Theory of Electroweak Interactions

Giuseppe Degrassi Universita' di Roma Tre, I.N.F.N. Sezione Roma Tre

Corfu Summer Institute Sept.8-17, 2012

Sezione di Roma III

History

• Fermi theory of ß-decay (34):

contact interactions between two currents (prototype of modern effective theories)

$$\mathcal{L}_F = -\frac{G_\beta}{\sqrt{2}} J^{\dagger}_{(h)\,\mu} J^{\mu}_{(l)} + h.c. = -\frac{G_\beta}{\sqrt{2}} [\bar{p}(x)\gamma_{\mu}n(x)] [\bar{e}(x)\gamma^{\mu}\nu(x)] + h.c.$$

• Parity nonconservation (56-57); V-A law (58); CVC hypothesis ($G_{\beta} \sim G_{\mu}$) (58)

$$\mathcal{L}_F = -\frac{G_\beta}{\sqrt{2}} [\bar{p}(x)\gamma_\mu (1-\lambda\gamma_5)n(x)] [\bar{e}(x)(\gamma^\mu (1-\gamma_5)\nu(x)] + h.c. \qquad (\lambda \simeq 1.27)$$

• Quark hypothesis (60); Cabibbo theory (63);

$$\begin{aligned} \mathcal{L}_{eff} &= -\frac{G_{\mu}}{\sqrt{2}} J_{\lambda}^{\dagger} J^{\lambda} & \Theta_{c} : \text{Cabibbo angle} \\ J^{\lambda} &= J_{(h)}^{\lambda} + J_{(l)}^{\lambda} & G_{\beta} = G_{\mu} \cos \theta_{c} \simeq 0.98 \\ J_{(l)}^{\lambda} &= \bar{\nu}_{e} \gamma^{\lambda} (1 - \gamma_{5}) e + \bar{\nu}_{\mu} \gamma^{\lambda} (1 - \gamma_{5}) \mu \\ J_{(h)}^{\lambda} &= \cos \theta_{c} \, \bar{u} \gamma^{\lambda} (1 - \gamma_{5}) d + \sin \theta_{c} \, \bar{u} \gamma^{\lambda} (1 - \gamma_{5}) s \end{aligned}$$

Determination of G_{μ} from $\mu^- \rightarrow e^- + \bar{\nu}_e + \nu_{\mu}$

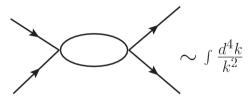
$$\mathcal{M} = -i\frac{G_{\mu}}{\sqrt{2}}\bar{u}(e)\gamma^{\lambda}(1-\gamma_{5})v(\nu_{e})u(\nu_{\mu})\gamma_{\lambda}(1-\gamma_{5})u(\mu)$$
$$\frac{1}{\tau} = \frac{G_{\mu}m_{\mu}^{5}}{192\pi^{3}}$$

Today:

Fermi theory (or any effective):

• Not renormalizable

$$[\mathcal{L}] = 4, \ [\psi] = 3/2 \Rightarrow [G_{\mu}] = -2$$



• Violate unitarity :
Ex.:
$$\nu_{\mu}(k_{1}) + e^{-}(p_{1}) \rightarrow \nu_{e}(p_{2}) + \mu^{-}(k_{2})$$

 $\mathcal{M} = -i\frac{G_{\mu}}{\sqrt{2}}\bar{u}(\mu)\gamma^{\lambda}(1-\gamma_{5})u(\nu_{\mu})\bar{u}(\nu_{e})\gamma_{\lambda}(1-\gamma_{5})u(e)$
 $\bar{\mathcal{M}}|^{2} = \frac{G_{\mu}^{2}}{2}\operatorname{Tr}\left[k_{2}\gamma_{\mu}(1-\gamma_{5})k_{1}\gamma_{\nu}(1-\gamma_{5})\right]\frac{1}{2}\operatorname{Tr}\left[p_{2}\gamma^{\mu}(1-\gamma_{5})p_{1}\gamma^{\nu}(1-\gamma_{5})\right] = \frac{G_{\mu}^{2}}{2}32s^{2}$
 $d\sigma = |\bar{\mathcal{M}}|^{2}\frac{1}{4s}\frac{1}{(4\pi)^{2}}d\Omega$
 $\sigma = \frac{G_{\mu}^{2}s}{\pi}$

But optical theorem tells us the total cross section is related to the amplitude for elastic scattering in the forward direction

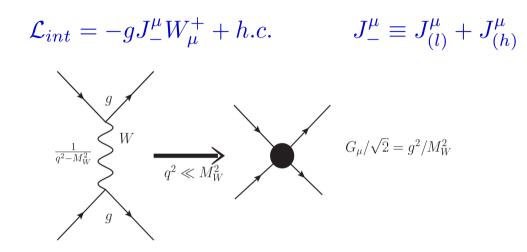
$$\sigma_T(\nu_{\mu}, e^- \to anything) = \frac{1}{s} \text{Im}\mathcal{A}(s, J, \theta = 0)$$

$$\mathcal{A}(s, l, \theta) = 16\pi \sum_{l=0}^{\infty} (2l+1) P_l(\cos \theta) e^{i\delta_l} \sin \delta_l \qquad \text{Spinless particle}$$

$$\sigma \le \sigma_T \le \frac{O(\pi)}{s} \Rightarrow s \le \frac{O(\pi)}{G_{\mu}}$$

Intermediate Vector Boson theory (IVB)

The contact interaction between currents is the result of the exchange of a heavy charged vector boson



[g]=0 but theory not renormalizable; problem stays in the longitudinal part of the vector boson propagator

Similarly we expect unitarity problem in processes with longitudinal W's like $e^+ + e^- \rightarrow W^+ + W^-$

The Standard Electroweak Theory

Promote the IVB to be the carrier of a gauge interaction as described by a gauge Lagrangian \mathcal{L}_g

To any vector boson $V^{A}_{\ \mu}$ there is an associated generator T^A of the gauge group G forming a closed algebra

 $[T^A, T^B] = i f^{ABC} T^C, \qquad f^{ABC}$ Structure constants of G

$$\mathcal{L}_{g} = -\frac{1}{4} \sum_{A=1}^{N} F_{\mu\nu}^{A} F^{A\mu\nu} + i\bar{\Psi} D \!\!\!/ \Psi + |D_{\mu}\phi|^{2}$$

$$F_{\mu\nu}^{A} = \partial_{\mu} V_{\nu}^{A} - \partial_{\nu} V_{\mu}^{A} + g f^{ABC} V_{\mu}^{B} V_{\nu}^{C}$$

$$D_{\mu} = \partial_{\mu} - ig \sum_{A=1}^{N} V_{\mu}^{A} T^{A}$$

Gauge symmetry dictates the Interactions of $V^{A}_{\ \mu}$

$$V^{A}_{\mu} \text{ interact with matter fields via currents } \sum_{A=1}^{N} J^{A}_{\mu} V^{A\mu}$$

$$J^{A}_{\mu}(\Psi) = \bar{\Psi}\gamma_{\mu}T^{A}\Psi, \ J^{A}_{\mu}(\phi) = \phi^{\dagger}T^{A}\partial_{\mu}\phi - \partial_{\mu}\phi^{\dagger}T^{A}\phi$$
For scalars there Is also a "sea-qull" term
$$\sum_{A,B=1}^{N} \phi^{\dagger}T^{A}T^{B}\phi V^{A\dagger}_{\mu} V^{B\mu}$$

Fermions and scalars are arranged in representation of G. For massless fermions the l.h. and r.h. components can be given different transformation properties under the Symmetry

$$\bar{\Psi}iD\Psi = \bar{\Psi}_L iD\Psi_L + \bar{\Psi}_R iD\Psi_R \qquad \qquad \Psi_L = \frac{1-\gamma_5}{2}\Psi \qquad \bar{\Psi}_L = \Psi_L^{\dagger}\gamma_0 = \bar{\Psi}\frac{1+\gamma_5}{2} \\ \Psi_R = \frac{1+\gamma_5}{2}\Psi \qquad \bar{\Psi}_R = \Psi_R^{\dagger}\gamma_0 = \bar{\Psi}\frac{1-\gamma_5}{2}$$

(Ψ Dirac field)

Mass terms break the symmetry if I.h. and r.h. fermions have different symmetry transformations

 $m\bar{\Psi}\Psi = m\bar{\Psi}_L\Psi_R + \bar{\Psi}_R\Psi_L$

Non Abelian group: N generators, $f^{ABC} \neq 0$ Gauge symmetry gives trilinear and quadrilinear self- interactions of V^{A}_{I}

Abelian group: U(1) (N=1, $f^{ABC} = 0$) QED: T¹ = Q, g =e, no self-interactions between photons

Gauge symmetry does not allow an explicit mass term m V^{A}_{μ} $V^{A\mu}$

Getting the electroweak group (Glashow 61)

I.h. fermions enters into the weak charged current interactions.I.h. and r.h. fermions enter into the e.m. Interactions.Fermi charged current can be rewritten as a gauge current of an SU(2) group

$$J^F_{\mu} = \bar{\nu}\gamma_{\mu}(1-\gamma_5)e + \bar{u}\gamma_{\mu}(1-\gamma_5)e \Rightarrow J^-_{\mu} = \bar{l}_L\gamma_{\mu}\tau^- l_L + \bar{q}_L\gamma_{\mu}\tau^- q_L$$

$$q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix}; \quad l_l = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}; \quad \tau^{\pm} = \tau_1 \pm i\tau_2, \quad \tau_i$$
 Pauli matrices

Algebra of SU{2)

$$\begin{split} T^{A} &= \frac{\tau^{A}}{2} \quad (A = 1, 2, 3), \quad \left[T^{A}, T^{B}\right] = i\epsilon^{ABC}T^{C} \to \left[T^{1}, T^{2}\right] = iT^{3} = i\frac{\tau^{3}}{2} \qquad \text{Neutral current} \\ \mathcal{L}_{int} &= \frac{g}{\sqrt{2}} \left(J^{-}_{\mu}W^{+\mu} + J^{+}_{\mu}W^{-\mu}\right) + gJ^{3}_{\mu}W^{3}_{\mu} \\ J^{+}_{\mu} &= (J^{-}_{\mu})^{\dagger}, \quad W^{\pm} = \frac{W^{1} \pm iW^{2}}{\sqrt{2}}, \quad J^{3}_{\mu} = \bar{q}_{L}\gamma_{\mu}\frac{\tau^{3}}{2}q_{L} + \bar{l}_{L}\gamma_{\mu}\frac{\tau^{3}}{2}l_{L} \end{split}$$

