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QCD stands as a very solid building block of the SM

The unbroken gauge symmetry of the SM is SU(3)xU(1)Q

For many years the field theory of reference was QED,
now QCD is a more complex and intriguing framework

QCDxQED

Due to asymptotic freedom, actually QCD is a better
defined theory than QED (which has a bad UV limit)

Comparison with experiment is excellent 

Steady progress in techniques to extract precise
predictions (higher order perturbative, non perturbative, 
lattice, event generators and simulations)



Defs:
(CABC: SU(3) struture constants, tA: generator representation)

(gA
µ is a gluon field)

;  (D: covariant derivative)

(es: SU(3) gauge coupling)

QCD is an unbroken SU(3) gauge theory with triplet quarks

Dµ = ∂µ + iesgµ



but with an extremely rich dynamical content:

QCD is a "simple" theory

• Confinement
• Complex hadron spectrum (light and heavy quarks)

• Spontaneous breaking of (approx.) chiral symm.
• Phase transitions

[Deconfinement (q-g plasma), chiral symmetry restauration,…...]

• Highly non trivial vacuum topology
[Instantons, U(1)A symm. breaking, strong CP violation (?)]

• Asymptotic freedom
• • •



How do we get predictions from QCD?

• Non perturbative methods
•Lattice simulations (great continuous progress)
 •Effective lagrangians

* Chiral lagrangians
* Heavy quark effective theories

*********
•QCD sum rules
•Potential models (quarkonium) 

• Perturbative approach
Based on asymptotic freedom.
It still remains the main quantitative connection 
to experiment.

* Soft Collinear Effective Theory (SCET)



Hashimoto

The main tool for non perturbative QCD
in continuous progress

38



Major progress in recent years

Much more powerful computers now allow for:

Finer lattice spacing   a-> 0 (continuum limit)

Larger volume    L = Na, larger N

Smaller quark masses (realistic π mass, mπ
2 -> 0)

Unquenching (taking quark loops into account)

Improved lagrangians [o(a2]

in most cases, corrections exp. down: e-kV

large q masses numerically simpler:
smaller wavelenghts need smaller V

extrapolation guided by resummation of chiral logs

A review:
Kronfeld, 1203.1204



Fermions on the lattice

a generic average:

imaginary time

By integrating fermions away:
unquenching:
effect of sea

propagator of valence
quark in coloured medium

most realistic 
results for
nf=2+1
   (u,d)+s



Roma

a compromise between
efficiency and theoretical
purity is needed

Different methods for fermions on the lattice



c log(mq/1GeV)

fπ

Kronfeld



‘07

The quenched approximation (QA) is superseded: what was 
rough agreement in QA is now precise with unquenching

quenched unquenched
old new



Unquenched lattice simulations reproduce spectrum well

Note:
p/ρ ~ 1.2
not 1.5
as from
3q/2q

Zanotti
ICHEP ‘12



Unquenched lattice simulations reproduce spectrum well

Here the 
focus is 
on strange
particles

Kuromashi Wilson Nf=2+1



Quark Masses

eg the strange quark



Lattice is playing an increasingly important role in 
flavour physics 

Davies LP’07



Examples



Zanotti
ICHEP ‘12

RGE invariant



Confinement: no free coloured particles

q-q potential:

short long dist.

q

hadrons

e-

e+

e+ e-

jet 

jet

q q

qqq q

Has been studied
in lattice QCD

q

The string breaks up 
like a magnet

The remnant
of q is a jet
of colourless
hadrons



Potential in units of kT (k=1) as function of R
in units 1/T, for different β=1/T

 The linearly rising term slope vanishes at TC

V(R,T)=V0+σ(T)R+CTln(2RT)

quenched approx.

Lattice QCD offers the most convincing evidence of confinement

Kaczmarek et al ‘00 Potential between 
static quarks 
on the lattice



At T>TC the slope at large R remains zero

TC depends on the number of quark flavours
TC ~ 175 MeV



The QCD phase diagram
Studied on the lattice and probed by 
colliding heavy ions at AGS, SPS, RHIC, LHC (ALICE, ATLAS, CMS)



Lattice QCD predicts a rapid transition, with correlated
deconfinement and chiral restauration

But not a phase 
transition,
rather a smooth
cross over

Bazavov et al, 
1111.1710 



The order of the phase transition is a function of mq

1st order

1st order

crossover

physical 
point





Karsch LAT’07



In the limit mu, md -> 0 the QCD Lagrangian is 
U(2)LxU(2)R symmetric

The 3 pions are the would be Goldstone bosons from the
breaking of the axial SU(2):

U(2)LxU(2)R --> SU(2)VxU(1)V xU(1)A 

isospin u+d baryon number

broken by
instantons

But no parity doublets in the hadron spectrum:
the symmetry is spontaneously broken by qq condensates

The quark condensate has been computed on the lattice:

uu+dd
Fukaya et al 1012.4052

Chiral symmetry and its breaking



Strong CP violation: possible new physics ?

The axial anomaly breaks the singlet axial current

 
∂µ j5

µ =
α s

4π
Tr(Fαβ F

αβ )
 
Fαβ =

1
2
εαβγδFγδ

As an effect a term is added to the lagrangian

 
ΔL = θ α s

4π
Tr(Fαβ F

αβ )

where θ arises from the topology of the vacuum in 
non abelian gauge theories which is far from trivial: 

θ = θinstantons+ Arg Det m m quark mass matrix



θ is expected to be o(1). But it would contribute to the 
neutron electric dipole moment:

 dn (e ⋅ cm)  3 ⋅10
−16θ

From experiment: θ ≤ 10−10

The “strong CP problem” consists in finding an
explanation:

- Non rinormalisation theorem in SUSY 
- An ad hoc symmetry (Peccei-Quinn) 
   spont. broken --> axion
- Something not understood on vacuum topology?
   ••••••



CPV in FC channels is 
dominated by CKM

What in flavour conserv.
channels?

present limit on nEDM
from Grenoble

|dn| < 3 10-26 e cm (90%cl)



LHC Heavy Ion Experiments (ALICE, ATLAS, CMS)

7 TeV p-p com energy corresponds to 7x82 = 574 TeV Pb-Pb

Pb has 82 protons and 208 nucleons: 574/208 = 2.76 TeV

Or 2.76 TeV for each NN pair

From the measured ch. particle multiplicity/unit rapidity
dNch/dη ~ 1600 (in most central collisions) one estimates:

ε0 ~ 146 GeV/fm3, T ~ 640 MeV ~ 4 Tc 

A review: B. Muller, Schukraft, Wyslouch  ArXiv:1202.3233





Strangeness enhancement
for central events
[0-20% means most central]

nh/nl ~ exp -[mh-ml]/kT

statistical model
reproduces yields well
(some p deficit?)



