One-Loop Amplitudes as BPS state sums

loannis G. Florakis

Max Planck Institut für Physik
München

Based on work with
Carlo Angelantonj \& Boris Pioline

One-Loop Amplitudes as BPS state sums

loannis G. Florakis

Max Planck Institut für Physik
München

Based on work with
Carlo Angelantonj \& Boris Pioline

```
1110.5318 [hep-th] CNTP vol.6.1
1203.0566 [hep-th] JHEP 06(2012)070
```


Closed String perturbation theory

Topological expansion over closed Riemann surfaces

$$
\sum_{g=0}^{\infty} g_{s}^{2(g-1)} \int_{\text {moduli }} \int \mathcal{D} g_{a b} \mathcal{D} X \mathcal{D} \psi \ldots \mathcal{V}_{i}\left(z_{i}\right) \ldots e^{-S\left[X, \psi, g_{a b}, \ldots\right]}
$$

Closed String perturbation theory

Topological expansion over closed Riemann surfaces

$$
\sum_{g=0}^{\infty} g_{s}^{2(g-1)} \int_{\text {moduli }} \int \mathcal{D} g_{a b} \mathcal{D} X \mathcal{D} \psi \ldots \mathcal{V}_{i}\left(z_{i}\right) \ldots e^{-S\left[X, \psi, g_{a b}, \ldots\right]}
$$

$g=1$: Torus Amplitude

$$
\int_{\mathcal{F}} d \mu \mathcal{A}(\tau, \bar{\tau})
$$

Closed String perturbation theory

Topological expansion over closed Riemann surfaces

$$
\sum_{g=0}^{\infty} g_{s}^{2(g-1)} \int_{\text {moduli }} \int \mathcal{D} g_{a b} \mathcal{D} X \mathcal{D} \psi \ldots \mathcal{V}_{i}\left(z_{i}\right) \ldots e^{-S\left[X, \psi, g_{a b}, \ldots\right]}
$$

$g=1:$ Torus Amplitude

$$
\int_{\mathcal{F}} d \mu \mathcal{A}(\tau, \bar{\tau})
$$

Complex structure of worldsheet torus $\tau \in \mathcal{H}$
Gauge modular group of large diffeomorphisms $\operatorname{PSL}(2 ; \mathbb{Z})$

- Integration restricted over fundamental domain $\mathcal{F}=\left\{\tau \in \mathcal{H}:|\tau| \geq 1,\left|\tau_{1}\right| \leq 1 / 2\right\}$

Invariant measure $d \mu:=\frac{d^{2} \tau}{\tau_{2}^{2}}$

- $\mathcal{A}(\tau, \bar{\tau})$ modular invariant function

Closed String perturbation theory

Topological expansion over closed Riemann surfaces

$$
\sum_{g=0}^{\infty} g_{s}^{2(g-1)} \int_{\text {moduli }} \int \mathcal{D} g_{a b} \mathcal{D} X \mathcal{D} \psi \ldots \mathcal{V}_{i}\left(z_{i}\right) \ldots e^{-S\left[X, \psi, g_{a b}, \ldots\right]}
$$

$g=1:$ Torus Amplitude

$$
\int_{\mathcal{F}} d \mu \mathcal{A}(\tau, \bar{\tau})
$$

- Complex structure of worldsheet torus $\tau \in \mathcal{H}$
- Gauge modular group of large diffeomorphisms $P S L(2 ; \mathbb{Z})$
- Integration restricted over fundamental domain $\mathcal{F}=\left\{\tau \in \mathcal{H}:|\tau| \geq 1,\left|\tau_{1}\right| \leq 1 / 2\right\}$
- Invariant measure $d \mu:=\frac{d^{2} \tau}{\tau_{2}^{2}}$
- $\mathcal{A}(\tau, \bar{\tau})$ modular invariant function

Closed String perturbation theory

Topological expansion over closed Riemann surfaces

$$
\sum_{g=0}^{\infty} g_{s}^{2(g-1)} \int_{\text {moduli }} \int \mathcal{D} g_{a b} \mathcal{D} X \mathcal{D} \psi \ldots \mathcal{V}_{i}\left(z_{i}\right) \ldots e^{-S\left[X, \psi, g_{a b}, \ldots\right]}
$$

$g=1$: Torus Amplitude

$$
\int_{\mathcal{F}} d \mu \mathcal{A}(\tau, \bar{\tau})
$$

- Complex structure of worldsheet torus $\tau \in \mathcal{H}$
- Gauge modular group of large diffeomorphisms $P S L(2 ; \mathbb{Z})$
- Integration restricted over fundamental domain $\mathcal{F}=\left\{\tau \in \mathcal{H}:|\tau| \geq 1,\left|\tau_{1}\right| \leq 1 / 2\right\}$

Invariant measure $d \mu:=\frac{d^{2} \tau}{\tau_{2}^{2}}$

- $\mathcal{A}(\tau, \bar{\tau})$ modular invariant function

Some common examples

Some common examples

$$
\int_{\mathcal{F}} d \mu \Gamma_{(d+k, d)}\left(G, B, Y ; \tau_{1}, \tau_{2}\right) \Phi(\tau)
$$

Some common examples

$$
\int_{\mathcal{F}} d \mu \Gamma_{(d+k, d)}\left(G, B, Y ; \tau_{1}, \tau_{2}\right) \Phi(\tau)
$$

- Gauge threshold corrections $R^{2} F^{2 h-2}$ in heterotic on $K 3 \times T^{2}$
- F^{4} couplings in heterotic on T^{d}
- R^{4} couplings in type II on T^{d}
- R^{2} couplings in type II on $K 3 \times T^{2}$

Physical interest

Physical interest

Stringy correction to one-loop amplitudes: massive string states running in the loop

Stringy correction to one-loop amplitudes: massive string states running in the loop
For special vacua and for special classes of interaction, perturbative corrections stop at torus amplitude : test string dualities (BPS-saturated couplings, F-terms, topological amplitudes)

Stringy correction to one-loop amplitudes : massive string states running in the loop

- For special vacua and for special classes of interaction, perturbative corrections stop at torus amplitude : test string dualities (BPS-saturated couplings, F-terms, topological amplitudes)
- Spontaneously broken SUSY : perturbative corrections to effective potential

Physical interest

Stringy correction to one-loop amplitudes : massive string states running in the loop
For special vacua and for special classes of interaction, perturbative corrections stop at torus amplitude : test string dualities (BPS-saturated couplings, F-terms, topological amplitudes)

- Spontaneously broken SUSY : perturbative corrections to effective potential

Superstrings at finite temperature : effective thermal potential

Physical interest

Stringy correction to one-loop amplitudes : massive string states running in the loop

- For special vacua and for special classes of interaction, perturbative corrections stop at torus amplitude : test string dualities (BPS-saturated couplings, F-terms, topological amplitudes)
- Spontaneously broken SUSY : perturbative corrections to effective potential
- Superstrings at finite temperature : effective thermal potential

I-loop effective potential at points of extended symmetry : long-standing puzzles in string thermodynamics and string cosmology

Physical interest

Stringy correction to one-loop amplitudes : massive string states running in the loop
For special vacua and for special classes of interaction, perturbative corrections stop at torus amplitude : test string dualities (BPS-saturated couplings, F-terms, topological amplitudes)

Spontaneously broken SUSY : perturbative corrections to effective potential

- Superstrings at finite temperature : effective thermal potential

I-loop effective potential at points of extended symmetry : long-standing puzzles in string thermodynamics and string cosmology

Physical interest

Stringy correction to one-loop amplitudes : massive string states running in the loop

- For special vacua and for special classes of interaction, perturbative corrections stop at torus amplitude : test string dualities (BPS-saturated couplings, F-terms, topological amplitudes)

Spontaneously broken SUSY : perturbative corrections to effective potential

- Superstrings at finite temperature : effective thermal potential

I-loop effective potential at points of extended symmetry : long-standing puzzles in string thermodynamics and string cosmology

Physical interest

Stringy correction to one-loop amplitudes : massive string states running in the loop

- For special vacua and for special classes of interaction, perturbative corrections stop at torus amplitude : test string dualities (BPS-saturated couplings, F-terms, topological amplitudes)Spontaneously broken SUSY : perturbative corrections to effective potential
- Superstrings at finite temperature : effective thermal potential

I-loop effective potential at points of extended symmetry : long-standing puzzles in string thermodynamics and string cosmology

C. Angelantonj, M. Cardella, N. Irges 2006 I.F., C. Kounnas 2009
C.Angelantonj, M. Cardella, S. Elitzur, E. Rabinovici 2010
I.F., C. Kounnas, N. Toumbas 2010
I.F., C. Kounnas, H. Partouche, N.Toumbas 20 IO

The problem at hand

The problem at hand
In many string theory applications, one encounters modular integrals of the form

$$
I=\int_{\mathcal{F}} d \mu \Gamma_{(d+k, d)}(G, B, Y) \Phi(\tau)
$$

The problem at hand
In many string theory applications, one encounters modular integrals of the form

$$
I=\int_{\mathcal{F}} d \mu \Gamma_{(d+k, d)}(G, B, Y) \Phi(\tau)
$$

Such integrals appear naturally in one-loop corrections to certain BPS-saturated couplings in the low energy effective action of Heterotic or Type II superstrings

The problem at hand
In many string theory applications, one encounters modular integrals of the form

$$
I=\int_{\mathcal{F}} d \mu \Gamma_{(d+k, d)}(G, B, Y) \Phi(\tau)
$$

Such integrals appear naturally in one-loop corrections to certain BPS-saturated couplings in the low energy effective action of Heterotic or Type II superstrings
$\Gamma_{(d+k, d)}(G, B, Y)$ Narain lattice of signature (d+k,d) depending on compactification moduli in

$$
\frac{S O(d+k, d)}{S O(d+k) \times S O(d)}
$$

The problem at hand
In many string theory applications, one encounters modular integrals of the form

$$
I=\int_{\mathcal{F}} d \mu \Gamma_{(d+k, d)}(G, B, Y) \Phi(\tau)
$$

Such integrals appear naturally in one-loop corrections to certain BPS-saturated couplings in the low energy effective action of Heterotic or Type II superstrings
$\Gamma_{(d+k, d)}(G, B, Y)$ Narain lattice of signature (d+k,d) depending on compactification moduli in

$$
\frac{S O(d+k, d)}{S O(d+k) \times S O(d)}
$$

$\Phi(\tau)$ is a weak almost holomorphic modular form of negative weight $w=-k / 2$ and has (at most) a simple pole in $q=\exp (2 \pi i \tau)$ at the cusp

The problem at hand
In many string theory applications, one encounters modular integrals of the form

$$
I=\int_{\mathcal{F}} d \mu \Gamma_{(d+k, d)}(G, B, Y) \Phi(\tau)
$$

Such integrals appear naturally in one-loop corrections to certain BPS-saturated couplings in the low energy effective action of Heterotic or Type II superstrings
$\Gamma_{(d+k, d)}(G, B, Y)$ Narain lattice of signature (d+k,d) depending on compactification moduli in

$$
\frac{S O(d+k, d)}{S O(d+k) \times S O(d)}
$$

$\Phi(\tau)$ is a weak almost holomorphic modular form of negative weight $w=-k / 2$ and has (at most) a simple pole in $q=\exp (2 \pi i \tau)$ at the cusp

$$
\Phi(\tau)=\sum_{\substack{2 n_{1}+4 n_{2}+6 n_{3}=12+w \\ n_{i} \geq 0}} c_{n_{1}, n_{2}, n_{3}} \frac{\hat{E}_{2}^{n_{1}} E_{4}^{n_{2}} E_{6}^{n_{3}}}{\Delta}
$$

The problem at hand
In many string theory applications, one encounters modular integrals of the form

$$
I=\int_{\mathcal{F}} d \mu \Gamma_{(d+k, d)}(G, B, Y) \Phi(\tau)
$$

Such integrals appear naturally in one-loop corrections to certain BPS-saturated couplings in the low energy effective action of Heterotic or Type II superstrings
$\Gamma_{(d+k, d)}(G, B, Y)$ Narain lattice of signature (d+k,d) depending on compactification moduli in

$$
\frac{S O(d+k, d)}{S O(d+k) \times S O(d)}
$$

$\Phi(\tau)$ is a weak almost holomorphic modular form of negative weight $w=-k / 2$ and has (at most) a simple pole in $q=\exp (2 \pi i \tau)$ at the cusp

$$
\Phi(\tau)=\sum_{\substack{2 n_{1}+4 n_{2}+6 n_{3}=12+w \\ n_{i} \geq 0}} c_{n_{1}, n_{2}, n_{3}} \frac{\hat{E}_{2}^{n_{1}} E_{4}^{n_{2}} E_{6}^{n_{3}}}{\Delta}
$$

The major difficulty with evaluating this integral is the unwieldy shape of \mathcal{F}

The problem at hand
In many string theory applications, one encounters modular integrals of the form

$$
I=\int_{\mathcal{F}} d \mu \Gamma_{(d+k, d)}(G, B, Y) \Phi(\tau)
$$

Such integrals appear naturally in one-loop corrections to certain BPS-saturated couplings in the low energy effective action of Heterotic or Type II superstrings
$\Gamma_{(d+k, d)}(G, B, Y)$ Narain lattice of signature (d+k,d) depending on compactification moduli in

$$
\frac{S O(d+k, d)}{S O(d+k) \times S O(d)}
$$

$\Phi(\tau)$ is a weak almost holomorphic modular form of negative weight $w=-k / 2$ and has (at most) a simple pole in $q=\exp (2 \pi i \tau)$ at the cusp

$$
\Phi(\tau)=\sum_{\substack{2 n_{1}+4 n_{2}+6 n_{3}=12+w \\ n_{i} \geq 0}} c_{n_{1}, n_{2}, n_{3}} \frac{\hat{E}_{2}^{n_{1}} E_{4}^{n_{2}} E_{6}^{n_{3}}}{\Delta}
$$

The major difficulty with evaluating this integral is the unwieldy shape of \mathcal{F}

The known way out is a procedure that goes by the name "orbit method" or simply "unfolding"

The orbit method

The orbit method

Start from $\int_{\mathcal{F}} d \mu f(\tau, \bar{\tau})$ with f being a modular function

The orbit method

Start from $\int_{\mathcal{F}} d \mu f(\tau, \bar{\tau})$ with f being a modular function

$$
\begin{aligned}
& \text { Express } f \text { as a sum over modular orbits } \\
& \text { (Poincaré series representation) }
\end{aligned} f(\tau, \bar{\tau})=\frac{1}{2} \sum_{\gamma \in S L(2 ; \mathbb{Z}) / \Gamma_{\infty}} \varphi(\gamma \cdot \tau, \gamma \cdot \bar{\tau})
$$

$\Rightarrow \Delta_{p} \cdot \Delta q \geqslant \frac{1}{2} t$

The orbit method

Start from $\int_{\mathcal{F}} d \mu f(\tau, \bar{\tau})$ with f being a modular function
$\begin{aligned} & \text { Express } f \text { as a sum over modular orbits } \\ & \text { (Poincaré series representation) }\end{aligned} f(\tau, \bar{\tau})=\frac{1}{2} \sum_{\gamma \in S L(2 ; \mathbb{Z}) / \Gamma_{\infty}} \varphi(\gamma \cdot \tau, \gamma \cdot \bar{\tau})$

$$
\gamma \cdot \tau \equiv \frac{a \tau+b}{c \tau+d}
$$

The orbit method

Start from $\int_{\mathcal{F}} d \mu f(\tau, \bar{\tau})$ with f being a modular function
Express f as a sum over modular orbits (Poincaré series representation)

$$
f(\tau, \bar{\tau})=\frac{1}{2} \sum_{\gamma \in S L(2 ; \mathbb{Z}) / \Gamma_{\infty}} \varphi(\gamma \cdot \tau, \gamma \cdot \bar{\tau})
$$

φ is called the "seed" and is assumed invariant under rigid translations

$$
\Gamma_{\infty}=\left(\begin{array}{cc}
1 & \star \\
0 & 1
\end{array}\right) \subset S L(2 ; \mathbb{Z})
$$

$$
\gamma \cdot \tau \equiv \frac{a \tau+b}{c \tau+d}
$$

The orbit method
Start from $\int_{\mathcal{F}} d \mu f(\tau, \bar{\tau})$ with f being a modular function
Express f as a sum over modular orbits (Poincaré series representation)

$$
f(\tau, \bar{\tau})=\frac{1}{2} \sum_{\gamma \in S L(2 ; \mathbb{Z}) / \Gamma_{\infty}} \varphi(\gamma \cdot \tau, \gamma \cdot \bar{\tau})
$$

φ is called the "seed" and is assumed invariant under rigid translations

$$
\Gamma_{\infty}=\left(\begin{array}{cc}
1 & \star \\
0 & 1
\end{array}\right) \subset S L(2 ; \mathbb{Z})
$$

$$
\gamma \cdot \tau \equiv \frac{a \tau+b}{c \tau+d}
$$

Plug it into the integral and change variables $\tau^{\prime}=\gamma \cdot \tau$

The orbit method
Start from $\int_{\mathcal{F}} d \mu f(\tau, \bar{\tau})$ with f being a modular function
Express f as a sum over modular orbits (Poincaré series representation)

$$
f(\tau, \bar{\tau})=\frac{1}{2} \sum_{\gamma \in S L(2 ; \mathbb{Z}) / \Gamma_{\infty}} \varphi(\gamma \cdot \tau, \gamma \cdot \bar{\tau})
$$

φ is called the "seed" and is assumed invariant under rigid translations

$$
\Gamma_{\infty}=\left(\begin{array}{cc}
1 & \star \\
0 & 1
\end{array}\right) \subset S L(2 ; \mathbb{Z})
$$

$$
\gamma \cdot \tau \equiv \frac{a \tau+b}{c \tau+d}
$$

Plug it into the integral and change variables $\tau^{\prime}=\gamma \cdot \tau$

$$
\frac{1}{2} \sum_{\gamma \in S L(2 ; \mathbb{Z}) / \Gamma_{\infty}} \int_{\mathcal{F}} d \mu \varphi(\gamma \cdot \tau, \gamma \cdot \bar{\tau})=\frac{1}{2} \sum_{\gamma \in S L(2 ; \mathbb{Z}) / \Gamma_{\infty}} \int_{\gamma \mathcal{F}} d \mu \varphi\left(\tau^{\prime}, \bar{\tau}^{\prime}\right)
$$

The orbit method

Start from $\int_{\mathcal{F}} d \mu f(\tau, \bar{\tau})$ with f being a modular function
Express f as a sum over modular orbits (Poincaré series representation)

$$
f(\tau, \bar{\tau})=\frac{1}{2} \sum_{\gamma \in S L(2 ; \mathbb{Z}) / \Gamma_{\infty}} \varphi(\gamma \cdot \tau, \gamma \cdot \bar{\tau})
$$

φ is called the "seed" and is assumed invariant under rigid translations

$$
\Gamma_{\infty}=\left(\begin{array}{cc}
1 & \star \\
0 & 1
\end{array}\right) \subset S L(2 ; \mathbb{Z})
$$

$$
\gamma \cdot \tau \equiv \frac{a \tau+b}{c \tau+d}
$$

Plug it into the integral and change variables $\tau^{\prime}=\gamma \cdot \tau$

$$
\frac{1}{2} \sum_{\gamma \in S L(2 ; \mathbb{Z}) / \Gamma_{\infty}} \int_{\mathcal{F}} d \mu \varphi(\gamma \cdot \tau, \gamma \cdot \bar{\tau})=\frac{1}{2} \sum_{\gamma \in S L(2 ; \mathbb{Z}) / \Gamma_{\infty}} \int_{\gamma \mathcal{F}} d \mu \varphi\left(\tau^{\prime}, \bar{\tau}^{\prime}\right)
$$

Summing over $\mathrm{SL}(2 ; Z)$-orbits, the fundamental domain is
"unfolded" to the half-infinite strip $\int_{\mathcal{H} / \Gamma_{\infty}} d \mu \varphi(\tau, \bar{\tau})$

The orbit method

Start from $\int_{\mathcal{F}} d \mu f(\tau, \bar{\tau})$ with f being a modular function
Express f as a sum over modular orbits (Poincaré series representation)

$$
f(\tau, \bar{\tau})=\frac{1}{2} \sum_{\gamma \in S L(2 ; \mathbb{Z}) / \Gamma_{\infty}} \varphi(\gamma \cdot \tau, \gamma \cdot \bar{\tau})
$$

φ is called the "seed" and is assumed invariant under rigid translations

$$
\Gamma_{\infty}=\left(\begin{array}{cc}
1 & \star \\
0 & 1
\end{array}\right) \subset S L(2 ; \mathbb{Z})
$$

$$
\gamma \cdot \tau \equiv \frac{a \tau+b}{c \tau+d}
$$

Plug it into the integral and change variables $\tau^{\prime}=\gamma \cdot \tau$

$$
\frac{1}{2} \sum_{\gamma \in S L(2 ; \mathbb{Z}) / \Gamma_{\infty}} \int_{\mathcal{F}} d \mu \varphi(\gamma \cdot \tau, \gamma \cdot \bar{\tau})=\frac{1}{2} \sum_{\gamma \in S L(2 ; \mathbb{Z}) / \Gamma_{\infty}} \int_{\gamma \mathcal{F}} d \mu \varphi\left(\tau^{\prime}, \bar{\tau}^{\prime}\right)
$$

Summing over $\mathrm{SL}(2 ; Z)$-orbits, the fundamental domain is
"unfolded" to the half-infinite strip $\int_{\mathcal{H} / \Gamma_{\infty}} d \mu \varphi(\tau, \bar{\tau})$

$$
\mathcal{H} / \Gamma_{\infty} \equiv\left\{0<\tau_{2}<\infty,-\frac{1}{2} \leq \tau_{1}<\frac{1}{2}\right\}
$$

The orbit method

Start from $\int_{\mathcal{F}} d \mu f(\tau, \bar{\tau})$ with f being a modular function
Express f as a sum over modular orbits (Poincaré series representation)

$$
f(\tau, \bar{\tau})=\frac{1}{2} \sum_{\gamma \in S L(2 ; \mathbb{Z}) / \Gamma_{\infty}} \varphi(\gamma \cdot \tau, \gamma \cdot \bar{\tau})
$$

φ is called the "seed" and is assumed invariant under rigid translations

$$
\Gamma_{\infty}=\left(\begin{array}{cc}
1 & \star \\
0 & 1
\end{array}\right) \subset S L(2 ; \mathbb{Z})
$$

$$
\gamma \cdot \tau \equiv \frac{a \tau+b}{c \tau+d}
$$

Plug it into the integral and change variables $\tau^{\prime}=\gamma \cdot \tau$

$$
\frac{1}{2} \sum_{\gamma \in S L(2 ; \mathbb{Z}) / \Gamma_{\infty}} \int_{\mathcal{F}} d \mu \varphi(\gamma \cdot \tau, \gamma \cdot \bar{\tau})=\frac{1}{2} \sum_{\gamma \in S L(2 ; \mathbb{Z}) / \Gamma_{\infty}} \int_{\gamma \mathcal{F}} d \mu \varphi\left(\tau^{\prime}, \bar{\tau}^{\prime}\right)
$$

Summing over $\mathrm{SL}(2 ; Z)$-orbits, the fundamental domain is
"unfolded" to the half-infinite strip $\int_{\mathcal{H} / \Gamma_{\infty}} d \mu \varphi(\tau, \bar{\tau})$

$$
\mathcal{H} / \Gamma_{\infty} \equiv\left\{0<\tau_{2}<\infty,-\frac{1}{2} \leq \tau_{1}<\frac{1}{2}\right\}
$$

τ_{1} : imposes level matching

The orbit method

Start from $\int_{\mathcal{F}} d \mu f(\tau, \bar{\tau})$ with f being a modular function
Express f as a sum over modular orbits (Poincaré series representation)

$$
f(\tau, \bar{\tau})=\frac{1}{2} \sum_{\gamma \in S L(2 ; \mathbb{Z}) / \Gamma_{\infty}} \varphi(\gamma \cdot \tau, \gamma \cdot \bar{\tau})
$$

φ is called the "seed" and is assumed invariant under rigid translations

$$
\Gamma_{\infty}=\left(\begin{array}{cc}
1 & \star \\
0 & 1
\end{array}\right) \subset S L(2 ; \mathbb{Z})
$$

$$
\gamma \cdot \tau \equiv \frac{a \tau+b}{c \tau+d}
$$

Plug it into the integral and change variables $\tau^{\prime}=\gamma \cdot \tau$

$$
\frac{1}{2} \sum_{\gamma \in S L(2 ; \mathbb{Z}) / \Gamma_{\infty}} \int_{\mathcal{F}} d \mu \varphi(\gamma \cdot \tau, \gamma \cdot \bar{\tau})=\frac{1}{2} \sum_{\gamma \in S L(2 ; \mathbb{Z}) / \Gamma_{\infty}} \int_{\gamma \mathcal{F}} d \mu \varphi\left(\tau^{\prime}, \bar{\tau}^{\prime}\right)
$$

$\left.\begin{array}{l}\text { Summing over } \operatorname{SL}(2 ; Z) \text {-orbits, the fundamental domain is } \longrightarrow \int_{\mathcal{H} / \Gamma_{\infty}} d \mu \varphi(\tau, \bar{\tau}), ~(u n f o l d e d \text { " to the half-infinite strip }\end{array}\right]$

$$
\mathcal{H} / \Gamma_{\infty} \equiv\left\{0<\tau_{2}<\infty,-\frac{1}{2} \leq \tau_{1}<\frac{1}{2}\right\}
$$

τ_{1} : imposes level matching

Traditional unfolding against the lattice

Max-Planck-Institut für Physik
(Werner-Heisenberg-Institut) I. Florakis, 2012

Traditional unfolding against the lattice

Traditionally : use orbit decomposition of the lattice (in Lagrangian rep.)