Q cannot identified with T_3 but $Q-T_3$ has the same value on the members of the SU(2) doublets $[Q-T_3, T_1] = 0$

Electroweak Group: SU(2)x U(1)_y where Y = Q - T₃

Fermions quantum numbers (one generation)

ψ	u_L	d_L	u_R	d_R	$ u_L $	e_L	e_R	$ u_R$
T_3	1/2	-1/2	0	0	1/2	-1/2	0	0
Y	1/6	1/6	2/3	-1/3	-1/2	-1/2	-1	0

I.h. fermions are in SU(2) doublets, r.h. fermions in SU(2) singlets

Electroweak Lagrangian (gauge part, no mass terms)

$$\mathcal{L}_{symm} = -\frac{1}{4} \sum_{A=1}^{3} F_{\mu\nu}^{A} F^{A\,\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + i \bar{\psi}_{L} D \psi_{L} + i \bar{\psi}_{R} D \psi_{R}$$

$$F_{\mu\nu}^{A} = \partial_{\mu} W_{\nu}^{A} - \partial_{\nu} W_{\mu}^{A} + g \epsilon^{ABC} W_{\mu}^{B} W_{\nu}^{C}$$

$$B_{\mu\nu} = \partial_{\mu} B_{\nu} - \partial_{\nu} B_{\mu}$$

$$D_{\mu} \psi_{L} = \left[\partial_{\mu} - i \frac{g}{\sqrt{2}} \left(\tau^{-} W^{+} - \tau^{+} W^{-} \right) - i g T^{3} W_{\mu}^{3} - i g' Y B_{\mu} \right] \psi_{L}$$

$$D_{\mu} \psi_{R} = \left[\partial_{\mu} - i g' Y B_{\mu} \right] \psi_{R}$$

Neutral currents

 $gT^{3}W_{\mu}^{3} + g'YB_{\mu} \qquad l.h.$ $g'YB_{\mu} \qquad r.h.$

Rotate the W³, B field to obtain a new field with vectorial couplings

 $W^{3}_{\mu} = \sin \theta_{W} A_{\mu} + \cos \theta_{W} Z_{\mu}$ $B_{\mu} = \cos \theta_{W} A_{\mu} - \sin \theta_{W} Z_{\mu}$

A couplings:

$$\underbrace{g \sin \theta_W}_{e} T^3 + \underbrace{g' \cos \theta_W}_{e} Y = e(T^3 + Y) = eQ; \qquad \tan \theta_W = \frac{g'}{g}$$
$$e \bar{\psi}_L \gamma_\mu \left[T^3 + Y\right] \psi_L + e \bar{\psi}_R \gamma_\mu Y \psi_R = e \bar{\psi} \gamma_\mu Q \psi \qquad \text{Vectorial current}$$

Z_u couplings:

$$g\cos\theta_W T^3 - g'\sin\theta_W Y = g\cos\theta_W T^3 - g'\sin\theta_W (Q - T^3) = \frac{g}{\cos\theta_W} \left(T^3 - Q\sin^2\theta_W\right)$$
$$\frac{g}{\cos\theta_W} \bar{\psi}_L \gamma_\mu \left[T^3 - Q\sin^2\theta_W\right] \psi_L + \underbrace{g\tan\theta_W}_{g'} \sin\theta_W \bar{\psi}_R \gamma_\mu Y \psi_R = \frac{g}{\cos\theta_W} \bar{\psi}\gamma_\mu \left[T^3 \frac{1 - \gamma_5}{2} - Q\sin^2\theta_W\right] \psi_L$$

Effective 4-fermion interactions at low energy:

Charged current:
$$\mathcal{L}_{eff}^{cc} = \frac{-g^2}{2M_W^2} J^+_{\mu} J^{-\mu} \Rightarrow \frac{g^2}{8M_W^2} = \frac{G_{\mu}}{\sqrt{2}}$$

Neutral current:
$$\mathcal{L}_{eff}^{nc} = \frac{-g^2}{2\cos_W^2 M_Z^2} J_{\mu}^Z J^{Z\mu} = 4 \frac{G_{\mu}}{\sqrt{2}} \frac{M_W^2}{M_Z^2 \cos^2 \theta} J_{\mu}^Z J^{Z\mu} \equiv 4 \frac{G_{\mu}}{\sqrt{2}} \rho J_{\mu}^Z J^{Z\mu}$$

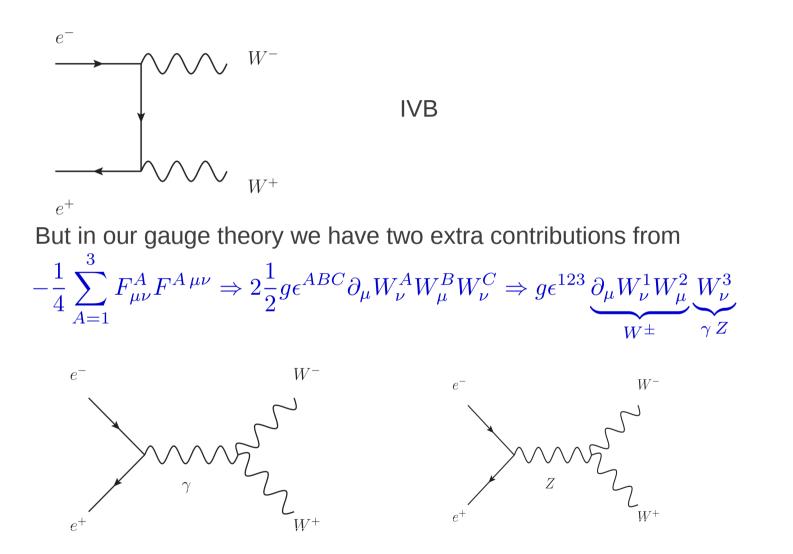
Symmetry factor for 2 identical currents

$$\frac{1}{4}\mathcal{L}_{eff} = \frac{1}{4} \left(\mathcal{L}_{eff}^{CC} + \mathcal{L}_{eff}^{NC} \right) = \frac{G_{\mu}}{\sqrt{2}} \left(J_{\mu}^{+} J^{-\mu} + \rho J_{\mu}^{Z} J^{Z\mu} \right) \qquad \rho \equiv \frac{M_{W}^{2}}{M_{Z}^{2} \cos \theta_{W}}$$

Note: if I know sin θ_w , for example from N.C. experiments, I can predict M_w

$$M_W^2 = \frac{\sqrt{2}g^2}{8G_\mu} = \frac{\sqrt{2}e^2}{8G_\mu \sin^2 \theta_W} = \frac{\pi \alpha}{\sqrt{2}G_\mu} \frac{1}{\sin^2 \theta_W} \equiv \frac{A^2}{\sin^2 \theta_W}$$
$$A = \left(\frac{\pi \alpha}{\sqrt{2}G_\mu}\right)^{1/2} = 37.28039(1) \text{ GeV}$$

In the IVB we expected the $e^+ + e^- \rightarrow W^+ + W^-$ cross-section to raise with s (the C.M. energy) when the W's are longitudinally polarized



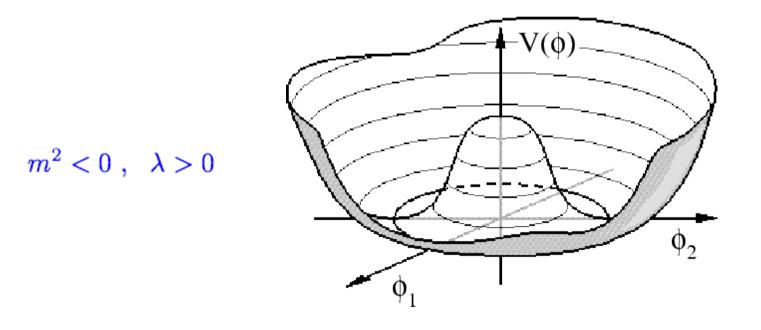
These two diagrams cancel the bad high energy behavior of the neutrino exchange diagram

Getting the masses via spontaneous symmetry breaking

The Lagrangian of the theory respects a symmetry, but the vacuum state breaks it

Consider a single complex scalar with a "mexican hat" potential (Goldstone model)

$$\phi \equiv rac{1}{\sqrt{2}} \left(\phi_1 + i \, \phi_2
ight), \quad \mathcal{L} \; = \; \partial^\mu \phi^* \, \partial_\mu \phi - V(\phi) \,, \quad V(\phi) \; = \; m^2 \, |\phi|^2 \, + \, \lambda \, |\phi|^4$$



The potential has an infinite number of equivalent minima for $|\phi|^2 = -\frac{m^2}{2\lambda}$

The system will choose one specific minimum, breaking the global rotational symmetry

We can expand the scalar field around a *real* vacuum expectation value (vev)

$$\phi \equiv rac{1}{\sqrt{2}} \, \left[v + H(x) + i \, G(x)
ight] \; , \qquad v = \sqrt{-rac{m^2}{\lambda}}$$

At the minimum of the scalar potential (= the vacuum state) we have $\langle \phi \rangle = \frac{v}{\sqrt{2}}$

Up to an irrelevant constant, the scalar potential becomes

$$V = (m^2 v + \lambda v^3) H + \frac{1}{2} (m^2 + 3\lambda v^2) H^2 + \frac{1}{2} (m^2 + \lambda v^2) G^2 + \lambda v H (H^2 + G^2) + \frac{\lambda}{4} (H^2 + G^2)^2$$

Inserting the value of v the linear term vanishes, and the masses of the scalars become

$$m_H^2 = -2 m^2 = 2 \lambda v^2$$
, $m_G^2 = 0$

G is the *Goldstone boson* associated with the spontaneous breaking of the global symmetry

In general: the number of Goldstone boson is related to the number of broken generators of the symmetry Broken generator: it does not annihilate the vacuum