Elliptic flow: a tool to study the primeval final state

v1-6 now 
measured

coord. space
mom. space



dN
dφ

~ 1+ 2v2 cos 2 φ − φ0( )⎡⎣ ⎤⎦ + ......( )

Hydrodynamic calc’ns depend on η/s (shear viscosity/entropy
density).

dominant anisotropy parameter

Luzon (QM12)

η/s~0.2



For a perfect quantum fluid η/s ~ 1/4π ~ 0.08

On the basis of the AdS/CFT correspondence it is 
conjectured that this is a lower limit in real QCD

η/s can be determined 
from the pT or the
centrality distributions
with compatible results

Small values of η/s are 
obtained: 0.07 - 0.43.
More precision possible
in near future.

In summary: 
the hot dense matter formed is close to a perfect fluid



EW probes (W, Z, γ) are not suppressed in the medium

RAA:
ratio PbPb/pp

CMS



RHIC



In most central events the energy 
unbalance of the 2 jets is increased

ATLAS



Open charm and beauty (D and B mesons) are suppressed



J/ψ  suppression at the start (SPS) was thought to be a 
clear indicator of colour screening. 

Interpretation of data at 
RHIC and the LHC demands
both screening and
recombination
(late formation of J/ψ  from
charm quarks in the medium)



b-onium suppression (less affected by recombination)



Conclusion

Heavy Ion collisions have demonstrated the formation of a
strongly interacting, hot, near perfect liquid. 

Additional properties of this liquid like shear viscosity, 
equation of state and sound velocity are under continuing 
study.

The reconstructed temperature and energy density are 
compatible with what expected for quark-gluon plasma. 



Defs:
(CABC: SU(3) struture constants, tA: generator representation)

(gA
µ is a gluon field)

;  (D: covariant derivative)

(es: SU(3) gauge coupling)

QCD is an unbroken SU(3) gauge theory with triplet quarks

Dµ = ∂µ + iesgµ



Physical QCD vertices

-iesγµtA

µ

pµA

qνBrλC

p+q+r=0

esCABC[gµν(p-q)λ+perm]

λA µB

ρDνC

-ies
2 [ CABFCCDF (gλν gµρ− gλρ gµν)+perm]

Note: es
2



Classical gauge th. lagrangian

Quantisation Gauge fixing terms
Ghosts

Feynman  rules

Infinities

Perturbation Theory

Regularisation
Renormalisation

Perturbative quantum gauge th.

Cutoff Κ
Redefinition of m, αs ,
Zi (wave funct.n norm'ns)



Perturbative QCD and scale invariance 

In the QCD lagrangian

quark masses are the only parameters with dimensions.

Naively we would expect massless QCD to be scale invariant
(dimensionless  observables should not depend on the absolute
energy scale, but only on ratios of energy variables)

The massless limit should be relevant for the asymptotic large
energy limit of processes which are non  singular for m -> 0.



This naïve expectation is false!

For massless QCD the scale symmetry of the classical theory is
destroyed by regularisation and renormalisation which
introduce a dimensional parameter in the quantum
version of the theory (ΛQCD).

[When a symmetry of the classical theory is necessarily 
destroyed by quantisation, regularisat.n and renorm.n 
one talks of an "anomaly"]

While massless QCD is finally not scale invariant, the departures
from scaling are asymptotically small, logarithmic and
computable (in massive QCD there are
additional mass corrections suppressed by powers of m2/E2).



Hard processes

At the "parton" level (q and g) we can apply the asymptotics
from massless QCD to processes with the following properties:

• finite for m -> 0 (no mass singularities.)

• no infrared and collinear singularities ("infrared safe")

• all relevant energy variables are large
Ei= xiQ Q>>m xi : scaling variables

To satisfy these criteria processes must be sufficiently
"inclusive":

• add all final states with massless gluon emission

• add all mass degenerate final states (e.g. q-qbar pairs)



Bloch-Nordsieck Theorem:
Infrared singularities cancel between real and virtual
diagrams when all resolution indistinguishable final states are
added up.

+ +  …..
2 +

+ +
2

Kinoshita-Lee-Nauenberg Theorem:

Mass singularities are absent if all degenerate states are added
up (including collinear qqbar pairs for massless q).
If an inclusive final state is taken, only the mass singularities
from the initial lines remain.

(Will be absorbed inside the initial parton densities)



Note: We compute inclusive rates for partons and take them 
as equal to rates for hadrons. 

Partons and hadrons are considered as two equivalent sets
of complete states.

This is called "global duality" and is rather safe in the totally
inclusive case.
It is less so for distributions, like dσ/dM in the invariant mass
M ("local duality") where it is reliable only if smeared over a
sufficiently large bin of M.

τ-

ν

W- d

u
M



Regularisation and Renormalisation

• A dimensional "cut off" Κ is introduced
(must be gauge invariant)

• The dependence on the cut-off is eliminated by a
redefinition of m, es and Z using suitable renormalisation
conditions.

In general:

Renormalized mass: position of the propagator pole.
Wave funct'n renormalization Z: residue at the pole.

The renormalized coupling es is, for example, defined in
terms of a renormalized 3-point vertex at some momenta.



In particular in massless QCD:

If we start with m0=0 the mass is not renormalized because it
is protected by a symmetry (chiral symm.) -> m=0

The coupling es can be defined in terms of the 3-gluon
coupling at a scale -µ2:

p2

q2r2 Vren(- µ2, - µ2, - µ2) = es

• The scale µ cannot be zero (infrared singularity)!  

