▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → のへで

A New Road to Massive Gravity?

Eric Bergshoeff

Groningen University

TR33 - Summer Institute: Particles and the Universe

Corfu, September 20 2012

Introduction

3D Massive Gravity

Four dimensions

Conclusions

Introduction

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● ●

Conclusions

Introduction

3D "New" Massive Gravity

Conclusions

Introduction

3D "New" Massive Gravity

3D Massive Gravity

3D Massive Gravity

our dimensions

Conclusions

Introduction

3D "New" Massive Gravity

3D Massive Gravity

Four dimensions

D Massive Gravity

our dimensions

Conclusions

Introduction

3D "New" Massive Gravity

3D Massive Gravity

Four dimensions

Conclusions

3D Massive Gravity

our dimensions

Conclusions

Introduction

- 3D "New" Massive Gravity
- 3D Massive Gravity
- Four dimensions
- Conclusions

Massive Spin-2 by Higher Derivatives

Einstein Gravity is the unique field theory of interacting massless spin-2 particles around a given spacetime background that mediates the gravitational force

Problem: Gravity is perturbative non-renormalizable

$$\mathcal{L} \sim \mathbf{R} + a \left(R_{\mu
u}{}^{ab}
ight)^2 + b \left(R_{\mu
u}
ight)^2 + c \ \mathbf{R}^2 \; :$$

renormalizable but not unitary

Stelle (1977)

massless spin 2 and massive spin 2 have opposite sign !

Special Case

• In three dimensions there is no (bulk) massless spin 2!

⇒ "New Massive Gravity"

Hohm, Townsend + E.B. (2009)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Massive Spin-2 by Explicit Mass Term

• Massive Gravity is an IR modification of Einstein gravity that describes a massive spin-2 particle via an explicit mass term

modified gravitational force

$$V(r) \sim rac{1}{r} \quad
ightarrow \quad V(r) \sim rac{e^{-mr}}{r}$$

• characteristic length scale $r = \frac{1}{m}$

Cosmological Constant Problem

The vDVZ Discontinuity

Proca :
$$\mathcal{L} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} - \frac{1}{2}m^2A_{\mu}A^{\mu} + A_{\mu}J^{\mu}$$

- limit $m \rightarrow 0$: $3 \rightarrow 2$?
- field redefinition: $A_{\mu} \rightarrow A_{\mu} + \frac{1}{m} \partial_{\mu} \phi$
- coupling $\phi \, \partial_{\mu} J^{\mu}$ vanishes if J^{μ} is conserved

Spin 2

- limit $m \rightarrow 0$: 5 $\rightarrow 2$?
- field redefinitions: $h_{\mu\nu} \rightarrow h_{\mu\nu} + \frac{1}{m}\partial_{(\mu}A_{\nu)}$ and $A_{\mu} \rightarrow A_{\mu} + \frac{1}{m}\partial_{\mu}\phi$
- couplings $A_{\mu}\partial_{\nu}T^{\mu\nu}$ and $\phi \partial_{\mu}\partial_{\nu}T^{\mu\nu}$ vanish if $T^{\mu\nu}$ is conserved but a coupling $\phi \eta_{\mu\nu}T^{\mu\nu}$ survives! (due to $h_{\mu\nu} \rightarrow h_{\mu\nu} + \eta_{\mu\nu}\phi$)

The Boulware-Deser Ghost

counting d.o.f. massless gravity

 $6 + 6 \ (g_{ij}, \pi^{ij}; i = 1, 2, 3) - 4 - 4 \ (N, N^i) = 2 + 2$: massless spin-2

counting d.o.f. massive gravity

 $6 + 6 (g_{ij}, \pi^{ij}) = 5 + 5 \text{ (massive spin-2)} + 1 + 1 \text{ (BD ghost)} - 1 - 1$

4D: Gabadadze, de Rham, Tolley (GdRT) (2010); Chamseddine, Mukhanov (2010)

Introduction

3D Massive Gravity

our dimensions

Conclusions

Introduction

3D "New" Massive Gravity

3D Massive Gravity

Four dimensions

Conclusions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Free Fierz-Pauli

•
$$\left(\Box - m^2\right)\tilde{h}_{\mu\nu} = 0$$
, $\eta^{\mu\nu}\tilde{h}_{\mu\nu} = 0$, $\partial^{\mu}\tilde{h}_{\mu\nu} = 0$