Traditional unfolding against the lattice

Traditionally : use orbit decomposition of the lattice (in Lagrangian rep.)

$$
\Gamma_{(1,1)}(R)=R \sum_{\tilde{m}, n \in \mathbb{Z}} e^{-\frac{\pi R^{2}}{\tau_{2}}|\tilde{m}+\tau n|^{2}}
$$

Traditional unfolding against the lattice

Traditionally : use orbit decomposition of the lattice (in Lagrangian rep.)

$$
\Gamma_{(1,1)}(R)=R \sum_{\tilde{m}, n \in \mathbb{Z}} e^{-\frac{\pi R^{2}}{\tau_{2}}|\tilde{m}+\tau n|^{2}}
$$

Extract $(m, n)=(0,0)$ orbit and factor out g.c.d. of non-zero windings $N=(m, n)$

Max-Planck-Institut für Physik
(Werner-Heisenberg-Institut) I. Florakis, 2012

Traditional unfolding against the lattice
Traditionally : use orbit decomposition of the lattice (in Lagrangian rep.)

$$
\Gamma_{(1,1)}(R)=R \sum_{\tilde{m}, n \in \mathbb{Z}} e^{-\frac{\pi R^{2}}{\tau_{2}}|\tilde{m}+\tau n|^{2}}
$$

Extract $(m, n)=(0,0)$ orbit and factor out g.c.d. of non-zero windings $N=(m, n)$

$$
\begin{gathered}
m=N p, n=N q \\
\text { with }(p, q)=1
\end{gathered}
$$

Traditional unfolding against the lattice

Traditionally : use orbit decomposition of the lattice (in Lagrangian rep.)

$$
\Gamma_{(1,1)}(R)=R \sum_{\tilde{m}, n \in \mathbb{Z}} e^{-\frac{\pi R^{2}}{\tau_{2}}|\tilde{m}+\tau n|^{2}}
$$

Extract $(m, n)=(0,0)$ orbit and factor out g.c.d. of non-zero windings $N=(m, n)$

$$
\begin{gathered}
\begin{array}{c}
m=N p, n=N q \\
\text { with }(p, q)=1
\end{array}
\end{gathered} \quad \Gamma_{(1,1)}(R)=R+R \sum_{N \geq 1} \sum_{(p, q)=1} e^{-\frac{\pi(N R)^{2}}{\tau_{2}}|p+\tau q|^{2}}
$$

Traditional unfolding against the lattice

Traditionally : use orbit decomposition of the lattice (in Lagrangian rep.)

$$
\Gamma_{(1,1)}(R)=R \sum_{\tilde{m}, n \in \mathbb{Z}} e^{-\frac{\pi R^{2}}{\tau_{2}}|\tilde{m}+\tau n|^{2}}
$$

Extract $(m, n)=(0,0)$ orbit and factor out g.c.d. of non-zero windings $N=(m, n)$

Poincaré series with seed

$$
\varphi(\tau, \bar{\tau})=\exp \left(-\frac{\pi(N R)^{2}}{\tau_{2}}\right)
$$

Traditional unfolding against the lattice

Traditionally : use orbit decomposition of the lattice (in Lagrangian rep.)

$$
\Gamma_{(1,1)}(R)=R \sum_{\tilde{m}, n \in \mathbb{Z}} e^{-\frac{\pi R^{2}}{\tau_{2}}|\tilde{m}+\tau n|^{2}}
$$

Extract $(m, n)=(0,0)$ orbit and factor out g.c.d. of non-zero windings $N=(m, n)$

$$
\begin{gathered}
m=N p, n=N q \\
\text { with }(p, q)=1
\end{gathered}
$$

$$
\Gamma_{(1,1)}(R)=R+R \sum_{N \geq 1} \sum_{(p, q)=1} e^{-\frac{\pi(N R)^{2}}{\tau_{2}}|p+\tau q|^{2}}
$$

Poincaré series with seed

$$
\varphi(\tau, \bar{\tau})=\exp \left(-\frac{\pi(N R)^{2}}{\tau_{2}}\right)
$$

$$
\begin{gathered}
\operatorname{Im}(\gamma \cdot \tau)=\frac{\tau_{2}}{|p+\tau q|^{2}} \\
\gamma=\left(\begin{array}{ll}
* & * \\
q & p
\end{array}\right)
\end{gathered}
$$

Traditional unfolding against the lattice

Traditionally : use orbit decomposition of the lattice (in Lagrangian rep.)

$$
\Gamma_{(1,1)}(R)=R \sum_{\tilde{m}, n \in \mathbb{Z}} e^{-\frac{\pi R^{2}}{\tau_{2}}|\tilde{m}+\tau n|^{2}}
$$

Extract $(m, n)=(0,0)$ orbit and factor out g.c.d. of non-zero windings $N=(m, n)$

$$
\begin{gathered}
m=N p, n=N q \\
\text { with }(p, q)=1
\end{gathered}
$$

$$
\Gamma_{(1,1)}(R)=R+R \sum_{N \geq 1} \sum_{(p, q)=1} e^{-\frac{\pi(N R)^{2}}{\tau_{2}}|p+\tau q|^{2}}
$$

Poincaré series with seed

$$
\varphi(\tau, \bar{\tau})=\exp \left(-\frac{\pi(N R)^{2}}{\tau_{2}}\right)
$$

$\int_{\mathcal{F}} d \mu \Gamma_{(1,1)}(R) j(\tau)=R \int_{\mathcal{F}} j(\tau)+2 R \sum_{N \geq 1} \int_{0}^{\infty} \frac{d \tau_{2}}{\tau_{2}^{2}} e^{-\frac{\pi(N R)^{2}}{\tau_{2}}} j_{0}\left(\tau_{2}\right)$

$$
\begin{gathered}
\operatorname{Im}(\gamma \cdot \tau)=\frac{\tau_{2}}{|p+\tau q|^{2}} \\
\gamma=\left(\begin{array}{cc}
* & * \\
q & p
\end{array}\right)
\end{gathered}
$$

Traditional unfolding against the lattice

Traditionally : use orbit decomposition of the lattice (in Lagrangian rep.)

$$
\Gamma_{(1,1)}(R)=R \sum_{\tilde{m}, n \in \mathbb{Z}} e^{-\frac{\pi R^{2}}{\tau_{2}}|\tilde{m}+\tau n|^{2}}
$$

Extract $(m, n)=(0,0)$ orbit and factor out g.c.d. of non-zero windings $N=(m, n)$

$$
\begin{gathered}
m=N p, n=N q \\
\text { with }(p, q)=1
\end{gathered}
$$

$$
\Gamma_{(1,1)}(R)=R+R \sum_{N \geq 1} \sum_{(p, q)=1} e^{-\frac{\pi(N R)^{2}}{\tau_{2}}|p+\tau q|^{2}}
$$

Poincaré series with seed

$$
\varphi(\tau, \bar{\tau})=\exp \left(-\frac{\pi(N R)^{2}}{\tau_{2}}\right)
$$

$\int_{\mathcal{F}} d \mu \Gamma_{(1,1)}(R) j(\tau)=R \int_{\mathcal{F}} j(\tau)+2 R \sum_{N \geq 1} \int_{0}^{\infty} \frac{d \tau_{2}}{\tau_{2}^{2}} e^{-\frac{\pi(N R)^{2}}{\tau_{2}}} j_{0}\left(\tau_{2}\right)$

$$
\begin{gathered}
\operatorname{Im}(\gamma \cdot \tau)=\frac{\tau_{2}}{|p+\tau q|^{2}} \\
\gamma=\left(\begin{array}{ll}
* & * \\
q & p
\end{array}\right)
\end{gathered}
$$

$$
j_{0}\left(\tau_{2}\right)=\int_{-1 / 2}^{1 / 2} d \tau_{1} j(\tau)=0
$$

Traditional unfolding against the lattice

Traditionally : use orbit decomposition of the lattice (in Lagrangian rep.)

$$
\Gamma_{(1,1)}(R)=R \sum_{\tilde{m}, n \in \mathbb{Z}} e^{-\frac{\pi R^{2}}{\tau_{2}}|\tilde{m}+\tau n|^{2}}
$$

Extract $(m, n)=(0,0)$ orbit and factor out g.c.d. of non-zero windings $N=(m, n)$

$$
\begin{gathered}
m=N p, n=N q \\
\text { with }(p, q)=1
\end{gathered}
$$

$$
\Gamma_{(1,1)}(R)=R+R \sum_{N \geq 1} \sum_{(p, q)=1} e^{-\frac{\pi(N R)^{2}}{\tau_{2}}|p+\tau q|^{2}}
$$

Poincaré series with seed

$$
\varphi(\tau, \bar{\tau})=\exp \left(-\frac{\pi(N R)^{2}}{\tau_{2}}\right)
$$

$\int_{\mathcal{F}} d \mu \Gamma_{(1,1)}(R) j(\tau)=R \int_{\mathcal{F}} j(\tau)+2 R \sum_{N \geq 1} \int_{0}^{\infty} \frac{d \tau_{2}}{\tau_{2}^{2}} e^{-\frac{\pi(N R)^{2}}{\tau_{2}}} j_{0}\left(\tau_{2}\right)$

$$
\begin{gathered}
\operatorname{Im}(\gamma \cdot \tau)=\frac{\tau_{2}}{|p+\tau q|^{2}} \\
\gamma=\left(\begin{array}{ll}
* & * \\
q & p
\end{array}\right)
\end{gathered}
$$

$$
j_{0}\left(\tau_{2}\right)=\int_{-1 / 2}^{1 / 2} d \tau_{1} j(\tau)=0
$$

$$
\int_{\mathcal{F}} d \mu \Gamma_{(1,1)}(R) j(\tau)=R \int_{\mathcal{F}} d \mu j(\tau)=-8 \pi R
$$

Traditional unfolding against the lattice

Traditionally : use orbit decomposition of the lattice (in Lagrangian rep.)

$$
\Gamma_{(1,1)}(R)=R \sum_{\tilde{m}, n \in \mathbb{Z}} e^{-\frac{\pi R^{2}}{\tau_{2}}|\tilde{m}+\tau n|^{2}}
$$

Extract $(m, n)=(0,0)$ orbit and factor out g.c.d. of non-zero windings $N=(m, n)$

$$
\begin{gathered}
m=N p, n=N q \\
\text { with }(p, q)=1
\end{gathered}
$$

$$
\Gamma_{(1,1)}(R)=R+R \sum_{N \geq 1} \sum_{(p, q)=1} e^{-\frac{\pi(N R)^{2}}{\tau_{2}}|p+\tau q|^{2}}
$$

Poincaré series with seed

$$
\varphi(\tau, \bar{\tau})=\exp \left(-\frac{\pi(N R)^{2}}{\tau_{2}}\right)
$$

$\int_{\mathcal{F}} d \mu \Gamma_{(1,1)}(R) j(\tau)=R \int_{\mathcal{F}} j(\tau)+2 R \sum_{N \geq 1} \int_{0}^{\infty} \frac{d \tau_{2}}{\tau_{2}^{2}} e^{-\frac{\pi(N R)^{2}}{\tau_{2}}} j_{0}\left(\tau_{2}\right)$

$$
\begin{gathered}
\operatorname{Im}(\gamma \cdot \tau)=\frac{\tau_{2}}{|p+\tau q|^{2}} \\
\gamma=\left(\begin{array}{ll}
* & * \\
q & p
\end{array}\right)
\end{gathered}
$$

$$
j_{0}\left(\tau_{2}\right)=\int_{-1 / 2}^{1 / 2} d \tau_{1} j(\tau)=0
$$

$$
\int_{\mathcal{F}} d \mu \Gamma_{(1,1)}(R) j(\tau)=R \int_{\mathcal{F}} d \mu j(\tau)=-8 \pi R
$$

Traditional unfolding against the lattice

Traditionally : use orbit decomposition of the lattice (in Lagrangian rep.)

$$
\Gamma_{(1,1)}(R)=R \sum_{\tilde{m}, n \in \mathbb{Z}} e^{-\frac{\pi R^{2}}{\tau_{2}}|\tilde{m}+\tau n|^{2}}
$$

Extract $(m, n)=(0,0)$ orbit and factor out g.c.d. of non-zero windings $N=(m, n)$

$$
\begin{gathered}
m=N p, n=N q \\
\text { with }(p, q)=1
\end{gathered}
$$

$$
\Gamma_{(1,1)}(R)=R+R \sum_{N \geq 1} \sum_{(p, q)=1} e^{-\frac{\pi(N R)^{2}}{\tau_{2}}|p+\tau q|^{2}}
$$

Poincaré series with seed

$$
\varphi(\tau, \bar{\tau})=\exp \left(-\frac{\pi(N R)^{2}}{\tau_{2}}\right)
$$

$\int_{\mathcal{F}} d \mu \Gamma_{(1,1)}(R) j(\tau)=R \int_{\mathcal{F}} j(\tau)+2 R \sum_{N \geq 1} \int_{0}^{\infty} \frac{d \tau_{2}}{\tau_{2}^{2}} e^{-\frac{\pi(N R)^{2}}{\tau_{2}}} j_{0}\left(\tau_{2}\right)$

$$
\begin{gathered}
\operatorname{Im}(\gamma \cdot \tau)=\frac{\tau_{2}}{|p+\tau q|^{2}} \\
\gamma=\left(\begin{array}{cc}
* & * \\
q & p
\end{array}\right)
\end{gathered}
$$

$$
j_{0}\left(\tau_{2}\right)=\int_{-1 / 2}^{1 / 2} d \tau_{1} j(\tau)=0
$$

$$
\int_{\mathcal{F}} d \mu \Gamma_{(1,1)}(R) j(\tau)=R \int_{\mathcal{F}} d \mu j(\tau)=-8 \pi R
$$

NOT invariant under T-duality!

Traditional unfolding against the lattice

Traditionally : use orbit decomposition of the lattice (in Lagrangian rep.)

$$
\Gamma_{(1,1)}(R)=R \sum_{\tilde{m}, n \in \mathbb{Z}} e^{-\frac{\pi R^{2}}{\tau_{2}}|\tilde{m}+\tau n|^{2}}
$$

Extract $(m, n)=(0,0)$ orbit and factor out g.c.d. of non-zero windings $N=(m, n)$

$$
\begin{gathered}
m=N p, n=N q \\
\text { with }(p, q)=1
\end{gathered}
$$

$$
\Gamma_{(1,1)}(R)=R+R \sum_{N \geq 1} \sum_{(p, q)=1} e^{-\frac{\pi(N R)^{2}}{\tau_{2}}|p+\tau q|^{2}}
$$

Poincaré series with seed

$$
\varphi(\tau, \bar{\tau})=\exp \left(-\frac{\pi(N R)^{2}}{\tau_{2}}\right)
$$

$\int_{\mathcal{F}} d \mu \Gamma_{(1,1)}(R) j(\tau)=R \int_{\mathcal{F}} j(\tau)+2 R \sum_{N \geq 1} \int_{0}^{\infty} \frac{d \tau_{2}}{\tau_{2}^{2}} e^{-\frac{\pi(N R)^{2}}{\tau_{2}}} j_{0}\left(\tau_{2}\right)$

$$
\begin{gathered}
\operatorname{Im}(\gamma \cdot \tau)=\frac{\tau_{2}}{|p+\tau q|^{2}} \\
\gamma=\left(\begin{array}{cc}
* & * \\
q & p
\end{array}\right)
\end{gathered}
$$

$$
j_{0}\left(\tau_{2}\right)=\int_{-1 / 2}^{1 / 2} d \tau_{1} j(\tau)=0
$$

$$
\int_{\mathcal{F}} d \mu \Gamma_{(1,1)}(R) j(\tau)=R \int_{\mathcal{F}} d \mu j(\tau)=-8 \pi R
$$

NOT invariant under T-duality!

Absolute convergence: interchange integration with summation

Traditional unfolding against the lattice

Traditionally : use orbit decomposition of the lattice (in Lagrangian rep.)

$$
\Gamma_{(1,1)}(R)=R \sum_{\tilde{m}, n \in \mathbb{Z}} e^{-\frac{\pi R^{2}}{\tau_{2}}|\tilde{m}+\tau n|^{2}}
$$

Extract $(m, n)=(0,0)$ orbit and factor out g.c.d. of non-zero windings $N=(m, n)$

$$
\begin{gathered}
m=N p, n=N q \\
\text { with }(p, q)=1
\end{gathered}
$$

$$
\Gamma_{(1,1)}(R)=R+R \sum_{N \geq 1} \sum_{(p, q)=1} e^{-\frac{\pi(N R)^{2}}{\tau_{2}}|p+\tau q|^{2}}
$$

Poincaré series with seed

$$
\varphi(\tau, \bar{\tau})=\exp \left(-\frac{\pi(N R)^{2}}{\tau_{2}}\right)
$$

$\int_{\mathcal{F}} d \mu \Gamma_{(1,1)}(R) j(\tau)=R \int_{\mathcal{F}} j(\tau)+2 R \sum_{N \geq 1} \int_{0}^{\infty} \frac{d \tau_{2}}{\tau_{2}^{2}} e^{-\frac{\pi(N R)^{2}}{\tau_{2}}} j_{0}\left(\tau_{2}\right)$

$$
\begin{gathered}
\operatorname{Im}(\gamma \cdot \tau)=\frac{\tau_{2}}{|p+\tau q|^{2}} \\
\gamma=\left(\begin{array}{cc}
* & * \\
q & p
\end{array}\right)
\end{gathered}
$$

$$
j_{0}\left(\tau_{2}\right)=\int_{-1 / 2}^{1 / 2} d \tau_{1} j(\tau)=0
$$

$$
\int_{\mathcal{F}} d \mu \Gamma_{(1,1)}(R) j(\tau)=R \int_{\mathcal{F}} d \mu j(\tau)=-8 \pi R
$$

NOT invariant under T-duality !

Absolute convergence: interchange integration with summation
UV : guaranteed by lattice

Traditional unfolding against the lattice

Traditionally : use orbit decomposition of the lattice (in Lagrangian rep.)

$$
\Gamma_{(1,1)}(R)=R \sum_{\tilde{m}, n \in \mathbb{Z}} e^{-\frac{\pi R^{2}}{\tau_{2}}|\tilde{m}+\tau n|^{2}}
$$

Extract $(m, n)=(0,0)$ orbit and factor out g.c.d. of non-zero windings $N=(m, n)$

$$
\begin{gathered}
m=N p, n=N q \\
\text { with }(p, q)=1
\end{gathered}
$$

$$
\Gamma_{(1,1)}(R)=R+R \sum_{N \geq 1} \sum_{(p, q)=1} e^{-\frac{\pi(N R)^{2}}{\tau_{2}}|p+\tau q|^{2}}
$$

Poincaré series with seed

$$
\varphi(\tau, \bar{\tau})=\exp \left(-\frac{\pi(N R)^{2}}{\tau_{2}}\right)
$$

$\int_{\mathcal{F}} d \mu \Gamma_{(1,1)}(R) j(\tau)=R \int_{\mathcal{F}} j(\tau)+2 R \sum_{N \geq 1} \int_{0}^{\infty} \frac{d \tau_{2}}{\tau_{2}^{2}} e^{-\frac{\pi(N R)^{2}}{\tau_{2}}} j_{0}\left(\tau_{2}\right)$

$$
\begin{gathered}
\operatorname{Im}(\gamma \cdot \tau)=\frac{\tau_{2}}{|p+\tau q|^{2}} \\
\gamma=\left(\begin{array}{cc}
* & * \\
q & p
\end{array}\right)
\end{gathered}
$$

$$
j_{0}\left(\tau_{2}\right)=\int_{-1 / 2}^{1 / 2} d \tau_{1} j(\tau)=0
$$

$$
\int_{\mathcal{F}} d \mu \Gamma_{(1,1)}(R) j(\tau)=R \int_{\mathcal{F}} d \mu j(\tau)=-8 \pi R
$$

NOT invariant under T-duality !

Absolute convergence: interchange integration with summation UV : guaranteed by lattice IR :"extra" massless modes (at T-self-dual point)

Traditional unfolding against the lattice

Max-Planck-Institut für Physik
(Werner-Heisenberg-Institut) I. Florakis, 2012

Traditional unfolding against the lattice
Unfolding against the lattice is useful for extracting the large volume behaviour of the amplitude

Max-Planck-Institut für Physik
(Werne-Heisenberg-Institut) I. Florakis, 2012

Traditional unfolding against the lattice
Unfolding against the lattice is useful for extracting the large volume behaviour of the amplitude

$$
R \gg 1 \quad, \quad R \ll 1
$$

Traditional unfolding against the lattice
Unfolding against the lattice is useful for extracting the large volume behaviour of the amplitude

Loss of absolute convergence around extended symmetry points (fixed points under T-duality) obscures the behaviour of the amplitude in these regions

Max-Planck-Institut für Physik
(Werner-Heisenberg-Institut) I. Florakis, 2012

Traditional unfolding against the lattice
Unfolding against the lattice is useful for extracting the large volume behaviour of the amplitude

Loss of absolute convergence around extended symmetry points (fixed points under T-duality) obscures the behaviour of the amplitude in these regions
$R \gg 1 \quad, \quad R \ll 1$

T-duality symmetry is not manifest in this representation

Traditional unfolding against the lattice
Unfolding against the lattice is useful for extracting the large volume behaviour of the amplitude

Loss of absolute convergence around extended symmetry points (fixed points under T-duality) obscures the behaviour of the amplitude in these regions

Traditional unfolding against the lattice
Unfolding against the lattice is useful for extracting the large volume behaviour of the amplitude

Loss of absolute convergence around extended symmetry points (fixed points under T-duality) obscures the behaviour of the amplitude in these regions

Traditional unfolding against the lattice
Unfolding against the lattice is useful for extracting the large volume behaviour of the amplitude

Loss of absolute convergence around extended symmetry points (fixed points under T-duality) obscures the behaviour of the amplitude in these regions

Unfolding against the lattice starts in Lagrangian representation
Winding sum is decomposed into $\operatorname{SL}(2 ; Z)$ orbits
Each distinct orbit is used separately to unfold the fundamental domain

Max-Planck-Institut für Physik
(Werner-Heisenberg-Institut) I. Florakis, 2012

Traditional unfolding against the lattice
Unfolding against the lattice is useful for extracting the large volume behaviour of the amplitude

Loss of absolute convergence around extended symmetry points (fixed points under T-duality) obscures the behaviour of the amplitude in these regions

Unfolding against the lattice starts in Lagrangian representation
Winding sum is decomposed into $\operatorname{SL}(2 ; Z)$ orbits
Each distinct orbit is used separately to unfold the fundamental domain example:

Max-Planck-Institut für Physik
(Werner-Heisenberg-Institut) I. Florakis, 2012

Traditional unfolding against the lattice
Unfolding against the lattice is useful for extracting the large volume behaviour of the amplitude

Loss of absolute convergence around extended symmetry points (fixed points under T-duality) obscures the behaviour of the amplitude in these regions

Unfolding against the lattice starts in Lagrangian representation
Winding sum is decomposed into $\operatorname{SL}(2 ; Z)$ orbits
Each distinct orbit is used separately to unfold the fundamental domain example:

$$
\int_{\mathcal{F}} d \mu \Gamma_{(2,2)}(T, U)=-\log \left(T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right)+\text { const. }
$$

Traditional unfolding against the lattice
Unfolding against the lattice is useful for extracting the large volume behaviour of the amplitude

Loss of absolute convergence around extended symmetry points (fixed points under T-duality) obscures the behaviour of the amplitude in these regions

Unfolding against the lattice starts in Lagrangian representation
Winding sum is decomposed into $\operatorname{SL}(2 ; Z)$ orbits
Each distinct orbit is used separately to unfold the fundamental domain example:
$\int_{\mathcal{F}} d \mu \Gamma_{(2,2)}(T, U)=-\log \left(T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right)+$ const.

