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Some common examples

 Gauge threshold corrections  R2 F2h-2  in heterotic on K3xT2

 F4  couplings in heterotic on Td

 R4  couplings in type II on Td

 R2  couplings in type II on K3xT2

 ...

I. Florakis, 2012
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Dixon, Kaplunovski, Louis ; Harvey, Moore

Bachas, Fabre, Kiritsis, Obers, Vanhove

Green, Vanhove, Kiritsis, Pioline

Gregori, Kiritsis, Kounnas, Obers, Petropoulos, Pioline
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  Converges absolutely for Re(s)>1

  For κ>0, correct behaviour at the cusp

  By construction : eigenmode of the 
hyperbolic Laplacian

Spectrum is obtained by studying Fourier expansion & using raising and lowering operators

In string theory, the elliptic genera can have (at most) κ=1
I. Florakis, 2012
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A new Poincaré series

Weak quasi-holomorphic modular forms are eigenmodes of the Laplacian 
with eigenvalue -w/2

In general, the N-P series with s=1-w/2 is a (weak) harmonic Maass form (Mock + 
Shadow)

I. Florakis, 2012

The N-P series has the same eigenvalue for s=1-w/2

However, by taking linear combinations of N-P series with definite coefficients, the 
Shadows cancel and the linear combination represents any weak holomorphic modular 
form !

Weak quasi-holomorphic modular forms can be formed from linear combinations of N-P 
series with s=1-w/2+n

14
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w = 0

Ê2E4E6

∆ = F (2, 1, 0)− 5F (1, 1, 0)− 144

Ê2

2
E2

4

∆ = 1

5
F (3, 1, 0)− 4F (2, 1, 0) + 13F (1, 1, 0) + 144

Ê3

2
E6

∆ = 3

175
F (4, 1, 0)− 3

5
F (3, 1, 0) + 33

5
F (2, 1, 0)− 17F (1, 1, 0)− 144

Ê4

2
E4

∆ = 1

1225
F (5, 1, 0)− 6

175
F (4, 1, 0) + 18

35
F (3, 1, 0)− 16

5
F (2, 1, 0)

+ 29

5
F (1, 1, 0) + 144

5

Ê6

2

∆ = 1

1926925
F (7, 1, 0)− 3

2695
F (5, 1, 0) + 6

175
F (4, 1, 0)− 3

7
F (3, 1, 0)

+ 12

5
F (2, 1, 0)− 29

7
F (1, 1, 0)− 144

7

w = −2

Ê2E2

4

∆ = 1

40
F (3, 1,−2)− 1

3
F (2, 1,−2)

Ê2

2
E6

∆ = 1

525
F (4, 1,−2)− 1

20
F (3, 1,−2) + 11

30
F (2, 1,−2)

Ê3

2
E4

∆ = 1

11760
F (5, 1,−2)− 1

350
F (4, 1,−2) + 9

280
F (3, 1,−2)− 2

15
F (2, 1,−2)

Ê5

2

∆ = 1

19819800
F (7, 1,−2)− 1

12936
F (5, 1,−2) + 1

525
F (4, 1,−2)− 1

56
F (3, 1,−2)

+ 1

15
F (2, 1,−2)

w = −4

Ê2E6

∆ = 1

2520
F (4, 1,−4)− 1

120
F (3, 1,−4)

Ê2

2
E4

∆ = 1

70560
F (5, 1,−4)− 1

2520
F (4, 1,−4) + 1

280
F (3, 1,−4)

Ê4

2

∆ = 1

148648500
F (7, 1,−4)− 1

129360
F (5, 1,−4) + 1

6300
F (4, 1,−4)− 1

840
F (3, 1,−4)

w = −6

Ê2E4

∆ = 1

241920
F (5, 1,−6)− 1

10080
F (4, 1,−6)

Ê3

2

∆ = 1

792792000
F (7, 1,−6)− 1

887040
F (5, 1,−6) + 1

50400
F (4, 1,−6)

w = −8

Ê2

2

∆ = 1

2854051200
F (7, 1,−8)− 1

3991680
F (5, 1,−8)

w = −10

Ê2

∆ = 1

6277020800
F (7, 1,−10)

Table 3.1: The exhaustive list of weak almost holomorphic modular forms of negative weight

w = 0,−2,−4,−6,−8,−10 and a simple pole at q = 0, and their relation to linear combi-

nations of Niebur-Poincaré series F (1 − w
2
+ n, 1, w). Similar expressions for weak almost

holomorphic modular forms with higher-order poles at the cusp can be obtained by a suit-

able action of the Hecke operator.
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Ê4

2
E4

∆ = 1

1225
F (5, 1, 0)− 6

175
F (4, 1, 0) + 18

35
F (3, 1, 0)− 16

5
F (2, 1, 0)

+ 29

5
F (1, 1, 0) + 144

5

Ê6
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Unfolding against the N-P series gives a BPS sum

  τ1-integration : picks BPS state contribution

  τ2-integration : Schwinger representation

s �= d
2 + k

4for generic values of

  For Re(s)>d/2+k/4, sum converges absolutely, with a simple pole 
at s=d/2+k/4

  Manifestly T-duality invariant

  Chamber independent
I. Florakis, 2012
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BPS state sums & Singularity Structure

General result for n>d/2-1 or for odd-dimension (independently of n):

I1 = (4πκ)1−
d
2
Γ(2n+ 2 + k

2 )Γ(n+ d+k
2 )

n!

d/2−2�

m=0

�
n

m

�
(−)m

Γ(n−m+ d+k
2 )

×
�

BPS

�
P 2
L

4κ

�n−m


Γ(d2 −m− 1)

�
P 2
R

4κ

�m+1− d
2

−
2n+k/2�

�=0

Γ(d2 −m− 1 + �)

�!

�
P 2
L

4κ

�1+m− d
2−�





I2 = (4πκ)1−
d
2
Γ(2n+ 2 + k

2 )Γ(n+ d+k
2 )

n!

�

BPS

n�

m=d/2−1

�
n

m

�
(−)m

Γ(n−m+ d+k
2 )

�
P

2
L

4κ

�n−m

×
�

−
2n+k/2�

�=m+2−d/2

Γ(d2 −m− 1 + �)

�!