Simplest U(1) model

$$\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + |\underbrace{(\partial_{\mu} - ieA_{\mu})}_{D_{\mu}} \phi|^{2} - (-m^{2}) |\phi|^{2} - \frac{\lambda}{4} |\phi|^{4} \qquad m^{2} > 0$$

Invariant under:

- $\phi \rightarrow \phi' = \phi \exp[-i\epsilon(x)]$ $A_{\mu} \rightarrow A'_{\mu} = A_{\mu} + \frac{1}{e} \partial_{\mu}\epsilon(x)$
- $\text{if } \quad <\phi>=\frac{v}{\sqrt{2}}$

I shift the field Φ and write it in polar coordinates: $\phi(x) = \frac{1}{\sqrt{2}} \left(\rho(x) + v\right) exp[+i\frac{\chi(x)}{v}]$

via a gauge transformation I can eliminate χ $\left(\epsilon(x) = \frac{\chi(x)}{v}\right)$

$$\mathcal{L} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} + \frac{1}{2}e^2v^2A^{\mu}A_{\mu} + \frac{1}{2}e^2\rho^2A^{\mu}A_{\mu} + e^2\rho vA^{\mu}A_{\mu} + \mathcal{L}(\rho)$$

No χ , A_umassive (3 d.o..f.); χ eaten by A_u

SU(2)xU(1): (Weinberg 67, Salam 68)

 $\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}_{1/2}$

SSB via an Higgs doublet

$$\mathcal{L} = \mathcal{L}_{symm} + \mathcal{L}_{Higgs} + \mathcal{L}_{Yuk}$$
$$\mathcal{L}_{Higgs} = (D_{\mu}\Phi)^{\dagger} (D^{\mu}\Phi) - \underbrace{\left[(-m^{2})\Phi^{\dagger}\Phi + \lambda \left(\Phi^{\dagger}\Phi\right)^{2}\right]}_{V(\Phi^{\dagger}\Phi)}$$

Renormalizable interaction

$$\mathcal{L}_{Yuk} = -Y_d \bar{\psi}_L \Phi \psi_R^d - Y_u \bar{\psi}_L \tilde{\Phi} \psi_R^u + h.c., \quad \psi_L = \begin{pmatrix} \psi^u \\ \psi^d \end{pmatrix}_L, \quad \tilde{\Phi} = i\tau_2 \Phi^*$$
if $<\Phi>=\begin{pmatrix} o \\ \frac{v}{\sqrt{2}} \end{pmatrix}$

Shift Φ and write it in terms of 4 real fields, ρ , χ_1, χ_2, χ_3 as

 $\Phi(x) = exp[i\tau \cdot \chi(x)/v] \begin{pmatrix} 0\\ \frac{\rho(x)+v}{\sqrt{2}} \end{pmatrix}$ via gauge transformation I can eliminate χ (unitary gauge)

 $Q = T_3 + Y$ annihilates the vacuum

$$Q\binom{0}{\frac{v}{\sqrt{2}}} = 0$$

3 broken generators, 3 χ 's eaten: 3 massive vector boson, one massless: $SU(2)XU(1) \rightarrow U(1)_{om}$

Gauge boson masses:

$$D_{\mu}\Phi = \left[\partial_{\mu} - i\frac{g}{\sqrt{2}}\left(\tau^{-}W^{+} - \tau^{+}W^{-}\right) - igT^{3}W_{\mu}^{3} - ig'YB_{\mu}\right]\Phi, \quad \Phi \to <\Phi>$$

$$\begin{split} M_W^2 W_\mu^{\dagger} W^\mu &= \frac{g^2}{2} |\tau_+ <\phi >|^2 W_\mu^{\dagger} W^\mu = \frac{g^2}{2} <\Phi > \tau_- \tau_+ <\Phi > W_\mu^{\dagger} W^\mu = \frac{g^2 v^2}{4} W_\mu^{\dagger} W^\mu \\ \frac{1}{2} M_Z^2 Z^\mu Z_\mu &= \left| \left(g \cos \theta_W T^3 - g' \sin \theta_W (Q - T^3) \right) <\Phi > \right|^2 Z^\mu Z_\mu, \qquad (Q <\phi >=0) \\ &= (g \cos_W + g' \sin \theta_W)^2 |T^3 <\phi >|^2 Z^\mu Z_\mu = \frac{g^2}{\cos^2 \theta_W} |T^3 <\phi >|^2 Z^\mu Z_\mu = \frac{1}{2} \frac{g^2 v^2}{4 \cos^2 \theta_W} Z^\mu Z_\mu \end{split}$$

$$M_W^2 = \frac{g^2 v^2}{4}; \quad M_Z^2 = \frac{g^2 v^2}{4 \cos^2 \theta_W} \Rightarrow \rho = \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = 1$$

Only if the Higgs fields are singlets or doublets

If there are several Higgses in generic representation (T, T_3)

$$\rho = \frac{\sum_{\Phi_a} \frac{1}{2} < T^+ T^- + T^- T^+ >|_{<\Phi_a > v_{\Phi_a}^2}}{\sum_{\Phi_a} 2 < (T^3)^2 >|_{<\Phi_a > v_{\Phi_a}^2}} = \frac{\sum_{\Phi_a} \left[T(T+1) - (T^3)^2 \right]_{\Phi_a} v_{\Phi_a}^2}{\sum_{\Phi_a} 2 \left[(T^3)^2 \right]_{\Phi_a} v_{\Phi_a}^2}$$

We must have at least one Higgs doublet to give mass to the fermions:

doublet, doublet, singlet

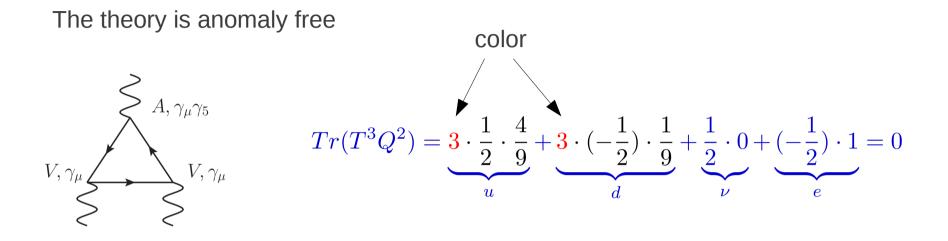
$$\mathcal{L}_{Yuk} = -Y_d \bar{\psi}_L \Phi \psi_R^d - Y_u \bar{\psi}_L \tilde{\Phi} \Psi_R^u + h.c.$$

$$-Y_d \frac{v}{\sqrt{2}} \left(\bar{\psi}_L^d \psi_R^d + \bar{\psi}_R^d \psi_L^d \right) - Y_u \frac{v}{\sqrt{2}} \left(\bar{\psi}_L^u \psi_R^u + \bar{\psi}_R^u \psi_L^u \right) \quad \Phi \Rightarrow <\Phi >$$

$$\Rightarrow m_u = \frac{Y_u v}{\sqrt{2}}, \quad m_d = \frac{Y_d v}{\sqrt{2}}$$

The ρ parameter fixes the relative strength of the charged-and neutral current interactions. Its experimental value is very close to 1, but the exact value depends on the experiments one is considering (radiative corrections enters into the game). The value of ρ extracted in neutrino-hadron scattering is (slightly) different from that of neutrino-electron scattering.

$$\rho = 1 \Rightarrow \cos^2 \theta_W = \frac{M_W^2}{M_Z^2} \qquad \text{If I know } M_Z \text{ I can predict } M_W$$
$$M_W^2 = \frac{A^2}{\sin^2 \theta_W} = \frac{A^2}{1 - M_W^2/M_Z^2} \Rightarrow M_W^2 = \frac{M_Z^2}{2} \left\{ 1 + \left[1 - \frac{4A^2}{M_Z^2} \right]^{1/2} \right\}$$



However in the unitary gauge where only physical fields are present (the would be G.B. are eliminated) the propagator of the massive V.B. has a bad high energy behavior

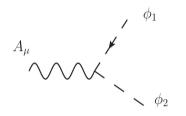
$$i\Delta_W^{\mu\nu}(k) = -i\frac{g^{\mu\nu} - k^{\mu}k^{\nu}/M_W^2}{k^2 - M_W^2 + i\epsilon}$$

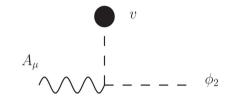
and the theory seems to be not renormalizable by power-counting arguments. However, it is possible to choose a smart gauge (R_{ξ} gauge) where the V.B. propagator has a good high energy behavior

$$i\Delta_W^{\mu\nu}(k) = \frac{-i}{k^2 - M_W^2 + i\epsilon} \left[g^{\mu\nu} + (\xi - 1) \frac{k^{\mu}k^{\nu}}{k^2 - \xi M_W^2} \right]$$

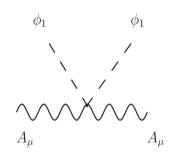
U(1):
$$\phi = \phi_1 + \phi_2; \quad <\phi_1 >= v, <\phi_2 >= 0$$

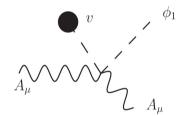
unbroken

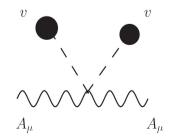




$$\mathcal{L}_{g.f.} = -\frac{1}{2\xi} (\partial^{\mu} A_{\mu} + \xi \underbrace{ev}_{M_A} \phi_2)^2$$







mass

Renormalization of the S.M.