• - µ2<0: no absorptive parts

(Z=Zg
-3/2

 for V 1PI)
Vbare(p2,q2,r2)=Z Vren(p2,q2,r2)

Similarly Zg can be defined by the inverse propagator at
p2= - µ2 P−1

bare = Zg
−1P−1

ren

Ward id. guarantee 
the same result 
starting from any 
other vertex



Computing all 1PI diagrams (with cutoff  Κ)

+ + + ….

   Note:      VBare depends on Κ but not on µ

Both Z and Vren depend on µ

p2=q2=r2

V0 starts with e0
ie tensor structure
factorized

e0=Zg
-3/2ZVe

Not 1PI

at 1 loop

Vbare = e0 1+ cα s log
K 2

p2
+ ....

⎡

⎣
⎢

⎤

⎦
⎥ =

= 1+ cα s log
K 2

−µ2 + ....
⎡

⎣
⎢

⎤

⎦
⎥e0 1+ cα s log

−µ2

p2
⎡

⎣
⎢

⎤

⎦
⎥ = ZV

−1e0[..] =

= 1+ dα s log
K 2

−µ2 + ....
⎡

⎣
⎢

⎤

⎦
⎥e 1+ cα s log

−µ2

p2
⎡

⎣
⎢

⎤

⎦
⎥ = Zg

−
3
2Vren



In general:

Renormalisation group equation

GBare(Κ2, α0, pi
2)=Z Gren(µ2, α, pi

2)
so that:

or

Finally the RGE can be written as:

(We write α for α or αs in QED or QCD)

This is a relation among physical quantities (no cutoff Κ)



Consider the RGE:

applied to some hard process at a large scale Q : Gren ->
F(t,α,xi) where xi are scaling variables (omitted in the
following), and

Assume F is adimensional, then in the naïve scaling limit F
would be independent of t.

We want to solve the RGE equation:

with a given boundary cond.: F(0,α) specified.



Given the general  RGE:

The solution, with boundary cond. F(0,α), is:

The important point is the appearance of the running coupling
that determines the asympt. behaviour.

F(t,α ) = F[0,α(t)]exp γ (α ')
β(α ')α

α (t )

∫ dα '

where the "running coupling" α(t) is defined by:

Note: at t=0, α(0) = α.      One has:



The running coupling

The running coupling α(t) is fixed by the
beta function:

The µ dependence starts at 1-loop:

q + +….e
ee

or

QCD or QED

Recall: in QCD
Ward id. guarantee 
the same result 
starting from vertex



By explicit calculation at 1-loop one finds:

QED:  β(α) ~ + bα2 + ...

QCD: β(α) ~ - bα2 + ...

The sum is over all fermions of charge Qe

nf is the number of quark flavours

Recall:

If α(t) is small, we can compute b in pert. th. The sign in front
of b decides whether: α(t) increases with t or Q2 (QED)
or α(t) decreases with t or Q2 (QCD).

QCD is "asymptotically free". In 4-dim all and only
non-abelian gauge theories are asympt. free.

NC=1 for leptons,
      3 for quarks

Here NC =3



Going back to the equation:

We replace β(α)~±bα2, integrate and do a small algebra. We
find:

In QCD we have:

Note
• α decreases logaritmically in Q2

• a dimensional parameter Λ= ΛQCD replaces µ.

α(0)=α t=0 -> Q=µ

ΛQCD



  β(α) ~ ±bα2(1+b'α+….)
In general the pert. coeff.s of β(α) depend on the def. of α, the
renorm. scheme etc. But both b and b' are indep.

Here is  a sketch of the proof:

QCD: 

Taking b' into account:



Summarising: the running coupl. α(Q2) is the crucial quantity:

No hierarchy problem in QCD!
ΛQCD = 218±24 MeV (Nf=5)

ΛQCD is the scale that breaks 
scale inv. in massless QCD

The ρ mass etc are due to ΛQCD  
not to mq

MS(bar), nf=5:
4th: van Ritbergen, Vermaseren, Larin (1997)
~ 50.000 4-loop diagrams!!



Dependence of Λ from nf

QED and QCD are theories with decoupling: quarks with
mass m>Q do not contribute to the running of α  up to the
scale Q.
So for 2mc<Q<2mb the relevant asymptotics is for nf=4, while
for 2mb<Q<2mt nf=5.

Going across the 2mb threshold, the β(α) coeff.s change, so
the α(t) slope changes. But α(t) is continuous so that Λ4 and
Λ5 are different:

α(t)

2mb

From matching α(Q2)
−−−>    Λ5~0.65 Λ4



Examples of important hard processes

• e+e- -> hadrons

At parton level the final state is

(i.e. totally inclusive). The conversion of partons into
hadrons does not affect the rate (some smearing over a Q
bin can be needed for probability 1)

• l + N -> l' + hadrons 
(Deep Inelastic Scattering: DIS)

Qp

P'(p+p')2=s=Q2

qq + n  gluons + n' qq pairs

k
k '

q

p



R=σ(e+ e- -> hadrons)/σ(e+ e- -> µ+ µ-)

The simplest application is to the process:

For this process γ(α)=0: renorm. of charge is the same for
quarks and leptons!

Charge renorm in QED at 1 loop:

γ

f

f

Only Zγ (marked with arrow) survives.
ZV

-1 and Zf cancel by Ward identity. No αs terms (gluon
exchange) at 1 loop in the γ-blob Zγ.

+ + +

+ +

F(t,αs)

Zγ ZV
-1

Zf

t=logQ2/µ2

e0= Zγ
-1/2 Zf

-1ZVe =
= Zγ

-1/2e

Here is the connected
Green 3-p function



R = NCΣQ2 F(t,αs) = NCΣQ2[1+0(αs)]

γ + +...

+

+
2

2
+...

The RGE prediction is:

with

that is at 2-loops (no αst, αs
2t2 terms, coeff αs

2t fixed…):

;  c2,c3, c4 also known (dep. on def. αs)



In MS with nf=5 for e+e- ( as = αs(Q2)/π)

Note: the sub-leading coeff.s depend on scale choice:
if instead of Q was Q/2 they would change.