�
P

2
L

4κ

�1+m− d
2−�

+
(−)m+1− d

2

Γ(m+ 2− d
2 )

�
P

2
R

4κ

�m+1− d
2

×
�
Hm+1− d

2
− log

�
P

2
R

P
2
L

��
− 1

Γ(m+ 2− d
2 )

m+1−d/2�

�=0

�
m+ 1− d

2

�

��
−P

2
L

4κ

�m+1− d
2−�

Hm+1− d
2−�

�

General result for even-dimension and n≤d/2-1 is given by adding I1+I2, where:

I. Florakis, 2012
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  Conical singularities never appear

  Real singularities always appear

  Power-like singularities in I1 whenever d≥4

  Logarithmic singularities in I2 for any (even) d≤2n+2

In odd dimensions

In even dimensions

Universal singularity behaviour in 2d

Technically singularities 
appear due to the 
unphysical tachyon 

contribution

Amplitudes involving linear 
combinations of modular 

forms, such that the 
unphysical tachyon pole is 

cancelled are regular at any 
point in Narain moduli 

space
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Example of Gauge Threshold calculations

heterotic vacuum at the orbifold point 

4 d = 2 case and Borcherds’ formula

Suppose we would like to calculate the integral:
�

F

dµ Γ(2,2)(T, U) F(s, 1, 0) = 22s Γ(s)
�

mTn=1

1

(P 2
L)

s 2F1(s, s, 2s;
κ

(P 2
L)
) . (68)

Use Brunier...

5 Example: A Simple Threshold Calculation

We shall now use our technology to calculate the threshold correction to the
gauge coupling of an N = 2 heterotic string vacuum. We will use a Z2-
orbifold compactification on T 2 × T 4/Z2 with standard embedding. For this
example, we set all (discrete and continuous) Wilson lines to zero, Y I = 0,
so that we have an enhanced gauge group:

SO(12)× U(1)2 × E8 → (E7 × SU(2))× U(1)2 × E8 . (69)

We are interested in the 1-loop correction to the gauge couplings, 1/g2 as a
function of the T 2-moduli, T, U .

Before we begin the actual computation, it will be instructive to ‘derive’
the form of the 1-loop correction by calculating the genus-1 correction to the
2-point function of two gauge bosons:

�eµ1Aa
µ(p1) e

ν
2A

a
ν(p2)� =

�
d
2
z�Va(z, z̄; p)Va(0; p)� . (70)

The vertex operators of the gauge bosons take the form:

Va(z, z̄; p) = ieµ (∂X
µ + ip · ψ ψµ) (z)J̄a(z̄) eip·X(z,z̄)

. (71)

Putting everything together, we find:

− e
µ
1e

ν
2

2(2π
√
2)4

�

F

d2τ

τ 22

�
d
2
z �(∂Xµ + ip1 · ψ ψµ) J̄a

e
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Now turn on Wilson lines - Higgs the E8 group factor to its Coulomb branch:
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Left- & right- moving momenta also depend on the 
Wilson lines Y and the BPS constraint now contains 
the U(1) charge vectors Q in the Cartan of E8
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Ê2E6 − E2

4

∆
=

�

BPS

�
1 +

P 2
R

4
log

�
P 2
R

P 2
L

�
− 2

P 2
L

− 8

3P 4
L

− 16

3P 6
L

− 64

5P 8
L

�

Left- & right- moving momenta also depend on the 
Wilson lines Y and the BPS constraint now contains 
the U(1) charge vectors Q in the Cartan of E8

mTn+ 1
2 Q

TQ = 1

21



Example of Gauge Threshold calculations

I. Florakis, 2012

Without Wilson lines:

∆E8 = − 1

12

�

F

dµ Γ(2,2)(T, U)
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− 72 log

�
T2U2|η(T )η(U)|4

�
+ cte.

Results regular at any point in moduli space and in any chamber !

Now turn on Wilson lines - Higgs the E8 group factor to its Coulomb branch:

∆E7 = − 1

12

�

F

dµ Γ(2,10)
Ê2E6 − E2

4

∆
=

�

BPS

�
1 +

P 2
R

4
log

�
P 2
R

P 2
L

�
− 2

P 2
L

− 8

3P 4
L

− 16

3P 6
L

− 64

5P 8
L

�

Left- & right- moving momenta also depend on the 
Wilson lines Y and the BPS constraint now contains 
the U(1) charge vectors Q in the Cartan of E8

mTn+ 1
2 Q

TQ = 1
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�
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∂y2
− 2π

�
x · ∂
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− y · ∂
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− λ− d

��
ρ(x, y) = 0
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The integrand is then modular invariant with: −w = λ+ d+ k
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�
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√
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√
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1
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2
L q̄

1
4P

2
R F(s,κ, w)

= (4πκ)1+λ/2

∞�
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4 −2
1F1

�
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�
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�
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Further simplifications possible, when ρ(x,y) is polynomial
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Similarly, we calculate:

F(3, 1, 0) = 5!
8D

2

�
E2

4

∆

�
= 5

Ê2
2E

2
4

∆
+ 20

Ê2E4E6

∆
+ 65

3

E3
4

∆
+ 40

3

E2
6

∆
. (31)

Let us rewrite this as:

1
5F(3, 1, 0) =

Ê2
2E

2
4

∆
+ 4

Ê2E4E6

∆
+ (7j + 600) . (32)

Thus, we have:

Ê2
2E

2
4

∆
− 2

Ê2
2E4E6

∆
= 1

5F(3, 1, 0)− 6F(2, 1, 0) + 23j + 984 . (33)

The relevant elementary integrals are:
�

F

dµ Γ(R) j(τ) = −4π

�
R +

1

R
+

����R− 1

R

����

�
, (34)

�

F

dµ Γ(R) F(2, 1, 0) = 8π

�
R3 +

1

R3
−
����R

3 − 1

R3

����

�
, (35)

�

F

dµ Γ(R) F(3, 1, 0) = 48π

�
R5 +

1

R5
−
����R

5 − 1

R5

����

�
. (36)

One has to be careful to pick the correct branch, depending on whether R > 1
or R < 1. At the end, we will set R = 1/

√
2 < 1 and, hence, we should take

the (−) branch in the absolute values. However, when we consider Γ(2R), we
have instead 2R =

√
2 > 1 and we should be working with the (+) branch.