In the gauge sector there are 3 parameters: g , g', $v \rightarrow 3$ renormalization conditions. Whatever renormalization scheme we use we want to express our results in terms of the 3 best known parameters:

$$\alpha = 1/137.035999174(35) [0.25ppb] \quad (a_e)$$

$$G_{\mu} = 1.1663787(6) \times 10^{-5} \text{ GeV}^{-2}$$

$$M_Z = 91.1876(21) \text{ GeV}/c^2 \quad (\text{peak of } \sigma(e^+e^- \to all))$$

$$a_e(QED) = \sum_{n=1}^{\infty} \left(\frac{\alpha}{\pi}\right)^n a_e^{(2n)}$$

Computed up to n=5

We need the radiative corrected relations between our renormalized parameters and $\alpha,\,G_{_{\!\!\!\!\!\!\!\!\!\!\!\!\!}}$ and $M_{_Z}$

Bare relations:

$$e_{0} = g_{0} \sin \theta_{W_{0}}, \quad g'_{0} = g_{0} \tan \theta_{W_{0}}, \quad M_{W_{0}} = \frac{g_{0}v_{0}}{2}, \quad \rho_{0} = \frac{M_{W_{0}}^{2}}{M_{Z_{0}}^{2} \cos^{2} \theta_{W_{0}}} = 1$$
Natural to identify:

$$g = \frac{e}{\sin \theta_{W}} \quad e = \sqrt{4\pi\alpha}$$
fine structure constant renormalized

Using the physical (pole) masses of the W and Z we have two possibility:

$$\cos^{2} \theta_{W} = \frac{M_{W}^{2}}{M_{Z}^{2}} \qquad \rho = 1 \qquad (1)$$

$$\cos^{2} \theta_{W} \neq \frac{M_{W}^{2}}{M_{Z}^{2}} \qquad \rho = 1 + \mathcal{O}(\alpha) \qquad (2)$$

$$\log_{2} \cos^{2} \theta_{W_{0}}, \qquad s_{0}^{2} \equiv \sin^{2} \theta_{W_{0}},$$

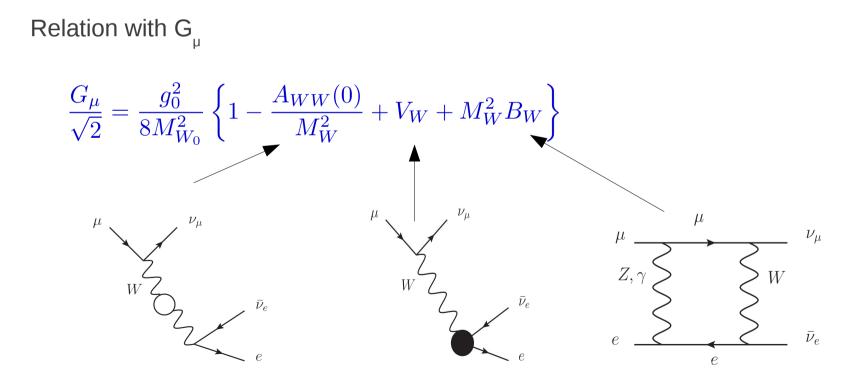
$$c_{0}^{2} \equiv c^{2} - \delta c^{2}, \qquad s_{0}^{2} \equiv s^{2} - \delta s^{2}$$

Notation:

On-Shell scheme

(1)
$$\frac{\delta c^2}{c^2} \simeq \frac{\delta M_W^2}{M_W^2} - \frac{\delta M_Z^2}{M_Z^2} = \frac{Re A_{WW}(M_W^2)}{M_W^2} - \frac{Re A_{ZZ}(M_Z^2)}{M_Z^2}$$

 $A_{WW}(q^2)$ Transverse part of the WW self-energy at momentum q^2



$$\begin{aligned} \frac{G_{\mu}}{\sqrt{2}} &= \frac{g_0^2}{8M_{W_0}^2} \left\{ 1 - \frac{A_{WW}(0)}{M_W^2} + V_W + M_W^2 B_W \right\} \\ &= \frac{e^2}{8s^2 M_W^2} \left\{ 1 + \frac{\delta M_W^2}{M_W^2} - \frac{A_{WW}(0)}{M_W^2} + V_W + M_W^2 B_W - \frac{\delta e^2}{e^2} + \frac{\delta s^2}{s^2} \right\} \\ &= \frac{e^2}{8s^2 M_W^2} \left\{ 1 + \frac{Re A_{WW}(M_W^2)}{M_W^2} - \frac{A_{WW}(0)}{M_W^2} + V_W + M_W^2 B_W + \Pi_{\gamma\gamma}(0) + \frac{c^2}{s^2} \left[\frac{Re A_{ZZ}(M_Z^2)}{M_Z^2} - \frac{Re A_{WW}(M_W^2)}{M_W^2} \right] \right\} \\ &= \frac{e^2}{8s^2 M_W^2} \left\{ 1 + \Delta r \right\} \end{aligned}$$

 $\Pi_{\gamma\gamma}(q^2) = \frac{A_{\gamma\gamma}(q^2)}{-q^2}$

$$M_W^2 = \frac{M_Z^2}{2} \left\{ 1 + \left[1 - \frac{4A^2}{M_Z^2(1 - \Delta r)} \right]^{1/2} \right\}$$

Radiatively corrected

Large contributions in Δr :

$$\Pi_{\gamma\gamma}(0), \quad \frac{c^2}{s^2} \left[\frac{Re \, A_{ZZ}(M_Z^2)}{M_Z^2} - \frac{Re \, A_{WW}(M_W^2)}{M_W^2} \right]$$

 $\Pi_{\gamma\gamma}(0)$

Contains hadronic contributions at low energy that cannot be computed in perturbation theory

$$\Pi_{\gamma\gamma}^{h}(0) = \underbrace{\Pi_{\gamma\gamma}^{h}(0) - Re \Pi_{\gamma\gamma}^{h}(M_{Z}^{2})}_{= -\frac{M_{Z}^{2}}{\pi} Re \int_{4m_{\pi}^{2}}^{\infty} ds \frac{Im \Pi_{\gamma\gamma}^{h}(s)}{s(s - M_{Z}^{2} - i\epsilon)} \qquad \text{Dispersion relation (Cauchy)}$$
but, from optical theorem
$$Im \Pi_{\gamma\gamma}^{h} = -\frac{s}{e^{2}} \sigma_{tot}(e^{+}e^{-} \rightarrow \gamma^{*} \rightarrow hadrons)(s)$$
using
$$R(s) = \frac{\sigma_{tot}(e^{+}e^{-} \rightarrow \gamma^{*} \rightarrow hadrons)}{\sigma_{tot}(e^{+}e^{-} \rightarrow \gamma^{*} \rightarrow \mu^{+}\mu^{-})}$$

$$\Delta\alpha_{hadrons}^{(5)} \equiv Re \Pi_{\gamma\gamma}^{h}(M_{Z}^{2}) - \Pi_{\gamma\gamma}^{h}(0) = -\frac{\alpha M_{Z}^{2}}{3\pi} Re \int_{4m_{\pi}^{2}}^{\infty} ds \frac{R(s)}{s(s - M_{Z}^{2} - i\epsilon)}$$

$$= -\frac{\alpha M_{Z}^{2}}{3\pi} Re \int_{4m_{\pi}^{2}}^{s_{0}} ds \frac{R(s)}{s(s - M_{Z}^{2} - i\epsilon)} - \frac{\alpha M_{Z}^{2}}{3\pi} Re \int_{s_{0}}^{\infty} ds \frac{R(s)}{s(s - M_{Z}^{2} - i\epsilon)}$$
Using experimental data

Table 10.1: Recent evaluations of the on-shell $\Delta \alpha_{\rm had}^{(5)}(M_Z)$. For better comparison we adjusted central values and errors to correspond to a common and fixed value of $\alpha_s(M_Z) = 0.120$. References quoting results without the top quark decoupled are converted to the five flavor definition. Ref. [33] uses $\Lambda_{\rm QCD} = 380 \pm 60$ MeV; for the conversion we assumed $\alpha_s(M_Z) = 0.118 \pm 0.003$.

Reference	Result Comment				
Martin, Zeppenfeld [23]	0.02744 ± 0.00036	PQCD for $\sqrt{s} > 3~{\rm GeV}$	Differences:		
Eidelman, Jegerlehner [24]	0.02803 ± 0.00065	PQCD for $\sqrt{s} > 40 \text{ GeV}$	 Treatment of data 		
Geshkenbein, Morgunov [25]	0.02780 ± 0.00006	$O(\alpha_s)$ resonance model			
Burkhardt, Pietrzyk [26]	0.0280 ± 0.0007	PQCD for $\sqrt{s} > 40 \text{ GeV}$	and errors		
Swartz [27]	0.02754 ± 0.00046	use of fitting function	Integration		
Alemany et al. [28]	0.02816 ± 0.00062	incl. τ decay data	 Threshold for PQCD 		
Krasnikov, Rodenberg [29]	0.02737 ± 0.00039	PQCD for $\sqrt{s} > 2.3 \text{ GeV}$			
Davier & Höcker [30]	0.02784 ± 0.00022	PQCD for $\sqrt{s} > 1.8 \text{ GeV}$			
Kühn & Steinhauser [31]	0.02778 ± 0.00016	complete $O(\alpha_s^2)$			
Erler [19]	0.02779 ± 0.00020	conv. from MS scheme			
Davier & Höcker [32]	0.02770 ± 0.00015	use of QCD sum rules			
Groote et al. [33]	0.02787 ± 0.00032	use of QCD sum rules			
Martin et al. [34]	0.02741 ± 0.00019	incl. new BES data			
Burkhardt, Pietrzyk [35]	0.02763 ± 0.00036	PQCD for $\sqrt{s} > 12 \text{ GeV}$			
de Troconiz, Yndurain [36]	0.02754 ± 0.00010	PQCD for $s > 2 \text{ GeV}^2$	$\Delta \alpha^{(l)} = 0.031421$		
Jegerlehner [37]	0.02765 ± 0.00013	conv. from MOM scheme	$\Delta \alpha^{**} = 0.031421$		
Hagiwara et al. [38]	0.02757 ± 0.00023	PQCD for $\sqrt{s} > 11.09 \text{ GeV}$	$\Delta \alpha = \Delta \alpha^{(l)} + \Delta \alpha^{(h)} \simeq 0.06$		
Burkhardt, Pietrzyk [39]	0.02760 ± 0.00035	incl. KLOE data			
Hagiwara et al. [40]	0.02770 ± 0.00022	incl. selected KLOE data	0 1		
Jegerlehner [41]	0.02755 ± 0.00013	Adler function approach	$\alpha(M_Z^2) = \frac{\alpha}{1 - \Delta \alpha} \simeq \frac{1}{128}$		
Davier et al. [20]	0.02750 ± 0.00010	e^+e^- data	$1 - \Delta \alpha = 128$		
Davier et al. [20]	0.02762 ± 0.00011	incl. τ decay data			
Hagiwara et al. [42]	0.02764 ± 0.00014	e^+e^- data			

The other "large" term

$$\frac{c^2}{s^2} \left[\frac{Re A_{ZZ}(M_Z^2)}{M_Z^2} - \frac{Re A_{WW}(M_W^2)}{M_W^2} \right] \simeq -\frac{c^2}{s^2} \delta \rho$$

heavy particles (M>>M_z)

Heavy particles contribute to the W-Z mass difference correction in the same way as in the ρ parameter (relative strength between NC and CC interactions)

Quadratic terms in m_{f} are going to survive in the difference?

