Investigating anisotropies in the local universe with the Nearby Supernova Factory

TR33 - Summer Institute: Particles and the Universe

Corfu, September 21, 2012

Ulrich Feindt

Physikalisches Institut Universität Bonn

For the Nearby Supernova Factory

Contents

- The Nearby Supernova Factory
- Supernova data
- Analysis of local anisotropies
 - Bulk flow
 - Large scale structure
 - Shapley supercluster

The Nearby SNfactory

The Nearby Supernova Factory (Aldering et al. 2002) aims to improve supernova cosmology by:

- obtaining time series of flux-calibrated spectra of type la supernovae (SNe Ia) at 0.03 < z < 0.08
- better understanding the phsyics associated with SN Ia explosions
- improving the standardization of SNe Ia and the measurement of their absolute magnitude

Collaborating labs: LBNL (Berkeley), Yale, LPNHE (Paris), IPNL&CRAL (Lyon), CPPM (Marseille), MPA (Garching), Bonn U., Tsinghua U. (Beijing)

The Nearby SNfactory

Supernova Integral Field Spectrograph (SNIFS)

The SNF Dataset

				25-	
	SNfactory	Others	Total	20	
SN	~620	~70	~690	15-	
SN Ia	~400	~50	~450		
Follow-up	~150	~40	~190	10	

Bulk Flow in the Local Universe

CMB dipole arises from peculiar motion of the Local Group at 627±22 km/s (Kogut et al. 1993)

Reason for Bulk Flow?

CMB dipole arises from peculiar motion of the Local Group at 627±22 km/s (Kogut et al. 1993)

What causes the bulk flow?

- Local overdensity (e.g. Shapley Supercluster)?
- Structures at larger distances?
- "Dark Flow" (Kashlinsky et al. 2012)?

What is its redshift behavior?

SNe la as peculiar velocity tracers Galaxies have been used to trace peculiar motion for more than 30 years

- Luminosity distance precision: ~ 15 25%
- Methods practical only up to $\sim 100 200$ Mpc (z $\sim 0.025 0.05$)

Recently kinetic Sunyaev-Zeldovic (kSZ) effect of clusters (or the galaxies themselves) has been used

- Large systematic uncertainties in the models
- Few clusters at z < 0.1

Type la Supernovae

- Luminosity distance precision: typically ~ 8 %
- Observable up to very high redshift
- Data in relevant redshift range (0.05 < z < 0.1) still sparse but large increase in statistics expected.

Anisotropy Analysis (with M. Kehrschhaggl)

 Bulk flow corresponds to a dipole term in the luminosity distance:

$$d_L(z, v_p, \theta) = d_L^{(0)}(z) + d_L^{(1)}(z, v_p) \cdot \cos(\theta)$$
$$d_L^{(1)}(z, v_p) = \frac{v_p(1+z)^2}{H(z)} \quad \text{(Bonvin et al. 2006)}$$

- Used the Union 2.1 compilation (Suzuki et al. 2011) and the SNfactory data set
- Fit dipole to determine bulk flow in redshift shells
- Concentrated on shells around the Shapley Supercluster, the largest mass concentration in the nearby universe, at 0.035 < z < 0.055

Dipole Fit

χ² of dipole fits depending on the dipole direction and v > 0 compared to Hubble fit without bulk flow
p-value determined from 5000 random resamplings

Smoothing residuals Method

• Implemented the test statistics used by Colin et al. 2011

 Smoothing of Hubble residuals with Gaussian weights depending on angular distance on unit sphere

$$Q(\theta, \phi) = \sum_{i=1}^{N} q_i(z_i, \theta_i, \phi_i) W(\theta, \phi, \theta_i, \phi_i)$$
$$W(\theta, \phi, \theta_i, \phi_i) = \frac{1}{\sqrt{2\pi\delta}} \exp\left[-\frac{L(\theta, \phi, \theta_i, \phi_i)^2}{2\delta^2}\right]$$

$$\Delta Q_{\text{data}} = Q(\theta_{\text{max}}, \phi_{\text{max}}) - Q(\theta_{\text{min}}, \phi_{\text{min}})$$

q... residuals, *W*... weights, *L*... SN pair distance on unit sphere

Results are consistent with the dipole fits

Union2.1

In the Union data there
is an (insignificant)
"turnaround" of the
dipole around the SSC

Nearby Supernova Factory Data

 No turnaround in SNF data.
 Flow stays in the same direction at the 3σ level!

Combined Data Sets

 We combined Union2.1 and the SNfactory data to 280 SNe at 0.015 < z < 0.1

 No significant turnaround behind SSC

ACDM Expectation

(Collaboration with N. Roth and C. Porciani at AlfA, Bonn)

Using 64 realizations of Large Scale Structure simulations for Λ CDM up to z = 0.1

Expect bulk flow of
100 km/s at z = 0.1

 Measured bulk flow consistent with expectation

Gravitational Attractor Picture

Following Peebles (1993) and Muñoz & Loeb (2008), we assume a simple spherical overdensity of radius $R_{e} = 50$ Mpc.

$$M_{tot}(< R_E) = (4/3) \pi R_L^3 \Omega_{M,0} \rho_{crit,0} (1 + \delta_i)$$

$$v_p = \frac{a f H}{4 \pi} \int \frac{\vec{y} - \vec{x}}{\left|\vec{y} - \vec{x}\right|^3} \,\delta(\vec{y}) \,d^3\vec{y},$$

We determined the mass required to produce the measured peculiar velocities.

Reconstructed Attractor Mass

- We assumed a single attractor in the direction of SSC
- Scanned through a range of redshift for the overdensity

 Overdensity at SSC distance would require two to three times its mass

 SSC disfavored at the 2σ level compared to overdensities at higher redshifts

Conclusion

- We see a 2 - 3σ dipole flow towards SSC and the CMB dipole in the supernova data

 While Union2 suggests a turn around behind SSC, SNfactory does not support this

 The bulk flow seems to extend beyond the Shapley Supercluster

 Main source of the bulk flow remains unresolved