Similar perturbative results at 3-loops exist for Γ(Z->hadrons)/
Γ(Z->leptons), Γ(τ->ντ+hadrons)/ Γ(τ->ντ+leptons), etc

The pattern of power corrections is controlled by the light-
cone operator expansion:

R(Q2)=3 ΣfQf
2 [1+as +1.4097as

2 -12.76709as
3 - 80.0075as

4+...]



Light Cone Operator Product Expansion

Re+e- ~ Π(Q2)

For Q2 -> infinity the x2 -> 0 region is dominant. To all orders
in pert. th. the OPE can be proven. Schematically, dropping
Lorentz indices, near x2~0:

I(x2), E(x2),..,cn (x2),.., c-number sing.
On: string of local operators.

Wilson; Brandt, Preparata

σe+e- ~ LµνTµν



E(x2) is the sing. of free field th., I(x2), cn(x2) contain powers of
log(µx) in interaction.  I(x2) is the most sing. in x2 .
Some On are already present in free field th., more appear in
interaction.

Π(Q2) is related to the Fourier transform. Less  sing. terms in x2

("higher twist") lead to power suppressed terms in 1/Q2.

The pert. terms come from I(x2). Down by 1/Q2 are mass terms
(e.g. mb

2/Q2). Dimension 4, 6... operators are suppressed by
1/Q4, 1/Q6 …

Note: gµgµ not gauge invariant



Deep Inelastic Scattering has 
played a capital role in the 
development of QCD

l + N -> l' + X,      l=e,µ,ν

From the beginning:  Establishing quarks and gluons as partons
         Constructing a field theory of strong int.ns
and along the years: Quantitative testing of QCD

Totally inclusive
QCD theory of scaling violations crystal clear
(based on ren. group and operator  exp.)
Q2 dependence tested at each x value)
Measuring q and g densities in the nucleon
Instrumental to compute all hard processes
Measuring αs
Always presenting new challenges, e g:
Structure functions at small x; heavy flavour structure functions;
polarized parton densities, g1, g2, h1...; non forward pdf’s
Diffraction

•Many structure functions
•Fi(x,Q2): two variables
•Neutral currents, charged currents
•Different beams and targets
•Different polarization



Structure functions lµν: leptonic
Wµν: hadronic

/m2+



•Approximate Scaling Bjorken

•Success of Naive Parton Model Feynman

From constituent quarks (real? fictitious?) to parton quarks
(real!)

Early crucial breakthroughs

•R= σL/σT  ---> 0  Spin 1/2 quarks
•~50% of momentum carried by neutrals     Gluons
•Quark charges:

F=2F1~F2/x
                              ...... = small sea

Fγp=4/9 u(x) + 1/9 d(x) + ......
Fγn=4/9 d(x)  + 1/9 u(x)  + ......
Fνp~ Fνn = 2 d(x)  + ......
Fνn~ Fνp = 2 u(x)  + ......

F= F(x), u=u(x), d= d(x): 
naive parton model (scaling)  

σL~0

•
•• •• d

u



In QCD there are log scaling violations induced by αs(Q2).

p

q

yp

q0(y)

σpoint

QCD modifies σpoint at o(αs)

Born: σpoint-> e2δ(x/y-1)
2F1= e2q0(x)

γ
g +….

2

+

γ
g

+

+
g 2

+…+



The result is of the form (y>x)

The log is from the collinear sing. of the incoming quark leg.
In a special gauge, (axial or physical gauge) the dominant
real diagram is:

γ

g

k
h

r

pT: r transverse mom. (propag)2 ~ (1/pT)4

Num~(pT )2  (helicity non cons. at θ=0)



We factorise the mass sing. into the quark parton density (non
perturbative):

We replace: q0(x) -> q(x,t)= q0(x)+Δq(x,t): effective, Q2-dep.
parton density.

According to the RGE, now αs -> αs(t)

(All integrals from x to 1)

Δq(x,t) = α s

2π
t dy

yx

1

∫ q0 (y)P(
x
y
)



The t-evolution eqs. become non diagonal as soon as gluon
partons are also included:

g

γ
The full set becomes

Recall:

The quark density with fraction y times the probab. of a gluon
in a quark with fraction x/y of the parent long. mom.



The LO form of the splitting functions can be derived directly
from the QCD vertices (process indep.: factorisation)

Def.:

Note quark conserv. fixes the δ
terms of Pqq

Similarly for Pgg via momentum
conservation



For many years all splitting funct.s P have been known to 
NLO accuracy: αsP ~ αsP1+αs

2P2 +....... 
GLAP, Floratos et al; Gonzales-Arroyo et al; Curci et al; Furmanski et al

Finally, in 2004, the calculation of the NNLO splitting functions
has been totally completed αsP ~ αsP1+ αs

2P2 + αs
3P3+.......

Moch, Vermaseren, Vogt

A really monumental, fully analytic, computation

Then the complete, analytic NNLO results have been
derived for the first few moments (N<13,14).

Larin, van Ritbergen, Vermaseren+Nogueira

Splitting functions



Proton Structure 
Function F2(x,Q2)

The scaling violations are 
clearly observed
and the (N)NLO QCD fits 
are remarkably good.