$M_{_{W}}$ and $M_{_{7}}$ are degenerate in the limit g' \rightarrow 0.

Higgs potential is a function of $\Phi^{\dagger}\Phi = (\phi_1^2 + \phi_2^2 + \phi_3^2 + \phi_4^2)$ custodial symmetry SU(2)_L x SU(2)_R

$$\begin{split} \Phi &= \begin{pmatrix} \phi_+ \\ \phi_0 \end{pmatrix}, \quad \tilde{\Phi} = i\tau_2 \Phi^* = \begin{pmatrix} \phi_0^* \\ -\phi_- \end{pmatrix}; \quad H = (\tilde{\Phi}, \Phi) = \begin{pmatrix} \phi_0^* & \phi_+ \\ -\phi_- & \phi_0 \end{pmatrix} \\ \mathcal{L}_{Higgs} &= \frac{1}{2} Tr(D_\mu H)^\dagger (D^\mu H) - V(H) \\ D_\mu H &= \partial_\mu H + \frac{i}{2} g \vec{W}_\mu \cdot \vec{\tau} H - \frac{i}{2} g' B_\mu H \tau_3 \\ V(H) &= \lambda \left(\frac{1}{2} Tr(H^\dagger H) - \frac{v^2}{2} \right)^2 \end{split}$$

If g'=0 \mathcal{L}_{Higgs} has global SU(2)_L x SU(2)_R invariance $(U_{L,R} = exp[i\vec{\tau} \cdot \vec{\epsilon}_{L,R}])$ \vec{W}

 $\begin{array}{rccc} H & \to & U_L H U_R^{\dagger} \\ \vec{W}_{\mu} \cdot \vec{\tau} & \to & U_L (\vec{W}_{\mu} \cdot \vec{\tau}) U_L^{\dagger} \end{array}$

$$\begin{split} \mathsf{SU(2)}_{\mathsf{L}} \ & \text{survives when} \quad < H > = \frac{v}{\sqrt{2}} \begin{pmatrix} 1 \ 0 \\ 0 \ 1 \end{pmatrix} \Rightarrow M_{W_3} = M_W \\ H \quad \to \quad U_L H U_L^{\dagger} \\ \vec{W}_{\mu} \cdot \vec{\tau} \quad \to \quad U_L (\vec{W}_{\mu} \cdot \vec{\tau}) U_L^{\dagger} \end{split}$$

$$\mathcal{L}_{Yuk} = -Y_d \bar{\psi}_L \Phi \psi_R^d - Y_u \bar{\psi}_L \tilde{\Phi} \psi_R^u + h.c.$$

= $Y \bar{\psi}_L H \psi_R + \Delta Y \bar{\psi}_L H \tau_3 \psi_R + h.c.$ $\psi_R = \begin{pmatrix} \psi_R^u \\ \psi_R^d \end{pmatrix}$

First term invariant under: $H \rightarrow U_L H U_L, \ \psi_L \rightarrow U_L \psi_L, \ \psi_R \rightarrow U_L \psi_R$

Corrections to the W-Z mass difference are due to hypercharge effects (g' \neq 0) or to mass splitting within isospin multiplets

$$\delta \rho^{top} = Nc \frac{G_{\mu} m_t^2}{8\sqrt{2}\pi^2} \quad (m_b = 0)$$

$$\delta \rho^{Higgs} \simeq -\frac{3G_{\mu} M_W^2}{8\sqrt{2}\pi^2} \tan \theta_W \ln \frac{M_H^2}{M_W^2} \quad (M_H \gg M_W)$$

Corrections proportional to M_H^2 appear at two-loop but are too small to be important

Heavy particles do not decouple in $\delta \rho$. In a diagram if couplings do not grow with mass heavy particles decouple, running of α or α_{c} not affected by heavy quarks.

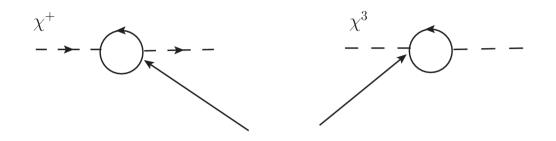
Corrections to $\delta \rho$ can be computed in the gauge-less limit of the SM, a Yukawa theory with gauge boson as external non propagating fields.

$$\mathcal{L}_{g.l.} = (D_{\mu}\Phi)^{\dagger} (D^{\mu}\Phi) - V (\Phi^{\dagger}\Phi) - (Y_{t}\bar{\psi}_{L}\tilde{\Phi}t_{R} + h.c.)$$

$$W, Z \text{ (no kinetic term)}$$

$$\mathcal{L}_{kin} = Z_{2}^{+} \left|\partial_{\mu}\chi^{+} - \frac{g v}{2}W^{+}\right|^{2} + \frac{1}{2}Z_{2}^{0} \left(\partial_{\mu}\chi^{3} - \frac{g v}{2\cos\theta_{W}}Z\right)^{2} \Rightarrow \rho = \frac{Z_{2}^{+}}{Z_{2}^{0}}$$

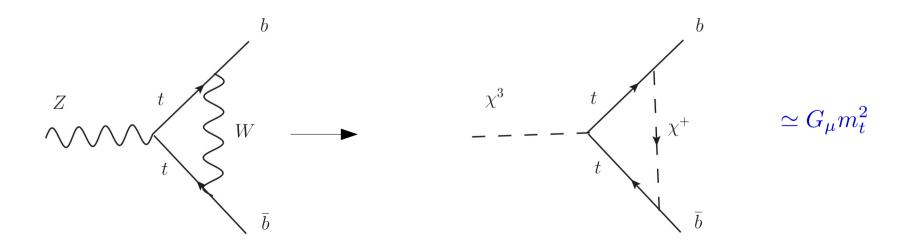
$$w.f.r, \text{ of the Goldstone bosons, } Z_{2}^{=} \mathbf{1} + O(\alpha)$$



grows with the mass

X's are the longitudinal modes of the W,Z

Other non decoupling effect in $Z \rightarrow b b$

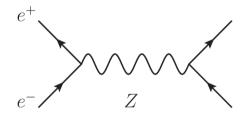


Large counterterm contribution associated with δs^2 can be eliminated using a \overline{MS}

definition of
$$\theta_{W}$$
 $\hat{s}^{2} \equiv \sin^{2} \hat{\theta}_{W}(z)$
 $M_{W}^{2} = \frac{\hat{\rho}M_{Z}^{2}}{2} \left\{ 1 + \left[1 - \frac{4A^{2}}{\hat{\rho}M_{Z}^{2}(1 - \Delta \hat{r}_{W})} \right]^{1/2} \right\}$
 $\hat{\rho} = \frac{M_{W}^{2}}{M_{Z}^{2}\hat{c}^{2}} \simeq 1 + \delta\rho$
 $\hat{s}^{2} = \frac{1}{2} \left\{ 1 + \left[1 - \frac{4A^{2}}{\hat{\rho}M_{Z}^{2}(1 - \Delta \hat{r})_{W}} \right]^{1/2} \right\}$ no m_{t}^{2}

Z-pole physics:

Dominant contribution is the resonant Z exchange diagram



The bulk of the corrections can be absorbed into effective couplings

$$\frac{g}{2c}J_Z^{\mu} = \frac{g}{2c}\bar{\psi}(\gamma_{\mu}(g_v - g_a\gamma_5)\psi \qquad \qquad g_v^f = T_f^3 - 2Q_f\sin^2\theta_W \Rightarrow \sqrt{\rho}(T_f^3 - 2Q_f\sin^2\theta_{eff}) \\ g_a^f = T^3 \Rightarrow \sqrt{\rho}(T_f^3)$$

 $\sin^2 \theta_{eff}^f = \hat{k}(M_Z^2) \sin^2 \theta_W(M_Z) \simeq \sin^2 \theta_W(M_Z) \quad \hat{k}(M_Z^2) = 1 + \dots$

 $\sin^2 \theta_{eff}^f \quad \text{can be obtained from asymmetries}$ $\frac{d\sigma_{f\bar{f}}}{d\cos\theta} = \frac{3}{8} \sigma_{f\bar{f}}^{tot} \left[(1 - P_e A_e)(1 + \cos^2 \theta) + 2(A_e - P_e)A_f \cos \theta \right] \\
 \textbf{Forward-Backward} \\
 A_{FB}^f (e^+e^- \to f\bar{f}) = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B} \simeq \frac{3}{4} A_e A_f$ $e^r \text{ polarization} \\
 A_{FB}^2 (e^+e^- \to f\bar{f}) = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B} \simeq \frac{3}{4} A_e A_f$

 $\begin{array}{ll} {\rm f=l\ one\ measures} & A_e^2\simeq 4x_f^2 & (g_v^e\ll g_a^e) & A_e\sim 0.15 \\ {\rm f=q\ one\ measures} & A_eA_q & {\rm but} & g_v^q\sim g_a^q & {\rm one\ measures\ mainly} & A_e \end{array}$

τ polarization

$$A_{pol}^{\tau}(e^+e^- \to \tau^+\tau^-) = \frac{\sigma(\tau_L) - \sigma(\tau_R)}{\sigma(\tau_L) - + \sigma(\tau_R)} \sim -A_{\tau}$$

Left-Right

$$A_{LR}^f(e^+e^- \to f\bar{f}) = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} \frac{1}{\langle P_e \rangle} \simeq A_e \qquad \sigma_L \equiv \sigma(e^- l.h.)$$