Dixon, Kaplunovsky, Louis I99।

Traditional unfolding against the lattice
Unfolding against the lattice is useful for extracting the large volume behaviour of the amplitude

Loss of absolute convergence around extended symmetry points (fixed points under T-duality) obscures the behaviour of the amplitude in these regions

Unfolding against the lattice starts in Lagrangian representation
Winding sum is decomposed into $\operatorname{SL}(2 ; Z)$ orbits
Each distinct orbit is used separately to unfold the fundamental domain example:

T-duality symmetry is not manifest in this
representation

$$
\int_{\mathcal{F}} d \mu \Gamma_{(2,2)}(T, U)=-\log \left(T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right)+\text { const. } \quad \text { (after subtraction of } \quad \text { IR divergent piece) }
$$

Traditional unfolding against the lattice
Unfolding against the lattice is useful for extracting the large volume behaviour of the amplitude

Loss of absolute convergence around extended symmetry points (fixed points under T-duality) obscures the behaviour of the amplitude in these regions

Unfolding against the lattice starts in Lagrangian representation
Winding sum is decomposed into $\operatorname{SL}(2 ; Z)$ orbits
Each distinct orbit is used separately to unfold the fundamental domain example:

T-duality symmetry is not manifest in this representation

$$
\int_{\mathcal{F}} d \mu \Gamma_{(2,2)}(T, U)=-\log \left(T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right)+\text { const. } \quad \text { (after subtraction of } \quad \text { IR divergent piece) }
$$

Dixon, Kaplunovsky, Louis I99।

Traditional unfolding against the lattice
Unfolding against the lattice is useful for extracting the large volume behaviour of the amplitude

Loss of absolute convergence around extended symmetry points (fixed points under T-duality) obscures the behaviour of the amplitude in these regions

Unfolding against the lattice starts in Lagrangian representation
Winding sum is decomposed into $\operatorname{SL}(2 ; Z)$ orbits
Each distinct orbit is used separately to unfold the fundamental domain example:

T-duality symmetry is not manifest in this
representation
$\int_{\mathcal{F}} d \mu \Gamma_{(2,2)}(T, U)=-\log \left(T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right)+$ const.
Dixon, Kaplunovsky, Louis |99|

(after subtraction of IR divergent piece)

$$
\frac{\pi}{3} T_{2}
$$

Traditional unfolding against the lattice
Unfolding against the lattice is useful for extracting the large volume behaviour of the amplitude

Loss of absolute convergence around extended symmetry points (fixed points under T-duality) obscures the behaviour of the amplitude in these regions

Unfolding against the lattice starts in Lagrangian representation
Winding sum is decomposed into $\operatorname{SL}(2 ; Z)$ orbits
Each distinct orbit is used separately to unfold the fundamental domain example:

T-duality symmetry is not manifest in this
representation

$$
\int_{\mathcal{F}} d \mu \Gamma_{(2,2)}(T, U)=-\log \left(T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right)+\text { const. } \quad \text { (after subtraction of } \quad \text { IR divergent piece) }
$$

- Zero orbit
- Non-degenerate orbit

Traditional unfolding against the lattice
Unfolding against the lattice is useful for extracting the large volume behaviour of the amplitude

Loss of absolute convergence around extended symmetry points (fixed points under T-duality) obscures the behaviour of the amplitude in these regions

Unfolding against the lattice starts in Lagrangian representation
Winding sum is decomposed into $\operatorname{SL}(2 ; Z)$ orbits
Each distinct orbit is used separately to unfold the fundamental domain example:

T-duality symmetry is not manifest in this
representation

$$
\int_{\mathcal{F}} d \mu \Gamma_{(2,2)}(T, U)=-\log \left(T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right)+\text { const. }
$$

(after subtraction of IR divergent piece)

Dixon, Kaplunovsky, Louis 199|

 $=\Delta p \cdot \Delta q \geqslant \frac{1}{2} t$Traditional unfolding against the lattice
Unfolding against the lattice is useful for extracting the large volume behaviour of the amplitude

Loss of absolute convergence around extended symmetry points (fixed points under T-duality) obscures the behaviour of the amplitude in these regions

Unfolding against the lattice starts in Lagrangian representation
Winding sum is decomposed into $\mathrm{SL}(2 ; Z)$ orbits
Each distinct orbit is used separately to unfold the fundamental domain example:

T-duality symmetry is not manifest in this
representation

$$
\int_{\mathcal{F}} d \mu \Gamma_{(2,2)}(T, U)=-\log \left(T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right)+\text { const. }
$$

(after subtraction of IR divergent piece)

- Zero orbit
- Non-degenerate orbit
- Degenerate orbit (strip)

Traditional unfolding against the lattice
Unfolding against the lattice is useful for extracting the large volume behaviour of the amplitude

Loss of absolute convergence around extended symmetry points (fixed points under T-duality) obscures the behaviour of the amplitude in these regions

Unfolding against the lattice starts in Lagrangian representation
Winding sum is decomposed into $\mathrm{SL}(2 ; Z)$ orbits
Each distinct orbit is used separately to unfold the fundamental domain example:

T-duality symmetry is not manifest in this representation
$\int_{\mathcal{F}} d \mu \Gamma_{(2,2)}(T, U)=-\log \left(T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right)+$ const.
(after subtraction of IR divergent piece)

Dixon, Kaplunovsky, Louis |99|

- Zero orbit
- Non-degenerate orbit

Degenerate orbit (strip) $\quad-\log \left(T_{2} U_{2}|\eta(U)|^{4}\right)$

Traditional unfolding against the lattice
Unfolding against the lattice is useful for extracting the large volume behaviour of the amplitude

Loss of absolute convergence around extended symmetry points (fixed points under T-duality) obscures the behaviour of the amplitude in these regions

Unfolding against the lattice starts in Lagrangian representation
Winding sum is decomposed into $\operatorname{SL}(2 ; Z)$ orbits
Each distinct orbit is used separately to unfold the fundamental domain example:

T-duality symmetry is not manifest in this representation
$\int_{\mathcal{F}} d \mu \Gamma_{(2,2)}(T, U)=-\log \left(T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right)+$ const.
(after subtraction of IR divergent piece)

- Zero orbit
- Non-degenerate orbit

Degenerate orbit (strip) $\quad-\log \left(T_{2} U_{2}|\eta(U)|^{4}\right)$

Traditional unfolding against the lattice
Unfolding against the lattice is useful for extracting the large volume behaviour of the amplitude

Loss of absolute convergence around extended symmetry points (fixed points under T-duality) obscures the behaviour of the amplitude in these regions

Unfolding against the lattice starts in Lagrangian representation
Winding sum is decomposed into $\operatorname{SL}(2 ; Z)$ orbits
Each distinct orbit is used separately to unfold the fundamental domain example:
$\int_{\mathcal{F}} d \mu \Gamma_{(2,2)}(T, U)=-\log \left(T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right)+$ const.
(after subtraction of IR divergent piece)

Dixon, Kaplunovsky, Louis I99|

- Zero orbit
- Non-degenerate orbit
- Degenerate orbit (strip)

NONE of the individual pieces is invariant under T-duality

$$
S L(2 ; \mathbb{Z})_{T} \times S L(2 ; \mathbb{Z})_{U} \times \mathbb{Z}_{2}
$$

Traditional unfolding against the lattice

Max-Planck-Institut für Physik
(Werner-Heisenberg-Institut) I. Florakis, 2012

Traditional unfolding against the lattice
A more complicated example:

Traditional unfolding against the lattice

A more complicated example:

$$
\begin{aligned}
\int_{\mathcal{F}} d \mu \Gamma_{2,2}(T, U) \frac{\hat{E}_{2} E_{4} E_{6}}{\Delta} \simeq & \operatorname{Re}\left[-24 \sum_{k>0}\left(11 \operatorname{Li}_{1}\left(e^{2 \pi i k T}\right)-\frac{30}{\pi T_{2} U_{2}} \mathcal{P}(k T)\right)\right. \\
& -24 \sum_{\ell>0}\left(11 \operatorname{Li}_{1}\left(e^{2 \pi i \ell U}\right)-\frac{30}{\pi T_{2} U_{2}} \mathcal{P}(\ell U)\right) \\
& +\sum_{k>0, \ell>0}\left(\tilde{c}(k \ell) \operatorname{Li}_{1}\left(e^{2 \pi i(k T+\ell U)}\right)-\frac{3 c(k \ell)}{\pi T_{2} U_{2}} \mathcal{P}(k T+\ell U)\right) \\
& \left.\left.+\operatorname{Li}_{1}\left(e^{2 \pi i\left(T_{1}-U_{1}+i\left|T_{2}-U_{2}\right|\right)}\right)-\frac{3}{\pi T_{2} U_{2}} \mathcal{P}\left(T_{1}-U_{1}+i\left|T_{2}-U_{2}\right|\right)\right)\right] \\
& +\frac{60 \zeta(3)}{\pi^{2} T_{2} U_{2}}+22 \log \left(\frac{8 \pi e^{1-\gamma}}{\sqrt{27}} T_{2} U_{2}\right) \\
& +\left(\frac{4 \pi}{3} \frac{U_{2}^{2}}{T_{2}}-\frac{22 \pi}{3} U_{2}-4 \pi T_{2}\right) \Theta\left(T_{2}-U_{2}\right) \\
& +\left(\frac{4 \pi}{3} \frac{T_{2}^{2}}{U_{2}}-\frac{22 \pi}{3} T_{2}-4 \pi U_{2}\right) \Theta\left(U_{2}-T_{2}\right)
\end{aligned}
$$

where $\mathcal{P}(z)=y \operatorname{Li}_{2}\left(e^{2 \pi i z}\right)+\frac{1}{2 \pi} \operatorname{Li}_{3}\left(e^{2 \pi i z}\right)$
$=1 \Delta_{p \cdot \Delta q \geqslant \frac{1}{2} t}$

Traditional unfolding against the lattice

A more complicated example:

$$
\begin{aligned}
\int_{\mathcal{F}} d \mu \Gamma_{2,2}(T, U) \frac{\hat{E}_{2} E_{4} E_{6}}{\Delta} \simeq & \operatorname{Re}\left[-24 \sum_{k>0}\left(11 \operatorname{Li}_{1}\left(e^{2 \pi i k T}\right)-\frac{30}{\pi T_{2} U_{2}} \mathcal{P}(k T)\right)\right. \\
& -24 \sum_{\ell>0}\left(11 \operatorname{Li}_{1}\left(e^{2 \pi i \ell U}\right)-\frac{30}{\pi T_{2} U_{2}} \mathcal{P}(\ell U)\right) \\
& +\sum_{k>0, \ell>0}\left(\tilde{c}(k \ell) \operatorname{Li}_{1}\left(e^{2 \pi i(k T+\ell U)}\right)-\frac{3 c(k \ell)}{\pi T_{2} U_{2}} \mathcal{P}(k T+\ell-\cdots \cdots)\right) \\
& \left.\left.+\operatorname{Li}_{1}\left(e^{2 \pi i\left(T_{1}-U_{1}+i\left|T_{2}-U_{2}\right|\right)}\right)-\frac{3}{\pi T_{2} U_{2}} \mathcal{P}\left(T_{1}-U_{1}+i\left|T_{2}-U_{2}\right|\right)\right)\right] \\
& +\frac{60 \zeta(3)}{\pi^{2} T_{2} U_{2}}+22 \log \left(\frac{8 \pi e^{1-\gamma}}{\sqrt{27}} T_{2} U_{2}\right) \\
& +\left(\frac{4 \pi}{3} \frac{U_{2}^{2}}{T_{2}}-\frac{22 \pi}{3} U_{2}-4 \pi T_{2}\right) \Theta\left(T_{2}-U_{2}\right) \\
& +\left(\frac{4 \pi}{3} \frac{T_{2}^{2}}{U_{2}}-\frac{22 \pi}{3} T_{2}-4 \pi U_{2}\right) \Theta\left(U_{2}-T_{2}\right)
\end{aligned}
$$

where $\mathcal{P}(z)=y \operatorname{Li}_{2}\left(e^{2 \pi i z}\right)+\frac{1}{2 \pi} \operatorname{Li}_{3}\left(e^{2 \pi i z}\right)$

Traditional unfolding against the lattice

A more complicated example:

$$
\begin{aligned}
& \int_{\mathcal{F}} d \mu \Gamma_{2,2}(T, U) \frac{\hat{E}_{2} E_{4} E_{6}}{\Delta} \simeq \operatorname{Re}\left[-24 \sum_{k>0}\left(11 \operatorname{Li}_{1}\left(e^{2 \pi i k T}\right)-\frac{30}{\pi T_{2} U_{2}} \mathcal{P}(k T)\right)\right. \\
& -24 \sum_{\ell>0}\left(11 \operatorname{Li}_{1}\left(e^{2 \pi i \ell U}\right)-\frac{30}{\pi T_{2} U_{2}} \mathcal{P}(\ell U)\right) \\
& +\sum_{k>0, \ell>0} \vdots\left(\tilde{c}(k \ell) \operatorname{Li}_{1}\left(e^{2 \pi i(k T+\ell U)}\right)-\frac{3 c(k \ell)}{\pi T_{2} U_{2}} \mathcal{P}(k T+\ell U)\right) \vdots \\
& \left.\left.+\operatorname{Li}_{1}\left(e^{2 \pi i\left(T_{1}-U_{1}+i\left|T_{2}-U_{2}\right|\right)}\right)-\frac{3}{\pi T_{2} U_{2}} \mathcal{P}\left(T_{1}-U_{1}+i\left|T_{2}-U_{2}\right|\right)\right)\right] \\
& +\frac{60 \zeta(3)}{\pi^{2} T_{2} U_{2}}+22 \log \left(\frac{8 \pi e^{1-\gamma}}{\sqrt{27}} T_{2} U_{2}\right) \\
& +\left(\frac{4 \pi}{3} \frac{U_{2}^{2}}{T_{2}}-\frac{22 \pi}{3} U_{2}-4 \pi T_{2}\right) \Theta\left(T_{2}-U_{2}\right) \\
& +\left(\frac{4 \pi}{3} \frac{T_{2}^{2}}{U_{2}}-\frac{22 \pi}{3} T_{2}-4 \pi U_{2}\right) \Theta\left(U_{2}-T_{2}\right)
\end{aligned}
$$

where $\mathcal{P}(z)=y \operatorname{Li}_{2}\left(e^{2 \pi i z}\right)+\frac{1}{2 \pi} \operatorname{Li}_{3}\left(e^{2 \pi i z}\right)$
Result is chamber dependent

Traditional unfolding against the lattice

A more complicated example:

$$
\begin{aligned}
\int_{\mathcal{F}} d \mu \Gamma_{2,2}(T, U) \frac{\hat{E}_{2} E_{4} E_{6}}{\Delta} \simeq & \operatorname{Re}\left[-24 \sum_{k>0}\left(11 \operatorname{Li}_{1}\left(e^{2 \pi i k T}\right)-\frac{30}{\pi T_{2} U_{2}} \mathcal{P}(k T)\right)\right. \\
& -24 \sum_{\ell>0}\left(11 \operatorname{Li}_{1}\left(e^{2 \pi i \ell U}\right)-\frac{30}{\pi T_{2} U_{2}} \mathcal{P}(\ell U)\right) \\
& +\sum_{k>0, \ell>0}\left(\tilde{c}(k \ell) \operatorname{Li}_{1}\left(e^{2 \pi i(k T+\ell U)}\right)-\frac{3 c(k \ell)}{\pi T_{2} U_{2}} \mathcal{P}(k T+\ell U)\right) \\
& \left.\left.+\operatorname{Li}_{1}\left(e^{2 \pi i\left(T_{1}-U_{1}+i\left|T_{2}-U_{2}\right|\right)}\right)-\frac{3}{\pi T_{2} U_{2}} \mathcal{P}\left(T_{1}-U_{1}+i\left|T_{2}-U_{2}\right|\right)\right)\right] \\
& +\frac{60 \zeta(3)}{\pi^{2} T_{2} U_{2}}+22 \log \left(\frac{8 \pi e^{1-\gamma}}{\sqrt{27}} T_{2} U_{2}\right) \\
& +\left(\frac{4 \pi}{3} \frac{U_{2}^{2}}{T_{2}}-\frac{22 \pi}{3} U_{2}-4 \pi T_{2}\right): \Theta\left(T_{2}-U_{2}\right) \\
& +\left(\frac{4 \pi}{3} \frac{T_{2}^{2}}{U_{2}}-\frac{22 \pi}{3} T_{2}-4 \pi U_{2}\right)
\end{aligned}
$$

$$
\text { where } \mathcal{P}(z)=y \operatorname{Li}_{2}\left(e^{2 \pi i z}\right)+\frac{1}{2 \pi} \operatorname{Li}_{3}\left(e^{2 \pi i z}\right)
$$

Result is chamber dependent

Traditional unfolding against the lattice

A more complicated example:

$$
\begin{aligned}
\int_{\mathcal{F}} d \mu \Gamma_{2,2}(T, U) \frac{\hat{E}_{2} E_{4} E_{6}}{\Delta} \simeq & \operatorname{Re}\left[-24 \sum_{k>0}\left(11 \operatorname{Li}_{1}\left(e^{2 \pi i k T}\right)-\frac{30}{\pi T_{2} U_{2}} \mathcal{P}(k T)\right)\right. \\
& -24 \sum_{\ell>0}\left(11 \operatorname{Li}_{1}\left(e^{2 \pi i \ell U}\right)-\frac{30}{\pi T_{2} U_{2}} \mathcal{P}(\ell U)\right) \\
& +\sum_{k>0, \ell>0}\left(\tilde{c}(k \ell) \operatorname{Li}_{1}\left(e^{2 \pi i(k T+\ell U)}\right)-\frac{3 c(k \ell)}{\pi T_{2} U_{2}} \mathcal{P}(k T+\ell U)\right) \\
& \left.\left.+\operatorname{Li}_{1}\left(e^{2 \pi i\left(T_{1}-U_{1}+i\left|T_{2}-U_{2}\right|\right)}\right)-\frac{3}{\pi T_{2} U_{2}} \mathcal{P}\left(T_{1}-U_{1}+i\left|T_{2}-U_{2}\right|\right)\right)\right] \\
& +\frac{60 \zeta(3)}{\pi^{2} T_{2} U_{2}}+22 \log \left(\frac{8 \pi e^{1-\gamma}}{\sqrt{27}} T_{2} U_{2}\right) \\
& +\left(\frac{4 \pi}{3} \frac{U_{2}^{2}}{T_{2}}-\frac{22 \pi}{3} U_{2}-4 \pi T_{2}\right): \Theta\left(T_{2}-\cdots \cdots \cdots \cdots\right. \\
& +\left(\frac{4 \pi}{3} \frac{T_{2}^{2}}{U_{2}}-\frac{22 \pi}{3} T_{2}-4 \pi U_{2}\right)
\end{aligned}
$$

$$
\text { where } \mathcal{P}(z)=y \operatorname{Li}_{2}\left(e^{2 \pi i z}\right)+\frac{1}{2 \pi} \operatorname{Li}_{3}\left(e^{2 \pi i z}\right)
$$

Result is chamber dependent
Obscures singularities of the amplitude !

Traditional unfolding against the lattice

A more complicated example:

$$
\begin{aligned}
\int_{\mathcal{F}} d \mu \Gamma_{2,2}(T, U) \frac{\hat{E}_{2} E_{4} E_{6}}{\Delta} \simeq & \operatorname{Re}\left[-24 \sum_{k>0}\left(11 \operatorname{Li}_{1}\left(e^{2 \pi i k T}\right)-\frac{30}{\pi T_{2} U_{2}} \mathcal{P}(k T)\right)\right. \\
& -24 \sum_{\ell>0}\left(11 \operatorname{Li}_{1}\left(e^{2 \pi i \ell U}\right)-\frac{30}{\pi T_{2} U_{2}} \mathcal{P}(\ell U)\right) \\
& +\sum_{k>0, \ell>0}\left(\tilde{c}(k \ell) \operatorname{Li}_{1}\left(e^{2 \pi i(k T+\ell U)}\right)-\frac{3 c(k \ell)}{\pi T_{2} U_{2}} \mathcal{P}(k T+\ell U)\right) \\
& \left.\left.+\operatorname{Li}_{1}\left(e^{2 \pi i\left(T_{1}-U_{1}+i\left|T_{2}-U_{2}\right|\right)}\right)-\frac{3}{\pi T_{2} U_{2}} \mathcal{P}\left(T_{1}-U_{1}+i\left|T_{2}-U_{2}\right|\right)\right)\right] \\
& +\frac{60 \zeta(3)}{\pi^{2} T_{2} U_{2}}+22 \log \left(\frac{8 \pi e^{1-\gamma}}{\sqrt{27}} T_{2} U_{2}\right) \\
& +\left(\frac{4 \pi}{3} \frac{U_{2}^{2}}{T_{2}}-\frac{22 \pi}{3} U_{2}-4 \pi T_{2}\right): \Theta\left(T_{2}-\cdots \cdots \cdots \cdots\right. \\
& +\left(\frac{4 \pi}{3} \frac{T_{2}^{2}}{U_{2}}-\frac{22 \pi}{3} T_{2}-4 \pi U_{2}\right)
\end{aligned}
$$

$$
\text { where } \mathcal{P}(z)=y \operatorname{Li}_{2}\left(e^{2 \pi i z}\right)+\frac{1}{2 \pi} \operatorname{Li}_{3}\left(e^{2 \pi i z}\right)
$$

Result is chamber dependent
Obscures singularities of the amplitude!

- Hard to check T-duality invariance!

Traditional unfolding against the lattice

A more complicated example:

$$
\begin{aligned}
\int_{\mathcal{F}} d \mu \Gamma_{2,2}(T, U) \frac{\hat{E}_{2} E_{4} E_{6}}{\Delta} \simeq & \operatorname{Re}\left[-24 \sum_{k>0}\left(11 \operatorname{Li}_{1}\left(e^{2 \pi i k T}\right)-\frac{30}{\pi T_{2} U_{2}} \mathcal{P}(k T)\right)\right. \\
& -24 \sum_{\ell>0}\left(11 \operatorname{Li}_{1}\left(e^{2 \pi i \ell U}\right)-\frac{30}{\pi T_{2} U_{2}} \mathcal{P}(\ell U)\right) \\
& +\sum_{k>0, \ell>0} \vdots\left(\tilde{c}(k \ell) \operatorname{Li}_{1}\left(e^{2 \pi i(k T+\ell U)}\right)-\frac{3 c(k \ell)}{\pi T_{2} U_{2}} \mathcal{P}(k T+\ell U)\right) \\
& \left.\left.+\operatorname{Li}_{1}\left(e^{2 \pi i\left(T_{1}-U_{1}+i\left|T_{2}-U_{2}\right|\right)}\right)-\frac{3}{\pi T_{2} U_{2}} \mathcal{P}\left(T_{1}-U_{1}+i\left|T_{2}-U_{2}\right|\right)\right)\right] \\
& +\frac{60 \zeta(3)}{\pi^{2} T_{2} U_{2}}+22 \log \left(\frac{8 \pi e^{1-\gamma}}{\sqrt{27}} T_{2} U_{2}\right) \\
& +\left(\frac{4 \pi}{3} \frac{U_{2}^{2}}{T_{2}}-\frac{22 \pi}{3} U_{2}-4 \pi T_{2}\right):-\cdots\left(T_{2}-\cdots \cdots \cdots\right. \\
& +\left(\frac{4 \pi}{3} \frac{T_{2}^{2}}{U_{2}}-\frac{22 \pi}{3} T_{2}-4 \pi U_{2}\right)
\end{aligned}
$$

$$
\text { where } \mathcal{P}(z)=y \operatorname{Li}_{2}\left(e^{2 \pi i z}\right)+\frac{1}{2 \pi} \operatorname{Li}_{3}\left(e^{2 \pi i z}\right)
$$

Result is chamber dependent
Obscures singularities of the amplitude!

- Hard to check T-duality invariance!

Useful for extracting asympotic behaviour in large volume limit

Idea : Let's unfold against something else !

Idea : Let's unfold against something else !
Goal: find some other way to unfold that does not spoil the manifest T-duality symmetries of the lattice

Max-Planck-Institut für Physik
(Werner-Heisenberg-Institut) I. Florakis, 2012

Idea : Let's unfold against something else !

Goal: find some other way to unfold that does not spoil the manifest T-duality symmetries of the lattice

Look for representation that captures the behaviour around T-self-dual points

Idea : Let's unfold against something else !

Goal: find some other way to unfold that does not spoil the manifest T-duality symmetries of the lattice

Look for representation that captures the behaviour around T-self-dual points
(1) $\int_{\mathcal{F}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau})$

Max-Planck-Institut für Physik
(Werner-Heisenberg-Institut) I. Florakis, 2012

Idea : Let's unfold against something else !

Goal: find some other way to unfold that does not spoil the manifest T-duality symmetries of the lattice

Look for representation that captures the behaviour around T-self-dual points
(1) $\int_{\mathcal{F}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau}) \quad$ Rankin-Selberg-Zagier method

Max-Planck-Institut für Physik
(Werner-Heisenberg-Institut) I. Florakis, 2012

Idea : Let's unfold against something else !

Goal: find some other way to unfold that does not spoil the manifest T-duality symmetries of the lattice

Look for representation that captures the behaviour around T-self-dual points $=\Delta_{p \cdot \Delta q \geqslant \frac{1}{2} t}$

Idea : Let's unfold against something else !

Goal: find some other way to unfold that does not spoil the manifest T-duality symmetries of the lattice

Look for representation that captures the behaviour around T-self-dual points
(1) $\int_{\mathcal{F}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau}) \quad$ Rankin-Selberg-Zagier method

$$
\int_{\mathcal{F}_{T}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau}) E^{\star}(s ; \tau)
$$

Idea : Let's unfold against something else !

Goal: find some other way to unfold that does not spoil the manifest T-duality symmetries of the lattice

Look for representation that captures the behaviour around T-self-dual points

$$
\int_{\mathcal{F}_{T}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau}) E^{\star}(s ; \tau)
$$

Idea : Let's unfold against something else !