Example of NLO 
QCD evolution fit



This is how the scaling 
violations appear now
after 40 years of DIS
measurements



It took ~40 years to get meaningful data on the longitudinal 
structure function!!

nf=4
FL (x,Q

2 ) = α s (Q
2 )

2π
x2 dy

y3x

1

∫
8
3
F2 (y,Q

2 ) + 40
9
yg(y,Q2 )(1− x

y
)⎡

⎣
⎢

⎤

⎦
⎥

Altarelli, Martinelli ‘78
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PDG’10 summary on αs(mZ) MSMeasurements of αs(mZ) 

The official compilation due to Bethke is reproduced here:

The agreement among so
many different ways of
measuring αs is a strong
quantitative test of QCD

New preliminary Bethke value ‘11
αs(mZ) = 0.1183±0.0010



However for some entries the stated errors are taken directly
from the original works and are not transparent enough
(e.g. the lattice determination)

In my opinion one should select few theoretically cleanest
processes for measuring αs and consider all other ways as
tests of the theory

Note that in QED α is measured from one single very precise, 
very clean observable (at present the electron g-2)

The cleanest processes are the totally inclusive ones 
(no hadronic corrections) with light cone dominance,
like Z decay, scaling violations in DIS and perhaps τ decay
(but for τ  the energy scale is low)



The main inclusive methods for αs at LEP/SLC are:

• inclusive Z decay, Rl, σl, σh, ΓZ
• inclusive τ decay

δQCD is known to (N)NNLO accuracy:

Here Q=mZ or mτ

Clearly the Z case is apriori more reliable because mZ>>mτ .

δNP are power suppressed (1/Q2)n terms governed by the OPE.

recently
completed

δQCD = c1(
α s (Q)
π

) + c2 (
α s (Q)
π

)2 + c3(
α s (Q)
π

)3 + c4 (
α s (Q)
π

)4 + ...



Inclusive Z decays

Rl only (traditionally used for no
good reason): αs(mZ)=0.1226±0.0038

σl is more sensitive to αs: 
αs(mZ)=0.1183±0.0030

Better, one can use all info from 
Rl, ΓZ, σh, σl …and in general take αs(mZ) 
as a parameter to be fitted from the EW 
precision tests

αs(mZ)=0.1187±0.0027
One obtains (with only c1-3 included):

LEP1 only:
All EW Data (also mW...): αs(mZ)=0.1186±0.0026

Apriori the main theor. errors are higher QCD orders (c4...).
Error from power corrections very small.
In addition, th. error from possible new physics (eg in Zbb vertex).

a bit large!

(assuming the SM, mtexp, mHexp):



Inclusive hadronic Z and τ decay at o(αs
4) (NNNLO!!)

Baikov, Chetyrkin, Kuhn ‘08
Baikov, Chetyrkin, Kuhn, Rittinger ‘12

o(αs
4) terms complete for τ and Z hadronic decay

R=R0 [1+as +0.76264 as
2 -15.49as

3 - 68.2as
4+...] 

nf=5, as=αs(mZ
2)/π

~20.000 diagrams

Can be used to improve αs from Z

αs(mZ
2)= 0.1186---> 0.1190±0.0025

For example, Z decay, R = Γh/Γl

Now no more significant error 
from higher orders!

Note that the error shown is dominated by the exp. errors.
For example having now fixed mH does not decrease the error
significantly



αs from Rτ

Rτ has a number of advantages that, at least in part,
compensate the smallness of mτ=1.777 GeV:

• Rτ  is even more inclusive than Re+e-(s). 

• one can use analiticity to go to |s|= mτ
2

Im s

Re s

|s|= mτ
2

• factor (1-s/mτ
2)2 kills sensitivity to Re s= mτ

2 (thresholds)



Still the quoted result (by Bethke ‘09) looks a bit too precise
αs(mZ)=0.1197±0.0016

This precision is obtained by taking
for granted that corrections suppressed
by 1/mτ

2
  are negligible.

Rτ ~ Rτ
0[1+δpert+δnp]

This is because in the massless theory:

In fact there are no dim 2 operators (e.g. gµgµ is not gauge
invariant) except for light quark m2 (m~few MeV if parton
quarks are relevant, m~few 100 MeV if constituents) .
Most people believe that partons are relevant. I am not sure
that the gap is not filled by ambiguities of o(Λ2/mτ

2) from δpert.
eg effect of ultraviolet renormalons

Bethke’09

GA, Nason, Ridolfi ‘95; Chetyrkin, Narison,Zakharov ’98



The scaling violations of non-singlet str. functs. would
be ideal: less dependence on input parton densities

But

• for Fp-Fn exp. errors add up in the difference,

• F3νN is not terribly precise
(ν data only from CCFR, NuTeV)

• neglecting sea and glue in F2 for x > x0 decreases
the sample, introduces a dependence on x0 and an
error from residual singlet terms.

αs from DIS : more complicated



From a recent analysis of eP and eD data, neglecting sea
and gluons at x > 0.3 (error to be evaluated)

• Non singlet DIS: αs(mZ)=0.1148±0.0019 (exp)+? (NLO)
          αs(mZ)=0.1134±0.0020 (exp)+? (NNLO)

Bluemlein, Bottcher, Guffanti ‘07

Non singlet electron/muon production

•�a rather small central value
• not much difference between NLO and NNLO

According to G. Watt the contribution of singlet 
to F2 at x ~ 0.3 is still ~ 10%



BCDMS data push towards small αs 

According to Watt 162/280 exp points at x > 0.3 are
dominated by BCDMS



When one measures αs from scaling viols. in F2 from e
or µ beams, data are abundant, exp. errors small but:

αs                         gluon correlation dF/dlogQ2 ~ αs g

There is a strong  feedback on αs  of the parametrisation of g.
A too rigid param’n of gluon may strongly bias αs

Including Tevatron jets may be important to constrain g at 
large x (and then, via momentum conservation, 
also at small x). But jets rates only known at NLO accuracy

The Neural Network approach suppresses g parametrization
errors   (The NNPDF Coll. ‘11)

αs(mZ)=0.1166±0.0008(exp) + 0.0009 (th) (NNLO)DIS only

With jets and DY αs(mZ)=0.1173±0.0007(exp) + 0.0009 (th)



Recent αs(mZ) determinations from DIS at NNLO

αs(mZ) = 0.1129 ± 0.0014 (exp)+?

Alekhin, Blumlein, Klein, Moch ‘09

αs(mZ) = 0.1158 ± 0.0035 (exp)+?

Jimenez-Delgado, Reya ‘08

From combined H1+ZEUS data

αs(mZ) = 0.1147 ± 0.0012 (exp)+?    

