

Strings and non-commutative/ non-associative geometry

Dieter Lüst, LMU and MPI München

I) Introduction

II) Non-geometric flux compactifications
III) Effective action of non-geometric string backgrounds
D.Andriot, M. Larfors, D.L. P. Patalong, arXiv:I I 06.4015
D. Andriot, O. Hohm, M. Larfors, D.L. P. Patalong, arXiv:I202.3060, arXiv:I 204.I979
IV) Non-commutative/non-associative geometries from non-geometric string backgrounds
D. Lüst, JEHP IOI2 (20II) 063, arXiv:IOIO.I36I; arXiv:I205.0I00
R. Blumenhagen, A. Deser, D.Lüst, E. Plauschinn, F. Rennecke, J. Phys A44 (20II), 38540 I , arXiv:I I06.03I6
C. Condeescu, I. Florakis, D. Lüst, JHEP I204 (20I2) I2I, arXiv:I202.6366
D. Andriot, M. Larfors, D. Lüst, P. Patalong, to appear.

V) Outlook \& open problems

I) Introduction

Geometry in general depends on, with what kind of objects you test it.

Point particles in classical Einstein gravity see smooth \& continuous manifolds.

> Classical \& quantum singularities !

Strings may see space-time in a different way.

Shortest possible scale in string theory: L_{s}

Ways for describing stringy geometry:

- Quantum CY geometry, mirror symmetry (world sheet instantons).
- Non-geometric backgrounds: Asymmetric orbifolds

Covariant lattices
Fermionic constructions
T-folds
Here new observation:

Ways for describing stringy geometry:

- Quantum CY geometry, mirror symmetry (world sheet instantons).
- Non-geometric backgrounds: Asymmetric orbifolds

Covariant lattices
Fermionic constructions
T-folds
Here new observation:
Stringy (non)- geometry: deformed geometry:

- Non-commutative geometry:

$$
\left[X_{i}, X_{j}\right] \simeq \mathcal{O}\left(L_{s}\right)
$$

- Non-associative geometry: $\quad\left[\left[X_{i}, X_{j}\right], X_{k}\right] \simeq \mathcal{O}\left(L_{s}\right)$

II) Non-geometric flux compactifications

II) Non-geometric flux compactifications

 Recall standard Riemannian geometry:
II) Non-geometric flux compactifications

Recall standard Riemannian geometry:

- Flat space: Triangle: $\alpha+\beta+\gamma=\pi$
- Curved space: Triangle: $\alpha+\beta+\gamma>\pi(<\pi)$

II) Non-geometric flux compactifications

Recall standard Riemannian geometry:

- Flat space: Triangle: $\alpha+\beta+\gamma=\pi$
- Curved space: Triangle: $\alpha+\beta+\gamma>\pi(<\pi)$

Manifold: need different coordinate charts, which are patched together by coordinates transformations, i.e. group of diffeomorphisms: $\operatorname{Diff}(M): \quad f: U \rightarrow U^{\prime}$

Properties of Riemannian manifolds:

- distances between two points can be arbitrarily short.
- coordinates commute with each other:

$$
\left[X_{i}, X_{j}\right]=0
$$

This is the situation, if one is using point particles to probe distance and the geometry of space.

Now we want to understand, how extended closed strings may possibly see the (non)-geometry of space.

We will encounter two different interesting situations:

We will encounter two different interesting situations:

- Non-geometric Q-fluxes: spaces that are locally still Riemannian manifolds but not anymore globally.

Transition functions between two coordinate patches are not only diffeomorphisms but also T-duality transformations:

$$
\operatorname{Diff}(M) \quad \rightarrow \quad \operatorname{Diff}(M) \times S O(d, d)
$$

Q-space will become non-commutative: $\left[X_{i}, X_{j}\right] \neq 0$

We will encounter two different interesting situations:

- Non-geometric Q-fluxes: spaces that are locally still Riemannian manifolds but not anymore globally.

Transition functions between two coordinate patches are not only diffeomorphisms but also T-duality transformations:

$$
\operatorname{Diff}(M) \quad \rightarrow \quad \operatorname{Diff}(M) \times S O(d, d)
$$

Q-space will become non-commutative: $\left[X_{i}, X_{j}\right] \neq 0$

- Non-geometric R-fluxes: spaces that are even locally not anymore manifolds.
R-space will become non-associative:

$$
\left[\left[X_{i}, X_{j}\right], X_{k}\right]+\text { perm. } \neq 0
$$

We will encounter two different interesting situations:

- Non-geometric Q-fluxes: spaces that are locally still Riemannian manifolds but not anymore globally.

Transition functions between two coordinate patches are not only diffeomorphisms but also T-duality transformations:

$$
\operatorname{Diff}(M) \quad \rightarrow \quad \operatorname{Diff}(M) \times S O(d, d)
$$

Q-space will become non-commutative: $\left[X_{i}, X_{j}\right] \neq 0$

- Non-geometric R-fluxes: spaces that are even locally not anymore manifolds.
R-space will become non-associative:

$$
\left[\left[X_{i}, X_{j}\right], X_{k}\right]+\text { perm. } \neq 0
$$

Physics is nevertheless smooth and well-defined!