Goal: find some other way to unfold that does not spoil the manifest T-duality symmetries of the lattice

Look for representation that captures the behaviour around T-self-dual points
(1) $\begin{array}{rr}\int_{\mathcal{F}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau}) & \text { Rankin-Selberg-Zagier method } \\ \downarrow \text { deform } & \end{array}$

$$
\int_{\mathcal{F}_{T}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau}) E^{\star}(s ; \tau)
$$

$$
E^{\star}(s ; \tau)=\zeta^{\star}(2 s) \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma}[\operatorname{Im}(\gamma \cdot \tau)]^{s}
$$

Idea : Let's unfold against something else !

Goal: find some other way to unfold that does not spoil the manifest T-duality symmetries of the lattice

Look for representation that captures the behaviour around T-self-dual points
(1) $\int_{\mathcal{F}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau}) \quad$ Rankin-Selberg-Zagier method deform
$\int_{\mathcal{F}_{T}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau}): \begin{gathered}E^{\star}(s ; \tau) \\ \cdots \cdots \cdots\end{gathered}$

$$
E^{\star}(s ; \tau)=\zeta^{\star}(2 s) \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma}[\operatorname{Im}(\gamma \cdot \tau)]^{s}
$$

Idea : Let's unfold against something else !

Goal: find some other way to unfold that does not spoil the manifest T-duality symmetries of the lattice

Look for representation that captures the behaviour around T-self-dual points
(1) $\int_{\mathcal{F}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau}) \quad$ Rankin-Selberg-Zagier method
deform
$\int_{\mathcal{F}_{T}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau}): E^{\star}(s ; \tau) \xrightarrow{\cdots \cdots \cdots} \int_{0}^{\infty} d \tau_{2} \tau_{2}^{s-2} \int_{-1 / 2}^{1 / 2} d \tau_{1} \tau_{2}^{d / 2} \sum_{m, n} e^{-2 \pi \tau_{2} \mathcal{M}^{2}} e^{2 \pi i \tau_{1} m^{T} n}$

$$
E^{\star}(s ; \tau)=\zeta^{\star}(2 s) \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma}[\operatorname{Im}(\gamma \cdot \tau)]^{s}
$$

Idea : Let's unfold against something else !

Goal: find some other way to unfold that does not spoil the manifest T-duality symmetries of the lattice

Look for representation that captures the behaviour around T-self-dual points
(1) $\int_{\mathcal{F}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau}) \quad$ Rankin-Selberg-Zagier method
deform
$\int_{\mathcal{F}_{T}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau}):{ }^{\star}(s ; \tau) \xrightarrow{E^{\star}} \int_{0}^{\text {unfold }} d \tau_{2} \tau_{2}^{s-2} \int_{-1 / 2}^{1 / 2} d \tau_{1} \tau_{2}^{d / 2} \sum_{m, n} e^{-2 \pi \tau_{2} \mathcal{M}^{2}} e^{2 \pi i \tau_{1} m^{T} n}$

$$
E^{\star}(s ; \tau)=\zeta^{\star}(2 s) \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma}[\operatorname{Im}(\gamma \cdot \tau)]^{s}
$$

$$
\operatorname{Res}_{s=1} E^{\star}(s ; \tau)=\frac{1}{2}
$$

Idea : Let's unfold against something else !

Goal: find some other way to unfold that does not spoil the manifest T-duality symmetries of the lattice

Look for representation that captures the behaviour around T-self-dual points
(1) $\int_{\mathcal{F}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau}) \quad$ Rankin-Selberg-Zagier method
deform
$\int_{\mathcal{F}_{T}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau}):{ }^{\star}(s ; \tau) \xrightarrow{E^{\star}} \int_{0}^{\text {unfold }} d \tau_{2} \tau_{2}^{s-2} \int_{-1 / 2}^{1 / 2} d \tau_{1} \tau_{2}^{d / 2} \sum_{m, n} e^{-2 \pi \tau_{2} \mathcal{M}^{2}} e^{2 \pi i \tau_{1} m^{T} n}$

$$
E^{\star}(s ; \tau)=\zeta^{\star}(2 s) \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma}[\operatorname{Im}(\gamma \cdot \tau)]^{s}
$$

$$
\operatorname{Res}_{s=1} E^{\star}(s ; \tau)=\frac{1}{2}
$$

Idea : Let's unfold against something else !

Goal: find some other way to unfold that does not spoil the manifest T-duality symmetries of the lattice

Look for representation that captures the behaviour around T-self-dual points
(1) $\int_{\mathcal{F}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau}) \quad$ Rankin-Selberg-Zagier method
$\int_{\mathcal{F}_{T}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau}): E^{\star}(s ; \tau) \xrightarrow{\cdots \cdots \cdots} \int_{0}^{\infty} d \tau_{2} \tau_{2}^{s-2} \int_{-1 / 2}^{1 / 2} d \tau_{1} \tau_{2}^{d / 2} \sum_{m, n} e^{-2 \pi \tau_{2} \mathcal{M}^{2}} e^{2 \pi i \tau_{1} m^{T} n}$

$$
E^{\star}(s ; \tau)=\zeta^{\star}(2 s) \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma}[\operatorname{Im}(\gamma \cdot \tau)]^{s}
$$

extract residue

$$
\underbrace{\operatorname{Res}_{s=1} E^{\star}(s ; \tau)=\frac{1}{2}} \quad \frac{1}{2} \int_{\mathcal{F}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau})=\operatorname{Res}_{s=1}\left[\int_{0}^{\infty} d \tau_{2} \tau_{2}^{s-2+d / 2} \sum_{m^{T} n=0} e^{-2 \pi \tau_{2} \mathcal{M}^{2}}\right]
$$

Idea : Let's unfold against something else !

Goal: find some other way to unfold that does not spoil the manifest T-duality symmetries of the lattice

Look for representation that captures the behaviour around T-self-dual points
(1) $\int_{\mathcal{F}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau}) \quad$ Rankin-Selberg-Zagier method
$\int_{\mathcal{F}_{T}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau}): E^{\star}(s ; \tau) \xrightarrow{\cdots \cdots \cdots} \int_{0}^{\infty} d \tau_{2} \tau_{2}^{s-2} \int_{-1 / 2}^{1 / 2} d \tau_{1} \tau_{2}^{d / 2} \sum_{m, n} e^{-2 \pi \tau_{2} \mathcal{M}^{2}} e^{2 \pi i \tau_{1} m^{T} n}$

$$
E^{\star}(s ; \tau)=\zeta^{\star}(2 s) \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma}[\operatorname{Im}(\gamma \cdot \tau)]^{s}
$$

extract residue

$$
\operatorname{Res}_{s=1} E^{\star}(s ; \tau)=\frac{1}{2} \quad \frac{1}{2} \int_{\mathcal{F}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau})=\operatorname{Res}_{s=1}\left[\int_{0}^{\infty} d \tau_{2} \tau_{2}^{s-2+d / 2} \sum_{m^{T} n=0} e^{-2 \pi \tau_{2} \mathcal{M}^{2}}\right]
$$

O Manifestly T-duality invariant!

Idea : Let's unfold against something else !

Goal: find some other way to unfold that does not spoil the manifest T-duality symmetries of the lattice

Look for representation that captures the behaviour around T-self-dual points
(1) $\int_{\mathcal{F}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau}) \quad$ Rankin-Selberg-Zagier method
$\int_{\mathcal{F}_{T}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau}): E^{\star}(s ; \tau) \xrightarrow{\cdots \cdots \cdots} \int_{0}^{\infty} d \tau_{2} \tau_{2}^{s-2} \int_{-1 / 2}^{1 / 2} d \tau_{1} \tau_{2}^{d / 2} \sum_{m, n} e^{-2 \pi \tau_{2} \mathcal{M}^{2}} e^{2 \pi i \tau_{1} m^{T} n}$

$$
E^{\star}(s ; \tau)=\zeta^{\star}(2 s) \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma}[\operatorname{Im}(\gamma \cdot \tau)]^{s}
$$

extract residue

$$
\left.\operatorname{Res}_{s=1} E^{\star}(s ; \tau)=\frac{1}{2}\right] \frac{1}{2} \int_{\mathcal{F}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau})=\operatorname{Res}_{s=1}\left[\int_{0}^{\infty} d \tau_{2} \tau_{2}^{s-2+d / 2} \sum_{m^{T} n=0} e^{-2 \pi \tau_{2} \mathcal{M}^{2}}\right]
$$

O Manifestly T-duality invariant!

- For DKL integral : gives the answer in a few lines!

Idea : Let's unfold against something else !

Goal: find some other way to unfold that does not spoil the manifest T-duality symmetries of the lattice

Look for representation that captures the behaviour around T-self-dual points
(1) $\int_{\mathcal{F}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau}) \quad$ Rankin-Selberg-Zagier method
$\int_{\mathcal{F}_{T}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau}): E^{\star}(s ; \tau) \xrightarrow{\cdots \cdots \cdots} \int_{0}^{\infty} d \tau_{2} \tau_{2}^{s-2} \int_{-1 / 2}^{1 / 2} d \tau_{1} \tau_{2}^{d / 2} \sum_{m, n} e^{-2 \pi \tau_{2} \mathcal{M}^{2}} e^{2 \pi i \tau_{1} m^{T} n}$

$$
E^{\star}(s ; \tau)=\zeta^{\star}(2 s) \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma}[\operatorname{Im}(\gamma \cdot \tau)]^{s}
$$

extract residue

$$
\underbrace{\operatorname{Res}_{s=1} E^{\star}(s ; \tau)=\frac{1}{2}} \quad \frac{1}{2} \int_{\mathcal{F}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau})=\operatorname{Res}_{s=1}\left[\int_{0}^{\infty} d \tau_{2} \tau_{2}^{s-2+d / 2} \sum_{m^{T} n=0} e^{-2 \pi \tau_{2} \mathcal{M}^{2}}\right]
$$

O Manifestly T-duality invariant!
For DKL integral : gives the answer in a few lines!

- No need for delicate regularization of degenerate orbit

New method required!

New method required!

(2) $\int_{\mathcal{F}} d \mu \Gamma_{d+k, d}(G, B, Y ; \tau, \bar{\tau}) \Phi(\tau)$

New method required!

(2) $\int_{\mathcal{F}} d \mu \Gamma_{d+k, d}(G, B, Y ; \tau, \bar{\tau}) \Phi(\tau)$

What happens for integrands which are of rapid growth at the cusp ? (unphysical tachyon)

New method required!

(2) $\int_{\mathcal{F}} d \mu \Gamma_{d+k, d}(G, B, Y ; \tau, \bar{\tau}) \Phi(\tau)$ unfold the elliptic genus!

What happens for integrands which are of rapid growth at the cusp ? (unphysical tachyon)

A new method: unfolding against the elliptic genus !

A new method: unfolding against the elliptic genus!

We need a Poincaré representation of modular form Φ

A new method: unfolding against the elliptic genus!

We need a Poincaré representation of modular form Φ
But which is the correct seed ?

A new method: unfolding against the elliptic genus!

We need a Poincaré representation of modular form Φ

$$
\begin{aligned}
& \text { But which is the correct seed } \\
& \qquad \Delta_{w}=2 \tau_{2}^{2} \partial_{\bar{\tau}}\left(\partial_{\tau}-\frac{i w}{2 \tau_{2}}\right)
\end{aligned}
$$ modular forms Φ can be organized into appropriate linear combinations of its eigenmodes

Construct Φ by Poincaré representation such that the seed f is an eigenmode of Δ

A new method: unfolding against the elliptic genus!

We need a Poincaré representation of modular form Φ

But which is the correct seed ?

Hyperbolic Laplacian Δ acts as Casimir operator and modular forms Φ can be organized into appropriate linear

$$
\Delta_{w}=2 \tau_{2}^{2} \partial_{\bar{\tau}}\left(\partial_{\tau}-\frac{i w}{2 \tau_{2}}\right)
$$ combinations of its eigenmodes

Construct Φ by Poincaré representation such that the seed f is an eigenmode of Δ

Impose order-к pole at the cusp $\quad \Phi \sim q^{-\kappa}+\ldots$ $=\Delta_{p} \cdot \Delta_{q \geqslant \frac{1}{2} \hbar}$

A new method: unfolding against the elliptic genus !

We need a Poincaré representation of modular form Φ

But which is the correct seed ?

Hyperbolic Laplacian Δ acts as Casimir operator and modular forms Φ can be organized into appropriate linear

$$
\Delta_{w}=2 \tau_{2}^{2} \partial_{\bar{\tau}}\left(\partial_{\tau}-\frac{i w}{2 \tau_{2}}\right)
$$ combinations of its eigenmodes

Construct Φ by Poincaré representation such that the seed f is an eigenmode of Δ

Impose order-к pole at the cusp $\Phi \sim q^{-\kappa}+\ldots$

The Poincaré series must be absolutely convergent (for $w<0$) to justify the unfolding

A new method: unfolding against the elliptic genus !

We need a Poincaré representation of modular form Φ

But which is the correct seed ?

Hyperbolic Laplacian Δ acts as Casimir operator and modular forms Φ can be organized into appropriate linear

$$
\Delta_{w}=2 \tau_{2}^{2} \partial_{\bar{\tau}}\left(\partial_{\tau}-\frac{i w}{2 \tau_{2}}\right)
$$ combinations of its eigenmodes

Construct Φ by Poincaré representation such that the seed f is an eigenmode of Δ

Impose order-к pole at the cusp $\Phi \sim q^{-\kappa}+\ldots$

The Poincaré series must be absolutely convergent (for $w<0$) to justify the unfolding

These conditions lead to the seed

$$
\varphi(\tau, \bar{\tau})=\mathcal{M}_{s, w}\left(-\kappa \tau_{2}\right) e^{-2 \pi i \kappa \tau_{1}}
$$

A new method: unfolding against the elliptic genus !

We need a Poincaré representation of modular form Φ

But which is the correct seed ?

Hyperbolic Laplacian Δ acts as Casimir operator and modular forms Φ can be organized into appropriate linear

$$
\Delta_{w}=2 \tau_{2}^{2} \partial_{\bar{\tau}}\left(\partial_{\tau}-\frac{i w}{2 \tau_{2}}\right)
$$ combinations of its eigenmodes

Construct Φ by Poincaré representation such that the seed f is an eigenmode of Δ

Impose order-к pole at the cusp $\Phi \sim q^{-\kappa}+\ldots$

The Poincaré series must be absolutely convergent (for $w<0$) to justify the unfolding

These conditions lead to the seed

$$
\begin{aligned}
& \varphi(\tau, \bar{\tau})=\mathcal{M}_{s, w}\left(-\kappa \tau_{2}\right) e^{-2 \pi i \kappa \tau_{1}} \\
& \mathcal{M}_{s, w}(y)=|4 \pi y|^{-w / 2} M_{\frac{w}{2} \operatorname{sgn}(y), s-\frac{1}{2}}(4 \pi|y|)
\end{aligned}
$$

A new method: unfolding against the elliptic genus !

We need a Poincaré representation of modular form Φ

But which is the correct

Hyperbolic Laplacian Δ acts as Casimir operator and modular forms Φ can be organized into appropriate linear combinations of its eigenmodes

$$
\Delta_{w}=2 \tau_{2}^{2} \partial_{\bar{\tau}}\left(\partial_{\tau}-\frac{i w}{2 \tau_{2}}\right)
$$

Construct Φ by Poincaré representation such that the seed f is an eigenmode of Δ

Impose order-к pole at the cusp $\Phi \sim q^{-\kappa}+\ldots$

The Poincaré series must be absolutely convergent (for $w<0$) to justify the unfolding

These conditions lead to the seed

$$
\begin{aligned}
& \varphi(\tau, \bar{\tau})=\mathcal{M}_{s, w}\left(-\kappa \tau_{2}\right) e^{-2 \pi i \kappa \tau_{1}} \\
& \mathcal{M}_{s, w}(y)=|4 \pi y|^{-w / 2}: M_{\frac{w}{2} \operatorname{sgn}(y), s-\frac{1}{2}(4 \pi|y|)}
\end{aligned}
$$

A new Poincaré series

A new Poincaré series

This seed defines the Niebur-Poincaré series

A new Poincaré series

This seed defines the Niebur-Poincaré series

$$
\begin{aligned}
\mathcal{F}(s, \kappa, w) & =\frac{1}{2} \sum_{\gamma \in S L(2 ; \mathbb{Z}) / \Gamma_{\infty}}(c \tau+d)^{-w} \mathcal{M}_{s, w}(-\kappa \operatorname{Im} \gamma \cdot \tau) e^{-2 \pi i \kappa \operatorname{Re}\left(\gamma \cdot \tau_{1}\right)} \\
& =\frac{1}{2} \sum_{(c, d)=1}(c \tau+d)^{-w} \mathcal{M}_{s, w}\left(-\frac{\kappa \tau_{2}}{|c \tau+d|^{2}}\right) \exp \left\{-2 \pi i \kappa\left(\frac{a}{c}-\frac{c \tau_{1}+d}{c|c \tau+d|^{2}}\right)\right\}
\end{aligned}
$$

A new Poincaré series

This seed defines the Niebur-Poincaré series

$$
\begin{aligned}
\mathcal{F}(s, \kappa, w) & =\frac{1}{2} \sum_{\gamma \in S L(2 ; \mathbb{Z}) / \Gamma_{\infty}}(c \tau+d)^{-w} \mathcal{M}_{s, w}(-\kappa \operatorname{Im} \gamma \cdot \tau) e^{-2 \pi i \kappa \operatorname{Re}\left(\gamma \cdot \tau_{1}\right)} \\
& =\frac{1}{2} \sum_{(c, d)=1}(c \tau+d)^{-w} \mathcal{M}_{s, w}\left(-\frac{\kappa \tau_{2}}{|c \tau+d|^{2}}\right) \quad \exp \left\{-2 \pi i \kappa\left(\frac{a}{c}-\frac{c \tau_{1}+d}{c|c \tau+d|^{2}}\right)\right\}
\end{aligned}
$$

A new Poincaré series

This seed defines the Niebur-Poincaré series

$$
\begin{aligned}
\mathcal{F}(s, \kappa, w) & =\frac{1}{2} \sum_{\gamma \in S L(2 ; \mathbb{Z}) / \Gamma_{\infty}}(c \tau+d)^{-w} \mathcal{M}_{s, w}(-\kappa \operatorname{Im} \gamma \cdot \tau) e^{-2 \pi i \kappa \operatorname{Re}\left(\gamma \cdot \tau_{1}\right)} \quad \mathrm{J} . \text { Bruinier } 2002 \\
& =\frac{1}{2} \sum_{(c, d)=1}(c \tau+d)^{-w} \mathcal{M}_{s, w}\left(-\frac{\kappa \tau_{2}}{|c \tau+d|^{2}}\right) \exp \left\{-2 \pi i \kappa\left(\frac{a}{c}-\frac{c \tau_{1}+d}{c|c \tau+d|^{2}}\right)\right\}
\end{aligned}
$$

Converges absolutely for $\operatorname{Re}(s)>1$
For $\mathrm{k}>0$, correct behaviour at the cusp
By construction : eigenmode of the hyperbolic Laplacian

A new Poincaré series

This seed defines the Niebur-Poincaré series

$$
\begin{aligned}
\mathcal{F}(s, \kappa, w) & =\frac{1}{2} \sum_{\gamma \in S L(2 ; \mathbb{Z}) / \Gamma_{\infty}}(c \tau+d)^{-w} \mathcal{M}_{s, w}(-\kappa \operatorname{Im} \gamma \cdot \tau) e^{-2 \pi i \kappa \operatorname{Re}\left(\gamma \cdot \tau_{1}\right)} \\
& =\frac{1}{2} \sum_{(c, d)=1}(c \tau+d)^{-w} \mathcal{M}_{s, w}\left(-\frac{\kappa \tau_{2}}{|c \tau+d|^{2}}\right) \exp \left\{-2 \pi i \kappa\left(\frac{a}{c}-\frac{c \tau_{1}+d}{c|c \tau+d|^{2}}\right)\right\}
\end{aligned}
$$

- Converges absolutely for $\operatorname{Re}(s)>1$

For $\mathrm{\kappa}>0$, correct behaviour at the cusp $\quad \mathcal{M}_{s, w}\left(-\kappa \tau_{2}\right) e^{-2 \pi i \kappa \tau_{1}} \sim \frac{\Gamma(2 s)}{\Gamma\left(s+\frac{w}{2}\right)} q^{-\kappa}$
By construction : eigenmode of the hyperbolic Laplacian

A new Poincaré series

This seed defines the Niebur-Poincaré series

$$
\begin{aligned}
\mathcal{F}(s, \kappa, w) & =\frac{1}{2} \sum_{\gamma \in S L(2 ; \mathbb{Z}) / \Gamma_{\infty}}(c \tau+d)^{-w} \mathcal{M}_{s, w}(-\kappa \operatorname{Im} \gamma \cdot \tau) e^{-2 \pi i \kappa \operatorname{Re}\left(\gamma \cdot \tau_{1}\right)} \\
& =\frac{1}{2} \sum_{(c, d)=1}(c \tau+d)^{-w} \mathcal{M}_{s, w}\left(-\frac{\kappa \tau_{2}}{|c \tau+d|^{2}}\right) \quad \exp \left\{-2 \pi i \kappa\left(\frac{a}{c}-\frac{c \tau_{1}+d}{c|c \tau+d|^{2}}\right)\right\}
\end{aligned}
$$

- Converges absolutely for $\operatorname{Re}(s)>1$

For $\kappa>0$, correct behaviour at the cusp $\quad \mathcal{M}_{s, w}\left(-\kappa \tau_{2}\right) e^{-2 \pi i \kappa \tau_{1}} \sim \frac{\Gamma(2 s)}{\Gamma\left(s+\frac{w}{2}\right)} q^{-\kappa}$
By construction : eigenmode of the hyperbolic Laplacian

$$
\left[\Delta_{w}+\frac{s(1-s)}{2}+\frac{w(w+2)}{8}\right] \mathcal{F}(s, \kappa, w)=0
$$

A new Poincaré series

This seed defines the Niebur-Poincaré series

$$
\begin{aligned}
\mathcal{F}(s, \kappa, w) & =\frac{1}{2} \sum_{\gamma \in S L(2 ; \mathbb{Z}) / \Gamma_{\infty}}(c \tau+d)^{-w} \mathcal{M}_{s, w}(-\kappa \operatorname{Im} \gamma \cdot \tau) e^{-2 \pi i \kappa \operatorname{Re}\left(\gamma \cdot \tau_{1}\right)} \\
& =\frac{1}{2} \sum_{(c, d)=1}(c \tau+d)^{-w} \mathcal{M}_{s, w}\left(-\frac{\kappa \tau_{2}}{|c \tau+d|^{2}}\right) \exp \left\{-2 \pi i \kappa\left(\frac{a}{c}-\frac{c \tau_{1}+d}{c|c \tau+d|^{2}}\right)\right\}
\end{aligned}
$$

- Converges absolutely for $\operatorname{Re}(s)>1$

For $\mathrm{\kappa}>0$, correct behaviour at the cusp $\quad \mathcal{M}_{s, w}\left(-\kappa \tau_{2}\right) e^{-2 \pi i \kappa \tau_{1}} \sim \frac{\Gamma(2 s)}{\Gamma\left(s+\frac{w}{2}\right)} q^{-\kappa}$
By construction : eigenmode of the hyperbolic Laplacian

$$
\left[\Delta_{w}+\frac{s(1-s)}{2}+\frac{w(w+2)}{8}\right] \mathcal{F}(s, \kappa, w)=0
$$

Spectrum is obtained by studying Fourier expansion \& using raising and lowering operators

[^0]
A new Poincaré series

This seed defines the Niebur-Poincaré series

$$
\begin{aligned}
\mathcal{F}(s, \kappa, w) & =\frac{1}{2} \sum_{\gamma \in S L(2 ; \mathbb{Z}) / \Gamma_{\infty}}(c \tau+d)^{-w} \mathcal{M}_{s, w}(-\kappa \operatorname{Im} \gamma \cdot \tau) e^{-2 \pi i \kappa \operatorname{Re}\left(\gamma \cdot \tau_{1}\right)} \\
& =\frac{1}{2} \sum_{(c, d)=1}(c \tau+d)^{-w} \mathcal{M}_{s, w}\left(-\frac{\kappa \tau_{2}}{|c \tau+d|^{2}}\right) \exp \left\{-2 \pi i \kappa\left(\frac{a}{c}-\frac{c \tau_{1}+d}{c|c \tau+d|^{2}}\right)\right\}
\end{aligned}
$$

- Converges absolutely for $\operatorname{Re}(s)>1$

For $\kappa>0$, correct behaviour at the cusp $\quad \mathcal{M}_{s, w}\left(-\kappa \tau_{2}\right) e^{-2 \pi i \kappa \tau_{1}} \sim \frac{\Gamma(2 s)}{\Gamma\left(s+\frac{w}{2}\right)} q^{-\kappa}$
By construction : eigenmode of the hyperbolic Laplacian

$$
\left[\Delta_{w}+\frac{s(1-s)}{2}+\frac{w(w+2)}{8}\right] \mathcal{F}(s, \kappa, w)=0
$$

Spectrum is obtained by studying Fourier expansion \& using raising and lowering operators

$$
\begin{array}{ll}
D_{w}=\frac{i}{\pi}\left(\partial_{\tau}-\frac{i w}{2 \tau_{2}}\right) & D_{w} \cdot \mathcal{F}(s, \kappa, w)=2 \kappa\left(s+\frac{w}{2}\right) \mathcal{F}(s, \kappa, w+2) \\
\bar{D}_{w}=-i \pi \tau_{2}^{2} \partial_{\bar{\tau}} & \bar{D}_{w} \cdot \mathcal{F}(s, \kappa, w)=\frac{1}{8 \kappa}\left(s-\frac{w}{2}\right) \mathcal{F}(s, \kappa, w-2)
\end{array}
$$

In string theory, the elliptic genera can have (at most) $\mathrm{k}=$ |

A new Poincaré series

$$
\left[\Delta_{w}+\frac{s(1-s)}{2}+\frac{w(w+2)}{8}\right] \mathcal{F}(s, \kappa, w)=0
$$

A new Poincaré series

$$
\left[\Delta_{w}+\frac{s(1-s)}{2}+\frac{w(w+2)}{8}\right] \mathcal{F}(s, \kappa, w)=0
$$

Weak quasi-holomorphic modular forms are eigenmodes of the Laplacian with eigenvalue -w/2

The N-P series has the same eigenvalue for $s=I-w / 2$

In general, the N-P series with $s=I-w / 2$ is a (weak) harmonic Maass form (Mock + Shadow)

However, by taking linear combinations of N-P series with definite coefficients, the Shadows cancel and the linear combination represents any weak holomorphic modular form!

