Extra-galactic background light (EBL)

Dieter Horns (University of Hamburg)

In cooperation with:

Martin Raue, Daniel Mazin, Tanja Kneiske, Manuel Meyer,

Dominik Elsässer, Peter Hauschildt, Franziska Laatz

[Robertson et al. 2010]

How many stars have been shining in the Universe? Answer can be given by very-high energy gamma-ray observations!

Outline: EBL

The EBL has not been unambiguously detected, yet!

Outline: VHE (E>100 GeV & EBL)

Ingredients of an EBL model

The simplest type of model (Dwek et al. 1998, Kneiske et al. 2002)

$$P_{\nu}(z) = \nu I_{\nu}(z) = \nu \frac{c}{4\pi} \int_{z}^{z_{m}} \mathcal{E}_{\nu'}(z') \left| \frac{dt'}{dz'} \right| dz'$$
 EBL

$$\begin{split} \mathcal{E}_{\nu}(z) &= \int_{z}^{z_{m}} L_{\nu}(t(z) - t(z')) \dot{\rho}_{*}(z') \left| \frac{dt'}{dz'} \right| dz' \\ \text{Emissivity} \quad & \text{Stellar population} \\ \text{spectra (SPS)} \quad & \text{Star formation} \\ \text{rate density (SFRD)} \end{split}$$

[Raue 2012]

Star formation rate history

 Tracers of star formation → related to supernova-activity!

Star formation rate history

Stellar population Spectra

- Stellar models: Bruzual&Charlot (2003), Starburst99 (Leitherer et al. 1999, 2010)
- Parameters:
 - Initial mass function
 - Metallicity
 - Dust re-processing

More models: Franceschini et al. 2010, Dominguez et al. 2011

Contact with observations

Contact with observations

Contact with observations

Comment: Additional sources of photons

• **Population III stars** [Santos et al. 2002,Fernandez&Komatsu 2006, Raue et al. 2006, Gilmore 2012]

Additional sources of photons

• Dark matter powered stars (Pre-Pop III) [Spolyar et al. 2008] could contribute to the EBL [Maurer et al. 2012]

EBL and very-high energy gammaray propagation

[Nikishov 1962, Jelley 1966, Gould&Schréder 1966]

Pair-production → absorption+ reprocessing of gamma-rays

Pair-production → absorption+ reprocessing of gamma-rays

Pair-production → absorption+ reprocessing of gamma-rays

Pair production ↔ Inverse Compton scattering

[Neronov &Vovk 2010, Dermer et al. 2011].

Down-conversion of gamma-rays \rightarrow optically thin regime

Gamma-ray telescopes

100 MeV – 500 GeV, all-sky pair-production telescope (A Ω ~4 m² srad)

Extra-galactic sources of HE (E>10 GeV) and VHE (>100 GeV) gamma-

TeVCat.uchicago.edu

Gamma-rays from Active Galactic Nuclei Emission mechanisms: Inverse compton (SSC, EC) and

proton synchrotron

Blazars={Flat-Spectrum Radio-Quasars, BL Lac type objects}

At GeV-energies: FSRQ dominate At TeV-energies: BL Lacs dominate

BL Lac type

H.E.S.S. Coll [0903.2924]

More about Blazar sequence [Meyer 2011, Finke 2012]

VHE blazars and the EBL

• Limits for a fixed EBL-shape:

VHE blazars and the EBL

Limits for a "free" shape of the EBL-SED

- Evolution in z (up to z=0.7) with $n_{EBL} \sim (1+z)^{3-f}$, f=1.2
- Compute optical depth for 1 920 000 shapes of the EBL (splines)
- Collect measured VHE spectra of all available objects
- Combine spectra with Fermi-LAT measurements when available
- Apply correction
- Fit intrinsic spectrum to a series of model spectra until an acceptable fit is achieved

Assumptions on the intrinsic spectrum of VHE Blazars

- If any assumption is not fulfilled, the EBL-shape is discarded:
 - Concavity of the intrinsic spectrum
 - Fermi-LAT spectrum+extrapolation (VHE-HEIndex)

 $\Gamma + \sigma_{\text{stat}} + \sigma_{\text{sys}} < \Gamma_{\text{HE}} - \sigma_{\text{HE, stat}}$

- No super-exponential pile-up at VHE (Pileup)
- (Double)Broken power-law not convex (VHEConcavity):

 $\Gamma_1 - \sigma_1 \leq \Gamma_2 + \sigma_2$ and $\Gamma_2 - \sigma_2 \leq \Gamma_3 + \sigma_3$ (DBPL)

 Reprocessed cascade emission does not exceed Fermi-LAT measurement (IntVHELumi)

$$F_{\text{cascade}}(E_{\text{meas}}) > F_{\text{meas}}^{\text{Fermi}} + 2\sigma$$

Results: upper limit=envelope of allowed EBL-shapes

Comparison with other limits

So far: Limits on the EBL Now: Measurement of the EBL!

Biteau (HESS coll.) 2012, HESS coll. Subm. 2012

This work So far

Data-set: Observations with H.E.S.S.

PKS 2005–489 at VHE: four years of monitoring with HESS and simultaneous multi-wavelength observations Discovery of VHE γ -rays from the distant BL Lacertae 1ES 0347-121*

New constraints on the mid-IR EBL from the HESS discovery of VHE γ-rays from 1ES 0229+200

75 000 γ -rays from the seven brightest blazars, with 0.03 < z < 0.19, collected during 400 hours with H.E.S.S.