Q-space T-fold: Patching uses T-duality. e.g. torus fibrations

Geometric background: $\mathcal{E}^{\prime}=a \mathcal{E} a^{t}$ in $U \cap U^{\prime}, a \in G L(d, Z)$
Non-geometric background:

$$
\mathcal{E}^{\prime}=\frac{a \mathcal{E}+b}{c \mathcal{E}+d} \quad \text { in } \quad U \cap U^{\prime}
$$

III) Effective action of non-geometric string backgrounds

III) Effective action of non-geometric

 string backgroundsStandard effective action is in general not well-defined for non-geometric backgrounds:

$$
\mathcal{S}_{N S} \sim \int d x^{10}\left(R-\frac{1}{12} H^{2}+\cdots\right)
$$

III) Effective action of non-geometric

 string backgroundsStandard effective action is in general not well-defined for non-geometric backgrounds:

$$
\mathcal{S}_{N S} \sim \int d x^{10}\left(R-\frac{1}{12} H^{2}+\cdots\right)
$$

Well-defined (IOD) effective action for non-geometric backgrounds can be constructed.
D. Andriot, M. Larfors, D.L. P. Patalong, arXiv: I I 06.40 I 5
D. Andriot, O. Hohm, M. Larfors, D.L. P. Patalong, arXiv:I 202.3060, I204.I979

III) Effective action of non-geometric

 string backgroundsStandard effective action is in general not well-defined for non-geometric backgrounds:

$$
\mathcal{S}_{N S} \sim \int d x^{10}\left(R-\frac{1}{12} H^{2}+\cdots\right)
$$

Well-defined (IOD) effective action for non-geometric backgrounds can be constructed.
D. Andriot, M. Larfors, D.L. P. Patalong, arXiv: I I 06.40 I 5
D. Andriot, O. Hohm, M. Larfors, D.L. P. Patalong, arXiv:I202.3060, I204.I979

Mathematical framework:
III) Effective action of non-geometric string backgrounds

Standard effective action is in general not well-defined for non-geometric backgrounds:

$$
\mathcal{S}_{N S} \sim \int d x^{10}\left(R-\frac{1}{12} H^{2}+\cdots\right)
$$

Well-defined (IOD) effective action for non-geometric backgrounds can be constructed.
D. Andriot, M. Larfors, D.L. P. Patalong, arXiv: I I 06.40I5
D.Andriot, O. Hohm, M. Larfors, D.L. P. Patalong, arXiv:I202.3060, I204.I979

Mathematical framework:

- Doubled field theory: T-duality (field redefinition).

T-duality:

$T: \quad R$
$\longleftrightarrow \frac{\alpha^{\prime}}{R}$, $M \longleftrightarrow N$
$T: \quad p \longleftrightarrow \tilde{p}, \quad p_{L} \longleftrightarrow p_{L}, \quad p_{R} \longleftrightarrow-p_{R}$.

- Dual space coordinates: $\tilde{X}(\tau, \sigma)=X_{L}-X_{R}$

$$
T: \quad X \longleftrightarrow \tilde{X}, \quad X_{L} \longleftrightarrow X_{L}, \quad X_{R} \longleftrightarrow-X_{R}
$$

T-duality is part of stringy diffeomorphism group.

T-duality:
$T: \quad R$
$\longleftrightarrow \frac{\alpha^{\prime}}{R}, \quad M$

$$
\longleftrightarrow N
$$

$T: \quad p \longleftrightarrow \tilde{p}, \quad p_{L} \longleftrightarrow p_{L}, \quad p_{R} \longleftrightarrow-p_{R}$.

- Dual space coordinates: $\tilde{X}(\tau, \sigma)=X_{L}-X_{R}$
$T: \quad X \longleftrightarrow \tilde{X}, \quad X_{L} \longleftrightarrow X_{L}, \quad X_{R} \longleftrightarrow-X_{R}$
T-duality is part of stringy diffeomorphism group.
Doubled field theory:
(O. Hohm, C. Hull, B. Zwiebach (2009/I0))
- Manifestly $O(D, D)$ invariant string action.
- Coordinates: use $\mathrm{O}(\mathrm{D}, \mathrm{D})$ vector $X^{M}=\left(\tilde{X}_{i}, X^{i}\right)$
- Background: $\quad \mathcal{H}^{M N}=\left(\begin{array}{cc}g_{i j}-b_{i k} g^{k l} b_{l j} & b_{i k} g^{k j} \\ -g^{i k} b_{k j} & g^{i j}\end{array}\right)$
- Background: $\quad \mathcal{H}^{M N}=\left(\begin{array}{cc}g_{i j}-b_{i k} g^{k l} b_{l j} & b_{i k} g^{k j} \\ -g^{i k} b_{k j} & g^{i j}\end{array}\right)$
- O(D,D) invariant DFT action:

$$
\begin{aligned}
S_{\mathrm{DFT}}=\int d x d \tilde{x} e^{-2 d}(& \frac{1}{8} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{N} \mathcal{H}_{K L}-\frac{1}{2} \mathcal{H}^{M N} \partial_{N} \mathcal{H}^{K L} \partial_{L} \mathcal{H}_{M K} \\
& \left.-2 \partial_{M} d \partial_{N} \mathcal{H}^{M N}+4 \mathcal{H}^{M N} \partial_{M} d \partial_{N} d\right)
\end{aligned}
$$