Weak quasi-holomorphic modular forms can be formed from linear combinations of N-P series with $s=\mid-w / 2+n$

The spectrum of modular forms as limits of the N-P series

The spectrum of modular forms as limits of the N-P series

Theorem

The spectrum of modular forms as limits of the N-P series

Theorem
All weak almost holomorphic modular forms can be expressed as linear combinations of absolutely convergent Niebur-Poincaré series

Max-Planck-Institut für Physik
(Werner-Heisenberg-Institut) I. Florakis, 2012

The spectrum of modular forms as limits of the N-P series

Theorem

All weak almost holomorphic modular forms can be expressed as linear combinations of absolutely convergent Niebur-Poincaré series

$\begin{aligned} \frac{\hat{E}_{2} E_{4} E_{6}}{\Delta}= & \mathcal{F}(2,1,0)-5 \mathcal{F}(1,1,0)-144 \\ \frac{\hat{E}_{2}^{2} E_{4}^{2}}{\Delta}= & \frac{1}{5} \mathcal{F}(3,1,0)-4 \mathcal{F}(2,1,0)+13 \mathcal{F}(1,1,0)+144 \\ \frac{\hat{E}_{2} E_{6}}{\Delta}= & \frac{3}{175} \mathcal{F}(4,1,0)-\frac{3}{5} \mathcal{F}(3,1,0)+\frac{33}{5} \mathcal{F}(2,1,0)-17 \mathcal{F}(1,1,0)-144 \\ \frac{\hat{E}_{2}^{4} E_{4}}{\Delta}= & \frac{1}{1225} \mathcal{F}(5,1,0)-\frac{6}{175} \mathcal{F}(4,1,0)+\frac{18}{35} \mathcal{F}(3,1,0)-\frac{16}{5} \mathcal{F}(2,1,0) \\ & +\frac{29}{5} \mathcal{F}(1,1,0)+\frac{144}{5} \\ \frac{\hat{E}_{5}^{6}}{\Delta}= & \frac{1}{1926925} \mathcal{F}(7,1,0)-\frac{3}{2695} \mathcal{F}(5,1,0)+\frac{6}{175} \mathcal{F}(4,1,0)-\frac{3}{7} \mathcal{F}(3,1,0) \\ & +\frac{11}{5} \mathcal{F}(2,1,0)-\frac{29}{7} \mathcal{F}(1,1,0)-\frac{144}{7} \end{aligned}$
$w=-2$
$\begin{aligned} \frac{\hat{E}_{2} E_{4}^{2}}{\Delta}= & \frac{1}{40} \mathcal{F}(3,1,-2)-\frac{1}{3} \mathcal{F}(2,1,-2) \\ \frac{\hat{E}_{2}^{2} E_{6}}{\Delta}= & \frac{1}{525} \mathcal{F}(4,1,-2)-\frac{1}{20} \mathcal{F}(3,1,-2)+\frac{11}{30} \mathcal{F}(2,1,-2) \\ \frac{\hat{E}_{3}^{3} E_{4}}{\Delta}= & \frac{1}{11760} \mathcal{F}(5,1,-2)-\frac{1}{350} \mathcal{F}(4,1,-2)+\frac{9}{280} \mathcal{F}(3,1,-2)-\frac{2}{15} \mathcal{F}(2,1,-2) \\ \frac{\hat{E}_{2}^{5}}{\Delta}= & \frac{1}{19819800} \mathcal{F}(7,1,-2)-\frac{1}{12936} \mathcal{F}(5,1,-2)+\frac{1}{525} \mathcal{F}(4,1,-2)-\frac{1}{56} \mathcal{F}(3,1,-2) \\ & +\frac{1}{15} \mathcal{F}(2,1,-2) \end{aligned}$
$w=-4$
$\begin{aligned} & \frac{\hat{E}_{2} E_{6}}{\Delta}=\frac{1}{2520} \mathcal{F}(4,1,-4)-\frac{1}{120} \mathcal{F}(3,1,-4) \\ & \frac{\hat{E}_{2}^{2} E_{4}}{\Delta}=\frac{1}{70560} \mathcal{F}(5,1,-4)-\frac{1}{2520} \mathcal{F}(4,1,-4)+\frac{1}{280} \mathcal{F}(3,1,-4) \\ & \frac{\hat{E}_{2}^{4}}{\Delta}=\frac{1}{148648500} \mathcal{F}(7,1,-4)-\frac{1}{129360} \mathcal{F}(5,1,-4)+\frac{1}{6300} \mathcal{F}(4,1,-4)-\frac{1}{840} \mathcal{F}(3,1,-4) \end{aligned}$
$w=-6$
$\begin{aligned} \frac{\hat{E}_{2} E_{4}}{\Delta} & =\frac{1}{241920} \mathcal{F}(5,1,-6)-\frac{1}{10080} \mathcal{F}(4,1,-6) \\ \frac{\hat{E}_{2}^{3}}{\Delta} & =\frac{1}{792792000} \mathcal{F}(7,1,-6)-\frac{1}{887040} \mathcal{F}(5,1,-6)+\frac{1}{50400} \mathcal{F}(4,1,-6) \end{aligned}$
$w=-8$
$\frac{\hat{E}_{\Delta}^{2}}{\Delta}=\frac{1}{2854051200} \mathcal{F}(7,1,-8)-\frac{1}{3991680} \mathcal{F}(5,1,-8)$
$w=-10$
$\frac{\hat{E}_{2}}{\Delta}=\frac{1}{6277020800} \mathcal{F}(7,1,-10)$

The spectrum of modular forms as limits of the N-P series

Theorem

All weak almost holomorphic modular forms can be expressed as linear combinations of absolutely convergent Niebur-Poincaré series

$$
w=0
$$

$$
\begin{aligned}
\frac{\hat{E}_{2} E_{4} E_{6}}{\Delta}= & \mathcal{F}(2,1,0)-5 \mathcal{F}(1,1,0)-144 \\
\frac{\hat{E}_{2}^{2} E_{4}^{2}}{\Delta}= & \frac{1}{5} \mathcal{F}(3,1,0)-4 \mathcal{F}(2,1,0)+13 \mathcal{F}(1,1,0)+144 \\
\frac{\hat{E}_{2}^{2} E_{6}}{\Delta}= & \frac{3}{175} \mathcal{F}(4,1,0)-\frac{3}{5} \mathcal{F}(3,1,0)+\frac{33}{5} \mathcal{F}(2,1,0)-17 \mathcal{F}(1,1,0)-144 \\
\frac{\hat{E}_{2}^{4} E_{4}}{\Delta}= & \frac{1}{1225} \mathcal{F}(5,1,0)-\frac{6}{175} \mathcal{F}(4,1,0)+\frac{18}{35} \mathcal{F}(3,1,0)-\frac{16}{5} \mathcal{F}(2,1,0) \\
& +\frac{29}{5} \mathcal{F}(1,1,0)+\frac{144}{5} \\
\frac{\hat{E}_{2}^{6}}{\Delta}= & \frac{1}{1226925} \mathcal{F}(7,1,0)-\frac{3}{2695} \mathcal{F}(5,1,0)+\frac{6}{175} \mathcal{F}(4,1,0)-\frac{3}{7} \mathcal{F}(3,1,0) \\
& +\frac{12}{5} \mathcal{F}(2,1,0)-\frac{29}{7} \mathcal{F}(1,1,0)-\frac{144}{7}
\end{aligned}
$$

The spectrum of modular forms as limits of the N-P series

Theorem
All weak almost holomorphic modular forms can be expressed as linear combinations of absolutely convergent Niebur-Poincaré series

Max-Planck-Institut für Physik
(Werner-Heisenberg-Institut) I. Florakis, 2012

Unfolding against the N-P series gives a BPS sum

Unfolding against the N-P series gives a BPS sum

T_{1}-integration: picks BPS state contribution
T_{2}-integration:Schwinger representation

Unfolding against the N-P series gives a BPS sum

Tו-integration: picks BPS state contribution
T_{2}-integration:Schwinger representation

$$
\begin{aligned}
R . N . \int_{F} d \mu \Gamma_{(d+k, d)} \mathcal{F}\left(s, \kappa,-\frac{k}{2}\right) & =\lim _{T \rightarrow \infty}\left[\int_{\mathcal{F}_{T}} d \mu \Gamma_{(d+k, d)} \mathcal{F}\left(s, \kappa,-\frac{k}{2}\right)+f_{0}(s) \frac{T^{\frac{d}{2}+\frac{k}{4}-s}}{s-\frac{d}{2}-\frac{k}{4}}\right] \\
& =\int_{0}^{\infty} d \tau_{2} \tau_{2}^{d / 2-2} \mathcal{M}_{s,-\frac{k}{2}}\left(-\kappa \tau_{2}\right) \sum_{\mathrm{BPS}} e^{-\pi \tau_{2}\left(P_{L}^{2}+P_{R}^{2}\right) / 2}
\end{aligned}
$$

Unfolding against the N-P series gives a BPS sum

Tו-integration: picks BPS state contribution
T_{2}-integration:Schwinger representation

$$
\begin{aligned}
R . N . \int_{F} d \mu \Gamma_{(d+k, d)} \mathcal{F}\left(s, \kappa,-\frac{k}{2}\right) & =\lim _{T \rightarrow \infty}\left[\int_{\mathcal{F}_{T}} d \mu \Gamma_{(d+k, d)} \mathcal{F}\left(s, \kappa,-\frac{k}{2}\right)+f_{0}(s) \frac{T^{\frac{d}{2}+\frac{k}{4}-s}}{s-\frac{d}{2}-\frac{k}{4}}\right] \\
& =\int_{0}^{\infty} d \tau_{2} \tau_{2}^{d / 2-2} \mathcal{M}_{s,-\frac{k}{2}}\left(-\kappa \tau_{2}\right) \sum_{\mathrm{BPS}} e^{-\pi \tau_{2}\left(P_{L}^{2}+P_{R}^{2}\right) / 2}
\end{aligned}
$$ for generic values of $s \neq \frac{d}{2}+\frac{k}{4}$

Unfolding against the N-P series gives a BPS sum

Tı-integration: picks BPS state contribution
T_{2}-integration: Schwinger representation
$\begin{aligned} & R . N . \int_{F} d \mu \Gamma_{(d+k, d)} \mathcal{F}\left(s, \kappa,-\frac{k}{2}\right)=\lim _{T \rightarrow \infty}\left[\int_{F_{T}} d \mu \Gamma_{(d+k, d)} \mathcal{F}\left(s, \kappa,-\frac{k}{2}\right)+f_{0}(s) \frac{T^{\frac{d}{2}+\frac{k}{4}-s}}{s-\frac{d}{2}-\frac{k}{4}}\right] \\ &=\int_{0}^{\infty} d \tau_{2} \tau_{2}^{d / 2-2} \mathcal{M}_{s,-\frac{k}{2}}\left(-\kappa \tau_{2}\right) \sum_{\text {BPS }} e^{-\pi \tau_{2}\left(P_{L}^{2}+P_{R}^{2}\right) / 2} \\ & \text { for generic values of } s \neq \frac{d}{2}+\frac{k}{4}\end{aligned}$

$$
\begin{aligned}
I= & (4 \pi \kappa)^{1-\frac{d}{2}} \Gamma\left(s+\frac{d}{2}+\frac{k}{4}-1\right) \\
& \times \sum_{\mathrm{BPS}}{ }_{2} F_{1}\left(s-\frac{k}{4}, s+\frac{d}{2}+\frac{k}{4}-1 ; 2 s ; \frac{4 \kappa}{P_{L}^{2}}\right)\left(\frac{P_{L}^{2}}{4 \kappa}\right)^{1-s-\frac{d}{2}-\frac{k}{4}}
\end{aligned}
$$

Unfolding against the N-P series gives a BPS sum

Tı-integration : picks BPS state contribution
T_{2}-integration: Schwinger representation

$$
\begin{aligned}
& R . N . \int_{F} d \mu \Gamma_{(d+k, d)} \mathcal{F}\left(s, \kappa,-\frac{k}{2}\right)=\lim _{T \rightarrow \infty}\left[\int_{\mathcal{F}_{T}} d \mu \Gamma_{(d+k, d)} \mathcal{F}\left(s, \kappa,-\frac{k}{2}\right)+f_{0}(s) \frac{T^{\frac{d}{2}+\frac{k}{4}-s}}{s-\frac{d}{2}-\frac{k}{4}}\right] \\
&=\int_{0}^{\infty} d \tau_{2} \tau_{2}^{d / 2-2} \mathcal{M}_{s,-\frac{k}{2}}\left(-\kappa \tau_{2}\right) \sum_{\mathrm{BPS}} e^{-\pi \tau_{2}\left(P_{L}^{2}+P_{R}^{2}\right) / 2} \\
& \quad \text { for generic values of } s \neq \frac{d}{2}+\frac{k}{4}
\end{aligned}
$$

$$
\begin{aligned}
I= & (4 \pi \kappa)^{1-\frac{d}{2}} \Gamma\left(s+\frac{d}{2}+\frac{k}{4}-1\right) \\
& \times \sum_{\mathrm{BPS}}{ }_{2} F_{1}\left(s-\frac{k}{4}, s+\frac{d}{2}+\frac{k}{4}-1 ; 2 s ; \frac{4 \kappa}{P_{L}^{2}}\right)\left(\frac{P_{L}^{2}}{4 \kappa}\right)^{1-s-\frac{d}{2}-\frac{k}{4}}
\end{aligned}
$$

For $\operatorname{Re}(s)>d / 2+k / 4$, sum converges absolutely, with a simple pole $=\Delta_{p} \cdot \Delta_{q \geqslant \frac{1}{2} \hbar}$ at $s=d / 2+k / 4$

Unfolding against the N-P series gives a BPS sum

T_{1}-integration: picks BPS state contribution
T_{2}-integration:Schwinger representation

$$
\begin{array}{r}
R . N . \int_{F} d \mu \Gamma_{(d+k, d)} \mathcal{F}\left(s, \kappa,-\frac{k}{2}\right)=\lim _{T \rightarrow \infty}\left[\int_{\mathcal{F}_{T}} d \mu \Gamma_{(d+k, d)} \mathcal{F}\left(s, \kappa,-\frac{k}{2}\right)+f_{0}(s) \frac{T^{\frac{d}{2}+\frac{k}{4}-s}}{s-\frac{d}{2}-\frac{k}{4}}\right] \\
=\int_{0}^{\infty} d \tau_{2} \tau_{2}^{d / 2-2} \mathcal{M}_{s,-\frac{k}{2}}\left(-\kappa \tau_{2}\right) \sum_{\text {BPS }} e^{-\pi \tau_{2}\left(P_{L}^{2}+P_{R}^{2}\right) / 2} \\
\quad \text { for generic values of } s \neq \frac{d}{2}+\frac{k}{4} \\
\quad \times \sum_{\mathrm{BPS}}{ }_{2} F_{1}\left(s-\frac{k}{4}, s+\frac{d}{2}+\frac{k}{4}-1 ; 2 s ; \frac{4 \kappa}{P_{L}^{2}}\right)\left(\frac{P_{L}^{2}}{4 \kappa}\right)^{1-s-\frac{d}{2}-\frac{k}{4}}
\end{array}
$$

For $\operatorname{Re}(s)>d / 2+k / 4$, sum converges absolutely, with a simple pole $=\Delta_{p \cdot \Delta q \geqslant \frac{1}{2} \hbar}$ at $s=d / 2+k / 4$

O Manifestly T-duality invariant

Unfolding against the N-P series gives a BPS sum

T_{1}-integration: picks BPS state contribution
T_{2}-integration:Schwinger representation

$$
\begin{array}{r}
R . N . \int_{F} d \mu \Gamma_{(d+k, d)} \mathcal{F}\left(s, \kappa,-\frac{k}{2}\right)=\lim _{T \rightarrow \infty}\left[\int_{\mathcal{F}_{T}} d \mu \Gamma_{(d+k, d)} \mathcal{F}\left(s, \kappa,-\frac{k}{2}\right)+f_{0}(s) \frac{T^{\frac{d}{2}+\frac{k}{4}-s}}{s-\frac{d}{2}-\frac{k}{4}}\right] \\
=\int_{0}^{\infty} d \tau_{2} \tau_{2}^{d / 2-2} \mathcal{M}_{s,-\frac{k}{2}}\left(-\kappa \tau_{2}\right) \sum_{\text {BPS }} e^{-\pi \tau_{2}\left(P_{L}^{2}+P_{R}^{2}\right) / 2} \\
\quad \text { for generic values of } s \neq \frac{d}{2}+\frac{k}{4} \\
\quad \times \sum_{\mathrm{BPS}}{ }_{2} F_{1}\left(s-\frac{k}{4}, s+\frac{d}{2}+\frac{k}{4}-1 ; 2 s ; \frac{4 \kappa}{P_{L}^{2}}\right)\left(\frac{P_{L}^{2}}{4 \kappa}\right)^{1-s-\frac{d}{2}-\frac{k}{4}}
\end{array}
$$

For $\operatorname{Re}(s)>d / 2+k / 4$, sum converges absolutely, with a simple pole
at $s=d / 2+k / 4$

- Manifestly T-duality invariant
- Chamber independent

BPS state sums \& Singularity Structure

BPS state sums \& Singularity Structure

$$
n=s+\frac{w}{2}-1
$$

BPS state sums \& Singularity Structure

$$
n=s+\frac{w}{2}-1
$$

One-dimensional lattice

BPS state sums \& Singularity Structure

$$
n=s+\frac{w}{2}-1
$$

One-dimensional lattice

$$
\int_{\mathcal{F}} d \mu \Gamma_{(1,1)}(R) \mathcal{F}(1+n, 1,0)=2^{2+2 n} \sqrt{\pi} \Gamma\left(n+\frac{1}{2}\right)\left(R^{1+2 n}+\frac{1}{R^{1+2 n}}-\left|R^{1+2 n}-\frac{1}{R^{1+2 n}}\right|\right)
$$

BPS state sums \& Singularity Structure

$$
n=s+\frac{w}{2}-1
$$

General result for $n>d / 2$-I or for odd-dimension (independently of n):

$$
\begin{aligned}
& I_{1}=(4 \pi \kappa)^{1-\frac{d}{2}} \frac{\Gamma\left(2 n+2+\frac{k}{2}\right) \Gamma\left(n+\frac{d+k}{2}\right)}{n!} \sum_{m=0}^{d / 2-2}\binom{n}{m} \frac{(-)^{m}}{\Gamma\left(n-m+\frac{d+k}{2}\right)} \\
& \times \sum_{\mathrm{BPS}}\left(\frac{P_{L}^{2}}{4 \kappa}\right)^{n-m}\left[\Gamma\left(\frac{d}{2}-m-1\right)\left(\frac{P_{R}^{2}}{4 \kappa}\right)^{m+1-\frac{d}{2}}-\sum_{\ell=0}^{2 n+k / 2} \frac{\Gamma\left(\frac{d}{2}-m-1+\ell\right)}{\ell!}\left(\frac{P_{L}^{2}}{4 \kappa}\right)^{1+m-\frac{d}{2}-\ell}\right]
\end{aligned}
$$

General result for even-dimension and $n \leq d / 2-I$ is given by adding $l_{1}+l_{2}$, where:

$$
\begin{aligned}
& I_{2}=(4 \pi \kappa)^{1-\frac{d}{2}} \frac{\Gamma\left(2 n+2+\frac{k}{2}\right) \Gamma\left(n+\frac{d+k}{2}\right)}{n!} \sum_{\operatorname{BPS}} \sum_{m=d / 2-1}^{n}\binom{n}{m} \frac{(-)^{m}}{\Gamma\left(n-m+\frac{d+k}{2}\right)}\left(\frac{P_{L}^{2}}{4 \kappa}\right)^{n-m} \\
& \times\left\{-\sum_{\ell=m+2-d / 2}^{2 n+k / 2} \frac{\Gamma\left(\frac{d}{2}-m-1+\ell\right)}{\ell!}\left(\frac{P_{L}^{2}}{4 \kappa}\right)^{1+m-\frac{d}{2}-\ell}+\frac{(-)^{m+1-\frac{d}{2}}}{\Gamma\left(m+2-\frac{d}{2}\right)}\left(\frac{P_{R}^{2}}{4 \kappa}\right)^{m+1-\frac{d}{2}}\right.
\end{aligned}
$$

$$
\left.\times\left[H_{m+1-\frac{d}{2}}-\log \left(\frac{P_{R}^{2}}{P_{L}^{2}}\right)\right]-\frac{1}{\Gamma\left(m+2-\frac{d}{2}\right)} \sum_{\ell=0}^{m+1-d / 2}\binom{m+1-\frac{d}{2}}{\ell}\left(-\frac{P_{L}^{2}}{4 \kappa}\right)^{m+1-\frac{d}{2}-\ell} H_{m+1-\frac{d}{2}-\ell}\right\}
$$

$=\Delta_{p} \cdot \Delta q \geqslant \frac{1}{2} t$

BPS state sums \& Singularity Structure

BPS state sums \& Singularity Structure

This is the appropriate representation to read-off the singularity structure of the integral around extended symmetry points

BPS state sums \& Singularity Structure

This is the appropriate representation to read-off the singularity structure of the integral around extended symmetry points

Extra massless states at $P_{R}=0$

BPS state sums \& Singularity Structure

This is the appropriate representation to read-off the singularity structure of the integral around extended symmetry points

Extra massless states at $P_{R}=0$
In odd dimensions

BPS state sums \& Singularity Structure

This is the appropriate representation to read-off the singularity structure of the integral around extended symmetry points

Extra massless states at $P_{\mathrm{R}}=0$
In odd dimensions
The integral always develops conical singularities

BPS state sums \& Singularity Structure

This is the appropriate representation to read-off the singularity structure of the integral around extended symmetry points

Extra massless states at $P_{\mathrm{R}}=0$
In odd dimensions
The integral always develops conical singularities
For $d \geq 3$ real singularities appear from terms with $m<d / 2$ - I

BPS state sums \& Singularity Structure

This is the appropriate representation to read-off the singularity structure of the integral around extended symmetry points

Extra massless states at $P_{\mathrm{R}}=0$
In odd dimensions
The integral always develops conical singularities
For $d \geq 3$ real singularities appear from terms with $m<d / 2$-I
In even dimensions

BPS state sums \& Singularity Structure

This is the appropriate representation to read-off the singularity structure of the integral around extended symmetry points

Extra massless states at $P_{\mathrm{R}}=0$
In odd dimensions
The integral always develops conical singularities
For $d \geq 3$ real singularities appear from terms with $m<d / 2$-।
In even dimensions
Conical singularities never appear

BPS state sums \& Singularity Structure

This is the appropriate representation to read-off the singularity structure of the integral around extended symmetry points

Extra massless states at $P_{\mathrm{R}}=0$
In odd dimensions
The integral always develops conical singularities
For $d \geq 3$ real singularities appear from terms with $m<d / 2$-।
In even dimensions

- Conical singularities never appear
- Real singularities always appear

BPS state sums \& Singularity Structure

This is the appropriate representation to read-off the singularity structure of the integral around extended symmetry points

Extra massless states at $P_{R}=0$
In odd dimensions
The integral always develops conical singularities
For $d \geq 3$ real singularities appear from terms with $m<d / 2$-।
In even dimensions
Conical singularities never appear

- Real singularities always appear

Power-like singularities in $/$, whenever $d \geq 4$

BPS state sums \& Singularity Structure

This is the appropriate representation to read-off the singularity structure of the integral around extended symmetry points

Extra massless states at $P_{R}=0$
In odd dimensions
The integral always develops conical singularities
For $d \geq 3$ real singularities appear from terms with $m<d / 2$ - I
In even dimensions
Conical singularities never appear