Putting this together, we calculate:

1

R

�

F

dµ (Γ(2R)− Γ(R)) F(3, 1, 0) = 96π

�
1

32R6
−R4

�
, (37)

1

R

�

F

dµ (Γ(2R)− Γ(R)) F(2, 1, 0) = 16π

�
1

8R4
−R2

�
, (38)

1

R

�

F

dµ (Γ(2R)− Γ(R)) j(τ) = 8π

�
1

R2
− 2

�
, (39)

1

R

�

F

dµ (Γ(2R)− Γ(R)) =
π

3

�
1− 1

2R2

�
. (40)

7

I. Florakis, 2012

Unfold à la Niebur:
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�

F

dµ Φ(τ)

�

F

dµ Γd,d(G,B; τ, τ̄)

�

F

dµ Γd+k,d(G,B, Y ; τ, τ̄)Φ(τ)

�

F

dµ Z(τ, τ̄)

Stokes’ theorem

Rankin-Selberg-Zagier method

Unfold the elliptic genus      
(Niebur-Poincaré)

No general approach... yet !
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Conclusions & Outlook

  Generalization for modular forms of congruence subgroups of SL(2;Z)        
(freely-acting orbifolds)

  Higher genus amplitudes (g=2,3)

  Effective potential of strings at finite temperature (String Cosmology)
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d∈(Z/cZ)�
exp
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2πi

ad+ bd−1

c

�

�

F

dµ τ122 |∆|2 =
(4π)−11Γ(11)

β12
≈ 1.03536...× 10−6

Similar methods should be applicable for integrals of the full 
(non-holomorphic) partition function
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Idea : Let’s unfold against something else !
We want to find some other way to unfold that does not 
spoil the manifest T-duality symmetries of the lattice

In particular, we are looking for the 
representation that captures the 
behaviour around T-self-dual points

Such a method is known in the mathematics literature as the Rankin-Selberg method, later extended by Zagier

Start with the modular integral
�

F

dµ F (τ, τ̄)
Assume we are only dealing with 
functions of moderate growth at the 
cusp & impose a hard IR cut-off 

FT = F ∩ {τ2 ≤ T}

Consider instead the integral
�

FT

dµ F (τ, τ̄) E�(τ ; s)

                 is a meromorphic function in 
s, with simple poles at
E�(τ ; s)

s = 0, 1

E�(τ ; s) =
1

2(s− 1)
+ 1

2

�
γ − log(4πτ2|η(τ)|

4)
�
+O(s− 1)

The whole trick is based on 
the fact that the residue is 
independent of τ

2Ress=1

�

FT

dµ F (τ, τ̄) E�(τ ; s) =

�

FT

dµ F (τ, τ̄)

ζ�(s) ≡ π−s/2Γ(s/2)ζ(s)

E�(τ ; s) ≡ 1
2ζ

�(2s)
�

(c,d)=1

τ s2
|cτ + d|2s

= ζ�(2s)
�

γ∈SL(2;Z)/Γ∞

�
Im(γ · τ)

�s

I. Florakis, 2012
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The Rankin-Selberg-Zagier method

Now we are ready to unfold the Eisenstein series, modulo 
a little subtlety

HT ≡ H ∩ {τ2 ≤ T}−
�

c≥1,(a,c)=1

Sa/c

                 -transformations do not simply map         to the 
“naive” truncated Poincaré upper half-plane
SL(2;Z) FT

but one has to subtract an infinite number of disks           ,
of radius                   and tangent to the real axis at

Sa/c
1/(2c2T ) a/c

!

I. Florakis, 2012
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The Rankin-Selberg-Zagier method

Unfolding and taking the residue eventually gives

For functions F of “rapid decay” at the cusp,                                               , the renormalized integral
reduces to the usual integral

φ(τ2) ∼ τα2 , Re(α) < 1

Renormalized Integral

2Ress=1

�
ζ�(2s)

∞�

0

dτ2 τ s−2
2 F0(τ2)

�
=

�

FT

dµF (τ, τ̄) +

�

F−FT

dµ (F (τ, τ̄)− φ(τ2))

− 2Ress=1

�
ζ�(2s)hT (s) + ζ�(2s− 1)hT (1− s)

�
removes the power divergence
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The Rankin-Selberg-Zagier method

Let us apply this to the case of a d-dimensional lattice

I = 2Ress=1

�
ζ�(2s)

∞�

0

dτ2 τ s+d/2−2
2

�

mTn=0

�
e−πτ2M2

�
= 2Ress=1

�
ζ�(2s)Γ(s+ d

2 − 1)

πs+d/2−1
Ed
V(G,B; s+ d

2 − 1)

�

Ed
V(G,B; s) ≡

�

mTn=0

� 1

M2s

is the constrained Epstein zeta series in 
the vectorial representation of O(d,d)

Id=1 = 2Ress=1

�
ζ�(2s)ζ�(2s− 1)

�
R1−2s +R2s−1

�
�
=

π

3

�
R+

1

R

�

For the one-dimensional lattice, it is easy to recover the well-known closed-form expression

I. Florakis, 2012
34



The Rankin-Selberg-Zagier method

Now consider the integral of the two-dimensional lattice,
parametrized by the complex structure and Kähler moduli, 
U and T






PL =
�
m1 + Um2 + T̄ (n2 − Un1)

�
/
√
2T2U2

PR =
�
m1 + Um2 + T (n2 − Un1)

�
/
√
2T2U2

To proceed we need to solve the Diophantine constraint m1n
1 +m2n

2 = 0 , mi, n
i ∈ Z

The general solution has two contributions S1 : {(m1,m2, 0, 0) | m1,m2 ∈ Z}

S2 : {(cm̃1, cm̃2,−dm̃2, dm̃1) | (m̃1, m̃2) = 1 , d ≥ 1}

E2�
V (T, U ; s) = 2E�(T ; s)E�(U ; s)

The two contributions combine into a 
simple expression manifestly reflecting 
the group isomorphism

O(2, 2;Z) ∼ SL(2;Z)T × SL(2;Z)U � Z2

I. Florakis, 2012
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The Rankin-Selberg-Zagier method

E2�
V (T, U ; s) = 2E�(T ; s)E�(U ; s) has a double pole at             ands = 0 s = 1

The residue can be computed by using Kronecker limit fomula

Id=2 = 2Ress=1

�
1

2(s− 1)2
+

1

s− 1

�
γ − 1

2 log
�
16π2 T2U2 |η(T )η(U)|4

��
�

...and one immediately recovers the well-known result

Id=2 ≡ R.N.