- Background: $\quad \mathcal{H}^{M N}=\left(\begin{array}{cc}g_{i j}-b_{i k} g^{k l} b_{l j} & b_{i k} g^{k j} \\ -g^{i k} b_{k j} & g^{i j}\end{array}\right)$
- O(D,D) invariant DFT action:

$$
\begin{aligned}
S_{\mathrm{DFT}}=\int d x d \tilde{x} e^{-2 d}(& \frac{1}{8} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{N} \mathcal{H}_{K L}-\frac{1}{2} \mathcal{H}^{M N} \partial_{N} \mathcal{H}^{K L} \partial_{L} \mathcal{H}_{M K} \\
& \left.-2 \partial_{M} d \partial_{N} \mathcal{H}^{M N}+4 \mathcal{H}^{M N} \partial_{M} d \partial_{N} d\right)
\end{aligned}
$$

- O(D,D) transformation (field redefinition):

$$
\mathcal{E}=g+b \quad \rightarrow \quad \tilde{\mathcal{E}}^{-1}=\tilde{\mathcal{E}}=g^{-1}+\beta \swarrow
$$

- Background: $\quad \mathcal{H}^{M N}=\left(\begin{array}{cc}g_{i j}-b_{i k} g^{k l} b_{l j} & b_{i k} g^{k j} \\ -g^{i k} b_{k j} & g^{i j}\end{array}\right)$
- O(D,D) invariant DFT action:

$$
\begin{aligned}
S_{\mathrm{DFT}}=\int d x d \tilde{x} e^{-2 d}(& \frac{1}{8} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{N} \mathcal{H}_{K L}-\frac{1}{2} \mathcal{H}^{M N} \partial_{N} \mathcal{H}^{K L} \partial_{L} \mathcal{H}_{M K} \\
& \left.-2 \partial_{M} d \partial_{N} \mathcal{H}^{M N}+4 \mathcal{H}^{M N} \partial_{M} d \partial_{N} d\right)
\end{aligned}
$$

- O(D,D) transformation (field redefinition):

$$
\mathcal{E}=g+b \quad \rightarrow \quad \tilde{\mathcal{E}}^{-1}=\tilde{\mathcal{E}}=g^{-1}+\beta \swarrow
$$

- Introduce the following objects (non-geometric fluxes):

Connection: $\quad Q_{m}^{n k}=\partial_{m} \beta^{n k}$
Field strength (tensor):

$$
R^{i j k}=3 \tilde{D}^{[i} \beta^{j k]}, \quad \tilde{D}^{i} \equiv \tilde{\partial}^{i}-\beta^{i j} \partial_{j}
$$

- Bianchi-identities:

$$
4 \tilde{\partial}^{[i} R^{j k l]}+4 \beta^{p[i} \partial_{p} R^{j k l]}+6 Q_{p}{ }^{[i j} R^{k l] p}=0
$$

- Bianchi-identities:

$$
4 \tilde{\partial}^{[i} R^{j k l]}+4 \beta^{p[i} \partial_{p} R^{j k l]}+6 Q_{p}{ }^{[i j} R^{k l] p}=0
$$

- Rewrite DFT action

$$
\begin{aligned}
S_{\mathrm{DFT}}(\tilde{g}, \beta, \tilde{\phi}) & =\int d x d \tilde{x} \sqrt{|\tilde{g}|} e^{-2 \tilde{\phi}}\left[\mathcal{R}(\tilde{g}, \partial)+\mathcal{R}\left(\tilde{g}^{-1}, \tilde{\partial}\right)\right. \\
& \left.-\frac{1}{4} Q^{2}-\frac{1}{12} R^{i j k} R_{i j k}+4\left((\partial \tilde{\phi})^{2}+(\tilde{\partial} \tilde{\phi})^{2}\right)+\ldots\right]
\end{aligned}
$$

- Bianchi-identities:

$$
4 \tilde{\partial}^{[i} R^{j k l]}+4 \beta^{p[i} \partial_{p} R^{j k l]}+6 Q_{p}{ }^{[i j} R^{k l] p}=0
$$

- Rewrite DFT action

$$
\begin{aligned}
S_{\mathrm{DFT}}(\tilde{g}, \beta, \tilde{\phi}) & =\int d x d \tilde{x} \sqrt{|\tilde{g}|} e^{-2 \tilde{\phi}}\left[\mathcal{R}(\tilde{g}, \partial)+\mathcal{R}\left(\tilde{g}^{-1}, \tilde{\partial}\right)\right. \\
& \left.-\frac{1}{4} Q^{2}-\frac{1}{12} R^{i j k} R_{i j k}+4\left((\partial \tilde{\phi})^{2}+(\tilde{\partial} \tilde{\phi})^{2}\right)+\ldots\right]
\end{aligned}
$$

- Final action (,,supergravity limit"): $\tilde{\partial}=0$

$$
e^{2 d} \mathcal{L}_{\text {final }}(\tilde{g}, \beta, d)(x)=\mathcal{R}(\tilde{g})+4(\partial \tilde{\phi})^{2}-\frac{1}{12} R^{i j k} R_{i j k}-\frac{1}{4} \tilde{g}_{i k} \tilde{g}_{j} \tilde{g}^{r s} Q_{r}{ }^{k l} Q_{s}{ }^{i j}+\ldots
$$

This action is indeed well-defined for non-geometric fluxes!
IV) Non-commutative/non-associative geometries from non-geometric string backgrounds