Left-Right Forward-Backward

$$A_{LRFB}^{f}(e^{+}e^{-} \to f\bar{f}) = \frac{(\sigma_{F} - \sigma_{B})_{L} - (\sigma_{F} - \sigma_{B})_{R}}{(\sigma_{F} - \sigma_{B})_{L} + (\sigma_{F} - \sigma_{B})_{R}} \frac{1}{\langle |P_{e}| \rangle} \simeq \frac{3}{4}A_{f}$$

$$a_{\mu} = \frac{(g-2)_{\mu}}{2}$$

 $a_{\mu}(exp) = 116\,592\,089(63) \times 10^{-11} \ [0.5ppm]$

$$a_{\mu}(th.) = a_{\mu}(QED) + a_{\mu}(hadronic) + a_{\mu}(weak)$$

$$a_{\mu}(QED) = \sum_{n=1}^{\infty} \left(\frac{\alpha}{\pi}\right)^n a_e^{(2n)}$$

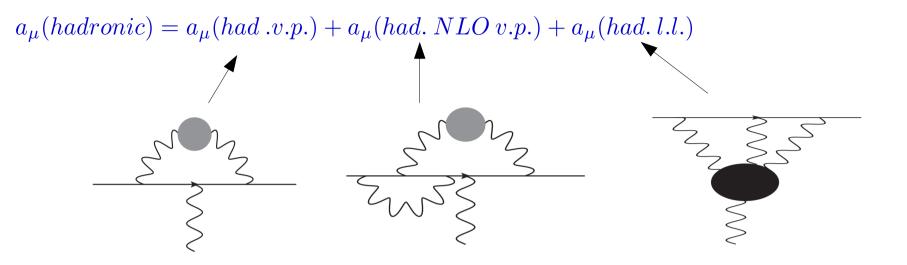
TABLE III. Contributions to muon g-2 from QED perturbation term $a_{\mu}^{(2n)}(\alpha/\pi)^n \times 10^{11}$. They are evaluated with two values of the fine-structure constant determined by the Rb experiment and by the electron g-2 (a_e).

order	with $\alpha^{-1}(\text{Rb})$	with $\alpha^{-1}(a_e)$
2	$116 \ 140 \ 973.318 \ (77)$	116 140 973.212 (30)
4	413 217.6291 (90)	413 217.6284 (89)
6	30 141.902 48 (41)	30 141.902 39 (40)
8	381.008 (19)	381.008 (19)
10	5.0938 (70)	5.0938 (70)
$a_{\mu}(\text{QED})$	116 584 718.951 (80)	116 584 718.845 (37)

$$\alpha^2 = \frac{2R_\infty}{c} \frac{m_{\rm Rb}}{m_e} \frac{h}{m_{\rm Rb}},$$

 $\alpha(Rb) = 1/137.035999049(90) \ [0.66ppb]$

 $a_{\mu}(weak) = 154(2) \times 10^{-11}$



$$a_{\mu}(had. v.p.) = \frac{\alpha^2}{3\pi^2} \int_{4m_{\pi}^2}^{\infty} \frac{ds}{s} K(s) R(s) = 6949.1(37.2)_{exp}(21.0)_{rad} \times 10^{-11}$$

K(s) monotonically decreasing function for increasing s

 $a_{\mu}(had. NLO v.p.) = -98.4(06)_{exp}(0.4)_{rad} \times 10^{-11}$

 $a_{\mu}(had. l.l) = 116(40) \times 10^{-11}$

Models of low-energy hadronic interactions with e.m. current

 $a_{\mu}(th) = 116\,592\,840(59) \times 10^{-11}$

 $a_{\mu}(exp) - a_{\mu}(th.) = 249(87) \times 10^{-11}$

The main source of error in a_{μ} (th.) comes from a_{μ} (hadronic) where in the dispersion relation enters the same experimental data that are employed in the calculation of $\Delta \alpha_{had.}^{(5)}$

If I change a (hadronic) I get a too light Higgs.

New Physics explanations:

One needs a relatively light not colored particle with couplings to the down fermion enhanced with respect to the SM

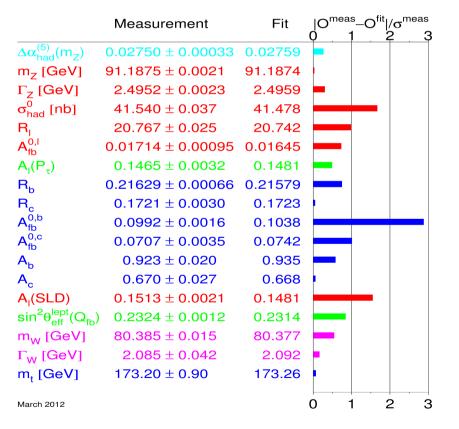
SUSY

$$a_{\mu}^{\mathrm{SUSY}} \simeq (\mathrm{sgn}\,\mu) \times (130 \times 10^{-11}) \left(\frac{100\,\mathrm{GeV}}{M_{\mathrm{SUSY}}}\right)^2 \tan\beta$$

SM Fit

One can make a global fit including "all" possible measurements and using the radiatively corrected predictions for the various observable. The latter, besides α , G_{μ} , M_z and lepton masses depend upon:

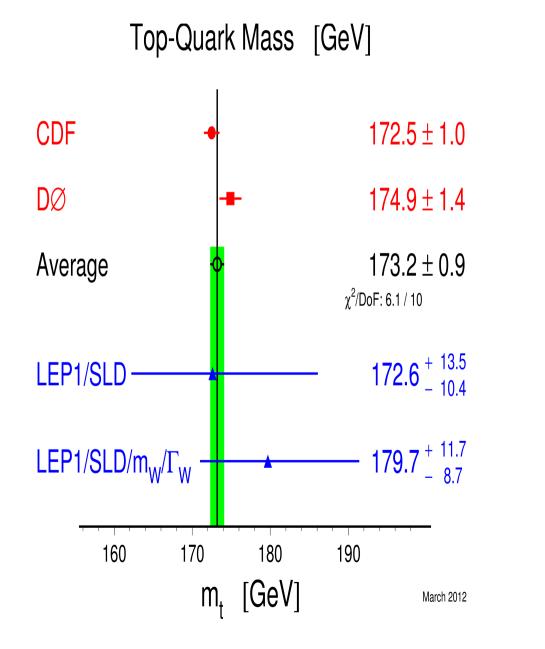
 $m_t, \Delta \alpha_{had}^{(5)}, \alpha_s(M_Z), M_H$

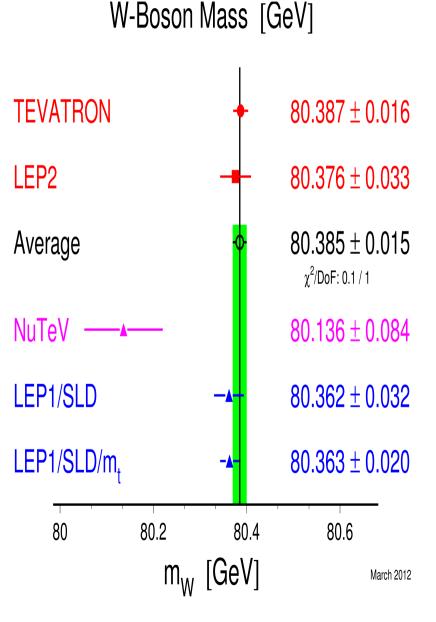


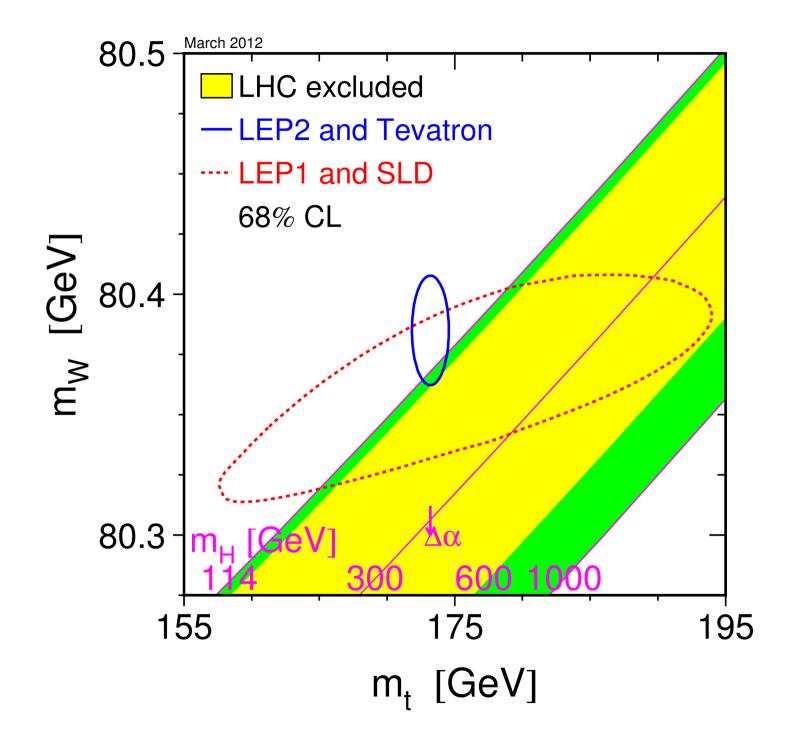
$$R_l = \frac{\Gamma_{had}}{\Gamma_l}, \quad R_q = \frac{\Gamma_q}{\Gamma_{had}}$$

Predictions for m_{t} , M_{w} , M_{H}

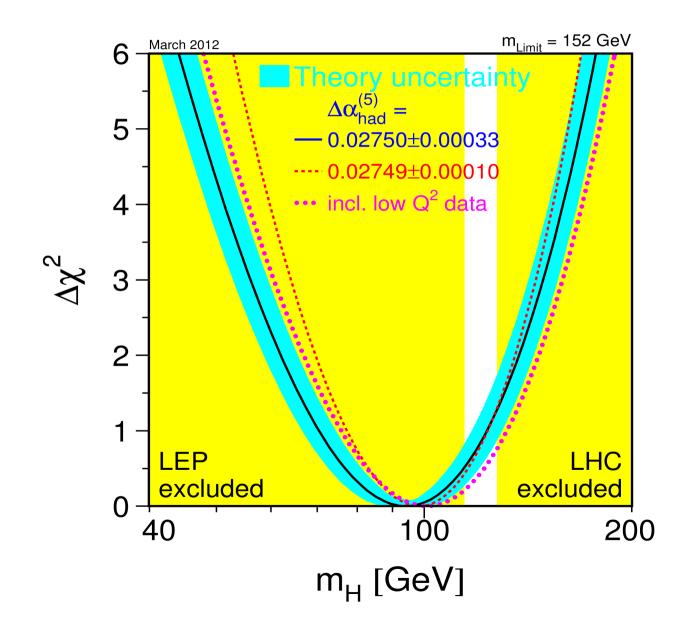
Very weak sensitivity to $M_{\rm H}$, without the Value of $m_{\rm T}$ we cannot predict it.