For HERA data the NLO evolution should be improved by 
a correct treatment of small x effects 
(negative g at small x and Q2 is a symptom)

Alekhin, Blumlein, Moch ‘10

Ambiguities:
• Heavy quarks

• FL

• Higher orders



Global fit to αs and PDF

dominated by DIS but not only DIS

αs(mZ) = 0.1171 ± 0.0014(exp)+? (NNLO)

Martin, Stirling, Thorne, Watt ‘09

MRST attribute their larger value of αs  to a more flexible
parametrisation of the gluon and claim that the Tevatron 
jets are needed to fix g at large x



In conclusion, for αs(mZ) from DIS 

Bethke takes αs(mZ) = 0.1142 ± 0.0023 from non-singlet
and this is what he puts in his average from DIS 

From the previous discussion it appears that for singlet
there are problems related to the gluon determination
and parametrization 
αs(mZ) tends to slide towards low values if the g problem 
is not fixed [αs(mZ) ~ 0.113-0.116]

The NNPDF approach or fixing the g on the Tevatron jets
increases αs(mZ) [αs(mZ) ~ 0.117]

αs(mZ)=0.1134±0.0020 (exp)+? (NNLO)
Bluemlein, Bottcher, Guffanti ‘07

Problems: neglect singlet at x>x0, small data sample, BCDMS...

Still an open problem!

recall:

I would take from DIS: αs(mZ) = 0.116 ± 0.002    (NNLO)



Summarising

Z decay

αs(mZ) = 0.116 ± 0.002    (NNLO)

αs(mZ) = 0.1190 ± 0.0025    (NNNLO)

DIS

τ decay αs(mZ) = 0.1197 ± 0.0016 ± ? (NNLO)

Combining Z decay and DIS

αs(mZ) = 0.1172 ± 0.0016

Adding the τ  (optimistically forgetting the extra th error)

αs(mZ) = 0.1184 ± 0.0011

Compare with Bethke αs(mZ) = 0.1183±0.0010

my choice



P

P

PA

PB

X

P
PA

e
e’

V*

V*
The basic experimental set ups:

• no initial hadron (....LEP, ILC, CLIC)

• 1 hadron (....HERA, .... LHeC)

• 2 hadrons (....SppS, Tevatron, LHC)

Progress in particle physics
needs their continuous
interplay to take full 
advantage of their 
complementarity

αs(Q2)

αs(Q2) & q(x,Q2), g(x,Q2)



Parton densities extracted from DIS are used to compute hard 
processes, via the Factorisation Theorem (FT):

For example, at hadron colliders

P

P

PA

PB

X

X=V, jets, QQ, H.....

Q=b,c,t

•Very stringent tests of QCD
•Feedback on constraining 

parton densities

V=γ*,W,Z

density of parton A

reduced X-section

σ (s) = dx1∫
A,B
∑ dx2 pA (x1,Q

2 )pB (x2 ,Q
2 )σ̂ AB (x1x2s,Q

2 )

Is the FT proven? 
In pert. theory up to
NNLO has been explicitly
checked to hold.
At all orders detailed
studies only for DY
Collins, Soper, Sterman ‘85,’88



A large amount of theoretical work was devoted to directly
prepare the interpretation of LHC experiments

•�New and improved generators for event simulation

• Resummations

• New techniques for advanced QCD and EW calculations

• Calculations for signals, backgrounds and interpretation

e.g. the top quark FB asymmetry at the Tevatron
has generated much work (axi-gluons, FC Z’...)



General algorithms for computer NLO calculations
the dipole

     the antenna pattern          Kosower....

Catani, Seymour,.....

Matching matrix elements and parton showers

NLO ME:  MC@NLO
        POWHEG, MENLOPS

Frixione, Webber.....
Frixione, Nason, Oleari.....
Hamilton, Nason 

QCD event simulation A big boost in view of the LHC

Parton showers
collinear emissions factorize

Perturbative (+ resumm.s)

L= large log eg L=log(pT/m)

hadronization added

Complementary virtues:
the hard skeleton plus 
the shower development
and hadronization

LO ME: ALPGEN, MadGraph, MLM, (L)-CKKW Mangano.....

Beyond
general purpose
HERWIG
PYTHIA, SHERPA

FKS formalisms Frixione, Kunszt, Signer

On going progress in automatisation



Resummation of large logs

Beyond the RGE [logQ2/µ2] there are often other large logs L

Examples of L:

log pT
2/Q2   in pT distrib.’ns for W, H (Sudakov logs)

log1/x for small x structure functions in DIS
log1/(1-x)  Thrust distributions, large x in DIS.......

When αs(Q2)L2 or αs(Q2)L are large, the sequences 
(αs(Q2)L1 or 2 )n have to be resummed (the LL or NLL 
coefficients can often be computed to all orders). 

Leading logarithmic



Important recent work on jet recombination algorithms
G. Salam et al SISCone, anti-kT

It is essential that a correct jet finding is implemented
by LHC experiments for an optimal matching of theory
and experiment

Cacciari
Zanderighi
....



Singlet splitting function at small x

The problem of correctly including BFKL at small x has 
been solved Ciafaloni, Colferai, Salam, Stasto (CCSS)

Altarelli, Ball, Forte (ABF)

1/x

Momentum cons.+ symmetry + running coupling effect  
 soft simple pole
in anom. dim

• BFKL sharp rise tamed

• resummed result close
to NLO in HERA region

• new expansion stable
Bulk of data

LO

NLO

NNLO

Makes the ground solid for LHC predictions
(eg b production)



New powerful techniques for loop calculations

Basic idea: Loops can be fully reconstructed from their
unitarity cuts

First proposed by Bern, Dixon, Kosower ‘93-‘97
Revived by Britto, Cachazo, Feng ’04
Perfected by Ossola, Papadopoulos, Pittau ’06

Generalized d-dimension unitarity
K. Ellis, Giele, Kunszt, Melnikov ‘08-’09

QCD for LHC: very difficult calculations needed

A review:
One-loop calculations in quantum field theory: 
from Feynman diagrams to unitarity cuts
K. Ellis, Kunszt, Melnikov, Zanderighi ArXiv: 1105.4319



Campbell ‘12

Samurai

GoSam

Rocket

NGluon



Examples of recent NLO calculations in pp collisions

ttbb Bredenstein et al ‘09-’10, Bevilacqua et al ‘09

ttW K. Ellis, Campbell ’12

W+3jets  Berger et al ‘09, R.K.Ellis , Melnikov, Zanderighi ‘09,

Z,γ* +3jets Berger et al ‘10

WW+2jets Melia et al ‘10-’11, Jager, Zanderighi ‘12

WWbb Denner et al ‘10

tt+2jets  Bevilacqua et al ‘10-’11

bbbb, jjjj Greiner et al ‘11, Bern et al ‘11

W, Z+4jets Berger et al ‘11, Bern et al ‘12;  W+5jets Bern et al ‘12

.........