Now we want to derive the stringy quantum geometry of non-geometric backgrounds .
\Rightarrow Deformed (NC/NA) string geometry with Q- reps. R-flux as deformation parameters.
i) Elliptic monodromy: symmetric \leftrightarrow asymmetric orbifold
D. Lüst, JEHP IOI2 (20II) 063, arXiv:IOIO.136I; arXiv:I205.0I00
C. Condeescu, I. Florakis, D. Lüst, JHEP I204 (20I2) I2 I, arXiv:I202.6366.
ii) Parabolic monodromy:T-duality as canonical transformation

A. Andriot, M. Larfors, D. Lüst, P. Patalong, to appear; I. Bakas, D. Lüst, work in progress

iii) CFT amplitude computation
R. Blumenhagen, A. Deser, D.Lüst, E. Plauschinn, F. Rennecke, J. Phys A44 (20II), 38540I, arXiv:I I 06.03 I6
i) Elliptic = finite order monodromy
ω - background, geometric space
Symmetric (freely acting orbifold): commutative

$$
\downarrow \quad \text { T-duality }
$$

Q-background, non-geometric space
Asymmetric (freely acting orbifold): non-commutative

Reacll: three-dimensional flux backgrounds:
Fibrations: 2-dim. torus that varies over a circle:

$$
T_{x^{1}, x^{2}}^{2} \hookrightarrow M^{3} \hookrightarrow S_{x^{3}}^{1}
$$

The fibration is specified by its monodromy properties.
Two T-dual cases:
(i) Geometric spaces (manifolds): geometric ω - flux complex structure is non-constant:

$$
x^{3} \rightarrow x^{3}+2 \pi \quad \Rightarrow \quad \tau\left(x^{3}+2 \pi\right)=-1 / \tau\left(x^{3}\right)
$$

(ii) Non-geometric spaces (T-folds): non-geometric Q-flux size + B-field is non-constant:

$$
x^{3} \rightarrow x^{3}+2 \pi \quad \Rightarrow \quad \rho\left(x^{3}+2 \pi\right)=-1 / \rho\left(x^{3}\right)
$$

$$
\tau\left(x^{3}+2 \pi\right)=-1 / \tau\left(x^{3}\right)
$$

Fibrat

The fibra
Two T-dı
(i) Georn
cor
$x^{3}-$
(ii) Non-

es.
$\cdot\left(x^{3}\right)$
2-flux
$\left.x^{3}\right)$

Reacll: three-dimensional flux backgrounds:
Fibrations: 2-dim. torus that varies over a circle:

$$
T_{x^{1}, x^{2}}^{2} \hookrightarrow M^{3} \hookrightarrow S_{x^{3}}^{1}
$$

The fibration is specified by its monodromy properties.
Two T-dual cases:
(i) Geometric spaces (manifolds): geometric ω - flux complex structure is non-constant:

$$
x^{3} \rightarrow x^{3}+2 \pi \quad \Rightarrow \quad \tau\left(x^{3}+2 \pi\right)=-1 / \tau\left(x^{3}\right)
$$

(ii) Non-geometric spaces (T-folds): non-geometric Q-flux size + B-field is non-constant:

$$
x^{3} \rightarrow x^{3}+2 \pi \quad \Rightarrow \quad \rho\left(x^{3}+2 \pi\right)=-1 / \rho\left(x^{3}\right)
$$

$$
\rho\left(x^{3}+2 \pi\right)=-n / \rho\left(x^{3}\right)
$$

The
Tw
(i)
(ii)

ies.
$-\left(x^{3}\right)$
2-flux
$\left(x^{3}\right)$

$$
\begin{gathered}
X^{3}(\tau, \sigma+2 \pi)=X^{3}(\tau, \sigma)+2 \pi N_{3} \swarrow \begin{array}{c}
\text { winding } \\
\text { number }
\end{array} \\
\omega: \quad \tau\left(x^{3}+2 \pi\right)=-1 / \tau\left(x^{3}\right) \\
Q: \quad \rho\left(x^{3}+2 \pi\right)=-1 / \rho\left(x^{3}\right) \\
X_{L}(\tau, \sigma+2 \pi)=e^{i \theta} X_{L}(\tau, \sigma), \quad \theta=-2 \pi N_{3} H
\end{gathered}
$$

(Complex coordinates: $X_{L, R}=X_{L, R}^{1}+i X_{L, R}^{2}$)

$$
\begin{gathered}
X^{3}(\tau, \sigma+2 \pi)=X^{3}(\tau, \sigma)+2 \pi N_{3} \swarrow \begin{array}{c}
\text { winding } \\
\text { number }
\end{array} \\
\omega: \quad \tau\left(x^{3}+2 \pi\right)=-1 / \tau\left(x^{3}\right) \\
Q: \quad \rho\left(x^{3}+2 \pi\right)=-1 / \rho\left(x^{3}\right) \\
X_{L}(\tau, \sigma+2 \pi)=e^{i \theta} X_{L}(\tau, \sigma), \quad \theta=-2 \pi N_{3} H
\end{gathered}
$$