•
$$\mathcal{L}_{\text{FP}} = \frac{1}{2} \tilde{h}^{\mu\nu} G^{\text{lin}}_{\mu\nu}(\tilde{h}) + \frac{1}{2} m^2 \left(\tilde{h}^{\mu\nu} \tilde{h}_{\mu\nu} - \tilde{h}^2 \right) , \quad \tilde{h} \equiv \eta^{\mu\nu} \tilde{h}_{\mu\nu}$$

no obvious non-linear extension !

number of propagating modes is $\frac{1}{2}D(D+1) - 1 - D = \begin{cases} 5 & \text{for } 4D \\ 2 & \text{for } 3D \end{cases}$

Conclusions

A Trick

3D Proca :
$$\partial^{\mu}A_{\mu} = 0 \implies A_{\mu} = \epsilon_{\mu}{}^{\nu\rho}\partial_{\nu}V_{\rho}$$

gauge theory

• warning: this trick does not work for Proca!

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Higher-Derivative Extension in 3D

$$\partial^{\mu} \tilde{h}_{\mu
u} = 0 \quad \Rightarrow \quad \tilde{h}_{\mu
u} = \epsilon_{\mu}{}^{lphaeta} \epsilon_{
u}{}^{\gamma\delta} \partial_{lpha} \partial_{\gamma} h_{eta\delta} \equiv G^{\mathsf{lin}}_{\mu
u}(h)$$

$$\left(\Box - m^2\right) \ G_{\mu\nu}^{\mathrm{lin}}(h) = 0 \,, \qquad R^{\mathrm{lin}}(h) = 0$$

Non-linear generalization : $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \Rightarrow$

$$\mathcal{L} = \sqrt{-g} \left[-R - \frac{1}{2m^2} \left(R^{\mu\nu} R_{\mu\nu} - \frac{3}{8} R^2 \right) \right]$$

"New Massive Gravity" : unitary !

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What We Now Know

• NMG is (most likely) non-renormalizable

NMG plus c.c. Λ: massive gravitons ⇔ black holes

Introduction

3D "New" Massive Gravity

3D Massive Gravity

Four dimensions

Conclusions

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 ∽��?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The GdRT Model

Gabadadze, de Rham, Tolley (2010), Hinterbichler, Rosen (2012)

$$I_{\text{GdRT}}[e] = M_P \int d^3x \left\{ eR(e) - \frac{1}{16} m^2 \varepsilon^{\mu\nu\rho} \varepsilon_{abc} \left(e^a_\mu + \delta^a_\mu \right) \left(e^b_\nu - \delta^b_\nu \right) \left(e^c_\rho - \delta^c_\rho \right) + \frac{\alpha}{2} m^2 \varepsilon^{\mu\nu\rho} \varepsilon_{abc} \left(e^a_\mu - \delta^a_\mu \right) \left(e^b_\nu - \delta^b_\nu \right) \left(e^c_\rho - \delta^c_\rho \right) \right\}$$

•
$$\alpha$$
 is a dimensionless parameter

$$e_{\mu}{}^{a} = \delta_{\mu}{}^{a} + h_{\mu}{}^{a} \Rightarrow Fierz-Pauli$$

3D NMG and 3D massive gravity are different limits of a 3D bi-metric gravity model

Hassan and Rosen (2012), Paulos and Tolley (2012)

3D Bi-metric Gravity

Hassan, Schmidt-May and von Strauss (2012)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

3D: Banados, Theisen (2009), Afshar, Alishahiha, Naseh (2009), Zinoviev (2012)

$$I[e, f] = \int d^3x \left\{ \sigma M_e \, eR(e) + M_f \, fR(f) - \sigma = \pm 1 \right.$$
$$\left. - \frac{1}{16} Mm^2 \, \varepsilon^{\mu\nu\rho} \, \varepsilon_{abc} \left(e^a_\mu + f^a_\mu \right) \left(e^b_\nu - f^b_\nu \right) \left(e^c_\rho - f^c_\rho \right) \right. + \left. \alpha \, M \, m^2 \varepsilon^{\mu\nu\rho} \, \varepsilon_{abc} \left(e^a_\mu - f^a_\mu \right) \left(e^b_\nu - f^b_\nu \right) \left(e^c_\rho - f^c_\rho \right) \right\}$$