�

F

dµ Γ(2,2)(T, U) = − log
�
4πe−γ T2U2 |η(T )η(U)|4

�

L. Dixon, V. Kaplunovsky, J. Louis 1991
C. Angelantonj, I.F. , B. Pioline 2011

 The derivation is remarkably simpler

 No need for additional regularization of the degenerate orbit

 T-duality manifest at every step (“dimensional regularization”)

 Additive constant depends on the renormalization scheme

I. Florakis, 2012
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The Rankin-Selberg-Zagier method

E2�
V (T, U ; s) = 2E�(T ; s)E�(U ; s) has a double pole at             ands = 0 s = 1

The residue can be computed by using Kronecker limit fomula

Id=2 = 2Ress=1

�
1

2(s− 1)2
+

1

s− 1

�
γ − 1

2 log
�
16π2 T2U2 |η(T )η(U)|4

��
�

...and one immediately recovers the well-known result

Id=2 ≡ R.N.

�

F

dµ Γ(2,2)(T, U) = − log
�
4πe−γ T2U2 |η(T )η(U)|4

�

L. Dixon, V. Kaplunovsky, J. Louis 1991
C. Angelantonj, I.F. , B. Pioline 2011

 The derivation is remarkably simpler

 No need for additional regularization of the degenerate orbit

 T-duality manifest at every step (“dimensional regularization”)

 Additive constant depends on the renormalization scheme

?What happens for integrals of the type

where the integrand is now a function of rapid growth

�

F

dµ Γ(d+k,d) Φ(τ)

I. Florakis, 2012
36



A new Poincaré series

One is then lead to define the following Niebur-Poincaré series

F(s,κ, w) = 1
2

�

γ∈SL(2;Z)/Γ∞

(cτ + d)−w Ms,w(−κ Im γ · τ) e−2πiκRe(γ·τ1)

= 1
2

�

(c,d)=1

(cτ + d)−w Ms,w

�
− κτ2
|cτ + d|2

�
exp

�
−2πiκ

�
a

c
− cτ1 + d

c|cτ + d|2

��

   D. Niebur 1973
   D. Hejhal 1983
    J. Bruinier 2002

Converges absolutely for Re(s)>1, independently of κ and w

For κ>0, the behaviour at the cusp is 

By construction, it is an eigenmode of the hyperbolic Laplacian

Ms,w(−κτ2)e
−2πiκτ1 ∼ Γ(2s)

Γ(s+ w
2 )

q−κ

�
∆w +

s(1− s)

2
+

w(w + 2)

8

�
F(s,κ, w) = 0

One may define raising and lowering operators that raise / lower the modular weight by 2 units

Dw =
i

π

�
∂τ − iw

2τ2

�

D̄w = −iπτ22 ∂τ̄

The elliptic genera 
encountered in string 
theory have (at most) κ=1

One may generate the   
N-P series at arbitrary κ, 
by considering the action 
of  Hecke operators

Tκ · F(s, 1, w) = F(s,κ, w)

(Tκ · Φ)(τ) =
�

d|κ

d−w
�

b∈Zd

Φ

�
κ

d2
τ +

b

d

�

Dw · F(s,κ, w) = 2κ(s+ w
2 )F(s,κ, w + 2)

D̄w · F(s,κ, w) =
1

8κ
(s− w

2 )F(s,κ, w − 2)
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Fourier expansion of Niebur-Poincaré series

In order to extract the Fourier expansion one separates out the contribution                          and then sets
with                and                           . Poisson re-summing over m and using the properties of Kloostermann sums we 
can turn the “Fourier” integral into a contour integral defining the (modified) Bessel functions

c = 0, d = 1 d = d� +mc
m ∈ Z d� ∈ (Z/cZ)∗

F(s,κ, w) = Ms,w(−κτ2)e
−2πiκτ1 +

�

m∈Z
F̃m(s,κ, w) e2πimτ1

F̃0(s,κ, w) =
22−wi−wπ1+s−w

2 κs−w
2 Γ(2s− 1)σ1−2s(κ)

Γ(s− w
2 )Γ(s+

w
2 )ζ(2s)

τ
2−s−w

2
2

F̃m(s,κ, w) =
4πκi−w Γ(2s)

Γ(s+ w
2 sgn(m))

���
m

κ

���
w
2 Ws,w(mτ2) Zs(m,−κ)

modes

Ws,w(y) = |4πy|−w/2 Ww
2 sgn(y),s− 1

2
(4π|y|)

Whittaker W-function

Wλ,µ(z) =
Γ(−2µ)

Γ( 12 − µ− λ)
Mλ,µ(z) +

Γ(2µ)

Γ( 12 + µ− λ)
Mλ,−µ(z)

Kloostermann-Selberg zeta function

Zs(a, b) =
1

2
�

|ab|

�

c>0

S(a, b; c)

c
×

�
J2s−1

�
4π
c

√
ab
�

, ab > 0

I2s−1

�
4π
c

√
−ab

�
, ab < 0

S(a, b; c) =
�

d∈(Z/cZ)∗
exp

�
2πi

c

�
ad+

b

d

��

Kloostermann sum
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Harmonic Maass Forms from the Laplacian

Weak almost holomorphic modular forms are 
eigenmodes of          with eigenvalue −w/2∆w

�
∆w +

s(1− s)

2
+

w(w + 2)

8

�
F(s,κ, w) = 0

F(s,κ, w) s = 1− w
2 s = w

2This is the case for the N-P series                        with                           and                   

However, weak almost holomorphic modular forms are not the only eigenmodes of          with this eigenvalue∆w

Weak harmonic Maass forms

Fourier expansion Φ =
�

m≤−1

(−m)w−1 b̄−m Γ(1− w,−4πmτ2) q
m +

b̄0(4πτ2)1−w

w − 1
+

�

m≥−κ

am qm

non-holomorphic
holomorphic
“Mock modular”

D̄w · Φ = −21−2w (πτ2)
2−w Ψ̄ Ψ(τ) =

∞�

m=0

bm qm

“Shadow”

D1−w
w · Φ =

� i

π
∂τ

�1−w
· Φ = Ξ Ξ(τ) =

�

m≥−κ

(−2m)1−w am qm

“Farey transform” annihilates the non-holomorphic 
part of Φ and produces a weak holomorphic 
modular form Ξ of weight 2-w

“Ghost”