(Complex coordinates: $X_{L, R}=X_{L, R}^{1}+i X_{L, R}^{2}$)
Corresponding closed string mode expansion \Rightarrow

$$
\begin{array}{r}
X_{L}(\tau+\sigma)=i \sqrt{\frac{\alpha^{\prime}}{2}} \sum_{n \in \mathbb{Z}} \frac{1}{n-\nu} \alpha_{n-\nu} e^{-i(n-\nu)(\tau+\sigma)}, \quad \nu=\frac{\theta}{2 \pi}=-N_{3} H \\
\text { (shifted oscillators!) }
\end{array}
$$

$$
\begin{gathered}
X^{3}(\tau, \sigma+2 \pi)=X^{3}(\tau, \sigma)+2 \pi N_{3} \swarrow \begin{array}{c}
\text { winding } \\
\text { number }
\end{array} \\
\omega: \quad \tau\left(x^{3}+2 \pi\right)=-1 / \tau\left(x^{3}\right) \\
Q: \quad \rho\left(x^{3}+2 \pi\right)=-1 / \rho\left(x^{3}\right) \\
X_{L}(\tau, \sigma+2 \pi)=e^{i \theta} X_{L}(\tau, \sigma), \quad \theta=-2 \pi N_{3} H
\end{gathered}
$$

(Complex coordinates: $X_{L, R}=X_{L, R}^{1}+i X_{L, R}^{2}$)
Corresponding closed string mode expansion \Rightarrow

$$
X_{L}(\tau+\sigma)=i \sqrt{\frac{\alpha^{\prime}}{2}} \sum_{n \in \mathbb{Z}} \frac{1}{n-\nu} \alpha_{n-\nu} e^{-i(n-\nu)(\tau+\sigma)}, \quad \nu=\frac{\theta}{2 \pi}=-N_{3} H
$$

Then one obtains:
(shifted oscillators!)

$$
\left[X_{L}(\tau, \sigma), X_{L}(\tau, \sigma)\right]=\Theta, \quad \Theta=\alpha^{\prime} \sum_{n \in \mathbb{Z}} \frac{1}{n-\nu}=-\alpha^{\prime} \pi \cot \left(\pi N_{3} H\right)
$$

Right moving torus coordinates:
$\omega: \quad \tau\left(x^{3}+2 \pi\right)=-1 / \tau\left(x^{3}\right) \Rightarrow X_{R}(\tau, \sigma+2 \pi)=e^{i \theta} X_{R}(\tau, \sigma)$
$Q: \quad \rho\left(x^{3}+2 \pi\right)=-1 / \rho\left(x^{3}\right) \Rightarrow X_{R}(\tau, \sigma+2 \pi)=e^{-i \theta} X_{R}(\tau, \sigma)$

$$
\begin{array}{ll}
\omega \text {-flux } & {\left[X^{1}, X^{2}\right]=0} \\
\text { Q-flux: } & {\left[X^{1}, X^{2}\right] \simeq i L_{s}^{3} F^{(3)} \tilde{p}^{3}}
\end{array}
$$

dual momentum (winding) in third direction

Right moving torus coordinates:
$\omega: \quad \tau\left(x^{3}+2 \pi\right)=-1 / \tau\left(x^{3}\right) \Rightarrow X_{R}(\tau, \sigma+2 \pi)=e^{i \theta} X_{R}(\tau, \sigma)$
$Q: \quad \rho\left(x^{3}+2 \pi\right)=-1 / \rho\left(x^{3}\right) \Rightarrow X_{R}(\tau, \sigma+2 \pi)=e^{-i \theta} X_{R}(\tau, \sigma)$

$$
\begin{array}{ll}
\omega \text {-flux } & {\left[X^{1}, X^{2}\right]=0} \\
\text { Q-flux: } & {\left[X^{1}, X^{2}\right] \simeq i L_{s}^{3} F^{(3)} \tilde{p}^{3}}
\end{array}
$$

dual momentum (winding) in third direction
Corresponding uncertainty relation:

$$
\left(\Delta X^{1}\right)^{2}\left(\Delta X^{2}\right)^{2} \geq L_{s}^{6}\left(F^{(3)}\right)^{2}\left\langle\tilde{p}^{3}\right\rangle^{2}
$$

The spatial uncertainty in the X_{1}, X_{2} directions grows with the dual momentum in the third direction: non-local strings with winding in third direction.

These non-geometric Q-backgrounds with rotated closed string boundary conditions can be realized as freely acting asymmetric orbifolds.

C. Condeescu, I. Florakis, D. L., arXiv:I 202.6366

- The model is an exactly solvable CFT
- Partition function:

$$
\left.Z=\frac{1}{\eta^{12} \bar{\eta}^{12}} R \sum_{\tilde{m}, n \in \mathbb{Z}} e^{-\frac{\pi R^{2}}{\tau_{2}}|\tilde{m}+\tau n|^{2}} Z_{L}\left[\begin{array}{l}
h \\
g
\end{array}\right](\tau) \tilde{Z}_{R}(\bar{\tau}) \Gamma_{(5,5)}{ }_{l}^{h}\right](\tau, \bar{\tau})
$$

T-duality in x^{3}-direction \Rightarrow R-flux tau boundary

$$
\tilde{p}^{3} \quad \longrightarrow \quad p^{3}
$$

\Rightarrow For the case of non-geometric R-fluxes one gets:

$$
\begin{gathered}
{\left[\frac{\left.\left[X^{1}, X^{2}\right] \simeq i L_{s}^{3} F^{(3)} p^{3}\right]}{\text { Use }\left[p^{3}, X^{3}\right]=-i}\right.} \\
\Longrightarrow \quad\left[\left[X^{1}, X^{2}\right], X^{3}\right]+\text { perm. } \simeq F^{(3)} L_{s}^{3}
\end{gathered}
$$