- Real singularities always appear
- Power-like singularities in $/$, whenever $d \geq 4$

Logarithmic singularities in I_{2} for any (even) $d \leq 2 n+2$

BPS state sums \& Singularity Structure

This is the appropriate representation to read-off the singularity structure of the integral around extended symmetry points

Extra massless states at $P_{R}=0$
In odd dimensions
The integral always develops conical singularities
For $d \geq 3$ real singularities appear from terms with $m<d / 2$-।
In even dimensions
Conical singularities never appear

- Real singularities always appear
- Power-like singularities in $/$, whenever $d \geq 4$
- Logarithmic singularities in I_{2} for any (even) $d \leq 2 n+2$

Universal singularity behaviour in 2d

$$
I_{2,2}(s=1+n, \kappa=1) \sim-\frac{(2 n+1)!}{n!} \log |j(T)-j(U)|^{4}
$$

BPS state sums \& Singularity Structure

This is the appropriate representation to read-off the singularity structure of the integral around extended symmetry points

Extra massless states at $P_{\mathrm{R}}=0$
In odd dimensions

Technically singularities appear due to the unphysical tachyon contribution

For $d \geq 3$ real singularities appear from terms with $m<d / 2$-I
In even dimensions
Conical singularities never appear

- Real singularities always appear
- Power-like singularities in $/$, whenever $d \geq 4$
- Logarithmic singularities in I_{2} for any (even) $d \leq 2 n+2$

Universal singularity behaviour in 2d

$$
I_{2,2}(s=1+n, \kappa=1) \sim-\frac{(2 n+1)!}{n!} \log |j(T)-j(U)|^{4}
$$

BPS state sums \& Singularity Structure

This is the appropriate representation to read-off the singularity structure of the integral around extended symmetry points

Extra massless states at $P_{\mathrm{R}}=0$
In odd dimensions
The integral always develops conical singularities
For $d \geq 3$ real singularities appear from terms with $m<d / 2-1$
In even dimensions
Conical singularities never appear
Real singularities always appear

- Power-like singularities in $/$, whenever $d \geq 4$
- Logarithmic singularities in I_{2} for any (even) $d \leq 2 n+2$

Technically singularities appear due to the unphysical tachyon contribution

Amplitudes involving linear combinations of modular forms, such that the unphysical tachyon pole is cancelled are regular at any point in Narain moduli space

Universal singularity behaviour in 2d

$$
I_{2,2}(s=1+n, \kappa=1) \sim-\frac{(2 n+1)!}{n!} \log |j(T)-j(U)|^{4}
$$

Example of Gauge Threshold calculations

Example of Gauge Threshold calculations

$$
\mathcal{N}=2 \text { heterotic vacuum at the orbifold point } T^{2} \times T^{4} / \mathbb{Z}_{2}
$$

Example of Gauge Threshold calculations

$$
\mathcal{N}=2 \text { heterotic vacuum at the orbifold point } T^{2} \times T^{4} / \mathbb{Z}_{2}
$$

In the absence of Wilson lines

Example of Gauge Threshold calculations

$$
\mathcal{N}=2 \text { heterotic vacuum at the orbifold point } T^{2} \times T^{4} / \mathbb{Z}_{2}
$$

In the absence of Wilson lines

$$
E_{8} \times E_{8} \rightarrow E_{8} \times E_{7} \times S U(2)
$$

Example of Gauge Threshold calculations

$$
\mathcal{N}=2 \text { heterotic vacuum at the orbifold point } T^{2} \times T^{4} / \mathbb{Z}_{2}
$$

In the absence of Wilson lines

$$
E_{8} \times E_{8} \rightarrow E_{8} \times E_{7} \times S U(2)
$$

BPS constraint $=\Delta_{p \cdot \Delta q \geqslant \frac{1}{2} t}$

Example of Gauge Threshold calculations

$$
\mathcal{N}=2 \text { heterotic vacuum at the orbifold point } T^{2} \times T^{4} / \mathbb{Z}_{2}
$$

In the absence of Wilson lines

$$
E_{8} \times E_{8} \rightarrow E_{8} \times E_{7} \times S U(2)
$$

BPS constraint

$$
\frac{1}{4} P_{L}^{2}-\frac{1}{4} P_{R}^{2}=1 \leftrightarrow m_{i} n^{i}=1
$$

Example of Gauge Threshold calculations

Example of Gauge Threshold calculations

Without Wilson lines:

Example of Gauge Threshold calculations

Without Wilson lines:

$$
\begin{aligned}
& \Delta_{E_{8}}=-\frac{1}{12} \int_{\mathcal{F}} d \mu \Gamma_{(2,2)}(T, U) \frac{\hat{E}_{2} E_{4} E_{6}-E_{6}^{2}}{\Delta}=\sum_{B P S}\left[1+\frac{P_{R}^{2}}{4} \log \left(\frac{P_{R}^{2}}{P_{L}^{2}}\right)\right]+72 \log \left(T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right)+\text { cte. } \\
& \Delta_{E_{7}}=-\frac{1}{12} \int_{\mathcal{F}} d \mu \Gamma_{(2,2)}(T, U) \frac{\hat{E}_{2} E_{4} E_{6}-E_{4}^{3}}{\Delta}=\sum_{B P S}\left[1+\frac{P_{R}^{2}}{4} \log \left(\frac{P_{R}^{2}}{P_{L}^{2}}\right)\right]-72 \log \left(T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right)+\text { cte. }
\end{aligned}
$$

Example of Gauge Threshold calculations

Without Wilson lines:

$$
\begin{aligned}
& \Delta_{E_{8}}=-\frac{1}{12} \int_{\mathcal{F}} d \mu \Gamma_{(2,2)}(T, U) \frac{\hat{E}_{2} E_{4} E_{6}-E_{6}^{2}}{\Delta}=\sum_{B P S}\left[1+\frac{P_{R}^{2}}{4} \log \left(\frac{P_{R}^{2}}{P_{L}^{2}}\right)\right]+72 \log \left(T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right)+\text { cte. } \\
& \Delta_{E_{7}}=-\frac{1}{12} \int_{\mathcal{F}} d \mu \Gamma_{(2,2)}(T, U) \frac{\hat{E}_{2} E_{4} E_{6}-E_{4}^{3}}{\Delta}=\sum_{B P S}\left[1+\frac{P_{R}^{2}}{4} \log \left(\frac{P_{R}^{2}}{P_{L}^{2}}\right)\right]-72 \log \left(T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right)+\text { cte. }
\end{aligned}
$$

Now turn on Wilson lines - Higgs the E_{8} group factor to its Coulomb branch:

Example of Gauge Threshold calculations

Without Wilson lines:

$$
\begin{aligned}
& \Delta_{E_{8}}=-\frac{1}{12} \int_{\mathcal{F}} d \mu \Gamma_{(2,2)}(T, U) \frac{\hat{E}_{2} E_{4} E_{6}-E_{6}^{2}}{\Delta}=\sum_{B P S}\left[1+\frac{P_{R}^{2}}{4} \log \left(\frac{P_{R}^{2}}{P_{L}^{2}}\right)\right]+72 \log \left(T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right)+\text { cte. } \\
& \Delta_{E_{7}}=-\frac{1}{12} \int_{\mathcal{F}} d \mu \Gamma_{(2,2)}(T, U) \frac{\hat{E}_{2} E_{4} E_{6}-E_{4}^{3}}{\Delta}=\sum_{B P S}\left[1+\frac{P_{R}^{2}}{4} \log \left(\frac{P_{R}^{2}}{P_{L}^{2}}\right)\right]-72 \log \left(T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right)+\text { cte. }
\end{aligned}
$$

Now turn on Wilson lines - Higgs the E_{8} group factor to its Coulomb branch:

$$
\Delta_{E_{7}}=-\frac{1}{12} \int_{\mathcal{F}} d \mu \Gamma_{(2,10)} \frac{\hat{E}_{2} E_{6}-E_{4}^{2}}{\Delta}=\sum_{B P S}\left[1+\frac{P_{R}^{2}}{4} \log \left(\frac{P_{R}^{2}}{P_{L}^{2}}\right)-\frac{2}{P_{L}^{2}}-\frac{8}{3 P_{L}^{4}}-\frac{16}{3 P_{L}^{6}}-\frac{64}{5 P_{L}^{8}}\right]
$$

Example of Gauge Threshold calculations

Without Wilson lines:

$$
\begin{aligned}
& \Delta_{E_{8}}=-\frac{1}{12} \int_{\mathcal{F}} d \mu \Gamma_{(2,2)}(T, U) \frac{\hat{E}_{2} E_{4} E_{6}-E_{6}^{2}}{\Delta}=\sum_{B P S}\left[1+\frac{P_{R}^{2}}{4} \log \left(\frac{P_{R}^{2}}{P_{L}^{2}}\right)\right]+72 \log \left(T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right)+\text { cte. } \\
& \Delta_{E_{7}}=-\frac{1}{12} \int_{\mathcal{F}} d \mu \Gamma_{(2,2)}(T, U) \frac{\hat{E}_{2} E_{4} E_{6}-E_{4}^{3}}{\Delta}=\sum_{B P S}\left[1+\frac{P_{R}^{2}}{4} \log \left(\frac{P_{R}^{2}}{P_{L}^{2}}\right)\right]-72 \log \left(T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right)+\text { cte. }
\end{aligned}
$$

Now turn on Wilson lines - Higgs the E_{8} group factor to its Coulomb branch:

$$
\Delta_{E_{T}}=-\frac{1}{12} \int_{\mathcal{F}} d \mu \Gamma_{(2,10)} \frac{\hat{E}_{2} E_{6}-E_{4}^{2}}{\Delta}=\sum_{B P S}\left[1+\frac{P_{R}^{2}}{4} \log \left(\frac{P_{R}^{2}}{P_{L}^{2}}\right)-\frac{2}{P_{L}^{2}}-\frac{8}{3 P_{L}^{4}}-\frac{16}{3 P_{L}^{6}}-\frac{64}{5 P_{L}^{8}}\right]
$$

Left- \& right- moving momenta also depend on the Wilson lines Y and the BPS constraint now contains the $U(I)$ charge vectors Q in the Cartan of E_{8}

Example of Gauge Threshold calculations

Without Wilson lines:

$$
\begin{aligned}
& \Delta_{E_{8}}=-\frac{1}{12} \int_{\mathcal{F}} d \mu \Gamma_{(2,2)}(T, U) \frac{\hat{E}_{2} E_{4} E_{6}-E_{6}^{2}}{\Delta}=\sum_{B P S}\left[1+\frac{P_{R}^{2}}{4} \log \left(\frac{P_{R}^{2}}{P_{L}^{2}}\right)\right]+72 \log \left(T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right)+\text { cte. } \\
& \Delta_{E_{7}}=-\frac{1}{12} \int_{\mathcal{F}} d \mu \Gamma_{(2,2)}(T, U) \frac{\hat{E}_{2} E_{4} E_{6}-E_{4}^{3}}{\Delta}=\sum_{B P S}\left[1+\frac{P_{R}^{2}}{4} \log \left(\frac{P_{R}^{2}}{P_{L}^{2}}\right)\right]-72 \log \left(T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right)+\text { cte. }
\end{aligned}
$$

Now turn on Wilson lines - Higgs the E_{8} group factor to its Coulomb branch:

$$
\Delta_{E_{T}}=-\frac{1}{12} \int_{\mathcal{F}} d \mu \Gamma_{(2,10)} \frac{\hat{E}_{2} E_{6}-E_{4}^{2}}{\Delta}=\sum_{B P S}\left[1+\frac{P_{R}^{2}}{4} \log \left(\frac{P_{R}^{2}}{P_{L}^{2}}\right)-\frac{2}{P_{L}^{2}}-\frac{8}{3 P_{L}^{4}}-\frac{16}{3 P_{L}^{6}}-\frac{64}{5 P_{L}^{8}}\right]
$$

Left- \& right- moving momenta also depend on the Wilson lines Y and the BPS constraint now contains

$$
m^{T} n+\frac{1}{2} Q^{T} Q=1
$$ the $U(I)$ charge vectors Q in the Cartan of E_{8}

Example of Gauge Threshold calculations

Without Wilson lines:

$$
\begin{aligned}
& \Delta_{E_{8}}=-\frac{1}{12} \int_{\mathcal{F}} d \mu \Gamma_{(2,2)}(T, U) \frac{\hat{E}_{2} E_{4} E_{6}-E_{6}^{2}}{\Delta}=\sum_{B P S}\left[1+\frac{P_{R}^{2}}{4} \log \left(\frac{P_{R}^{2}}{P_{L}^{2}}\right)\right]+72 \log \left(T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right)+\text { cte. } \\
& \Delta_{E_{7}}=-\frac{1}{12} \int_{\mathcal{F}} d \mu \Gamma_{(2,2)}(T, U) \frac{\hat{E}_{2} E_{4} E_{6}-E_{4}^{3}}{\Delta}=\sum_{B P S}\left[1+\frac{P_{R}^{2}}{4} \log \left(\frac{P_{R}^{2}}{P_{L}^{2}}\right)\right]-72 \log \left(T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right)+\text { cte. }
\end{aligned}
$$

Now turn on Wilson lines - Higgs the E_{8} group factor to its Coulomb branch:

$$
\Delta_{E_{T}}=-\frac{1}{12} \int_{\mathcal{F}} d \mu \Gamma_{(2,10)} \frac{\hat{E}_{2} E_{6}-E_{4}^{2}}{\Delta}=\sum_{B P S}\left[1+\frac{P_{R}^{2}}{4} \log \left(\frac{P_{R}^{2}}{P_{L}^{2}}\right)-\frac{2}{P_{L}^{2}}-\frac{8}{3 P_{L}^{4}}-\frac{16}{3 P_{L}^{6}}-\frac{64}{5 P_{L}^{8}}\right]
$$

Left- \& right- moving momenta also depend on the Wilson lines Y and the BPS constraint now contains

$$
m^{T} n+\frac{1}{2} Q^{T} Q=1
$$ the $U(I)$ charge vectors Q in the Cartan of E_{8}

Results regular at any point in moduli space and in any chamber !

One-loop BPS amplitudes with momentum insertions

One-loop BPS amplitudes with momentum insertions
Consider modular integrals with insertions of left/right- moving lattice momenta:

One-loop BPS amplitudes with momentum insertions

Consider modular integrals with insertions of left/right- moving lattice momenta:

$$
\int_{\mathcal{F}} d \mu\left[\tau_{2}^{-\lambda / 2} \sum_{P_{L}, P_{R}} \rho\left(P_{L} \sqrt{\tau_{2}}, P_{R} \sqrt{\tau_{2}}\right) q^{\frac{1}{4} P_{L}^{2}} \bar{q}^{\frac{1}{4} P_{R}^{2}}\right] \Phi(\tau)
$$

One-loop BPS amplitudes with momentum insertions

Consider modular integrals with insertions of left/right- moving lattice momenta:

$$
\int_{\mathcal{F}} d \mu\left[\tau_{2}^{-\lambda / 2} \sum_{P_{L}, P_{R}} \rho\left(P_{L} \sqrt{\tau_{2}}, P_{R} \sqrt{\tau_{2}}\right) q^{\frac{1}{4} P_{L}^{2}} \bar{q}^{\frac{1}{4} P_{R}^{2}}\right]
$$

One-loop BPS amplitudes with momentum insertions
Consider modular integrals with insertions of left/right- moving lattice momenta:

Modular form of weight ($\lambda+d+k / 2,0$) provided that $\rho(x, y)$ satisfies:

$$
\left[\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}}-2 \pi\left(x \cdot \frac{\partial}{\partial x}-y \cdot \frac{\partial}{\partial y}-\lambda-d\right)\right] \rho(x, y)=0
$$

and that $\rho(x, y) e^{-\pi\left(x^{2}+y^{2}\right)}$ decays sufficiently fast at infinity
The integrand is then modular invariant with: $-w=\lambda+d+\frac{k}{2}$

One-loop BPS amplitudes with momentum insertions
Consider modular integrals with insertions of left/right- moving lattice momenta:

Modular form of weight ($\lambda+d+k / 2,0$) provided that $\rho(x, y)$ satisfies:

$$
\left[\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}}-2 \pi\left(x \cdot \frac{\partial}{\partial x}-y \cdot \frac{\partial}{\partial y}-\lambda-d\right)\right] \rho(x, y)=0
$$

and that $\rho(x, y) e^{-\pi\left(x^{2}+y^{2}\right)}$ decays sufficiently fast at infinity
The integrand is then modular invariant with: $-w=\lambda+d+\frac{k}{2}$

$$
\int_{\mathcal{F}} d \mu \tau_{2}^{-\lambda / 2} \sum_{P_{L}, P_{R}} \rho\left(P_{L} \sqrt{\tau_{2}}, P_{R} \sqrt{\tau_{2}}\right) q^{\frac{1}{4} P_{L}^{2}} \bar{q}^{\frac{1}{4} P_{R}^{2}} \mathcal{F}(s, \kappa, w)
$$

$$
=(4 \pi \kappa)^{1+\lambda / 2} \int_{0}^{\infty} d t t^{2+\frac{2 d+k}{4}-2}{ }_{1} F_{1}\left(s-\frac{2 \lambda+2 d+k}{4} ; 2 s ; t\right) \rho\left(P_{L} \sqrt{\frac{t}{4 \pi \kappa}}, P_{R} \sqrt{\frac{t}{4 \pi \kappa}}\right) \sum_{B P S} e^{-t P_{L}^{2} / 4 \kappa}
$$

One-loop BPS amplitudes with momentum insertions
Consider modular integrals with insertions of left/right- moving lattice momenta:

Modular form of weight ($\lambda+d+k / 2,0$) provided that $\rho(x, y)$ satisfies:

$$
\left[\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}}-2 \pi\left(x \cdot \frac{\partial}{\partial x}-y \cdot \frac{\partial}{\partial y}-\lambda-d\right)\right] \rho(x, y)=0
$$

and that $\rho(x, y) e^{-\pi\left(x^{2}+y^{2}\right)}$ decays sufficiently fast at infinity
The integrand is then modular invariant with: $-w=\lambda+d+\frac{k}{2}$
$\int_{\mathcal{F}} d \mu \tau_{2}^{-\lambda / 2} \sum_{P_{L}, P_{R}} \rho\left(P_{L} \sqrt{\tau_{2}}, P_{R} \sqrt{\tau_{2}}\right) q^{\frac{1}{4} P_{L}^{2}} \bar{q}^{\frac{1}{4} P_{R}^{2}} \mathcal{F}(s, \kappa, w)$

$$
=(4 \pi \kappa)^{1+\lambda / 2} \int_{0}^{\infty} d t t^{2+\frac{2 d+k}{4}-2}{ }_{1} F_{1}\left(s-\frac{2 \lambda+2 d+k}{4} ; 2 s ; t\right) \rho\left(P_{L} \sqrt{\frac{t}{4 \pi \kappa}}, P_{R} \sqrt{\frac{t}{4 \pi \kappa}}\right) \sum_{B P S} e^{-t P_{L}^{2} / 4 \kappa}
$$

An example from non-compact heterotic vacua

An example from non-compact heterotic vacua

Non-trivial integrals without moduli dependence

An example from non-compact heterotic vacua

Non-trivial integrals without moduli dependence

$$
\Gamma=\int_{F} d \mu\left(\sqrt{\tau_{2}} \eta \bar{\eta}\right)^{3} \frac{\hat{E}_{2}^{2} E_{8}-2 \hat{E}_{2} E_{10}}{\Delta}=
$$

An example from non-compact heterotic vacua

Non-trivial integrals without moduli dependence

$$
\Gamma=\int_{F} d \mu\left(\sqrt{\tau_{2}} \eta \bar{\eta}\right)^{3} \frac{\hat{E}_{2}^{2} E_{8}-2 \hat{E}_{2} E_{10}}{\Delta}=
$$

An example from non-compact heterotic vacua

Non-trivial integrals without moduli dependence

> Appears in certain heterotic constructions on ALE spaces in the presence of NS5 brane backgrounds

Max-Planck-Institut für Physik
(Werner-Heisenberg-Institut) I. Florakis, 2012

An example from non-compact heterotic vacua

Non-trivial integrals without moduli dependence

| Appears in certain
 heterotic
 constructions on |
| :---: | :---: |
| ALE spaces in the
 presence of NS5
 brane backgrounds |

An example from non-compact heterotic vacua

Non-trivial integrals without moduli dependence

$$
\begin{gathered}
\hline \begin{array}{c}
\text { Appears in certain } \\
\text { heterotic } \\
\text { constructions on }
\end{array}
\end{gathered} \Gamma=\int_{F} d \mu\left(\sqrt{\tau_{2}} \eta \bar{\eta}\right)^{3} \frac{\hat{E}_{2}^{2} E_{8}-2 \hat{E}_{2} E_{10}}{\Delta}=
$$ ALE spaces in the presence of NS5 brane backgrounds

L. Carlevaro, E. Dudas, D. Israël
 to appear

Unfold à la Niebur:

$$
\frac{\hat{E}_{2}^{2} E_{4}^{2}}{\Delta}-2 \frac{\hat{E}_{2}^{2} E_{4} E_{6}}{\Delta}=\frac{1}{5} \mathcal{F}(3,1,0)-6 \mathcal{F}(2,1,0)+23 j+984
$$

An example from non-compact heterotic vacua

$$
\Gamma=\int_{F} d \mu\left(\sqrt{\tau_{2}} \eta \bar{\eta}\right)^{3} \frac{\hat{E}_{2}^{2} E_{8}-2 \hat{E}_{2} E_{10}}{\Delta}=
$$

An example from non-compact heterotic vacua

$$
\Gamma=\int_{F} d \mu\left(\sqrt{\tau_{2}} \eta \bar{\eta}\right)^{3} \frac{\hat{E}_{2}^{2} E_{8}-2 \hat{E}_{2} E_{10}}{\Delta}=-20 \sqrt{2}
$$

Modular Integrals: Current Status

Modular Integrals: Current Status

(1) $\int_{\mathcal{F}} d \mu \Phi(\tau)$
(2) $\int_{\mathcal{F}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau})$
(3) $\int_{\mathcal{F}} d \mu \Gamma_{d+k, d}(G, B, Y ; \tau, \bar{\tau}) \Phi(\tau)$
(4) $\int_{\mathcal{F}} d \mu \mathcal{Z}(\tau, \bar{\tau})$

Modular Integrals: Current Status

(1) $\int_{\mathcal{F}} d \mu \Phi(\tau) \quad$ Stokes' theorem
(2) $\int_{\mathcal{F}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau})$
(3) $\int_{\mathcal{F}} d \mu \Gamma_{d+k, d}(G, B, Y ; \tau, \bar{\tau}) \Phi(\tau)$
(4) $\int_{\mathcal{F}} d \mu \mathcal{Z}(\tau, \bar{\tau})$

Modular Integrals: Current Status

(1) $\quad \int_{\mathcal{F}} d \mu \Phi(\tau)$
(2) $\int_{\mathcal{F}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau})$
(3) $\int_{\mathcal{F}} d \mu \Gamma_{d+k, d}(G, B, Y ; \tau, \bar{\tau}) \Phi(\tau)$
4) $\int_{\mathcal{F}} d \mu \mathcal{Z}(\tau, \bar{\tau})$

Stokes' theorem

Rankin-Selberg-Zagier method

Modular Integrals: Current Status

(1) $\quad \int_{\mathcal{F}} d \mu \Phi(\tau)$
(2) $\int_{\mathcal{F}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau})$
(3) $\int_{\mathcal{F}} d \mu \Gamma_{d+k, d}(G, B, Y ; \tau, \bar{\tau}) \Phi(\tau)$
4. $\int_{\mathcal{F}} d \mu \mathcal{Z}(\tau, \bar{\tau})$

Stokes' theorem

Rankin-Selberg-Zagier method

Unfold the elliptic genus (Niebur-Poincaré)

Modular Integrals: Current Status

(1) $\int_{\mathcal{F}} d \mu \Phi(\tau)$
(2) $\int_{\mathcal{F}} d \mu \Gamma_{d, d}(G, B ; \tau, \bar{\tau})$
(3) $\int_{\mathcal{F}} d \mu \Gamma_{d+k, d}(G, B, Y ; \tau, \bar{\tau}) \Phi(\tau)$
4) $\int_{\mathcal{F}} d \mu \mathcal{Z}(\tau, \bar{\tau})$

Stokes' theorem

Rankin-Selberg-Zagier method

Unfold the elliptic genus (Niebur-Poincaré)

No general approach... yet!