A terrific amount of work by QCD theorists for LHC

And the Higgs cross section and distributions are known
to NNLO Harlander, Kilgore ‘02; Anastasiou, Melnikov ‘02; Ravindran et al ‘03;
Anastasiou, Melnikov, Petriello ‘04, Bozzi et al ‘07



Parton densities extracted from DIS (with feedback from
other hard processes) are available for further use.



M. Ubiali
NNPDF: R. Ball et al ‘08

J. Rojo

xΣ

xg

xs+
Neural Network pdf
less dep. on parametrization.

Uncertainties larger than for
CTEQ, MRST, Alekhin
in unmeasured region

a large ensemble of pdf allowed



Jet Production in pp or ppbar interactions 
p1p2-> jet +X: all scalar products large
(p1+p2)2=s; (p1,2-jet)2=t,u also large -> the jet must be at large pT

NLO QCD fits
no free parameters
except exp.
norm’ n
Note: many orders
of magnitude!



W, Z and Drell-Yan lepton pair production at hadron colliders.

P

P

PA

PB
γ,W,Z

  l

  l

o(1): Drell, Yan; o(αs): Altarelli, K.Ellis, Martinelli;
Kubar-Andre, Paige; o(αs

2): Hamberg, van Neerven,
Matsuura+Zijestra



1979

The K-factor
paper

The first NLO
calculation in QCD



The prediction for σBW,Z is obtained using parton densities
from DIS, the measured Λ and Br. ratios from the EW theory

pT distribution has also been a classic laboratory

see later



An important task: preparing the optimal pdf’s for the LHC

Dedicated groups
MSTW, CTEQ, NNPDF, HERAPDF,.....



ICHEP ‘12



ttbar cross section known to NNLO plus resummation of soft
Coulomb effects

the mass dependence of σ
can measure mtop

Beneke et al ‘11, ‘12
Ahrens et al ‘11

Barnreuther, Czakon, Mitov ‘12

Exp. D0
Th. NNLO



The Higgs cross sections and distributions are at
the center of the stage now

see for a review

Handbook of LHC Higgs cross sections
Dittmaier, Mariotti, Passarino and Tanaka editors
ArXiv 1101.0593,1201.3084



Very important for the LHC

Effective lagrangian (mt -> infinity)

C1 known to αs
4

Chetyrkin, Kniehl, Steinhauser’97

NLO corr.s computed with effective lagrangian

AND the full theory

They agree very well

Dawson
Djouadi, Spira, Graudenz, Zerwas

Djouadi, Spira, Graudenz, Zerwas

Higgs production via g+g -> H



LO
NLO

NNLO

More recently the NNLO calculation was completed (analytic)

Catani, de Florian, Grazzini ’01.
Harlander, Kilgore ’01, ‘02
Anastasiou, Melnikov’02
Ravindran, Smith, van Neerven ’03

Also NLO y and pT
distributions
have been computed

De Florian, Grazzini, Kunszt ‘99
Glosser, Schmidt’02
Anastasiou, Melnikov, Petriello’05
Ravindran, Smith, van Neerven’06

Recent progress:
Resummation of large
partonic-energy logs 

DeMarzani, Ball, Del Duca, Forte, Vicini’08
126



Campbell
ICHEP’12



Higgs pT distribution: [log(pT/mH)]n resummed
Bozzi, Catani, De Florian, Grazzini’03-’08



~28 years ago at CERN we computed the W and Z
 pT distribution in QCD

GA, K.Ellis, M. Greco, G.Martinelli ‘84

W

UA2

UA1

Z

Here all relevant ingredients
were first assembled and matched.
Later mainly refinements were added



The avantgarde of contemporary QCD research

N=4 SUSY QCD and AdS/CFT correpondence

N=4 SUSY QCD has β(α) = 0 and is loop finite

In limit NC -> infinity  with λ = g2NC fixed, planar diagrams
are dominant

The large λ limit corresponds by AdS/CFT duality to the 
weakly coupled string (gravity) theory on AdS5xS5

There is progress towards a solution of planar N=4 SUSY QCD
amplitudes 

N = 8 Supergravity, related to N = 4 SUSY Yang-Mills, has been 
proven finite up to 4 loops. It could possibly lead to a finite
field theory of gravity in 4 dimensions

see L. Dixon
talk at
ICHEP ‘12



Conclusion

QCD is a non abelian unbroken gauge quantum field theory of
fundamental physical relevance 

Its physics content is very large and our knowledge esp. in 
the non perturbative domain is still very limited but progress 
both from experiment (HERA, Tevatron, RHIC, LHC) and from 
theory is continuous

Very good agreement with experiment



EXTRA



Why SU(NC=3)Colour?