Annihilates the holomorphic part of 
Φ and produces the complex 
conjugate of a holomorphic modular 
form Ψ of weight 2-w

Transform like modular forms
Eigenmodes of the Laplacian with eigenvalue
Not holomorphic in general : infinite tower of negative frequency modes

−w/2

I. Florakis, 2012
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Harmonic Maass Forms from the N-P series

F(s,κ, w) s = 1− w
2Observe that the N-P series                       with                                             (for w < 0, within the 

convergence domain)is by construction a weak harmonic Maass form

a−κ = Γ(2− w)

a−κ<m<0 = 0

a0 =
4π2κ

(2πi)w
σw−1(κ)

ζ(2− w)

am>0 = 4πi−wκΓ(2− w)
�m
κ

�w/2
Z1−w

2
(m,−κ)

b0 = 0

bm>0 = (1− w)κ1−wδm,κ + 4πiw(1− w)(mκ)1−w/2Z1−w
2
(m,κ)

Shadow is a cusp form of weight 2 - w > 2

D̄w · F(1− w
2 ,κ, w) =

1− w

8κ
F(1− w

2 ,κ, w − 2) ∼ τ2−w
2 P (−κ, 2− w)

D1−w
w · F(1− w

2 ,κ, w) = (2κ)1−w Γ(2− w)F(1− w
2 ,κ, 2− w) w´ = 2 - w > 2

(within the convergence 
domain)∼ F(w

�

2 ,κ, w�) = P (κ, w�)

The space of cusp forms of 
weight 2 - w is empty !

w ∈ {−2,−4,−6,−8,−12}

The shadow vanishes & the 
Maass form is actually a weak 
holomorphic modular form !

For special values of w 

!
I. Florakis, 2012
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The spectrum of modular forms as limits of the N-P series

✲

✻

✲✛

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

w

s

2 4−2−4

1

2

3

DD̄

j + 24 E2
4 E6/∆

weak almost harmonic

s =
w 2

: wea
k hol. (ghost)wea

k alm
ost

hol.

s =
− w

2 : τ 2−w2
×

anti-hol. (shadow)

s =
1−

w
2 : weak harmonic

Figure 2.1: Phase diagram for the Niebur-Poincaré series F (s, κ, w) for integer values of
(w

2 , s) with s ≥ 1. For low negative values of w, F (s, κ, w) reduces to an ordinary weak
almost holomorphic Maass form, see Table 2.2.

15

D̄w · F(1− w
2 ,κ, w) =

1− w

8κ
F(1− w

2 ,κ, w − 2) ∼ τ2−w
2 P (−κ, 2− w)

D1−w
w · F(1− w

2 ,κ, w) = (2κ)1−w Γ(2− w)F(1− w
2 ,κ, 2− w)

∼ F(w
�

2 ,κ, w�) = P (κ, w�)
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The spectrum of modular forms as limits of the N-P series

w F(1− w
2 , 1, w)

0

F(1− w
2 , 1, 2− w)

−2

−4

−6

−8

−12

j + 24

3!E4E6∆
−1

5!E2
4 ∆

−1

7!E6 ∆
−1

9!E4 ∆
−1

13!∆−1

E2
4 E6 ∆

−1

E4 (j − 240)

E6 (j + 204)

E2
4 (j − 480)

E4E6 (j + 264)

E2
4E6 (j + 24)

For these special values 
of w ,
can be recognized as an 
element of the ring of 
weak holomorphic 
modular forms by 
matching the principal 
part of the expansions

F(1− w
2 , 1, w)

“Ghost”

For values of w<0 
outside this list the space 
of cusp forms of weight 
2 - w is not empty and 
                             is a 
genuine harmonic Maass 
form with non-vanishing 
shadow

F(1− w
2 , 1, w)

However, the linear combination G(s, w) = 1

Γ(2− w)

�

−κ≤m<0

am F(s,m,w)

with coefficients determined by the principal part of any weak holomorphic modular form Φ

Φ−
w =

�

−κ≤m<0

amq−m of negative weight w, reduces in the limit                      to the 
holomorphic modular form Φ itself !

s = 1− w
2

The shadows of the weak Maass forms cancel in the linear combination !
I. Florakis, 2012
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The spectrum of modular forms as limits of the N-P series

What about weak almost holomorphic modular forms ?

They can be obtained from the ordinary holomorphic 
modular forms by the action of the modular derivatives DnΦ

Dn
w =

�
i

π

�n n�

k=0

�
n

k

�
Γ(w + n)

Γ(w + k)
(2iτ2)

k−n ∂k
τ

DÊ2 = 1
6 (E4 − Ê2

2)

DE4 = 2
3 (E6 − Ê2E4)

DE6 = E2
4 − Ê2E6

D(∆−1) = 2Ê2 ∆
−1

F(1− w
2 + n,κ, w) =

1

(2κ)nn!
Dn F(1− w

2 + n,κ, w − 2n)

Harmonic Maass form

Hence, we can produce a weak almost holomorphic modular 
form from the linear combination

G(1− w
2 + n,w) =

1

Γ(2− w)

�

−κ≤m<0

am F(1− w
2 + n,m,w)

where the coefficients form the principal part of a weak 
holomorphic modular form of weight w - 2n Φ−

w−2n =
�

−κ≤m<0

am
(2m)nn!

qm
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The spectrum of modular forms as limits of the N-P series

Niebur-Poincaré series for various values of (s,w)

DÊ2 = 1
6 (E4 − Ê2

2)

DE4 = 2
3 (E6 − Ê2E4)

DE6 = E2
4 − Ê2E6

D(∆−1) = 2Ê2 ∆
−1

s\w −10 −8 −6 −4 −2 0 2 4 6 8 10

5 0 9! E4
∆

9!
2 D E4

∆
9!
8 D2 E4

∆
9!

23 3! D
3 E4

∆
9!

24 4! D
4 E4

∆
9!

25 5! D
5 E4

∆
9!

26 6! D
6 E4

∆
9!

27 7! D
7 E4

∆
9!

27 8! D
8 E4

∆ E4E6(j + 264)

4 0 0 7! E6
∆

7!
2 D E6

∆
7!
8 D2 E6

∆
7!

23 3! D
3 E6

∆
7!

24 4! D
4 E6

∆
7!

25 5! D
5 E6

∆
7!

26 6! D
6 E6

∆ E2
4(j − 480) 7!

