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From microsoft.com/en-us/windows7:
Why get Version 7?
• To simplify everyday tasks
• To work the way you want
• To do new things
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One-loop since mid-1990s

Automated NLO computations is an industry today, with
many packages becoming available in the last few years:

• GoSam, HELAC-NLO, aMC@NLO, MadLoop, OpenLoops,
BlackHat, Rocket, . . .

This report: FeynArts (1991) + FormCalc (1995)
FormCalc was doing largely the same as FeynCalc (1992) but used FORM for
the time-consuming tasks, hence the name FormCalc.

• Feynman-diagrammatic method,

• Analytic calculation as far as possible (any model),

• Generation of code for the numerical evaluation of the
squared matrix element.
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Automated Diagram Evaluation

Diagram Generation:

• Create the topologies
• Insert fields
• Apply the Feynman rules
• Paint the diagrams

Algebraic Simplification:

• Contract indices
• Calculate traces
• Reduce tensor integrals
• Introduce abbreviations

Numerical Evaluation:

• Convert Mathematica output to numerical code
• Supply a driver program
• Implementation of the integrals

Symbolic manipulation
(Computer Algebra)
for the structural and
algebraic operations.

Compiled high-level
language for the
numerical evaluation.

FeynArts

Amplitudes

FormCalc

Numerical Code

LoopTools

|M|2 Cross-sections, Decay rates, . . .
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FeynArts

Find all distinct ways of connect-
ing incoming and outgoing lines

CreateTopologies

Topologies

Determine all allowed
combinations of fields

InsertFields

Draw the results
Paint

Diagrams

Apply the Feynman rules

CreateFeynAmp
Amplitudes

further
processing
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Sample CreateFeynAmp output

γ

γ

G

G = FeynAmp[ identifier ,

loop momenta,
generic amplitude,
insertions ]

GraphID[Topology == 1, Generic == 1]
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Sample CreateFeynAmp output

γ

γ

G

G = FeynAmp[ identifier,

loop momenta ,

generic amplitude,
insertions ]

Integral[q1]
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Sample CreateFeynAmp output

γ

γ

G

G = FeynAmp[ identifier,
loop momenta,

generic amplitude ,

insertions ]

I

32 Pi4
RelativeCF .........................................prefactor

FeynAmpDenominator[
1

q12 - Mass[S[Gen3]]2
,

1

(-p1 + q1)2 - Mass[S[Gen4]]2
] .................loop denominators

(p1 - 2 q1)[Lor1] (-p1 + 2 q1)[Lor2] ........ kin. coupling structure

ep[V[1], p1, Lor1] ep*[V[1], k1, Lor2] ...........polarization vectors

G(0)SSV[(Mom[1] - Mom[2])[KI1[3]]]

G(0)SSV[(Mom[1] - Mom[2])[KI1[3]]] ...................coupling constants
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Sample CreateFeynAmp output

γ

γ

G

G = FeynAmp[ identifier,
loop momenta,
generic amplitude,

insertions ]

{ Mass[S[Gen3]],

Mass[S[Gen4]],

G(0)SSV[(Mom[1] - Mom[2])[KI1[3]]],

G(0)SSV[(Mom[1] - Mom[2])[KI1[3]]],

RelativeCF } ->

Insertions[Classes][{MW, MW, I EL, -I EL, 2}]
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Algebraic Simplification

The amplitudes of CreateFeynAmp are in no good shape for
direct numerical evaluation.

A number of steps have to be done analytically:

• contract indices as far as possible,

• evaluate fermion traces,

• perform the tensor reduction / separate numerators,

• add local terms arising from D·(divergent integral),
• simplify open fermion chains,

• simplify and compute the square of SU(N) structures,

• “compactify” the results as much as possible.
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FormCalc Internals

FormCalc

Mathematica
FORM

FeynArts
amplitudes

Analytical
results

Fortran

Generated Code

SquaredME
RenConst

Driver
programs

Utilities
library
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FormCalc Output

A typical term in the output looks like

C0i[cc12, MW2, MW2, S, MW2, MZ2, MW2] *

( -4 Alfa2 MW2 CW2/SW2 S AbbSum16 +

32 Alfa2 CW2/SW2 S2 AbbSum28 +

4 Alfa2 CW2/SW2 S2 AbbSum30 -

8 Alfa2 CW2/SW2 S2 AbbSum7 +

Alfa2 CW2/SW2 S (T - U) Abb1 +

8 Alfa2 CW2/SW2 S (T - U) AbbSum29 )

= loop integral = kinematical variables

= constants = automatically introduced abbreviations
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Abbreviations

Outright factorization is usually out of question.
Abbreviations are necessary to reduce size of expressions.