Global fit to $M_{_{\rm H}}$



Alternative approach: I want to get a probability density function for M_{H} in the SM using all the available information, from precision physics and from direct searches (obviously excluding LHC results) to see if the particle that has been discovered at LHC has a mass compatible with the SM prediction (p.d.f \neq 0)

March 2012 $\begin{array}{l} \Gamma_{Z} \\ \sigma_{had}^{0} \\ R_{l}^{0} \\ A_{fb}^{0,l} \end{array}$ Few observables are really sensitive $\begin{array}{l} A_{\rm l}({\rm P}_{\tau}) \\ A_{\rm b}^{\rm 0} \\ R_{\rm c}^{\rm 0} \\ A_{\rm fb}^{\rm 0,b} \\ A_{\rm fb}^{\rm 0,c} \end{array}$ to the Higgs A_{b} A_c A_I(SLD) $sin^2 \theta_{eff}^{lept}(Q_{fb})$ Simplified analysis using mw Γ_{W} $M_W, \sin^2 \theta_{eff}^{lept.}$ $Q_{W}(Cs)$ $\sin^2\theta_{\overline{MS}}(e^-e^-)$ $\sin^2 \theta_w(vN)$ $g_{i}^{2}(vN)$ $g_{B}^{2}(vN)$ asymmetries 10³ 2 10 10 Mц [GeV]

• Parametrization:

$$\sin^2 \theta_{eff}^{lept} = (\sin^2 \theta_{eff}^{lept})^\circ + c_1 A_1 + c_5 A_1^2 + c_2 A_2 - c_3 A_3 + c_4 A_4,$$

$$M_W = M_W^{\circ} - d_1 A_1 - d_5 A_1^2 - d_2 A_2 + d_3 A_3 - d_4 A_4,$$

where

$$A_{1} = \ln \frac{M_{H}}{100 \text{ GeV}}, \qquad A_{2} = \frac{\Delta \alpha_{had}^{(5)}}{0.02761} - 1,$$
$$A_{3} = \left(\frac{m_{t}}{175 \text{ GeV}}\right)^{2} - 1, \quad A_{4} = \frac{\alpha_{s}(M_{Z})}{0.118} - 1,$$

 c_i , $d_i > 0$ theoretical coefficients (depend upon the RS)

• Two quantities normally distrubuted

$$W = \sin^2 \theta_{eff}^{lept} - (\sin^2 \theta_{eff}^{lept})^\circ - c_2 A_2 + c_3 A_3 - c_4 A_4,$$

$$Y = M_W^\circ - M_W - d_2 A_2 + d_3 A_3 - d_4 A_4$$

Likelihood of our indirect measurements Θ ={W, Y} is a two-dimensional correlated normal

$$f(\underline{\theta} \mid \ln(m_H)) \propto e^{-\chi^2/2}$$

 $\chi^2 = \underline{\Delta}^T \mathbf{V}^{-1} \underline{\Delta}, \quad V_{ij} = \sum_l \frac{\partial \Theta_i}{\partial X_l} \cdot \frac{\partial \Theta_j}{\partial X_l} \cdot \sigma^2(X_l), \quad \underline{\Delta} = \begin{pmatrix} a_1 - c_1 \ln(M_H/100) - c_5 \ln^2(M_H/100) \\ y - d_1 \ln(M_H/100) - d_5 \ln^2(M_H/100) \end{pmatrix}$

- Using Bayes' theorem the likelihood is turned into a p.d.f. of $\rm M_{_{H}}$ via a uniform prior in ln ($\rm M_{_{H}})$

$$f(M_H \mid ind.) = \frac{M_H^{-1} e^{-(\chi^2/2)}}{\int_0^\infty M_H^{-1} e^{-(\chi^2/2)} dM_H}.$$

Bayes' theorem:
$$f(\mu|x) = \frac{f(x|\mu) \cdot f(\mu)}{\int f(x|\mu) \cdot f(\mu) \, d\mu}$$
 prior

How $f(M_H | ind)$ is going to be modified by the results of the direct search experiments?

Ideal experiment (sharp kinematical limit, M_{κ}) with outcome no candidate:

- $f(M_{_H})$ must vanish below $M_{_{K}}$ (we did not observe)

$$f(M_H \mid dir. \& ind.) = \begin{cases} 0 & M_H < M_K \\ \frac{f(M_H \mid ind.)}{\int_{M_K}^{\infty} f(M_H \mid ind.) \, \mathrm{d}M_H} & M_H \ge M_K \,, \end{cases}$$

Just Bayes theorem:

 $f(M_H \mid dir. \& ind.) \propto f(dir. \mid M_H) \cdot f(M_H \mid ind.)$

Likelihood for the ideal experiment:

$$f(dir. | M_H) = f(\text{"zero cand."} | M_H) = \begin{cases} 0 & M_H < M_K \\ 1 & M_H \ge M_K \end{cases}.$$
 Step function

Real life:

no sharp kinematical limit, step function should be replace by a smooth curve that goes to zero for low masses and to 1 for $M_H \rightarrow M_{Keff}$ Normalize the likelihood to the no signal case (pure background) (Constant factors do not play any role in Bayes' theorem)

$$\mathcal{R}(M_H) = \frac{L(M_H)}{L(M_H \to \infty)}$$

Likelihood ratio (should be providwed by the experiments)

$$f(M_H \mid dir. \& ind.) = \frac{\mathcal{R}(M_H) f(M_H \mid ind.)}{\int_0^\infty \mathcal{R}(M_H) f(M_H \mid ind.) \, \mathrm{d}M_H}$$

Role of $\mathcal{R}(M_H)$

$\mathcal{R} = 1$

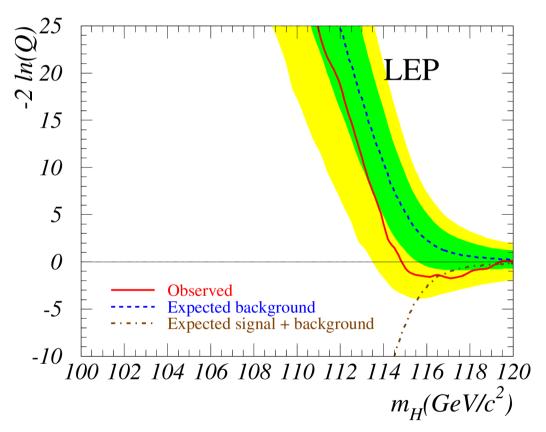
Region where the experiment is not sensitive; shape of $f(M_{_{\rm H}} | ind)$ does not change

 $\mathcal{R} < 1$

Probability is decreased, p.d.f. is pushed above M_{κ} $\mathcal{R}(M_H) \rightarrow 0$ cuts the region

$\mathcal{R} > 1$

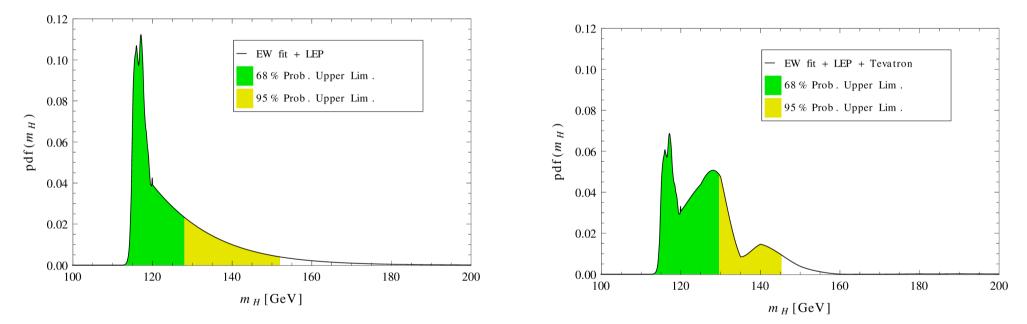
Probability is increased, p.d.f is streched below $M_{K,}$ very large $\mathcal{R}(M_H)$ prompt a discovery $\mathcal{Q} = \mathcal{R}$



Combining direct and indirect information:

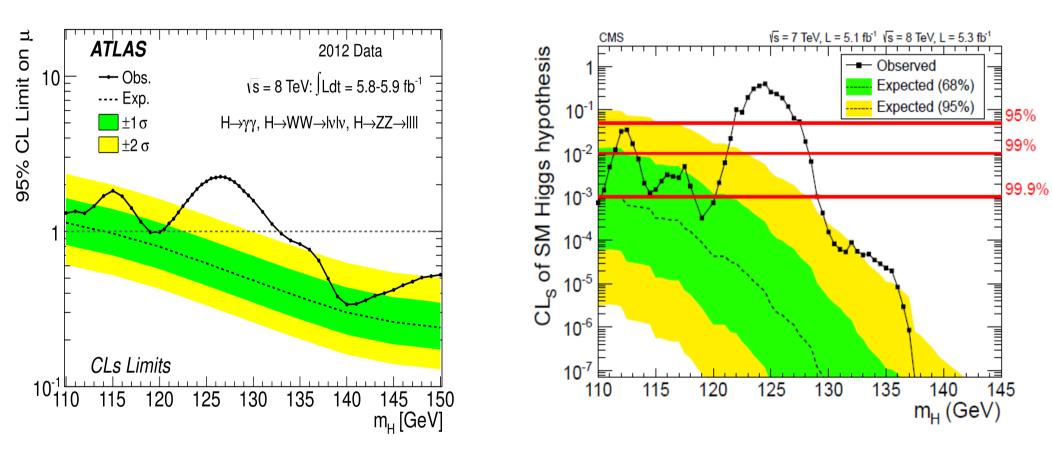
LEP

LEP+ TEVATRON



SM: $\rm M_{_{H}}$ between 114 and 160 GeV with 95% probability below 145 GeV

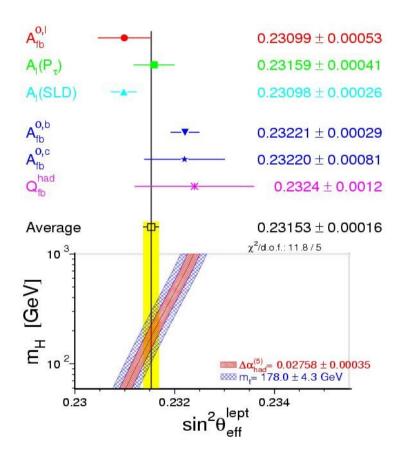
It is where the SM predicts it should be