• e_{μ}^{a} and f_{μ}^{a} are two Dreibeins

•
$$M_e, M_f, M = \frac{M_e M_f}{M_e + M_f}$$
 and *m* are (positive) mass parameters

The GdRT limit $(\sigma = +1)$

$$f_{\mu}{}^{a} = \delta_{\mu}{}^{a} + M_{f}^{-1/2} \delta f_{\mu}^{a}, \qquad M_{f} \to \infty, M_{e} = M = M_{P}$$

$$I_{\text{GdRT}}[e] = M_P \int d^3x \left\{ eR(e) - \frac{1}{16} m^2 \varepsilon^{\mu\nu\rho} \varepsilon_{abc} \left(e^a_\mu + \delta^a_\mu \right) \left(e^b_\nu - \delta^b_\nu \right) \left(e^c_\rho - \delta^c_\rho \right) + \alpha m^2 \varepsilon^{\mu\nu\rho} \varepsilon_{abc} \left(e^a_\mu - \delta^a_\mu \right) \left(e^b_\nu - \delta^b_\nu \right) \left(e^c_\rho - \delta^c_\rho \right) \right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The NMG limit $(\sigma = -1)$

$$f_{\mu}{}^{a} = e_{\mu}{}^{a} + \lambda \, q_{\mu}^{a}, \qquad \lambda \to 0, M_{f} \to \infty, M_{e} - M_{f} = \lambda M_{f} = M_{P}$$

$$I_{\rm NMG}[e,q] = M_P \int d^3x \left\{ -eR(e) + G^{\mu\nu}(e)q_{\mu\nu} - m^2(q^{\mu\nu}q_{\nu\mu} - q^2) \right\},$$

• $q_{\mu\nu}$ is an auxiliary field

Outline

Introduction

3D "New" Massive Gravity

3D Massive Gravity

Four dimensions

Conclusions

▲□▶ ▲圖▶ ★国▶ ★国▶ - ヨー のへで

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

What did we learn?

• two theories can be equivalent at the linearized level (FP and boosted FP) but only one of them allows for a simple and unique non-linear extension i.e. interactions

• we need massive spin 2 whose massless limit describes 0 d.o.f.

Example : _____ in 3D

• what about 4D?

Generalized spin-2 FP

describes
$$\begin{cases} 5 & \text{d.o.f.} & m \neq 0 \\ 2 & \text{d.o.f.} & m = 0 \end{cases}$$

describes
$$\begin{cases} 5 & \text{d.o.f.} & m \neq 0 \\ \\ 0 & \text{d.o.f.} & m = 0 \end{cases}$$

Curtright (1980)

DQA

Connection-metric Duality

• Use first-order form with independent fields $e_{\mu}{}^{a}$ and $\omega_{\mu}{}^{ab}$

• linearize around Minkowski: $e_{\mu}{}^{a} = \delta_{\mu}{}^{a} + h_{\mu}{}^{a}$ and add a FP mass term $-m^{2}(h^{\mu\nu}h_{\nu\mu} - h^{2})$

• solve for $\omega \rightarrow$ standard spin-2 FP

• solve for $h_{\mu\nu} \rightarrow$ generalized spin-2 FP

Present Status

• 4D NMG exists at the quadratic level

• Interactions?

Bekaert, Boulanger, Cnockaert (2005)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• compare to Eddington-Schrödinger theory

$$\begin{aligned} \mathcal{L}_{\mathsf{ES}}' &= \sqrt{-\det g} \left[g^{\mu\nu} R_{\mu\nu}(\Gamma) - 2\Lambda \right] \; \Leftrightarrow \; \mathcal{L}_{\mathsf{ES}} &= \sqrt{|\det R_{(\mu\nu)}(\Gamma)|} \\ g_{\mu\nu} &= \frac{(D-2)}{2\Lambda} \, R_{(\mu\nu)}(\Gamma) \end{aligned}$$

Conclusions

Outline

Introduction

- 3D "New" Massive Gravity
- 3D Massive Gravity
- Four dimensions

Conclusions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• 3D "New" massive gravity and 3D massive gravity are two different ways to decribe massive gravitons

 in 3D both models can be viewed as different limits of 3D bi-metric gravity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Open Issues

• constructing a 4D NMG model including interactions

• supersymmetry?

• higher spins?