AbbSum29 = Abb2 + Abb22 + Abb23 + Abb3

Abb22 = Pair1 Pair3 Pair6

Pair3 = Pair[e[3], k[1]]

The full expression corresponding to AbbSum29 is

Pair[e[1], e[2]] Pair[e[3], k[1]] Pair[e[4], k[1]] +

Pair[e[1], e[2]] Pair[e[3], k[2]] Pair[e[4], k[1]] +

Pair[e[1], e[2]] Pair[e[3], k[1]] Pair[e[4], k[2]] +

Pair[e[1], e[2]] Pair[e[3], k[2]] Pair[e[4], k[2]]
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Categories of Abbreviations

In general, the abbreviations are thus costly in CPU time.

It is key to a decent performance that the abbreviations are
separated into different Categories:

• Abbreviations that depend on the helicities,

• Abbreviations that depend on angular variables,

• Abbreviations that depend only on
√
s.

Correct execution of the categories guarantees that almost no
redundant evaluations are made and makes the generated
code essentially as fast as hand-tuned code.
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Fermion Chains

FormCalc uses Dirac (4-component) spinors in most of the
algebra (extension to D dim more obvious).

Move to 2-comp. Weyl spinors for the numerical evaluation:

〈u|
4
≡
(
〈u+|2 , 〈u−|2

)
, |v〉

4
≡
(

|v−〉2
|v+〉2

)

.

Every chiral Dirac chain maps onto a single Weyl chain:

〈u|ω−γµγν · · · |v〉 = 〈u−|σµσν · · · |v±〉 ,
〈u|ω+γµγν · · · |v〉 = 〈u+|σµσν · · · |v∓〉 .

FORM-like notation: 〈u| σµσνσρ |v〉 kµ1 εν2k
ρ
3
≡ 〈u| k1ε2k3 |v〉 .
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Numerical Evaluation

user-level code included in FormCalc, “parameter card”

generated code, “black box”

Cross-sections, Decay rates, Asymmetries . . .

SquaredME.F
master subroutine

abbr0s.F

abbr0angle.F
...







abbreviations
(invoked only

when necessary)

born.F

self.F
...







form factors

xsection.F
driver program

run.F
parameters for this run

process.h
process definition

main.F

CPU-time (rough)

compute abbrtree
}

5%

compute abbr1-loop
}

95%

compute M
tree

}

.1 %

compute M
1-loop

}

.1 %
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The Case for Mathematica

Several packages make it a selling point that they are
“100% free of Mathematica.”

• Use of Mathematica is a feature, not a bug.

• Mathematica’s language makes it easy for the user to
examine and modify results, without having to contact
the package authors.

• Mathematica is known and available to most physicists.

• Mathematica is far more powerful than Python or other
free symbolic languages.
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FormCalc 7 – ‘The Parallel Release’

New Features:

• Unitarity methods (OPP),

• Parallelization of the helicity loop,

• C output and Improved code generation,

• Command-line parameters for model initialization,
MSSM (SM) initialization via FeynHiggs,

• Analytic tensor reduction,

• Auxiliary functions for operator matching.

Cuba:

• Built-in Parallelization.
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Unitarity Debunk

Many packages claiming to use Unitarity Methods in fact
perform perfectly ordinary Feynman-diagrammatic
computations with the usual double-factorial growth.

They use Unitarity Methods ‘only’ for the computation of the
tensor integrals, i.e. instead of Passarino–Veltman tensor
decomposition.

FormCalc is no different.
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Unitarity Methods

Work done in collaboration with E. Mirabella.

We employ the OPP (Ossola, Papadopoulos, Pittau) methods
as implemented in the two libraries CutTools and Samurai.

Instead of introducing tensor coefficients, the numerator is put
into a subroutine which is sampled by the OPP function, as in:

εµ
1
εν2Bµν(p,m

2
1,m

2
2) = Bcut(2, N, p,m2

1,m
2
2)

where

N(qµ) = (ε1 · q) (ε2 · q)
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Unitarity Methods

So far tested on a handful of 2 → 2 and 2 → 3 processes, get
agreement to about 10 digits.

Interfacing with CutTools and Samurai quite similar, handled
by preprocessor (no re-generation of code necessary).

Performance somewhat wanting as of now,
Passarino–Veltman beats naive OPP hands-down in the
processes we looked at.

Main problem: OPP integrals are evaluated for every helicity
configuration, but only once in Passarino–Veltman
decomposition.

OPP optimization is work in progress.
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Optimizing OPP Performance

• Option to specify the N in N -point up to which
Passarino–Veltman is used, above OPP.