28 8! D
8 E6

∆

3 0 0 0 5! E2
4

∆
5!
2 D E2

4
∆

5!
8 D2 E2

4
∆

5!
233! D

3 E2
4

∆
5!

244! D
4 E2

4
∆ E6(j + 504) 5!

266! D
6 E2

4
∆

5!
277! D

7 E2
4

∆

2 0 0 0 0 3! E4E6
∆ 3D E4E6

∆
3
4 D2 E4E6

∆ E4(j − 240) 3!
244! D

4 E4E6
∆

3!
255! D

5 E4E6
∆

3!
266! D

6 E4E6
∆

1 0 0 0 0 0 j + 24 E2
4 E6
∆

1
222! D

2 j 1
233! D

3 j 1
244! D

4 j 1
255! D

5 j

Table 2.2: Niebur-Poincaré series F (s, 1, w) at the special values s = 1 − w
2 + n with n integer, for low negative values of w.
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Unfolding against the N-P series

Now we can return to our original goal : Id+k,d(s,κ;T ) =

�

FT

dµ Γ(d+k,d)(G,B, Y ) F(s,κ,−k
2 )

(w = −k/2 < 0)
IR cutoff

Unfold against the Niebur-Poincaré series :

Id+k,d(s,κ;T ) =

T�

0

dτ2
τ22

1/2�

−1/2

dτ1 Γ(d+k,d) Ms,− k
2
(−κτ2) e

−2πiκτ1

−
�

F−FT

dµ Γ(d+k,d)

�
F(s,κ,−k

2 )−Ms,− k
2
(−κτ2) e

−2πiκτ1
�

BPS state sum

=

∞�

0

dτ2
τ22

Ms,− k
2
(−κτ2) τ

d/2
2

�

BPS

e−πτ2(P
2
L+P 2

R)/2

−
�

F−FT

dµ Γ(d+k,d)

�
F(s,κ,−k

2 )−Ms,− k
2
(−κτ2) e

−2πiκτ1 − f0(s)τ
1−s+ k

4
2

�

−
�

F−FT

dµ
�
Γ(d+k,d) − τd/22

��
Ms,− k

2
(−κτ2) e

−2πiκτ1 + f0(s)τ
1−s+ k

4
2

�

−
�

F−FT

dµ τd/22

�
Ms,− k

2
(−κτ2) e

−2πiκτ1 + f0(s)τ
1−s+ k

4
2

�

half-BPS states
P 2
L − P 2

R = mTn = 4κ

f0(s) =
(4π)1+

k
4 πs i

k
2 κs+ k

4 Γ(2s− 1)σ1−2s(κ)

Γ(s+ k
4 )Γ(s−

k
4 ) ζ(2s)

�
exponentially 

suppressed at the cusp, 
away from extended 

symmetry points

BPS sum is analytic except for 
simple pole in s

f0(s)
T

d
2+

k
4−s

s− d
2 − k

4
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An Example of Gauge Threshold calculation
heterotic vacuum in the orbifold point 

4 d = 2 case and Borcherds’ formula

Suppose we would like to calculate the integral:
�

F

dµ Γ(2,2)(T, U) F(s, 1, 0) = 22s Γ(s)
�

mTn=1

1

(P 2
L)

s 2F1(s, s, 2s;
κ

(P 2
L)
) . (68)

Use Brunier...

5 Example: A Simple Threshold Calculation

We shall now use our technology to calculate the threshold correction to the
gauge coupling of an N = 2 heterotic string vacuum. We will use a Z2-
orbifold compactification on T 2 × T 4/Z2 with standard embedding. For this
example, we set all (discrete and continuous) Wilson lines to zero, Y I = 0,
so that we have an enhanced gauge group:

SO(12)× U(1)2 × E8 → (E7 × SU(2))× U(1)2 × E8 . (69)

We are interested in the 1-loop correction to the gauge couplings, 1/g2 as a
function of the T 2-moduli, T, U .

Before we begin the actual computation, it will be instructive to ‘derive’
the form of the 1-loop correction by calculating the genus-1 correction to the
2-point function of two gauge bosons:

�eµ1Aa
µ(p1) e

ν
2A

a
ν(p2)� =

�
d
2
z�Va(z, z̄; p)Va(0; p)� . (70)

The vertex operators of the gauge bosons take the form:

Va(z, z̄; p) = ieµ (∂X
µ + ip · ψ ψµ) (z)J̄a(z̄) eip·X(z,z̄)

. (71)

Putting everything together, we find:

− e
µ
1e

ν
2

2(2π
√
2)4

�

F

d2τ

τ 22

�
d
2
z �(∂Xµ + ip1 · ψ ψµ) J̄a

e
ip1·X(z, z̄) (∂Xν + ip2 · ψ ψν) J̄ b

e
ip2X(0)�

(72)
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E8 × E8 → E8 × E7 × SU(2)

In the absence of Wilson lines
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Performing the contractions and doing the necessary integrations by parts in
the z-variable, we obtain:

(p1 · p2)(e1 · e2)− (e1 · p2)(e2 · p1)
2(2π

√
2)4

�

F

d2τ

τ 22

�
d2z

�
�X∂X�2 − �ψψ�2

�
�J̄aJ̄a� e−p1·p2�XX� .

(73)

Notice that the powers of τ2 arise entirely from the momentum zero-mode
integration corresponding to the 4 spacetime directions. There is no addi-
tional 1

τ2
-factor, contrary to the case of the vacuum amplitude, due to the

fact that we fix the position of the second vertex operator insertion, hence
fixing the residual CKG symmetry. Hence we no longer divide by the CKG
volume,

�
d2z = τ2.

Since we are interested in the corrections to 1
4g2FµνF µν , we pick only

the terms quadratic in the momenta. This implies that we can drop the
exponential factor. The 2-point function of the Cartan currents takes the
form:

�J̄a(z̄)J̄ b(0)� = k

4π2
∂̄2 log θ̄1(z̄) + TrQ2 , (74)

where k is the level of the Kac-Moody algebra. This can be derived easily
from conformal invariance and the ‘free boson’ propagator on the torus. The
second term is the sum over the zero-modes of the currents, Q ∼

�
dz̄ J(z̄).