Conclusions \& Outlook

Conclusions \& Outlook

(V) Unfolding against the lattice obscures the manifest T-duality symmetries of string amplitudes

Conclusions \& Outlook

(V) Unfolding against the lattice obscures the manifest T-duality symmetries of string amplitudes
(V) Any weak almost holomorphic modular form can be represented as a linear combination of absolutely convergent Niebur-Poincaré series

Conclusions \& Outlook

(-) Unfolding against the lattice obscures the manifest T-duality symmetries of string amplitudes
(-) Any weak almost holomorphic modular form can be represented as a linear combination of absolutely convergent Niebur-Poincaré series
D. One-loop string amplitudes can then be represented as constrained sums over BPS states which are manifestly invariant under the T-duality group

Conclusions \& Outlook

(V) Unfolding against the lattice obscures the manifest T-duality symmetries of string amplitudes

- Any weak almost holomorphic modular form can be represented as a linear combination of absolutely convergent Niebur-Poincaré series

■. One-loop string amplitudes can then be represented as constrained sums over BPS states which are manifestly invariant under the T-duality group
[] The singularity structure of the amplitudes becomes visible in this representation

Conclusions \& Outlook

(V) Unfolding against the lattice obscures the manifest T-duality symmetries of string amplitudes

I- Any weak almost holomorphic modular form can be represented as a linear combination of absolutely convergent Niebur-Poincaré series

■ One-loop string amplitudes can then be represented as constrained sums over BPS states which are manifestly invariant under the T-duality group
[] The singularity structure of the amplitudes becomes visible in this representation (V) Results are chamber independent

Conclusions \& Outlook

(V) Unfolding against the lattice obscures the manifest T-duality symmetries of string amplitudes

I- Any weak almost holomorphic modular form can be represented as a linear combination of absolutely convergent Niebur-Poincaré series

- One-loop string amplitudes can then be represented as constrained sums over BPS states which are manifestly invariant under the T-duality group
[] The singularity structure of the amplitudes becomes visible in this representation (V) Results are chamber independent
(V) Non-trivial Wilson lines

Conclusions \& Outlook

(V) Unfolding against the lattice obscures the manifest T-duality symmetries of string amplitudes

I- Any weak almost holomorphic modular form can be represented as a linear combination of absolutely convergent Niebur-Poincaré series

- One-loop string amplitudes can then be represented as constrained sums over BPS states which are manifestly invariant under the T-duality group
[] The singularity structure of the amplitudes becomes visible in this representation
(V) Results are chamber independent
(V) Non-trivial Wilson lines
(-) Insertions of lattice momenta

Conclusions \& Outlook

(V) Unfolding against the lattice obscures the manifest T-duality symmetries of string amplitudes

- Any weak almost holomorphic modular form can be represented as a linear combination of absolutely convergent Niebur-Poincaré series
D. One-loop string amplitudes can then be represented as constrained sums over BPS states which are manifestly invariant under the T-duality group
[- The singularity structure of the amplitudes becomes visible in this representation
[] Results are chamber independent
(V) Non-trivial Wilson lines
[-] Insertions of lattice momenta
(V) Even in the absence of the lattice itself !
$=\underbrace{}_{\Delta q \cdot \Delta q \geqslant \frac{1}{2} \hbar}$

Conclusions \& Outlook

Conclusions \& Outlook

(-) Generalization for modular forms of congruence subgroups of $\operatorname{SL}(2 ; Z)$ (freely-acting orbifolds)

Max-Planck-Institut für Physik
(Werner-Heisenberg-Institut) I. Florakis, 2012

Conclusions \& Outlook

[] Generalization for modular forms of congruence subgroups of $\operatorname{SL}(2 ; Z)$ (freely-acting orbifolds)
[] Higher genus amplitudes $(g=2,3)$

Max-Planck-Institut für Physik
(Werner-Heisenberg-Institut) I. Florakis, 2012

Conclusions \& Outlook

$\boxed{\square}$ Generalization for modular forms of congruence subgroups of SL(2;Z)
(freely-acting orbifolds)
[] Higher genus amplitudes $(g=2,3)$
[. Effective potential of strings at finite temperature (String Cosmology)

Thank you!

Backup Slides

A non-holomorphic integral

A non-holomorphic integral

Consider the integral over the modulus squared of the discriminant :

A non-holomorphic integral

Consider the integral over the modulus squared of the discriminant :

$$
\int_{\mathcal{F}} d \mu \tau_{2}^{12}|\Delta|^{2}
$$

A non-holomorphic integral

Consider the integral over the modulus squared of the discriminant :

$$
\int_{\mathcal{F}} d \mu \tau_{2}^{12}|\Delta|^{2}
$$

Unfold the anti-holomorphic part using: $\quad \bar{\Delta}(\bar{\tau})=\frac{1}{\left(4 \pi \tau_{2}\right)^{12} \beta_{12}} \mathcal{F}(6,1,-12)$

A non-holomorphic integral

Consider the integral over the modulus squared of the discriminant :

$$
\int_{\mathcal{F}} d \mu \tau_{2}^{12}|\Delta|^{2}
$$

Unfold the anti-holomorphic part using: $\quad \bar{\Delta}(\bar{\tau})=\frac{1}{\left(4 \pi \tau_{2}\right)^{12} \beta_{12}} \mathcal{F}(6,1,-12)$

$$
\beta_{12}=1+2 \pi \sum_{c>0} \frac{S(1,1 ; c)}{c} J_{11}(4 \pi / c) \approx 2.84029 \ldots
$$

A non-holomorphic integral

Consider the integral over the modulus squared of the discriminant :

$$
\int_{\mathcal{F}} d \mu \tau_{2}^{12}|\Delta|^{2}
$$

Unfold the anti-holomorphic part using: $\quad \bar{\Delta}(\bar{\tau})=\frac{1}{\left(4 \pi \tau_{2}\right)^{12} \beta_{12}} \mathcal{F}(6,1,-12)$

$$
\left.\beta_{12}=1+2 \pi \sum_{c>0} \frac{S(1,1 ; c)}{c} J_{11}(4 \pi / c) \approx 2.84029 \ldots\right) \quad S(a, b ; c)=\sum_{d \in(\mathbb{Z} / c \mathbb{Z})^{\star}} \exp \left[2 \pi i \frac{a d+b d^{-1}}{c}\right]
$$

A non-holomorphic integral

Consider the integral over the modulus squared of the discriminant :

$$
\int_{\mathcal{F}} d \mu \tau_{2}^{12}|\Delta|^{2}
$$

Unfold the anti-holomorphic part using: $\quad \bar{\Delta}(\bar{\tau})=\frac{1}{\left(4 \pi \tau_{2}\right)^{12} \beta_{12}} \mathcal{F}(6,1,-12)$

$$
\left.\beta_{12}=1+2 \pi \sum_{c>0} \frac{S(1,1 ; c)}{c} J_{11}(4 \pi / c) \approx 2.84029 \ldots\right) \quad S(a, b ; c)=\sum_{d \in(\mathbb{Z} / c \mathbb{Z})^{\star}} \exp \left[2 \pi i \frac{a d+b d^{-1}}{c}\right]
$$

$$
\int_{\mathcal{F}} d \mu \tau_{2}^{12}|\Delta|^{2}=\frac{(4 \pi)^{-11} \Gamma(11)}{\beta_{12}} \approx 1.03536 \ldots \times 10^{-6}
$$

A non-holomorphic integral

Consider the integral over the modulus squared of the discriminant :

$$
\int_{\mathcal{F}} d \mu \tau_{2}^{12}|\Delta|^{2}
$$

Unfold the anti-holomorphic part using: $\quad \bar{\Delta}(\bar{\tau})=\frac{1}{\left(4 \pi \tau_{2}\right)^{12} \beta_{12}} \mathcal{F}(6,1,-12)$

$$
\left.\beta_{12}=1+2 \pi \sum_{c>0} \frac{S(1,1 ; c)}{c} J_{11}(4 \pi / c) \approx 2.84029 \ldots\right) \quad S(a, b ; c)=\sum_{d \in(\mathbb{Z} / c \mathbb{Z})^{\star}} \exp \left[2 \pi i \frac{a d+b d^{-1}}{c}\right]
$$

$$
\int_{\mathcal{F}} d \mu \tau_{2}^{12}|\Delta|^{2}=\frac{(4 \pi)^{-11} \Gamma(11)}{\beta_{12}} \approx 1.03536 \ldots \times 10^{-6}
$$

Similar methods should be applicable for integrals of the full (non-holomorphic) partition function

Idea : Let's unfold against something else !

We want to find some other way to unfold that does not spoil the manifest T-duality symmetries of the lattice

In particular, we are looking for the representation that captures the behaviour around T-self-dual points

Such a method is known in the mathematics literature as the Rankin-Selberg method, later extended by Zagier
Start with the modular integral $\int_{\mathcal{F}} d \mu F(\tau, \bar{\tau})$

Assume we are only dealing with functions of moderate growth at the

$$
\mathcal{F}_{T}=\mathcal{F} \cap\left\{\tau_{2} \leq T\right\}
$$

Consider instead the integral

$$
\int_{\mathcal{F}_{T}} d \mu F(\tau, \bar{\tau}) E^{\star}(\tau ; s)
$$

$E^{\star}(\tau ; s)$ is a meromorphic function in \boldsymbol{s}, with simple poles at $s=0,1$

$$
\begin{aligned}
& E^{\star}(\tau ; s) \equiv \frac{1}{2} \zeta^{\star}(2 s) \sum_{(c, d)=1} \frac{\tau_{2}^{s}}{|c \tau+d|^{2 s}} \\
&=\zeta^{\star}(2 s) \sum_{\gamma \in S L(2 ; \mathbb{Z}) / \Gamma_{\infty}}[\operatorname{Im}(\gamma \cdot \tau)]^{s} \\
& \zeta^{\star}(s) \equiv \pi^{-s / 2} \Gamma(s / 2) \zeta(s)
\end{aligned}
$$

$E^{\star}(\tau ; s)=\frac{1}{2(s-1)}+\frac{1}{2}\left(\gamma-\log \left(4 \pi \tau_{2}|\eta(\tau)|^{4}\right)\right)+\mathcal{O}(s-1)$

The whole trick is based on the fact that the residue is $\Delta \Delta_{p} \cdot \Delta q \geqslant \frac{1}{2} t$

$$
2 \operatorname{Res}_{s=1} \int_{\mathcal{F}_{T}} d \mu F(\tau, \bar{\tau}) E^{\star}(\tau ; s)=\int_{\mathcal{F}_{T}} d \mu F(\tau, \bar{\tau})
$$

Idea : Let's unfold against something else !

We want to find some other way to unfold that does not spoil the manifest T-duality symmetries of the lattice

In particular, we are looking for the representation that captures the behaviour around T-self-dual points

Such a method is known in the mathematics literature as the Rankin-Selberg method, later extended by Zagier

The whole trick is based on the fact that the residue is independent of τ

$$
2 \operatorname{Res}_{s=1} \int_{\mathcal{F}_{T}} d \mu F(\tau, \bar{\tau}) E^{\star}(\tau ; s)=\int_{\mathcal{F}_{T}} d \mu F(\tau, \bar{\tau})
$$

Idea : Let's unfold against something else !

We want to find some other way to unfold that does not spoil the manifest T-duality symmetries of the lattice

In particular, we are looking for the representation that captures the behaviour around T-self-dual points

Such a method is known in the mathematics literature as the Rankin-Selberg method, later extended by Zagier
Start with the modular integral $\int_{\mathcal{F}} d \mu F(\tau, \bar{\tau})$

Assume we are only dealing with functions of moderate growth at the

$$
\mathcal{F}_{T}=\mathcal{F} \cap\left\{\tau_{2} \leq T\right\}
$$

Consider instead the integral

$$
\int_{\mathcal{F}_{T}} d \mu F(\tau, \bar{\tau}) E^{\star}(\tau ; s)
$$

$E^{\star}(\tau ; s)$ is a meromorphic function in \boldsymbol{s}, with simple poles at $s=0,1$

$$
\begin{aligned}
& E^{\star}(\tau ; s) \equiv \frac{1}{2} \zeta^{\star}(2 s) \sum_{(c, d)=1} \frac{\tau_{2}^{s}}{|c \tau+d|^{2 s}} \\
&=\zeta^{\star}(2 s) \sum_{\gamma \in S L(2 ; \mathbb{Z}) / \Gamma_{\infty}}[\operatorname{Im}(\gamma \cdot \tau)]^{s} \\
& \zeta^{\star}(s) \equiv \pi^{-s / 2} \Gamma(s / 2) \zeta(s)
\end{aligned}
$$

$E^{\star}(\tau ; s)=\frac{1}{2(s-1)}+\frac{1}{2}\left(\gamma-\log \left(4 \pi \tau_{2}|\eta(\tau)|^{4}\right)\right)+\mathcal{O}(s-1)$

The whole trick is based on the fact that the residue is $\Delta \Delta_{p} \cdot \Delta q \geqslant \frac{1}{2} t$

$$
2 \operatorname{Res}_{s=1} \int_{\mathcal{F}_{T}} d \mu F(\tau, \bar{\tau}) E^{\star}(\tau ; s)=\int_{\mathcal{F}_{T}} d \mu F(\tau, \bar{\tau})
$$

The Rankin-Selberg-Zagier method

Now we are ready to unfold the Eisenstein series, modulo a little subtlety

$S L(2 ; \mathbb{Z})$-transformations do not simply map \mathcal{F}_{T} to the "naive" truncated Poincaré upper half-plane

$$
\mathcal{H}_{T} \equiv \mathcal{H} \cap\left\{\tau_{2} \leq T\right\}-\bigcup_{c \geq 1,(a, c)=1} S_{a / c}
$$

but one has to subtract an infinite number of disks $S_{a / c}$, of radius $1 /\left(2 c^{2} T\right)$ and tangent to the real axis at a / c

The Rankin-Selberg-Zagier method

Unfolding and taking the residue eventually gives

For functions F of "rapid decay" at the cusp, $\phi\left(\tau_{2}\right) \sim \tau_{2}^{\alpha}, \operatorname{Re}(\alpha)<1$, the renormalized integral reduces to the usual integral

The Rankin-Selberg-Zagier method

Let us apply this to the case of a d-dimensional lattice

$$
I=2 \operatorname{Res}_{s=1}\left[\zeta^{\star}(2 s) \int_{0}^{\infty} d \tau_{2} \tau_{2}^{s+d / 2-2} \sum_{m^{T} n=0}{ }^{\prime} e^{-\pi \tau_{2} \mathcal{M}^{2}}\right]=2 \operatorname{Res}_{s=1}\left[\frac{\zeta^{\star}(2 s) \Gamma\left(s+\frac{d}{2}-1\right)}{\pi^{s+d / 2-1}} \mathcal{E}_{\mathbb{V}}^{d}\left(G, B ; s+\frac{d}{2}-1\right)\right]
$$

$$
\mathcal{E}_{\mathbb{V}}^{d}(G, B ; s) \equiv \sum_{m^{T} n=0}^{\prime} \frac{1}{\mathcal{M}^{2 s}} \quad \begin{aligned}
& \text { is the constrained Epstein zeta series in } \\
& \text { the vectorial representation of } O(d, d)
\end{aligned}
$$

For the one-dimensional lattice, it is easy to recover the well-known closed-form expression

$$
I_{d=1}=2 \operatorname{Res}_{s=1}\left[\zeta^{\star}(2 s) \zeta^{\star}(2 s-1)\left(R^{1-2 s}+R^{2 s-1}\right)\right]=\frac{\pi}{3}\left(R+\frac{1}{R}\right)
$$

The Rankin-Selberg-Zagier method

Now consider the integral of the two-dimensional lattice, parametrized by the complex structure and Kähler moduli, U and T

$$
\left\{\begin{array}{l}
P_{L}=\left(m_{1}+U m_{2}+\bar{T}\left(n^{2}-U n^{1}\right)\right) / \sqrt{2 T_{2} U_{2}} \\
P_{R}=\left(m_{1}+U m_{2}+T\left(n^{2}-U n^{1}\right)\right) / \sqrt{2 T_{2} U_{2}}
\end{array}\right.
$$

To proceed we need to solve the Diophantine constraint

The general solution has two contributions

$$
\mathcal{E}_{\mathbb{V}}^{2 \star}(T, U ; s)=2 E^{\star}(T ; s) E^{\star}(U ; s)
$$

The two contributions combine into a
 simple expression manifestly reflecting the group isomorphism

$$
O(2,2 ; \mathbb{Z}) \sim S L(2 ; \mathbb{Z})_{T} \times S L(2 ; \mathbb{Z})_{U} \ltimes \mathbb{Z}_{2}
$$

The Rankin-Selberg-Zagier method

$$
\mathcal{E}_{\mathbb{V}}^{2 \star}(T, U ; s)=2 E^{\star}(T ; s) E^{\star}(U ; s) \quad \longleftarrow \text { has a double pole at } s=0 \text { and } s=1
$$

The residue can be computed by using Kronecker limit fomula

$$
I_{d=2}=2 \operatorname{Res}_{s=1}\left(\frac{1}{2(s-1)^{2}}+\frac{1}{s-1}\left[\gamma-\frac{1}{2} \log \left(16 \pi^{2} T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right)\right]\right)
$$

...and one immediately recovers the well-known result

$$
I_{d=2} \equiv R . N . \int_{\mathcal{F}} d \mu \Gamma_{(2,2)}(T, U)=-\log \left(4 \pi e^{-\gamma} T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right)
$$The derivation is remarkably simplerNo need for additional regularization of the degenerate orbitT-duality manifest at every step ("dimensional regularization")Additive constant depends on the renormalization scheme

The Rankin-Selberg-Zagier method

$$
\mathcal{E}_{\mathbb{V}}^{2 \star}(T, U ; s)=2 E^{\star}(T ; s) E^{\star}(U ; s) \quad \longleftarrow \text { has a double pole at } s=0 \text { and } s=1
$$

The residue can be computed by using Kronecker limit fomula

$$
I_{d=2}=2 \operatorname{Res}_{s=1}\left(\frac{1}{2(s-1)^{2}}+\frac{1}{s-1}\left[\gamma-\frac{1}{2} \log \left(16 \pi^{2} T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right)\right]\right)
$$

...and one immediately recovers the well-known result

$$
I_{d=2} \equiv R . N . \int_{\mathcal{F}} d \mu \Gamma_{(2,2)}(T, U)=-\log \left(4 \pi e^{-\gamma} T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right)
$$The derivation is remarkably simplerNo need for additional regularization of the degenerate orbitT-duality manifest at every step ("dimensional regularization")Additive constant depends on the renormalization scheme

What happens for integrals of the type

$$
\int_{\mathcal{F}} d \mu \Gamma_{(d+k, d)} \Phi(\tau)
$$

where the integrand is now a function of rapid growth

A new Poincaré series

One is then lead to define the following Niebur-Poincaré series

$$
\begin{aligned}
\mathcal{F}(s, \kappa, w) & =\frac{1}{2} \sum_{\gamma \in S L(2 ; \mathbb{Z}) / \Gamma \infty}(c \tau+d)^{-w} \mathcal{M}_{s, w}(-\kappa \operatorname{Im} \gamma \cdot \tau) e^{-2 \pi i \kappa \operatorname{Re}\left(\gamma \cdot \tau_{1}\right)} \quad \text { J. Bruinie } \\
& =\frac{1}{2} \sum_{(c, d)=1}(c \tau+d)^{-w} \mathcal{M}_{s, w}\left(-\frac{\kappa \tau_{2}}{|c \tau+d|^{2}}\right) \exp \left\{-2 \pi i \kappa\left(\frac{a}{c}-\frac{c \tau_{1}+d}{c|c \tau+d|^{2}}\right)\right\}
\end{aligned}
$$

-Converges absolutely for $\operatorname{Re}(\mathrm{s})>1$, independently of \varkappa and w

QFor $\varkappa>0$, the behaviour at the cusp is

$$
\begin{aligned}
& \mathcal{M}_{s, w}\left(-\kappa \tau_{2}\right) e^{-2 \pi i \kappa \tau_{1}} \sim \frac{\Gamma(2 s)}{\Gamma\left(s+\frac{w}{2}\right)} q^{-\kappa} \\
& {\left[\Delta_{w}+\frac{s(1-s)}{2}+\frac{w(w+2)}{8}\right] \mathcal{F}(s, \kappa, w)=0}
\end{aligned}
$$

One may define raising and lowering operators that raise / lower the modular weight by 2 units

$$
\begin{aligned}
D_{w} & =\frac{i}{\pi}\left(\partial_{\tau}-\frac{i w}{2 \tau_{2}}\right) \\
\bar{D}_{w} & =-i \pi \tau_{2}^{2} \partial_{\bar{\tau}}
\end{aligned}
$$

$$
D_{w} \cdot \mathcal{F}(s, \kappa, w)=2 \kappa\left(s+\frac{w}{2}\right) \mathcal{F}(s, \kappa, w+2)
$$

$$
\bar{D}_{w} \cdot \mathcal{F}(s, \kappa, w)=\frac{1}{8 \kappa}\left(s-\frac{w}{2}\right) \mathcal{F}(s, \kappa, w-2)
$$

The elliptic genera encountered in string theory have (at most) $\varkappa=1$

One may generate the N -P series at arbitrary \varkappa, by considering the action of Hecke operators

$$
T_{\kappa} \cdot \mathcal{F}(s, 1, w)=\mathcal{F}(s, \kappa, w)
$$

$$
\left(T_{\kappa} \cdot \Phi\right)(\tau)=\sum_{d \mid \kappa} d^{-w} \sum_{b \in \mathbb{Z}_{d}} \Phi\left(\frac{\kappa}{d^{2}} \tau+\frac{b}{d}\right)
$$

Fourier expansion of Niebur-Poincaré series

In order to extract the Fourier expansion one separates out the contribution $c=0, d=1$ and then sets $d=d^{\prime}+m c$ with $m \in \mathbb{Z}$ and $d^{\prime} \in(\mathbb{Z} / c \mathbb{Z})^{*}$. Poisson re-summing over m and using the properties of Kloostermann sums we can turn the "Fourier" integral into a contour integral defining the (modified) Bessel functions

$$
\mathcal{F}(s, \kappa, w)=\mathcal{M}_{s, w}\left(-\kappa \tau_{2}\right) e^{-2 \pi i \kappa \tau_{1}}+\sum_{m \in \mathbb{Z}}=\cdots \cdots \mathcal{F}_{m}(s, \kappa, w) e^{2 \pi i m \tau_{1}}
$$

$$
\tilde{\mathcal{F}}_{0}(s, \kappa, w)=\frac{2^{2-w} i^{-w} \pi^{1+s-\frac{w}{2}} \kappa^{s-\frac{w}{2}} \Gamma(2 s-1) \sigma_{1-2 s}(\kappa)}{\Gamma\left(s-\frac{w}{2}\right) \Gamma\left(s+\frac{w}{2}\right) \zeta(2 s)} \tau_{2}^{2-s-\frac{w}{2}}
$$

$$
\tilde{\mathcal{F}}_{m}(s, \kappa, w)=\frac{4 \pi \kappa i^{-w} \Gamma(2 s)}{\Gamma\left(s+\frac{w}{2} \operatorname{sgn}(m)\right)}\left|\frac{m}{\kappa}\right|^{\frac{w}{2}} \mathcal{W}_{s, w}\left(m \tau_{2}\right), \mathcal{Z}_{s}(m,-\kappa)
$$

$$
\mathcal{W}_{s, w}(y)=|4 \pi y|^{-w / 2} W_{\frac{w}{2} \operatorname{sgn}(y), s-\frac{1}{2}}(4 \pi|y|)
$$

$$
S(a, b ; c)=\sum_{d \in(\mathbb{Z} / c \mathbb{Z})^{*}} \exp \left[\frac{2 \pi i}{c}\left(a d+\frac{b}{d}\right)\right]
$$

Kloostermann-Selberg zeta function

$$
\mathcal{Z}_{s}(a, b)=\frac{1}{2 \sqrt{|a b|}} \sum_{c>0} \frac{S(a, b ; c)}{c} \times \begin{cases}J_{2 s-1}\left(\frac{4 \pi}{c} \sqrt{a b}\right) & , a b>0 \\ I_{2 s-1}\left(\frac{4 \pi}{c} \sqrt{-a b}\right) & , a b<0\end{cases}
$$

Harmonic Maass Forms from the Laplacian

Weak almost holomorphic modular forms are eigenmodes of Δ_{w} with eigenvalue $-w / 2$

$$
\left[\Delta_{w}+\frac{s(1-s)}{2}+\frac{w(w+2)}{8}\right] \mathcal{F}(s, \kappa, w)=0
$$

This is the case for the N-P series $\mathcal{F}(s, \kappa, w)$ with $\quad s=1-\frac{w}{2} \quad$ and $\quad s=\frac{w}{2}$
However, weak almost holomorphic modular forms are not the only eigenmodes of Δ_{w} with this eigenvalue

Weak harmonic Maass forms
Transform like modular forms
Eigenmodes of the Laplacian with eigenvalue $-w / 2$
Not holomorphic in general : infinite tower of negative frequency modes

$$
\bar{D}_{w} \cdot \Phi=-2^{1-2 w}\left(\pi \tau_{2}\right)^{2-w} \bar{\Psi} \quad \Psi(\tau)=\sum_{m=0}^{\infty} b_{m} q^{m}
$$

Annihilates the holomorphic part of Φ and produces the complex conjugate of a holomorphic modular form Ψ of weight 2-w

$D_{w}^{1-w} \cdot \Phi=\left(\frac{i}{\pi} \partial_{\tau}\right)^{1-w} \cdot \Phi=\Xi \quad \Xi(\tau)=\sum_{m \geq-\kappa}(-2 m)^{1-w} a_{m} q^{m}$
"Farey transform" annihilates the non-holomorphic
part of Φ and produces a weak holomorphic "Ghost"
modular form Ξ of weight $2-w$

Harmonic Maass Forms from the N-P series

Observe that the N-P series $\mathcal{F}(s, \kappa, w)$ with $s=1-\frac{w}{2}$ is by construction a weak harmonic Maass form
(for $w<0$, within the convergence domain)

$$
\begin{aligned}
& a_{-\kappa}=\Gamma(2-w) \\
& a_{-\kappa<m<0}=0 \\
& a_{0}=\frac{4 \pi^{2} \kappa}{(2 \pi i)^{w}} \frac{\sigma_{w-1}(\kappa)}{\zeta(2-w)} \\
& a_{m>0}=4 \pi i^{-w} \kappa \Gamma(2-w)\left(\frac{m}{\kappa}\right)^{w / 2} \mathcal{Z}_{1-\frac{w}{2}}(m,-\kappa) \\
& b_{0}=0 \\
& \hdashline b_{m>0}=(1-w) \kappa^{1-w} \delta_{m, \kappa}+4 \pi i^{w}(1-w)(m \kappa)^{1-w / 2} \mathcal{Z}_{1-\frac{w}{2}}(m, \kappa)
\end{aligned}
$$

$$
\begin{array}{rll}
\bar{D}_{w} \cdot \mathcal{F}\left(1-\frac{w}{2}, \kappa, w\right)=\frac{1-w}{8 \kappa} \mathcal{F}\left(1-\frac{w}{2}, \kappa, w-2\right) \sim \tau_{2}^{2-w} \overline{P(-\kappa, 2-w)} \\
D_{w}^{1-w} \cdot \mathcal{F}\left(1-\frac{w}{2}, \kappa, w\right) & =(2 \kappa)^{1-w} \Gamma(2-w) \mathcal{F}\left(1-\frac{w}{2}, \kappa, 2-w\right) & \\
& \sim \mathcal{F}\left(\frac{w^{\prime}}{2}, \kappa, w^{\prime}\right)=P\left(\kappa, w^{\prime}\right) & \\
& \text { (within the convergence }
\end{array}
$$

For special values of w

$$
w \in\{-2,-4,-6,-8,-12\}
$$

The space of cusp forms of weight $2-w$ is empty !