Non-associative algebra!
This nicely agrees with the non-associative closed string structure found by Blumenhagen, Plauschinn in the SU(2) WZW model: arXiv:IOIO.I 263
Twisted Poisson structure (same as for point particle in the field of a magnetic monopole, being related to co-cycles)

ii) Parabolic = infinite order monodromy

Four different 3-dimensional closed string flux backgrounds, which are related by T-duality: (Shelton, Reylor, Wech, 2005; Dabholkar, Hull, 2005)

Chain of 3 T-dualities:

$$
F^{(3)}: \quad H \underset{T_{x_{1}}}{\overleftrightarrow{\leftrightarrow}} \omega \underset{T_{x_{2}}}{\overleftrightarrow{\leftrightarrow}} Q \underset{T_{x_{3}} \text { (not isometry) }}{\overleftrightarrow{\leftrightarrow}} R
$$

ii) Parabolic = infinite order monodromy

Four different 3-dimensional closed string flux backgrounds, which are related by T-duality: (Shelton, Raylor, Wech, 2005; Dabholkar, Hull, 2005)

ii) Parabolic = infinite order monodromy

Four different 3-dimensional closed string flux backgrounds, which are related by T-duality: (Shelton, Raylor, Wecht, 2005; Dabholkar, Hull, 2005)

ii) Parabolic = infinite order monodromy

Four different 3-dimensional closed string flux backgrounds, which are related by T-duality: (Shelton, Raylor, Wecht, 2005;

(

Chain of 3 T-dualities: NS H-fl2 geomet

$$
F^{(3)}:
$$

ii) Parabolic = infinite order monodromy

Four different 3-dimensional closed string flux backgrounds, which are related by T-duality: (Shelton, Raylor, Wecht, 2005; Dabholkar, Hull, 2005)

ii) Parabolic = infinite order monodromy

Four different 3-dimensional closed string flux backgrounds, which are related by T-duality: (Shelton, Raylor, Wecht, 2005; Dabholkar, Hull, 2005)

Chain of 3 T-dualities NS H-fll geomet geom- non$F^{(3)}:$

Flat 3-torus with
constant H-flux
ii) Parabolic = infinite order monodromy

Four different 3-dimensional closed string flux backgrounds, which are related by T-duality: (Shelton, Raylor, Wecht, 2005; Dabholkar, Hull, 2005)

Chain of 3 T-dualities. NS H-fll geomet geom. non-

Flat 3-torus with constant H-flux

Twisted (curved)
Riemannian 3-torus

ii) Parabolic = infinite order monodromy

Four different 3-dimensional closed string flux backgrounds, which are related by T-duality: (Shelton, Raylor, Wecht, 2005; Dabholkar, Hull, 2005)

Chain of 3 T-dualities. NS H-fll geomet geom. non- non-
 1
Flat 3-torus with constant H-flux

Twisted (curved)
Riemannian 3-torus commutative
ii) Parabolic = infinite order monodromy

Four different 3-dimensional closed string flux backgrounds, which are related by T-duality: (Shelton, Raylor, Wecht, 2005; Dabholkar, Hull, 2005)

Chain of 3 T-dualities. NS H-flı geomet non- non-

Flat 3-torus with constant H -flux

$$
\left[X_{i}, X_{j}\right] \neq 0
$$

ii) Parabolic = infinite order monodromy

Four different 3-dimensional closed string flux backgrounds, which are related by T-duality: (Shelton, Raylor, Wecht, 2005; Dabholkar, Hull, 2005)

Chain of 3 T-dualities. NS H-fll geomet non- non-

Flat 3-torus with constant H -flux

$$
\left[X_{i}, X_{j}\right] \neq 0
$$

Twisted (curved)
Riemannian 3-torus commutative

Non-associative
„Space" with R-flux
$\left[\left[X_{i}, X_{j}\right], X_{k}\right] \neq 0$

Procedure for the quantization of these backgrounds:
I. step: Standard canonical quantization of H and ω-backgrounds

$$
\begin{aligned}
& {\left[\mathcal{X}^{\mu}(\tau, \sigma), \mathcal{X}^{\nu}\left(\tau, \sigma^{\prime}\right)\right]=0} \\
& {\left[\mathcal{P}_{\mu}(\tau, \sigma), \mathcal{P}_{\nu}\left(\tau, \sigma^{\prime}\right)\right]=0}
\end{aligned}
$$

$$
\left[\mathcal{X}^{\mu}(\tau, \sigma), \mathcal{P}_{\nu}\left(\tau, \sigma^{\prime}\right)\right]=i \delta_{\nu}^{\mu} \delta\left(\sigma-\sigma^{\prime}\right)
$$

Procedure for the quantization of these backgrounds:

I. step: Standard canonical quantization of H and ω-backgrounds

$$
\begin{gathered}
{\left[\mathcal{X}^{\mu}(\tau, \sigma), \mathcal{X}^{\nu}\left(\tau, \sigma^{\prime}\right)\right]=0} \\
{\left[\mathcal{P}_{\mu}(\tau, \sigma), \mathcal{P}_{\nu}\left(\tau, \sigma^{\prime}\right)\right]=0} \\
{\left[\mathcal{X}^{\mu}(\tau, \sigma), \mathcal{P}_{\nu}\left(\tau, \sigma^{\prime}\right)\right]=i \delta_{\nu}^{\mu} \delta\left(\sigma-\sigma^{\prime}\right)}
\end{gathered}
$$

- Obeying the following closed string boundary (SO $(2,2)$-monodromy) conditions:

$$
\begin{aligned}
Y^{1}(\tau, \sigma+2 \pi) & =Y^{1}(\tau, \sigma)+2 \pi N_{Y}^{3} H Y^{2}(\tau, \sigma) \\
Y^{2}(\tau, \sigma+2 \pi) & =Y^{2}(\tau, \sigma) \\
\tilde{Y}^{1}(\tau, \sigma+2 \pi) & =\tilde{Y}^{1}(\tau, \sigma) \\
\tilde{Y}^{2}(\tau, \sigma+2 \pi) & =\tilde{Y}^{2}(\tau, \sigma)+H N_{Y}^{3} \tilde{Y}^{1}(\tau, \sigma) \\
Y^{3}(\tau, \sigma+2 \pi) & =Y^{3}(\tau, \sigma)+2 \pi N_{Y}^{3}
\end{aligned}
$$

2. step: T-duality as canonical (Buscher) transformation:

(E.Alvarez, L. Alvarez-Gaume, Y. Lozano, I994;
I. Bakas, K. Sfetsos, I995)

$H \longleftrightarrow \omega: \quad$ T-d. along $\iota=1$

$$
\left.\left.\begin{array}{r}
\partial_{\tau} X^{1}=\partial_{\sigma} Y^{1}-H Y^{3} \partial_{\sigma} Y^{2} \\
\partial_{\sigma} X^{1}=\partial_{\tau} Y^{1}-H Y^{3} \partial_{\tau} Y^{2} \\
\partial_{\tau} X^{2,3}=\partial_{\tau} Y^{2,3} \\
\partial_{\sigma} X^{2,3}=\partial_{\sigma} Y^{2,3}
\end{array} \right\rvert\, \quad(\text { all orders }) ~ \right\rvert\, \begin{aligned}
& \partial_{\tau} Y^{1}=\partial_{\sigma} X^{1}+H X^{3} \partial_{\tau} X^{2} \\
& \partial_{\sigma} Y^{1}=\partial_{\tau} X^{1}+H X^{3} \partial_{\sigma} X^{2} \\
& \partial_{\tau} Y^{2,3}=\partial_{\tau} X^{2,3} \\
& \partial_{\sigma} Y^{2,3}=\partial_{\sigma} X^{2,3}
\end{aligned}
$$

$$
\left.\left.\begin{array}{r}
\partial_{\tau} Y^{2}=\partial_{\sigma} Z^{2}+H Z^{3} \partial_{\tau} Z^{1} \\
\partial_{\sigma} Y^{2}=\partial_{\tau} Z^{2}+H Z^{3} \partial_{\sigma} Z^{1} \\
\partial_{\tau} Y^{1,3}=\partial_{\tau} Z^{1,3} \\
\partial_{\sigma} Y^{1,3}=\partial_{\sigma} Z^{1,3}
\end{array} \right\rvert\, \quad\left(\text { up to } O\left(H^{2}\right)\right) \right\rvert\, \begin{aligned}
& \partial_{\tau} Z^{2}=\partial_{\sigma} Y^{2}-H Y^{3} \partial_{\sigma} Y^{1} \\
& \partial_{\sigma} Z^{2}=\partial_{\tau} Y^{2}-H Y^{3} \partial_{\tau} Y^{1} \\
& \partial_{\tau} Z^{1,3}=\partial_{\tau} Y^{1,3} \\
& \partial_{\sigma} Z^{1,3}=\partial_{\sigma} Y^{1,3}
\end{aligned}
$$

2. step: T-duality as canonical (Buscher) transformation:
(E.Alvarez, L. Alvarez-Gaume, Y. Lozano, I994;
I. Bakas, K. Sfetsos, I995)
$H \longleftrightarrow \omega: \quad$ T-d. along $\iota=1$

$$
\left.\left.\begin{array}{r}
\partial_{\tau} X^{1}=\partial_{\sigma} Y^{1}-H Y^{3} \partial_{\sigma} Y^{2} \\
\partial_{\sigma} X^{1}=\partial_{\tau} Y^{1}-H Y^{3} \partial_{\tau} Y^{2} \\
\partial_{\tau} X^{2,3}=\partial_{\tau} Y^{2,3} \\
\partial_{\sigma} X^{2,3}=\partial_{\sigma} Y^{2,3}
\end{array} \right\rvert\,(\text { all orders }) \right\rvert\, \begin{aligned}
& \partial_{\tau} Y^{1}=\partial_{\sigma} X^{1}+H X^{3} \partial_{\tau} X^{2} \\
& \partial_{\sigma} Y^{1}=\partial_{\tau} X^{1}+H X^{3} \partial_{\sigma} X^{2} \\
& \partial_{\tau} Y^{2,3}=\partial_{\tau} X^{2,3} \\
& \partial_{\sigma} Y^{2,3}=\partial_{\sigma} X^{2,3}
\end{aligned}
$$