Now we move to the fermionic 2-point function. For even spin structures
it is given by the Szegö kernel, which satisfies the following decomposition
identity:

�ψ(z)ψ(0)�2 = S2[ab ](z) =

�
θ[ab ](z)θ

�
1(0)

θ[ab ](0)θ1(z)

�2

= P(z) + 4πi ∂τ log
θ[ab ]

η
, (75)

where P(z) is the Weierstrass function:

P(z) = 4πi ∂τ log η − ∂2
z log θ1(z) . (76)

On the other hand, from the bosonic 2-point function on the torus:

�X(z, z̄)X(0)� = − log θ1(z)θ̄1(z̄) + 2π
[Im(z)]2

τ2
, (77)
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An Example of Gauge Threshold calculation

Putting everything together, we perform integral over the 
location of the vertex operator insertion over the torus

we obtain:

�X∂X�2 =
�
∂z log θ1(z) + 2πi

Im(z)

τ2

�2

. (78)

Hence, we have to calculate the integral:

�
d2z

�
S2

[
a
b ](z)− �X∂X�2

�� k

4π2
∂̄2

log θ̄1(z̄) + TrQ2

�

=

�
d2z

�
P(z) + 4πi∂τ log

θ[ab ]

η
−
�
∂z log θ1(z) + 2πi

Im(z)

τ2

�2
� �

k

4π2
∂̄2

log θ̄1(z̄) + TrQ2

�

= 4πi τ2 ∂τ log
θ[ab ]

η

�
TrQ2 − k

4πτ2

�
.

This can be seen by using:
�

d2z ∂2
z log θ1(z) = −π ,

�
d2z

�
P(z)−

�
∂z log θ1(z) + 2πi

Im(z)

τ2

�2
�
= 0 ,

�
d2z P(z̄)

�
P(z)−

�
∂z log θ1(z) + 2πi

Im(z)

τ2

�2
�
= 0 . (79)

Finally, we need to average over the Hilbert space, summing over all even

spin structures:

1

128π2

�

F

d2τ

τ2

1

η2η̄2

�

(a,b) �=(1,1)

4πi ∂τ

�
θ[ab ]

η

�
Tr

��
Q2 − k

4πτ2

�
qL0−c/24q̄L̄0−c̄/24

�
,

(80)

where the above trace is taking place over the entire Hilbert space, except for

the spacetime bosonic piece (ηη̄)−4
that we have factored out and we have

taken into account the cancellation arising from the b, c-ghost contribution,
η2η̄2.

Fixing the normalization factors, the 1-loop correction to the gauge cou-

pling associated to the gauge group factor G is:

16π2

g2

����
1−loop

=
i

2π

�

F

d2τ

τ2
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η2η̄2

�

(a,b) �=(1,1)
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Q2 − k

4πτ2
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qL0−c/24q̄L̄0−c̄/24

�
.

(81)
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One-loop correction to 
the gauge coupling 
associated to a gauge 
group factor G

In our particular model, the sum over the even spin structures contributes

Now leet us return to our specific orbifold model. Ommitting the overall

(η12η̄24)−1-factor, associated to the oscillators, the partition function of the

model is:

Z =
1

2

�

h,g

�
1

2

�

a,b

(−)
a+b+ab θ[ab ]

2θ[a+h
b+g ]θ[

a−h
b−h ]

�
Γ(2,2)(T, U) Γ(4,4)[

h
g ]

×
�
1

2

�

γ,δ

θ̄[γδ ]
6θ̄[γ+h

δ+g ]θ̄[
γ−h
δ−g ]

��
1

2

�

ρ,σ

θ̄[ρσ]
8

�
, (82)

where Γ(4,4)[
h
g ] is the twisted (4, 4)-lattice:

Γ(4,4)[
h
g ] =

�
Γ(4,4)(G,B) h = g = 0

24η6η̄6

|θ[1+h
1+g ]θ[

1−h
1−g ]|2

(h, g) �= (0, 0) . (83)

Let us now evaluate the threshold. We will first calculate the sum over the

even spin structures:

i

2πη2η̄2
1

2

�

(a,b) �=(1,1)

(−)
a+b+ab∂τ

�
θ[ab ]

η

�
θ[ab ]θ[

a+h
b+g ]θ[

a−h
b−g ]

η3
Γ(4,4)[

h
g ]

η4η̄4
. (84)

Let us first define:

I =
1

2

�

a,b

(−)
a+b+ab

θ2[ab ]θ[
a+h
b+g ]θ[

a−h
b−g ]

η4
4πi∂τ log

θ[ab ]

η
. (85)

We first express ∂τ log
θ[ab ]

η in a modular covariant way that depends upon

the spin-structures. We first note that the logarithmic derivatives can be

compactly written as:

4πi∂τ log
θ[ab ]

η
= −π2

3

�
θ3[a+1

b ]θ[a−1
b ]− θ3[ a

b+1]θ[
a
b−1] + θ3[a−1

b−1 ]θ[
a+1
b+1 ]

�
, (86)

which is true2 as long as (a, b) �= (1, 1). Note that the Dedekind contribution
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An Example of Gauge Threshold calculation

The final ingredient is the group trace over, say the E8 group factor

Next, we must calculate the group trace, say of E8, if we are interested in the
correction of the coupling constant of the E8-group factor. This is obtained
by acting on the E8-lattice with the appropriate operator:

�
1

(2πi)2
∂2
v −

1

4πτ2

�
1

2

�

ρ,σ

θ̄[ρσ]
7θ̄[ρσ](v)

η̄8

�����
v=0

=
1

2

�

ρ,σ

θ̄[ρσ]
7

η̄8

�
i

π
∂τ̄ −

1

4πτ2

�
θ̄[ρσ]

=
1

2

�

ρ,σ

θ̄[ρσ]
8

η̄8

�
i

π
∂τ̄ log θ̄[

ρ
σ]−

1

4πτ2

�
=

1

12

ˆ̄E2Ē4 − Ē6

η̄8
. (98)

Let us finally put all the pieces together:

16π2

g2E8

=

�

F

d2τ

τ2

1

2

�

(h,g) �=(0,0)

1

2

�

γ,δ

8η2Γ(2,2)(T, U)

θ̄[1+h
1+g ]θ̄[

1−h
1−g ]

1

12

ˆ̄E2Ē4 − Ē6

η̄8
θ̄[γδ ]

6θ̄[γ+h
δ+g ]θ̄[

γ−h
δ−g ]

η̄8
.

