0.
Since the background field values of the relevant spurions are small, we can expand in them.

We are now in a position to write down the flavor structures of quark bilinears from which low energy flavor
observables can be constructed. We work to leading order in the spurions that break HSM, but to all orders in the
top and bottom Yukawa couplings. Beginning with the left-left (LL) bilinears, to second order in χ, φu,d one finds
(omitting gauge and Lorentz indices)

b̃Lb̃L, d̃(2)
L d̃(2)

L , d̃(2)
L φuφ†

ud̃(2)
L , (12)

d̃(2)
L χb̃L, b̃Lχ†χb̃L, d̃(2)

L χχ†d̃(2)
L . (13)

The first two bilinears in Eq. (12) are diagonal in the down-quark mass basis and do not induce flavor violation. In this
basis the Yukawa couplings take the form YU = V †

CKMdiag (mu, mc, mt), YD = diag (md, ms, mb). This corresponds to
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 B: RH currents are non-Hermitians allows for new CPV.

Kaon: contributions from charm & top are decorrelated.

Generically, CPV in Bs bounds on in Bd  system .
(without light RH currents they are fully correlated)

Generically, large CPV in D & top FCNC (also in LMFV).
(more in the homework)

(SUSY: Colangelo et. al., 0807.0801[ph])



Top Diag’ Flavor Physics @ LHC Flavor Diagonal Information



Flavor at the LHC

If no NP probed t-FCNC & D mixing could be at the frontier,
we have just entered the isospin up flavor precision era.

However, what if new particles which couple SM fermions 
discovered ?
These may carry microscopical info’ flavor dynamics.

We can look at two entities: 
(i) Spectrum or strength of flavor diagonal couplings.
(ii) Flavor conversion info’.



The approximate U(2)

0th order question for a 3x3 adjoint:
Is a residual U(2) conserved? 

(In the following plots, S has been taken to be zero. In the context of gauge mediation, the initial

S vanishes and we currently neglect its evolution.) These universal pieces are non-negligible in the

analysis below, since the difference between yc and yt dictates a difference between the resulting

contributions from these terms.

Denote the scale at which SUSY is broken by µ0, and say have universal boundary conditions

in the doublet and up-singlet squark sectors seperately. We can extract the difference between

the evolution of the 2nd and 3rd generation components of the soft terms in say the LL sector by

considering the ratio between the projection of the RG-evolved mass-squared matrix m2
QL

on the

Gell-Mann matrices Λ3 and Λ8, defined as

r3/8 =
1

n3/8

Tr(Λ3m2
QL

)

Tr(Λ8m2
QL

)
, (2.4)

where

Λ3 =
1√
2
diag(1,−1, 0), Λ8 =

1√
6
diag(1, 1,−2), (2.5)

and n3/8 is a normalization to the LMFV relation via

n3/8 =
Tr(Λ3m2

u)

Tr(Λ8m2
u)

∼ 1.1 · 10−5, m2
u = diag(0,m2

c ,m
2
t ),

mc(mZ) = 0.619 GeV, mt(mZ) = 172 GeV.

(2.6)

Due to the presence of the universal terms in the RG equations (2.2)-(2.3), the ratio r3/8 depends

on the initial values of the gaugino and squark soft terms. To get some flavor, consider minimal

models of messenger gauge mediation, say with one set of messengers. The initial soft terms are

given by [8]

Ma =
αa

4π
Λ, a = 1, 2, 3,

m2
φi

= 2Λ2
3∑

a=1

(αa

4π

)2
Ca(i), φi = QL, UR etc.,

(2.7)

where Λ is the effective SUSY breaking scale (for a messenger superfield S the relation is Λ =

〈FS〉/〈S〉), Ca(i) are the quadratic Casimir group theory invariants for the superfield φi, and for

the relevant fields are given by

C3(QL, UR) = 4/3, C2(QL) = 3/4, C2(UR) = 0, C1(φi) = 3Y 2
φi

/5, (2.8)

with Yφi
the hypercharge of the field.
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0th order question for a 3x3 adjoint:
Is a residual U(2) conserved? 
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The approximate U(2)

0th order question for a 3x3 adjoint:
Is a residual U(2) conserved? 

Breaking of U(2) => sensation!
Can the LHC answer?
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Illustration 

Nir, Planck 2009



Summary

The SM flavor sector is unique

Yields sharp predictions

All so far were verified

Unless NP is ~ MFV or maybe aligned?

Up type FCNC measurements could hold the key

Electroweak & flavor precision tests => NP has non-generic structure

Cannot be the end of the story => baryogenesis
Probably not the end of the story => hierarchy problem



End of the 5th lecture