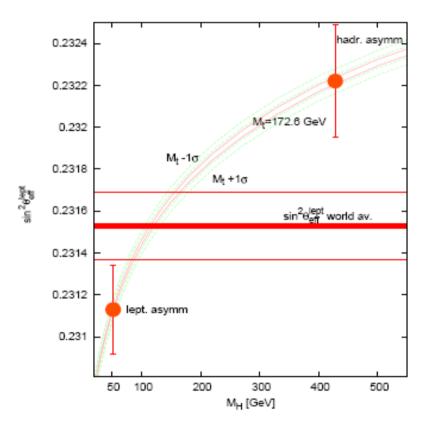


 $M_H = 125.3 \pm 0.4 \, (stat.) \pm 0.5 \, (syst.) \, \text{GeV}$

 $M_H = 126 \pm 0.4 \,(stat.) \pm 0.4 \,(syst.) \,\mathrm{GeV}$

Playing with experimental results not always works fine.





$$A^l(SLD) - A^{0,b}_{FB} \sim 3\sigma$$

New Physics effects, where they could be?

New particles are going to contribute to the W,Z self-energies (process-independent contributions) and to vertices (for specific processes). With $M_{_{NP}} >> M_{_Z}$ where and what kind of "large" effects can we expect?

Self-energy: 3 types of NP contributions

★
$$\alpha(M_Z)T \equiv \frac{A_{WW}(0)}{M_W^2} - \frac{A_{ZZ}(0)}{M_Z^2} \propto \Pi_{11}(0) - \Pi_{33}(0)$$

★ isospin violation

Isosplitted particles: effects grow as the difference in the mass squared between partners of multiplet. Top contributes quadratically, Higgs logarithmically

$$\star \quad \frac{\alpha(M_Z)}{4s^2c^2}S \equiv \frac{1}{M_Z^2} \left\{ A_{ZZ}(M_Z^2) - A_{ZZ}(0) - \frac{c^2 - s^2}{cs} \left[A_{\gamma Z}(M_Z^2) - A_{\gamma Z}(0) \right] - A_{\gamma \gamma}(M_Z^2) \right\} \\ \propto \Pi_{3Y}(M_Z^2) - \Pi_{3Y}(0)$$

No-effects that grow quadratically with the masses, but constant terms possible ($\neq 0$, $M_{_{NP}} \rightarrow \infty$) Top and Higgs logarithmically

$$\frac{\alpha(M_Z)}{4s^2c^2} U = \frac{A_{WW}(M_W^2) - A_{WW}(0)}{M_W^2} - c^2 \frac{A_{ZZ}(M_Z^2) - A_{ZZ}(0)}{M_Z^2} - \frac{1}{M_Z^2} [2cs (A_{\gamma Z}(M_Z^2) - A_{\gamma Z}(0)) - s^2 A_{\gamma \gamma}(M_Z^2)] \propto \frac{1}{M_W^2} [\Pi_{11}(M_W^2) - \Pi_{11}(0)] - \frac{1}{M_Z^2} [\Pi_{33}(M_Z^2) - \Pi_{33}(0)]] = 1 \text{ Sospin violation in the derivatives} U in many models is usually very small U=0 Two parameters fit: = 115.5 \text{ GeV} < M_H < 127 \text{ GeV} T = 600 \text{ GeV} < M_H < 1 \text{ TeV} = 0 = 5 \text{ for exact leng} = 5 \text{ for exact leng$$

Before the discovery of the Higgs one could envisage a situation in which NP contributions were going to mask the effect of a heavy Higgs ("conspiracy").

Simple explanation:

 $\hat{\rho} = \rho_0 + \delta \rho \left(\rho_0^{\rm SM} = 1, \delta \rho \leftrightarrow T \right)$ $\Delta \hat{r}_W \leftrightarrow S$

$$\sin^2 \theta_{eff}^{lept} \sim \frac{1}{2} \left\{ 1 - \left[1 - \frac{4A^2}{M_Z^2 \hat{\rho} (1 - \Delta \hat{r}_W)} \right]^{1/2} \right\}$$
$$\sim (\sin^2 \theta_{eff}^{lept})^\circ + c_1 \ln \left(\frac{M_H}{M_H^\circ} \right) + c_2 \left[\frac{(\Delta \alpha)_h}{(\Delta \alpha)_h^\circ} - 1 \right] - c_3 \left[\left(\frac{m_t}{m_t^\circ} \right)^2 - 1 \right] + \dots$$

 $c_i > 0$

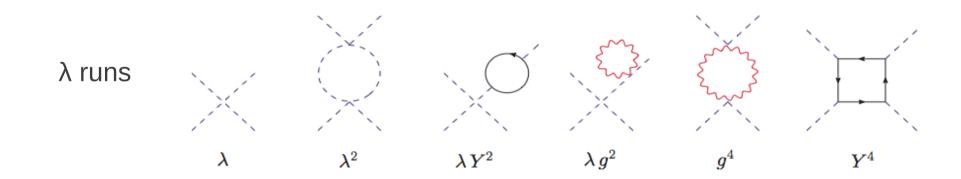
To increase the fitted M_H:
$$\begin{cases} \hat{\rho} > 1 \rightarrow \\ \Delta \hat{r}_W < 0 \end{cases} \begin{cases} \rho_0 > 1 \\ \delta \rho > 0 \end{cases}$$

NP better to be of the decoupling type

Theoretical bounds on the Higgs mass in the SM

$$V_{\text{Higgs}} \sim \lambda \phi^4 \rightarrow \left[\lambda + \gamma \ln \left(\frac{\phi^2}{\Lambda^2} \right) \right] \phi^4 \rightarrow \lambda(\Lambda) \phi'^4(\Lambda)$$
$$\phi' = \phi \exp \int^t \gamma(t') dt', \quad t = \ln(\Lambda/v)$$

 $V_{Higgs} > 0 \to \lambda(\Lambda) > 0$



$$\frac{d\lambda}{d\log Q} = \frac{1}{16\pi^2} \left\{ 24\,\lambda^2 + \lambda \,\left[12\,Y_t^2 + 12\,Y_b^2 + 4\,Y_\tau^2 - 9\,g^2 - 3g'^2 \right] \right. \\ \left. + \frac{9}{8}\,g^4 + \frac{3}{8}g'^4 + \frac{3}{4}\,g^2\,g'^2 - 6\,Y_t^4 - 6\,Y_b^4 - 2\,Y_\tau^4 \right\}$$

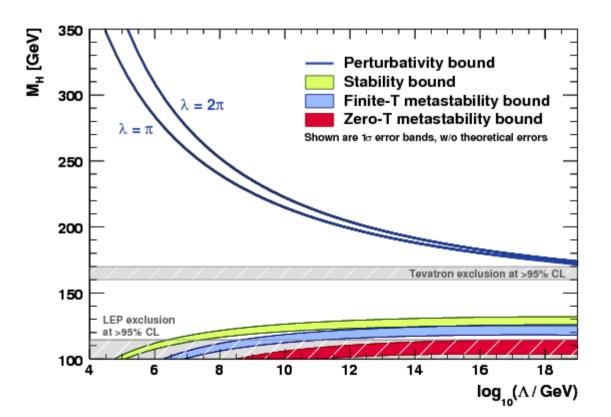
 $M_{_{H}}$ large: λ^2 wins non-perturbative regime

 $\lambda(m_t) \to \lambda(\Lambda) \gg 1$

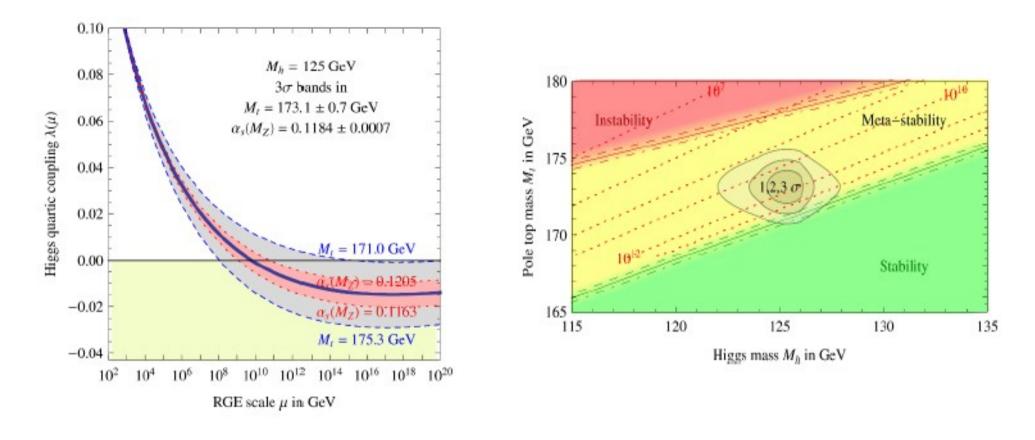
 $M_{_{\rm H}}$ small: $-Y_t^4$ wins vacuum (meta)stability

Running depends on

 m_t, α_s, \ldots



 $MH \sim 126$ GeV: no problem with the Landau pole



$$M_h \,[\text{GeV}] > 129.4 + 1.4 \left(\frac{M_t \,[\text{GeV}] - 173.1}{0.7}\right) - 0.5 \left(\frac{\alpha_s(M_Z) - 0.1184}{0.0007}\right) \pm 1.0_{\text{th}}$$

Full stability is at the border. Universe becomes metastable at $\Lambda \sim 10^{11}$ GeV. λ never becomes too negative, small probability of quantum tunneling. Lifetime of the EW vacuum longer than the age of the Universe. SM ok up to Planck mass.