Observed: hadrons
Mesons: qq*

Baryons: qqq
Colour singlets

The group must:

         •admit complex reprs.: q different from q*

(qq must not be a singlet)  

•allow a totally antisymm. qqq singlet

(In SU(3) εabcqaqbqc ~ 1)

(In SU(3)q~3, q*~3*, 3X3=6+3*, 3X3*=8+1)

(qqq is totally symm. in space [s-wave], spin and SU(3) [SU(6) ~56])

SU(n>2), SO(4n+2), E(6)



All observed hadrons are colourless composites of quarks 

For example:
Proton p: uud
Pion π+: ud

Colour is essential for Fermi statistics

The state Δ++ with spin 3/2 =   u u u
 is symmetric in space and spin but antisymm. in colour

Baryons: qqq Mesons: qq

and for explaining the observed spectrum

For example:
the “decuplet”

ddd ddu duu uuu

dds dus uus
dss uss

sss

Δ

Σ
Ξ

Ω

Hadron spectroscopy



Confinement explains why the nuclear forces are short range
while massless gluon exchange would be long range:

Nucleons are colour singlets: 
they can only exchange colour singlets (pions not gluons)

p n

pn

π+ V~exp(-mπr)/r

The range of nuclear forces is determined by the pion mass:
r~mπ

-1~10-13 cm



SU(NC): many processes measure NC

•R=σ(e+ e- -> hadrons)/σ(e+ e- -> µ+ µ-)

Above bb* thresh. and below mZ

d,s,b u,c
(Computable small rad corr's neglected)

e-

e+

q

q*γ
q=d,s,b,u,c

11/3

Examples:



•B(τ ->eνν)   ~
τ

ν f

f'
f=e, µ, u

NC=3 -> B~ 20%
Exp. :      B~ 18%

•B(W ->eν)  ~
W

f

f'

f=e, µ, τ, u, cNC=3 -> B~ 11%
Exp. :      B~ 10.7%

•Γ(π0 ->γγ)  ~

Exp. : (7.7±0.5) eV fπ=(130.7±0.37)MeV
(PDG2000)

π0
γ

γ
 u,d

Tree level!



Infrared and collinear safety

p

k

p+k
θ

• Ek -> 0

• For m -> 0, -> 1 and

(1-βpcosθ)  vanishes at cos θ = 1

infrared singularity.

collinear (mass) singularity



Summarising: we started from the massless classical theory and
we ended up with QCD where an energy scale Λ=ΛQCD appears.

Λ depends on the def. of αs (i.e. the reg. procedure, the ren.
scheme…) and on the number of excited flavours nf .

Definition of αs 

We have introduced the ren. coupling αs in terms of the 3-g
ren. vertex at p2=-µ2 (momentum subtraction). The value of αs
(hence Λ) in this scheme depends on µ.

But the most common def. of αs is in the framework of
dimensional reg.

Dim. reg. is a gauge and Lorentz inv. reg. that is most simply
implemented in calculations. It consists in formulating the
theory in d<4 space-time dimensions.



Dimensional Regularisation (DR)

Rewrite the theory in d (integer) dim. Expression of diagrams
also OK for any d.

Dirac γµ f(d)xf(d)
Tr γµ γν = f(d)gµν
…For d<4 loop integrals less divergent.

ddk

The coupling carries dimensions: ed=µεe
(d=4-2ε; this is how a mass scale enters!)

ddx ~ 1

e.g.



The formal expression of loop integrals can be written for all d.
For example:

For d=4-2ε  we can expand, using:

For some quantity we obtain from diagrams

In MS we write this as (diagram by diagram):



Consider first the case γ(α)=0.
This is not unphysical: it occurs for Re+e-

Recall that γ(α)=dlogZ/dlogµ2. It is zero because QCD corr's cannot
renormalise the electric charge (or the proton and positron
charges would be different)

The solution is F[0,α(t)], where the "running coupling" α(t) is
defined by:

Take d/dt and d/dα of both sides:



We have found

;

Using these eqs. we check that

F(t,α) =F[0,α(t)]

is the solution (note that α(0)=α, so that the boundary cond.
is satisfied)

With F'=dF(0,α)/dα, we have:



Similarly for the more general equation:

The solution is:

as can be easily checked given that:
• the differential operator applied to F[0,α(t)] vanishes
• the exponential is by itself a solution of the complete 
equation.

Summary: The important point is the appearance of the running
coupling that determines the asympt. behaviour.



γ-N cross-section

ν-N (ν-N) cross-section

mW1(Q2,ν) -> F1(x)
ν W2(Q2,ν) -> F2(x)
ν W3(Q2,ν) -> F3(x)

Scaling limit: Q2>>m2      x fixed

Wi= Wi (Q2,ν)

Bjorken



In the scaling limit the following relations with the cross
sections of the fixed-helicity gauge bosons (γ, W±…) hold:

σL: longitudinal -> helicity = 0
σRH: right-handed -> helicity = +1
σLH: left-handed -> helicity = -1
[σT = σRH + σLH : transverse]



Breit frame: in this frame Eγ=0:

q p

Lorentz contracted
proton

Bjorken & Feynman language: The virtual γ sees the quark partons inside
the proton as quasi-free because the QCD interaction time
(Lorentz dilated) is much longer than τγ ~1/Q

“Naïve” parton model

Take a parton with 4-mom pq= yp. Since Eγ=0, the quark
momentum is reversed: y=x.

Spin 1/2 partons: σL=0
Spin 0  partons: σT=0

Note: x=Q2/2(pq)

-Q/2

Q/2

Q

spin

Bjorken
Feynman

σpoint~e2δ(x/y-1)
2F1= e2q0(x)



Moch











Taking moments of both sides

A much simpler equation!

PDF or structure function moments Mn(t,αs) obey RGE
(qn is a particular case).

(Mellin) Moments:

Proof:



RGE general solution:

In lowest order, applied to qn , we have:

This is exactly the solution of

Gross,Wilczek; Politzer

with boundary cond.
at  t=0: qn(0)



The scaling violations are clearly observed
and the (N)NLO QCD fits are remarkably good.

These fits provide
•an impressive set of QCD tests
•measurements of q(x,Q2), g(x,Q2)
•measurements of αs(Q2)

GLAP

Scaling violations in DIS



HERA is a main source of information on pdf’s for LHC 



Different fits to same DIS data are comparable 

xdV
Q2=20GeV2

xg
Q2=20GeV2

HERA LHC Workshop ‘06

x: linear scale x: log scale



But differ from those obtained from all the data

xdV
Q2=20GeV2

xdV
Q2=20GeV2

x: linear scale x: log scale
This shows that extrapolation from one data set to another
is dangerous



Fantastic
technical
skill!!

Essential for
the LHC

pp -> H+X