The shadow vanishes \& the Maass form is actually a weak holomorphic modular form!

The spectrum of modular forms as limits of the N-P series

$$
\begin{aligned}
\bar{D}_{w} \cdot \mathcal{F}\left(1-\frac{w}{2}, \kappa, w\right)= & \frac{1-w}{8 \kappa} \mathcal{F}\left(1-\frac{w}{2}, \kappa, w-2\right) \sim \tau_{2}^{2-w} \overline{P(-\kappa, 2-w)} \\
D_{w}^{1-w} \cdot \mathcal{F}\left(1-\frac{w}{2}, \kappa, w\right) & =(2 \kappa)^{1-w} \Gamma(2-w) \mathcal{F}\left(1-\frac{w}{2}, \kappa, 2-w\right) \\
& \sim \mathcal{F}\left(\frac{w^{\prime}}{2}, \kappa, w^{\prime}\right)=P\left(\kappa, w^{\prime}\right)
\end{aligned}
$$

The spectrum of modular forms as limits of the $\mathrm{N}-\mathrm{P}$ series

For these special values of $w, \mathcal{F}\left(1-\frac{w}{2}, 1, w\right)$ can be recognized as an element of the ring of weak holomorphic modular forms by matching the principal part of the expansions

For values of re<o outside this list the space of cusp forms of weight $2-w$ is not empty and $\mathcal{F}\left(1-\frac{w}{2}, 1, w\right)$ is a genuine harmonic Maass form with non-vanishing shadow

w	$\mathcal{F}\left(1-\frac{w}{2}, 1, w\right)$	$\mathcal{F}\left(1-\frac{w}{2}, 1,2-w\right)$
0	$j+24$	$E_{4}^{2} E_{6} \Delta^{-1}$
-2	$3!E_{4} E_{6} \Delta^{-1}$	$E_{4}(j-240)$
-4	$5!E_{4}^{2} \Delta^{-1}$	$E_{6}(j+204)$
-6	$7!E_{6} \Delta^{-1}$	$E_{4}^{2}(j-480)$
-8	$9!E_{4} \Delta^{-1}$	$E_{4} E_{6}(j+264)$
-12	$13!\Delta^{-1}$	$E_{4}^{2} E_{6}(j+24)$

However, the linear combination

$$
\mathcal{G}(s, w)=\frac{1}{\Gamma(2-w)} \sum_{-\kappa \leq m<0} a_{m} \mathcal{F}(s, m, w)
$$

with coefficients determined by the principal part of any weak holomorphic modular form Φ

$$
\Phi_{w}^{-}=\sum_{-\kappa \leq m<0} a_{m} q^{-m} \quad \begin{aligned}
& \text { of negative weight } w, \text { reduces in the limit } s=1-\frac{w}{2} \text { to the } \\
& \text { holomorphic modular form } \Phi \text { itself }!
\end{aligned}
$$

The shadows of the weak Maass forms cancel in the linear combination!

The spectrum of modular forms as limits of the $\mathrm{N}-\mathrm{P}$ series

What about weak almost holomorphic modular forms ?
They can be obtained from the ordinary holomorphic

$$
D_{w}^{n}=\left(\frac{i}{\pi}\right)^{n} \sum_{k=0}^{n}\binom{n}{k} \frac{\Gamma(w+n)}{\Gamma(w+k)}\left(2 i \tau_{2}\right)^{k-n} \partial_{\tau}^{k}
$$

modular forms by the action of the modular derivatives $D^{n} \Phi$

$$
\begin{aligned}
& D \hat{E}_{2}=\frac{1}{6}\left(E_{4}-\hat{E}_{2}^{2}\right) \\
& D E_{4}=\frac{2}{3}\left(E_{6}-\hat{E}_{2} E_{4}\right) \\
& D E_{6}=E_{4}^{2}-\hat{E}_{2} E_{6} \\
& D\left(\Delta^{-1}\right)=2 \hat{E}_{2} \Delta^{-1}
\end{aligned}
$$

Hence, we can produce a weak almost holomorphic modular form from the linear combination

$$
\mathcal{G}\left(1-\frac{w}{2}+n, w\right)=\frac{1}{\Gamma(2-w)} \sum_{-\kappa \leq m<0} a_{m} \mathcal{F}\left(1-\frac{w}{2}+n, m, w\right)
$$

where the coefficients form the principal part of a weak holomorphic modular form of weight $w-2 n$

$$
\Phi_{w-2 n}^{-}=\sum_{-\kappa \leq m<0} \frac{a_{m}}{(2 m)^{n} n!} q^{m}
$$

The spectrum of modular forms as limits of the $\mathrm{N}-\mathrm{P}$ series

Niebur-Poincaré series for various values of (s, τ)

$s \backslash w$	-10	-8	-6	-4	-2	0	2	4	6	8	10
5	0	9! $\frac{E_{4}}{\Delta}$	$\frac{9!}{2} D \frac{E_{4}}{\Delta}$	$\frac{9!}{8} D^{2} \frac{E_{4}}{\Delta}$	$\frac{9!}{2^{3} 3!} D^{3} \frac{E_{4}}{\Delta}$	$\frac{9!}{2^{4} 4!} D^{4} \frac{E_{4}}{\Delta}$	$\frac{9!}{2^{55!}} D^{5} \frac{E_{4}}{\Delta}$	$\frac{9!}{2^{6} 6!} D^{6} \frac{E_{4}}{\Delta}$	$\frac{9!}{2^{7} 7!} D^{7} \frac{E_{4}}{\Delta}$	$\left.\frac{9!}{2^{7} 8!}\right]^{8} \frac{E_{4}}{\Delta}$	$E_{4} E_{6}(j+264)$
4	0	0	$7!\frac{E_{6}}{\Delta}$	$\frac{7!}{2} D \frac{E_{6}}{\Delta}$	$\frac{7!}{8} D^{2} \frac{E_{6}}{\Delta}$	$\frac{7!}{2^{3} 3!} D^{3} \frac{E_{6}}{\Delta}$	$\left.\frac{7!}{2^{4} 4!}\right]^{4} \frac{E_{6}}{\Delta}$	$\frac{7!}{2^{5} 5!} 5^{5} \frac{E_{6}}{\Delta}$	$\frac{7!}{2^{6}!} D^{6} \frac{E_{6}}{\Delta}$	$E_{4}^{2}(j-480)$	
3	0	0	0	$5!\frac{E_{4}^{2}}{\Delta}$	$\frac{5!}{2} D \frac{E_{4}^{2}}{\Delta}$	$\frac{5!}{8} D^{2} \frac{E_{4}^{2}}{\Delta}$	$\frac{5!}{2^{33}!} D^{3} \frac{E_{4}^{2}}{\Delta}$	$\frac{5!}{2^{4} 4!} D^{4} \frac{E_{4}^{2}}{\Delta}$	$E_{6}(j+504)$	$\frac{5!}{2^{66!}} D^{6} \frac{E_{4}^{2}}{\Delta}$	$\frac{5!}{2^{7} 7!} D^{7} \frac{E_{4}^{2}}{\Delta}$
2	0	0	0	0	$3!\frac{E_{4} E_{6}}{\Delta}$	$3 D \frac{E_{4} E_{6}}{\Delta}$	$\frac{3}{4} D^{2} \frac{E_{4} E_{6}}{\Delta}$	$E_{4}(j-240)$	$\frac{3!}{24}{ }^{4}!D^{4} \frac{E_{4} E_{6}}{\Delta}$	$\frac{3!}{255!} D^{5} \frac{E_{4} E_{6}}{\Delta}$	$\frac{3!}{2^{66}!} D^{6} \frac{E_{4} E_{6}}{\Delta}$
1	0	0	0	0	0	$j+24$	$\frac{E_{4}^{2} E_{6}}{\Delta}$	$\frac{1}{2^{22}!} D^{2} j$	$\frac{1}{2^{3} 3!} D^{3} j$	$\frac{1}{2^{4} 4!} D^{4} j$	$\frac{1}{2^{55!}} D^{5} j$

$$
\begin{aligned}
& D \hat{E}_{2}=\frac{1}{6}\left(E_{4}-\hat{E}_{2}^{2}\right) \\
& D E_{4}=\frac{2}{3}\left(E_{6}-\hat{E}_{2} E_{4}\right) \\
& D E_{6}=E_{4}^{2}-\hat{E}_{2} E_{6} \\
& D\left(\Delta^{-1}\right)=2 \hat{E}_{2} \Delta^{-1}
\end{aligned}
$$

Unfolding against the $\mathrm{N}-\mathrm{P}$ series

Now we can return to our original goal :

$$
I_{d+k, d}\left(s, \kappa ; T_{\text {IR cutoff }}^{;-1}=\int_{\mathcal{F}_{T}} d \mu \Gamma_{(d+k, d)}(G, B, Y) \mathcal{F}\left(s, \kappa,-\frac{k}{2}\right)\right.
$$

$$
(w=-k / 2<0)
$$

Unfold against the Niebur-Poincaré series :
half-BPS states

$P_{L}^{2}-P_{R}^{2}=m^{T} n=4 \kappa$
$=\int_{0}^{\infty} \frac{d \tau_{2}}{\tau_{2}^{2}} \mathcal{M}_{s,-\frac{k}{2}}\left(-\kappa \tau_{2}\right) \tau_{2}^{d / 2} \sum_{\text {BPS }} e^{-\pi \tau_{2}\left(P_{L}^{2}+P_{R}^{2}\right) / 2}$

$$
\begin{gathered}
-\int_{\mathcal{F}-\mathcal{F}_{T}} d \mu \tau_{2}^{d / 2}\left(\mathcal { M } _ { s , - \frac { k } { 2 } } \left(-\kappa \tau, e^{-2 \pi}\right.\right. \\
f_{0}(s)=\frac{(4 \pi)^{1+\frac{k}{4}} \pi^{s} i^{\frac{k}{2}} \kappa^{s+\frac{k}{4}} \Gamma(2 s-1) \sigma_{1-2 s}(\kappa)}{\Gamma\left(s+\frac{k}{4}\right) \Gamma\left(s-\frac{k}{4}\right) \zeta(2 s)}
\end{gathered}
$$

$$
f_{0}(s) \frac{T^{\frac{d}{2}+\frac{k}{4}-s}}{s-\frac{d}{2}-\frac{k}{4}}
$$

An Example of Gauge Threshold calculation

$\mathcal{N}=2$ heterotic vacuum in the orbifold point $T^{2} \times T^{4} / \mathbb{Z}_{2}$

In the absence of Wilson lines $E_{8} \times E_{8} \rightarrow E_{8} \times E_{7} \times S U(2)$

Genus-one correction to 2-point function of two gauge bosons

$$
\begin{aligned}
& \left\langle e_{1}^{\mu} A_{\mu}^{a}\left(p_{1}\right) e_{2}^{\nu} A_{\nu}^{a}\left(p_{2}\right)\right\rangle=\int d^{2} z\left\langle\mathcal{V}^{a}(z, \bar{z} ; p) \mathcal{V}^{a}(0 ; p)\right\rangle \\
& \mathcal{V}^{a}(z, \bar{z} ; p)=i e_{\mu}\left(\partial X^{\mu}+i p \cdot \psi \psi^{\mu}\right)(z) \bar{J}^{a}(\bar{z}) e^{i p \cdot X(z, \bar{z})} \\
& -\frac{e_{1}^{\mu} e_{2}^{\nu}}{2(2 \pi \sqrt{2})^{4}} \int_{\mathcal{F}} \frac{d^{2} \tau}{\tau_{2}^{2}} \int d^{2} z\left\langle\left(\partial X^{\mu}+i p_{1} \cdot \psi \psi^{\mu}\right) \bar{J}^{a} e^{i p_{1} \cdot X}(z, \bar{z})\left(\partial X^{\nu}+i p_{2} \cdot \psi \psi^{\nu}\right) \bar{J}^{b} e^{i p_{2} X}(0)\right\rangle
\end{aligned}
$$

Performing the contractions and keeping quadratic terms in p relevant for $\frac{1}{4 g^{2}} F_{\mu \nu} F^{\mu \nu}$
$\frac{\left(p_{1} \cdot p_{2}\right)\left(e_{1} \cdot e_{2}\right)-\left(e_{1} \cdot p_{2}\right)\left(e_{2} \cdot p_{1}\right)}{2(2 \pi \sqrt{2})^{4}} \int_{\mathcal{F}} \frac{d^{2} \tau}{\tau_{2}^{2}} \int d^{2} z\left(\langle X \partial X\rangle^{2}-\langle\psi \psi\rangle^{2}\right)\left\langle\bar{J}^{a} \bar{J}^{a}\right\rangle$
$\left\langle\bar{J}^{a}(\bar{z}) \bar{J}^{b}(0)\right\rangle=\frac{k}{4 \pi^{2}} \bar{\partial}^{2} \log \bar{\theta}_{1}(\bar{z})+\operatorname{Tr} Q^{2}$
$\left.\langle\psi(z) \psi(0)\rangle^{2}=S^{2}\left[\begin{array}{l}a \\ b\end{array}\right](z)=\left(\frac{\theta\left[\begin{array}{l}a \\ b\end{array}\right](z) \theta_{1}^{\prime}(0)}{\theta\left[\begin{array}{l}a \\ b\end{array}\right](0) \theta_{1}(z)}\right)^{2}=\mathcal{P}(z)+4 \pi i \partial_{\tau} \log \frac{\theta\left[\begin{array}{c}a \\ b\end{array}\right]}{\eta}\right\}$ for even spin structures
Szegö kernel $\mathcal{P}(z)=4 \pi i \partial_{\tau} \log \eta-\partial_{z}^{2} \log \theta_{1}(z) \quad$ Weierstrass function
$=1 \Delta_{p \cdot \Delta q \geqslant \frac{1}{2} t}$

$$
\langle X(z, \bar{z}) X(0)\rangle=-\log \theta_{1}(z) \bar{\theta}_{1}(\bar{z})+2 \pi \frac{[\operatorname{Im}(z)]^{2}}{\tau_{2}} \quad \begin{aligned}
& \text { bosonic 2-point } \\
& \text { function on the torus }
\end{aligned}
$$

An Example of Gauge Threshold calculation

Putting everything together, we perform integral over the
location of the vertex operator insertion over the torus

$$
\begin{aligned}
& \int d^{2} z\left(S^{2}\left[\begin{array}{l}
a \\
b
\end{array}\right](z)-\langle X \partial X\rangle^{2}\right)\left(\frac{k}{4 \pi^{2}} \bar{\partial}^{2} \log \bar{\theta}_{1}(\bar{z})+\operatorname{Tr} Q^{2}\right) \\
= & \int d^{2} z\left[\mathcal{P}(z)+4 \pi i \partial_{\tau} \log \frac{\theta\left[\begin{array}{l}
a \\
b
\end{array}\right]}{\eta}-\left(\partial_{z} \log \theta_{1}(z)+2 \pi i \frac{\operatorname{Im}(z)}{\tau_{2}}\right)^{2}\right]\left[\frac{k}{4 \pi^{2}} \bar{\partial}^{2} \log \bar{\theta}_{1}(\bar{z})+\operatorname{Tr} Q^{2}\right] \\
= & 4 \pi i \tau_{2} \partial_{\tau} \log \frac{\theta\left[\begin{array}{l}
a \\
b
\end{array}\right]}{\eta}\left(\operatorname{Tr} Q^{2}-\frac{k}{4 \pi \tau_{2}}\right) .
\end{aligned}
$$

Finally, perform the sum over all even spin structures and fix the overall normalization

$$
\left.\frac{16 \pi^{2}}{g^{2}}\right|_{1-\text { loop }}=\frac{i}{2 \pi} \int_{\mathcal{F}} \frac{d^{2} \tau}{\tau_{2}} \frac{1}{\eta^{2} \bar{\eta}^{2}} \sum_{(a, b) \neq(1,1)} \partial_{\tau}\left(\frac{\theta\left[\begin{array}{l}
a \\
b
\end{array}\right]}{\eta}\right) \operatorname{Tr}\left[\left(Q^{2}-\frac{k}{4 \pi \tau_{2}}\right) q^{L_{0}-c / 24} \bar{q}^{\bar{L}_{0}-\bar{c} / 24}\right]
$$

One-loop correction to the gauge coupling associated to a gauge group factor G

In our particular model, the sum over the even spin structures contributes

$$
I=\frac{1}{2} \sum_{a, b}(-)^{a+b+a b} \frac{\theta^{2}\left[\begin{array}{c}
a \\
b
\end{array}\right] \theta\left[\begin{array}{c}
a+h \\
b+g
\end{array}\right] \theta\left[\begin{array}{c}
a-h \\
b-g
\end{array}\right]}{\eta^{4}} 4 \pi i \partial_{\tau} \log \frac{\theta\left[\begin{array}{l}
{\left[\begin{array}{l}
a \\
b
\end{array}\right]} \\
\eta
\end{array}=4 \pi^{2} \eta^{2} \theta\left[\begin{array}{c}
1-h \\
1-g
\end{array}\right] \theta\left[\begin{array}{c}
1+h \\
1+g
\end{array}\right]\right.}{[}
$$

Using this together with the contribution of the twisted lattice

$$
\frac{i}{2 \pi \eta^{2} \bar{\eta}^{2}} \frac{1}{2} \sum_{(a, b) \neq(1,1)}(-)^{a+b+a b} \partial_{\tau}\left(\frac{\theta\left[\begin{array}{c}
a \\
b
\end{array}\right]}{\eta}\right) \frac{\theta\left[\begin{array}{l}
a \\
b
\end{array}\right] \theta\left[\begin{array}{l}
a+h \\
b+g
\end{array}\right] \theta\left[\begin{array}{l}
a-h \\
b-g
\end{array}\right]}{\eta^{3}} \frac{\Gamma_{(4,4)}\left[\begin{array}{l}
h \\
g
\end{array}\right]}{\eta^{4} \bar{\eta}^{4}}=\frac{8 \eta^{2}}{\bar{\theta}\left[\begin{array}{l}
1+h \\
1+g
\end{array}\right] \bar{\theta}\left[\begin{array}{l}
1-h \\
1-g
\end{array}\right]}
$$

An Example of Gauge Threshold calculation

The final ingredient is the group trace over, say the E8 group factor

$$
\begin{aligned}
& \left(\frac{1}{(2 \pi i)^{2}} \partial_{v}^{2}-\frac{1}{4 \pi \tau_{2}}\right) \frac{1}{2} \sum_{\rho, \sigma} \frac{\bar{\theta}\left[{ }_{\sigma}^{\rho}\right]^{\top} \bar{\theta}\left[\left.\begin{array}{l}
\rho \\
\left.\sigma_{\sigma}\right](v) \\
\bar{\eta}^{8}
\end{array}\right|_{v=0}=\frac{1}{2} \sum_{\rho, \sigma} \frac{\bar{\theta}\left[\sigma_{\sigma}^{\rho}\right]^{7}}{\bar{\eta}^{8}}\left(\frac{i}{\pi} \partial_{\bar{\tau}}-\frac{1}{4 \pi \tau_{2}}\right) \bar{\theta}\left[{ }_{\sigma}^{\rho}\right]\right.}{}=\frac{1}{2} \sum_{\rho, \sigma} \frac{\bar{\theta}\left[\rho_{\sigma}^{\rho}\right]^{8}}{\bar{\eta}^{8}}\left(\frac{i}{\pi} \partial_{\bar{\tau}} \log \bar{\theta}\left[\begin{array}{l}
\rho \\
\sigma
\end{array}\right]-\frac{1}{4 \pi \tau_{2}}\right)=\frac{1}{12} \frac{\hat{\bar{E}}_{2} \bar{E}_{4}-\bar{E}_{6}}{\bar{\eta}^{8}}
\end{aligned}
$$

Putting everything together we are left with
$\frac{16 \pi^{2}}{g_{E_{8}}^{2}}=\int_{\mathcal{F}} \frac{d^{2} \tau}{\tau_{2}} \frac{1}{2} \sum_{(h, g) \neq(0,0)} \frac{1}{2} \sum_{\gamma, \delta} \frac{8 \eta^{2} \Gamma_{(2,2)}(T, U)}{\bar{\theta}[1+g]}\left[\frac{1}{1+h}\left[\begin{array}{l}1-h \\ 1-h\end{array}\right] \quad \frac{\hat{E}_{2} \bar{E}_{4}-\bar{E}_{6}}{12} \frac{\left.\bar{\theta}\left[\begin{array}{c}\gamma \\ \gamma\end{array}\right]^{6} \bar{\theta} \bar{\theta}_{\delta+g}^{\gamma+h}\right] \bar{\theta}\left[\begin{array}{l}\gamma-h \\ \gamma-h\end{array}\right]}{\bar{\eta}^{8}}\right.$

The final result is a modular integral of the $(2,2)$ lattice times a modular function

$$
\frac{\hat{E}_{2} E_{4} E_{6}-E_{6}^{2}}{\Delta}=\mathcal{F}(2,1,0)-6 j+720
$$

We now unfold the Niebur-Poincaré series and obtain

Non-singular because the unphysical tachyon is neutral

An Example of Gauge Threshold calculation

$$
\left.\frac{16 \pi^{2}}{g_{E_{8}}^{2}}\right|_{1-\mathrm{loop}}=72 \log \left(T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right)+\sum_{m^{T} n=1}\left[1+\frac{1}{4} P_{R}^{2} \log \left(\frac{P_{R}^{2}}{P_{L}^{2}}\right)\right]
$$

Take the limit where the 2 -torus decompactifies into a circle

$$
T=i R_{1} R_{2} \quad, \quad U=i R_{2} / R_{1} \quad, \quad R_{2} \rightarrow \infty \quad, \quad R_{1}=\text { fixed }
$$

The dominant dependence in the circle radius is

$$
\left.\frac{16 \pi^{2}}{g_{E_{8}}^{2}}\right|_{1-\text { loop }} \sim 72 \times\left[-\frac{\pi}{3}\left(R_{1}+\frac{1}{R_{1}}\right)\right] \sim
$$

We will now compare this with the result we would have obtained if we had considered the decompactification limit from the very beginning

$$
\begin{aligned}
& \left.\frac{16 \pi^{2}}{g_{E_{8}}^{2}}\right|_{1-\text { loop }}=-\frac{1}{12} \int_{\mathcal{F}} d \mu \Gamma_{(1,1)}(R)(\mathcal{F}(2,1,0)-6 j+720) \\
& =-\frac{2 \pi}{3}\left(R^{3}+\frac{1}{R^{3}}-\left(\left.R^{3}-\frac{1}{R^{3}} \right\rvert\,\right.\right. \\
& = \begin{cases}-\frac{4 \pi}{3 R^{3}} & -4 \pi R-20 \pi\left(R+\frac{1}{R}\right) \\
-\frac{4 \pi R^{3}}{3}-\frac{4 \pi}{R}-20 \pi\left(R+\frac{1}{R}\right) & , \quad R<1\end{cases}
\end{aligned}
$$

The dominant behaviour matches in both cases, as expected
There is no conical singularity, despite the presence of the two conical terms

[^0]: Max-Planck-Institut für Physik
 (Werner-Heisenberg-Institut) I. Florakis, 2012