• Minimize OPP calls to reduce sampling effort, e.g. by
collecting denominators, as in:

N4

D0D1D2D3

+
N3

D0D1D2

→ N4 +D3N3

D0D1D2D3

• Switch off simplifications that break up loop integrals,
e.g.

q2

(q2 −m2)D1D2

=
1

D1D2

+
m2

(q2 −m2)D1D2

Better performance calling OPP routine once with more
complicated integral than twice with simpler integrals.
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Optimizing OPP Performance

MadLoop and OpenLoops do this:
Move helicity sum into numerator in interference term,

∑
λ

2ReM∗
0

∫
d4q

N

D · · ·
︸ ︷︷ ︸

∼M1

=

∫
d4q

∑λ 2ReM∗
0N

D · · ·

Disadvantages:

• Applicable only if tree-level 6= 0.

• Not obvious how to efficiently join with present
abbreviation concept.
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Optimizing OPP Performance

• Profiler pointed out bottleneck in Fermion Chains.
Now evaluated in single inlined function call:

〈u| σµσνσρ |v〉 kµ1 kν2k
ρ
3
= 〈u| k1k2k3 |v〉

old = SxS(u, VxS(k1, BxS(k2, VxS(k3, v))))

new = ChainV3(u, k1, k2, k3, v)

• Take into account helicity information for massless
fermions, as in:

Dcut(3, N, 1− Hel1, . . . )

Evaluate integrals only if “hel-delta” argument is
non-zero.
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Parallelization of Helicity Loop

Perhaps the most obvious way to tackle the OPP-induced
slowdown is to parallelize the helicity loop.

FormCalc does not insert helicities in the algebra, i.e.

M = M(λ1, λ2, . . . ) FormCalc

M = {M−−···,M+−···,M−+···,M++···} e.g. GoSam

Evaluation of matrix element in FormCalc is thus classical
SIMD: Single Instruction Multiple Data.

Run same code (M) for different data (λi).

At least conceptually simple to parallelize.
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Implementational Issues

• Organize variables such that only helicity-dependent
ones need to be transferred to workers. Changes in
LoopTools necessary to control cached loop integrals.

• Reorganization of squared matrix element computation
and actual parallelization code fairly straightforward.

• Uses same fork-based method as Cuba, details see later.

• Not clear yet how best to divide cores between this and
Cuba’s parallelization, at least on a single CPU. Perhaps
go to GPU.

• Brand-new implementation, no performance figures yet,
preliminary results promising.
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Code generation

Traditionally: Output in Fortran.
Code generator is rather sophisticated by now, e.g.

• Expressions too large for Fortran are split into parts, as in

var = part1

var = var + part2

...

• High level of optimization, e.g. common subexpressions
are pulled out and computed in temporary variables.

• Many ancillary functions make code generation versatile
and highly automatable, such that the resulting code
needs few or no changes by hand.

Example: a significant part of FeynHiggs has been generated
this way.
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C Output and Improvements in Code Generation

• Output in C99 available now, makes integration into
C/C++ codes easier and allows for GPU programming.

SetLanguage["C"]

• Code better structured, e.g.

• Loops and tests handled through macros, e.g.
LOOP(var, 1, 10, 1) . . . ENDLOOP(var)

• Sectioning by comments, to aid automated
substitution e.g. with sed, e.g.
∗ BEGIN VARDECL . . . ∗ END VARDECL

• Introduced data types RealType and ComplexType for
better abstraction, can e.g. be changed to different
precision.
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Command-line parameters for model initialization

Extension of command-line argument parsing:

run :arg1 :arg2 ... uuuuu 0,1000

The ‘:’-arguments are passed to model initialization code.

Internal routines in xsection.F accordingly have additional
parameters argv, argc.

Application: FeynHiggs as Frontend for FormCalc-generated
code (model_fh.F)

run :fhparameterfile :fhflags uuuuu 0,1000

• FeynHiggs initializes MSSM (SM) parameters and passes them to
FormCalc code.

• No duplication of initialization code.

• Parameters consistent between Higgs-mass and cross-section
computation.
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Analytic Tensor Reduction

Work done in collaboration with S. Agrawal.

Passarino-Veltman reduction is still useful. So far:

• introduction of tensor coefficients in FormCalc, e.g.

∫
d4q

qµqν
D0D1

∼ Bµν = gµνB00 + pµpνB11

• complete reduction to scalars only numerically in
LoopTools.

Available now: Analytic Reduction in FormCalc.

CalcFeynAmp[..., PaVeReduce -> True]
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Analytic Tensor Reduction

Reduction formulas from Denner & Dittmaier, hep-ph/0509141.
Not straightforward to implement in FORM.

Apart from analytic considerations, this is useful e.g. for
low-energy observables, where small momentum transfer may
lead to numerical instabilities in numerical reduction, as in:

Bµ = pµB1 for p → 0

Unless FormCalc finds a way to cancel it immediately, the
inverse Gram determinant appears wrapped in IGram in the
output, so is available for further modifications.
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Aiding Operator Matching

As numerical calculations are done mostly using Weyl-spinor
chains, there has been a paradigm shift for Dirac chains to
make them better suited for analytical purposes, e.g. the
extraction of Wilson coefficients.