$$
\left.\left.\begin{array}{r}
\partial_{\tau} Y^{2}=\partial_{\sigma} Z^{2}+H Z^{3} \partial_{\tau} Z^{1} \\
\partial_{\sigma} Y^{2}=\partial_{\tau} Z^{2}+H Z^{3} \partial_{\sigma} Z^{1} \\
\partial_{\tau} Y^{1,3}=\partial_{\tau} Z^{1,3} \\
\partial_{\sigma} Y^{1,3}=\partial_{\sigma} Z^{1,3}
\end{array} \right\rvert\, \quad\left(\text { up to } O\left(H^{2}\right)\right) \right\rvert\, \begin{aligned}
& \partial_{\tau} Z^{2}=\partial_{\sigma} Y^{2}-H Y^{3} \partial_{\sigma} Y^{1} \\
& \partial_{\sigma} Z^{2}=\partial_{\tau} Y^{2}-H Y^{3} \partial_{\tau} Y^{1} \\
& \partial_{\tau} Z^{1,3}=\partial_{\tau} Y^{1,3} \\
& \partial_{\sigma} Z^{1,3}=\partial_{\sigma} Y^{1,3}
\end{aligned}
$$

T-dual SO(2,2)-monodromy conditions:

$\begin{array}{ll}Z^{1}(\tau, \sigma+2 \pi) & =Z^{1}(\tau, \sigma)-2 \pi N_{Z}^{3} H \tilde{Z}^{2}(\tau, \sigma), \\ \text { Mix coordinates with } \\ Z^{2}(\tau, \sigma+2 \pi) & =Z^{2}(\tau, \sigma)+2 \pi N_{Z}^{3} H \tilde{Z}^{1}(\tau, \sigma), \\ \text { dual coordinates. } \\ \tilde{Z}^{1}(\tau, \sigma+2 \pi) & =\tilde{Z}^{1}(\tau, \sigma), \\ \tilde{Z}^{2}(\tau, \sigma+2 \pi) & =\tilde{Z}^{2}(\tau, \sigma) ; \\ Z^{3}(\tau, \sigma+2 \pi) & =Z^{3}(\tau, \sigma)+2 \pi N_{Z}^{3} . \\ & \text { Non-geometric background. }\end{array}$
3. step: Derive (non-canonical) quantization for Q background:
(consistent with the non-geometrical monodromy conditions)

$$
\left[Z^{1}(\tau, \sigma), Z^{2}(\tau, \sigma)\right]=-\frac{1}{2} \frac{\pi^{2}}{3} H N^{3}
$$

T-duality does not preserve the canonical commutation relations!

V) Outlook \& open questions

- Mixed closed string bound conditions (in analogy to mixed D-N boundary conditions for D-branes) lead to closed string non-commutativity. This is a stringy, nonlocal effect -Wilson loop operator.

V) Outlook \& open questions

- Mixed closed string bound conditions (in analogy to mixed D-N boundary conditions for D-branes) lead to closed string non-commutativity. This is a stringy, nonlocal effect - Wilson loop operator.
- String scattering amplitudes in non-geometric backgrounds.
(R. Blumenhagen, A. Deser, D.L. Plauschinn, F. Rennecke, arXiv:II06.03I6)

V) Outlook \& open questions

- Mixed closed string bound conditions (in analogy to mixed D-N boundary conditions for D-branes) lead to closed string non-commutativity. This is a stringy, nonlocal effect -Wilson loop operator.
- String scattering amplitudes in non-geometric backgrounds.
(R. Blumenhagen, A. Deser, D.L. Plauschinn, F. Rennecke, arXiv: I IO6.03 I6)
- Investigation of the phase space of doubled geometry (I.Bakas, D. Lüst, work in progress)

V) Outlook \& open questions

- Mixed closed string bound conditions (in analogy to mixed D-N boundary conditions for D-branes) lead to closed string non-commutativity. This is a stringy, nonlocal effect - Wilson loop operator.
- String scattering amplitudes in non-geometric backgrounds.
(R. Blumenhagen, A. Deser, D.L. Plauschinn, F. Rennecke, arXiv: I I O6.03 I6)
- Investigation of the phase space of doubled geometry (I.Bakas, D. Lüst, work in progress)
- Is there are non-commutative (non-associative) theory of gravity? (Non-commutative geometry \& gravity: P.Aschieri, M. Dimitrijevic, F. Meyer, J.Wess (2005),

V) Outlook \& open questions

- Mixed closed string bound conditions (in analogy to mixed D-N boundary conditions for D-branes) lead to closed string non-commutativity. This is a stringy, nonlocal effect -Wilson loop operator.
- String scattering amplitudes in non-geometric backgrounds.
(R. Blumenhagen, A. Deser, D.L. Plauschinn, F. Rennecke, arXiv: I I O6.03 I6)
- Investigation of the phase space of doubled geometry (I.Bakas, D. Lüst, work in progress)
- Is there are non-commutative (non-associative) theory of gravity? (Non-commutative geometry \& gravity: P.Aschieri, M. Dimitrijevic, F. Meyer, J. Wess (2005),
- What is the generalization of quantum mechanics for this non-associative geometry? How to represent this algebra (octonians?)?