Source	z	N_{γ}	$E_{\min} - E_{\max}$ [TeV]
Mrk 421 (1)	0.031	3381	0.95 - 41
Mrk 421 (2)	0.031	5548	0.95 - 37
Mrk 421 (3)	0.031	5156	0.95 - 45
PKS 2005-489 (1)	0.071	1540	0.16 - 37
PKS 2005-489 (2)	0.071	910	0.18 - 25
PKS 2155-304 (2008)	0.116	5279	0.13 - 19
PKS 2155-304 (1)	0.116	3499	0.13 - 5.7
PKS 2155-304 (2)	0.116	3470	0.13 - 9.3
PKS 2155-304 (3)	0.116	9555	0.13 - 14
PKS 2155-304 (4)	0.116	4606	0.18 - 4.6
PKS 2155-304 (5)	0.116	11901	0.13 - 5.7
PKS 2155-304 (6)	0.116	6494	0.15 - 5.7
PKS 2155-304 (7)	0.116	8253	0.20 - 7.6
1ES 0229+200	0.14	670	0.29 - 25
H 2356-309	0.165	1642	0.11 - 34
1ES 1101-232	0.186	1268	0.12 - 23
1ES 0347-121	0.188	604	0.13 - 11

Data sets on highly significant sources were divided and sorted by flux level

[Biteau (HESS coll.) 2012]

Spectral fits

$$\phi_z(E) = \phi_{int}^{\alpha}(E) \times \exp(-\alpha \times \tau(E, z, n))$$

Aim : Fit of the scaling factor α combining data sets

Hypotheses :

- Template EBL model : Franceschini et al., 2008, A&A, 487, 837 Extragalactic optical-infrared background radiation, its time evolution and the cosmic photon-photon opacity,
- Intrinsic spectrum described with :

Name	Abbrev.	Function
Power law	PWL	$\phi_0(E/E_0)^{-1}$
Log parabola	LP	$\phi_0(E/E_0)^{-a-b\log(E/E_0)}$
Exponential cut-	EPWL	$\phi_0(E/E_0)^{-\Gamma} \exp(-E/E_{\rm cut})$
off power law		
Exponential cut-	ELP	$\phi_0(E/E_0)^{-a-b\log(E/E_0)} \exp(-E/E_{cut})$
off log parabola		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Super exponential	SEPWL	$\phi_0(E/E_0)^{-\Gamma} \exp(-(E/E_{cut})^{\gamma})$
cut-off power law		

Method :

- Likelihood profiles for each {data set, spectral model}
- Selection of the spectral model with the largest χ^2 probability

[Biteau (HESS coll.) 2012]

Stacking of likelihood profiles

No significant variation over redshift

Full study of the systematics [Biteau (HESS coll.) 2012]

Measured EBL!

First significant detection of an EBLconsistent red-shift dependent common absorption feature in VHE energy spectra at the level of 9 standard deviations!.

Good agreement with upper and lower bounds (not per construction!)

[Biteau (HESS coll.) 2012]

Constraining the star-formation rate

 Using the EBL-limits [Meyer et al. 2012] → get a (model dependent) handle on the SFR history [Raue et al. 2012]

The SFR-EBL-VHE connection..

The SFR-EBL-VHE connection..

A closer look at the tail of the energy spectra [DH et al. 2012]

Under the Assumption of a "minimum" EBL (=lower limit) Slides from Meyer, Patras-WS 2012

- Features expected to be ٠ small → statistical analysis
- In total: 50 AGN spectra ٠
- 28 spectra with ٠ 1≤τ<2 (optically thin sample)
- 9 spectra with $2 \leq \tau$ ٠ (optically thick sample)

[Dieter Horns & MM, JCAP (2012), vol. 02 pp 33, arXiv: 1201.4711]

Compare optically thin and optically thick sample

0.1

 10^{-10}

Optical depth τ

1.0

1.5

2.0

2.5

0.5

- Fit data **up to** $\tau < 1$ •
- Extrapolate fit ٠
- Calculate ratio ٠

Compare optically thin and optically thick sample

- Samples **not drawn** from same underlying probability distribution files with probability *P* = 4.2σ
- Systematics checked: ~
 excluded individual spectra
 excluded highest energy spectral point
 - shift of 15% in energy

cannot account for effect

Further analysis of optically thick data with Fermi-LAT

[Meyer et al. In prep]

Tension with VHE-measurement of EBL?

Explanations?

- Systematics: Largely excluded (energy shift, bias on last point)
- Physics explanation:
 - VHE Cascading (Kusenko et al. 2010a, 2010b, 2011a, 2011b, 2012a, 2012b). Variability? Spectral Fit?

Exotic explanations

- Lorentz invariance violation (conflict with limits on UHECR propagation [Galaverni & Sigl 2008], observed effect is tau-dependent and not energy dependent
- Light (neV) Axion-like (0⁻)particle with g_{ag}~10⁻¹¹ GeV⁻¹

could explain the observations, and could wash the dirty laundry.

Modified propagation

More complicated scenarios

[DH et al. 2012b]

An interesting corner in the ALPS parameter space

An interesting corner in the ALPS parameter space $\sim 1.5 \text{ M} \in$

The evolution of Gamma-ray telescopes

Dieter Horns ECRS 2012 - Moscow

Summary

- EBL models are converging towards the minimum level set by resolved sources
- Conversely, there is not much room for additional sources for the EBL (e.g. Pop III, dark stars)
- VHE observations constrain the EBL from above
- VHE observations can be used to constrain the Star formation history (complementary to traditional tracers of SFR)
- New result: 8.8 sigma evidence for absorption feature in VHE spectra found
- Indications for anomalous transparency at optical depth > 2