• The FermionOrder option of CalcFeynAmp implements
Fierz methods for Dirac chains, allowing the user to force
fermion chains into any desired order. This includes the
Colour method which brings the spinors into the same
order as the external colour indices.

• The Antisymmetrize option allows the choice of
completely antisymmetrized Dirac chains, i.e.
DiracChain[−1, µ, ν] = σµν .

• The Evanescent option tracks operators before and after
Fierzing for better control of ε-dimensional terms.
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Cuba Parallelization: Design Considerations

• 1 Master, N workers on N -core system.
Master generates all samples, thus no issues with seeding
random-number generators.

• No parallelization across the network (e.g. via MPI).
OS functions only, no extra software needed.
Mathematica separate: re-define MapSample e.g. by ParallelMap.

• Uses internal cores ‘only’, thus e.g. 4 or 8.
(Many) more cores not necessarily useful since speed-ups not
expected to be linear.

• Auto-detect # of cores + load at run-time.
User control through environment variable CUBACORES.
No re-compile necessary.
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fork vs. pthread_create

• pthread_create creates additional thread in
same memory space.

• fork creates completely independent process.

• Must use fork for non-reentrant integrands.
Reentrancy cannot be fully controlled e.g. in Fortran.

• Keep fork calls minimal: ‘Spinning Threads’ method
= fork N times at entry into Cuba routine.
No fork in Windows, Cygwin emulates but quite slow.
Despite ‘copy-on-write’ (Linux), fork is moderately ‘expensive’ even
on Linux/MacOS.

• Master–worker communication:
(if available:) shared memory for samples,
socketpair I/O for control information (creates scheduling

hint for kernel, too).
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Implementation

• Main sampling routine DoSample already abstracted in
Cuba 1, 2 since C/C++ and Mathematica implementations
very different.

• DoSample straightforward to parallelize on N cores:

Serial → sample n points

Parallel → send ⌈n/N⌉ points to core 1
→ send ⌈n/N⌉ points to core 2
→ . . .

• Fill fewer cores if not enough samples.

• Divonne: Parallelizing DoSample alone not satisfactory.
Speed-ups generally . 1.5.
Partitioning phase significant. Originally recursive, had
to ‘un-recurse’ algorithm first.
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Inefficiencies

Assess parallelization efficiency through

speed-up =
tserial

tN -cores
ideally = N.

• Parallelization overhead = Extra time for communication,
scheduling efficiency etc.
Overhead can be estimated through tserial/t1-core < 1.

• Load levelling = Keeping cores busy. If only N − n busy,
absolute timing may be ok but N -core speed-up lousy.

• Caveat: Hyperthreading, e.g. i7 has 8 virtual, 4 real cores.

Speed-ups will obviously depend on the ‘cost’ of the
integrand: The more time a single integrand evaluation takes,
the better speed-ups can be expected to achieve.
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Cuba Comparison

Cuhre

Divonne

Suave

Vegas

εrel = 3 × 10−3

e+ e− → t̄ t γ

Number of regions

√
s/GeV

1000900800700600500400

104

103

102

101

100

Integrand evaluations

√
s/GeV

1000900800700600500400

106

105

104

103

‘Gauge’ integration problem first:

• Compute with all four routines.

• Check whether results are consistent.

• Select fastest algorithm.
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Timing Results

Cuhre
Divonne

Suave
Vegas

integrand 1, delay 1000µsec

87654321

7

6

5

4

3

2

1

Cuhre
Divonne

Suave
Vegas

integrand 1, delay 10µsec

87654321

7

6

5

4

3

2

1

f1 = sinx cos y exp z

εrel = 10−4

Cuhre
Divonne

Suave
Vegas

integrand 11, delay 1000µsec

87654321

7

6

5

4

3

2

1

Cuhre
Divonne

Suave
Vegas

integrand 11, delay 10µsec

87654321

7

6

5

4

3

2

1

f11 = Θ(1− x2 − y2 − z2)
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Summary

New Features in FormCalc 7: feynarts.de/formcalc

• Unitarity methods (OPP) using Samurai or CutTools,

• Parallelized helicity loop,

• C output and Improved code generation,

• Command-line parameters for model initialization,

• Initialization of MSSM parameters via FeynHiggs,

• Analytic tensor reduction in CalcFeynAmp,

• Options aiding operator matching (Fierz, antisymmetry,
evanescent operators).

Cuba: feynarts.de/cuba

• Built-in Parallelization available simply by compiling
with Cuba 3.
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