(99)

In order to perform the (h, g)-summation, we work as follows. The whole
point is to calculate the following sum:

I =
1

2

�

(h,g) �=(0,0)

�

a,b

θ6[ab ]θ[
a+h
b+g ]θ[

a−h
b−g ]

θ[1+h
1+g ]θ[

1−h
1−g ]

. (100)

First of all we start by using the triple product identity θ2θ3θ4 = 2η3 in a
modular covariant fashion:

θ[1−h
1−g ]θ[

a+h
b+g ]θ[

a
b ](−)bhg = 2η3 (101)

θ[1+h
1+g ]θ[

a−h
b−g ]θ[

a
b ](−)1+h+hb+bhg = 2η3. (102)

Notice the phases which counter-balance the extra cocycles appearing from
the periodicity properties of the θ-functions. These identities can only be
used as pieces of ‘bigger’ expressions, when other factors provide the correct
‘vanishing’ properties and only as long as (a, b) �= (1, 1) and (h, g) �= (0, 0).
The combined net phase arising from both of these is:

(−)1+h+hb. (103)
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Putting everything together we are left with

Taking this into account, the spin sum becomes:

I =
1

4η6
· 1
2

�

(h,g) �=(0,0)

�

a,b

(−)1+h+hb θ8[ab ]θ
2[a+h

b+g ]θ
2[a−h

b−g ]

= − 1

4η6



 1

2

�

(h,g) �=(0,0)

�

a,b

(−)h+hb θ8[ab ]θ
4[a+h

b+g ]





= − 1

4η6
E6 . (104)

Where we used the following modular covariant representation of the E6

Eisenstein function:

E6 ≡
1

2

�

(h,g) �=(0,0)

�

a,b

(−)h+hb θ8[ab ]θ
4[a+h

b+g ] . (105)

This can be proven trivially by explicitly performing the summation:

1

2

�
θ8[00]

�
θ4[01]− θ4[10]

�
− θ8[10]

�
θ4[00] + θ4[01]

�
+ θ8[01]

�
θ4[10] + θ4[00]

� �

=
1

2

�
θ4[10] + θ4[00]

� �
θ4[00] + θ4[01]

� �
θ4[01]− θ4[10]

�
≡ E6, (106)

which is exactly the standard representation of E6 in terms of θ-functions.
Thus (99) becomes:

16π2

g2E8

����
1−loop

= − 1

12

�

F

d2τ

τ2
Γ(2,2)(T, U)

ˆ̄E2Ē4Ē6 − Ē2
6

η̄24
. (107)

Notice that we have been using here the definition of Γ(2,2)(T, U) with an
extra factor of (τ2)−1 in the Lagrangian representation, so that the integral
is indeed modular invariant.

We can now evaluate this integral using our techniques. We have:

Ê2E4E6 − E2
6

∆
= F(2, 1, 0)− 6j + 720 . (108)

Thus, we want to calculate:

16π2

g2E8

����
1−loop

= − 1

12

�

F

dµ Γ(2,2)(T, U) (F(2, 1, 0)− 6j + 720) , (109)
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The final result is a 
modular integral of the 
(2,2) lattice times a 
modular function

Taking this into account, the spin sum becomes:
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Notice that we have been using here the definition of Γ(2,2)(T, U) with an
extra factor of (τ2)−1 in the Lagrangian representation, so that the integral
is indeed modular invariant.

We can now evaluate this integral using our techniques. We have:

Ê2E4E6 − E2
6

∆
= F(2, 1, 0)− 6j + 720 . (108)

Thus, we want to calculate:
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where we switch to our conventional definition of the lattice, without overall
factors of τ2 in the Lagrangian representation. Using the observation:
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dµ Γ(2,2)F(1, 1, 0)
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, (110)

we can express the result for the threshold in the simplified form:
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(111)

Notice that the result is non-singular, for any value of the T, U moduli (in
the bulk). Indeed, P 2

L − P 2
R = 2 (in my conventions) and, hence, P 2

L cannot
vanish. The would-be logarithmic singularity in the constrained Epstein zeta
sum above at vanishing PR, on the other hand, is cancelled by the P 2

R-factor
multiplying the logarithm. This is to be expected, since the 1-loop correction
of the E8 factor should be unaffected by the values of the moduli of the Γ(2,2)

lattice, since the latter do not give rise to any new massless states. This
depends crucially, of course, on the fact that no Wilson lines have been
turned on.

It is instructive now to consider the decompactification limit:

T = iR1R2 , U = iR2/R1 , R2 → ∞ , R1 = fixed . (112)

The result will, of course be divergent. We will divide by the infinite R2-
volume factor and further consider the large R1 behaviour. It is then straight-
forward to see that the dominant R1-dependence is:

16π2

g2E8

����
1−loop

∼ 72×
�
−π

3

�
R1 +

1

R1

��
∼ −24πR1 . (113)

Let us now consider the decompactification limit from the very beginning,
where the 2-torus is factorized T 2 = S1 × S1, and we decompactify one of
the two circles. Dropping the infinite volume factor, we can then calculate
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Non-singular because 
the unphysical tachyon 
is neutral

We now unfold the Niebur-Poincaré series and obtain
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Take the limit where the 2-torus decompactifies into a circle
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The dominant dependence in the circle radius is

We will now compare this with 
the result we would have 
obtained if we had considered 
the decompactification limit 
from the very beginning

immediately:
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1−loop
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1
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− 4π

3R3 − 4πR− 20π(R + 1
R) , R > 1

−4πR3

3 − 4π
R − 20π(R + 1

R) , R < 1
. (114)

Notice that there is no conical singularity at R = 1, as the derivative is
continuous and vanishing at R = 1. This is normal, since there are no extra
massless states at this point. Notice that the dominant behaviour, −24πR1,
for large R1 agrees with the previous result.

Let us now calculate the threshold correction for the E7 factor. The group
trace in this case is coming from:
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, (115)

where in the second line, we have made use of the techniques similar to those
we used to derive (104). The E8 piece is easy to rewrite in terms of Ē4:

1

2

�

ρ,σ

θ̄[ρσ]
8

η̄8
=

Ē4

η̄8
. (116)
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ˆ̄E2Ē6 − Ē2
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where in the second line, we have made use of the techniques similar to those
we used to derive (104). The E8 piece is easy to rewrite in terms of Ē4:
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The dominant behaviour matches in both cases, as expected

There is no conical singularity, despite the presence of the two conical terms
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