FRont Of Galician speaking Scientists

Spectrum of (h)QCD in the Veneziano limit

$$
\mathcal{S}=\text { Einstein - dilaton }[\text { Glue }]+\mathrm{DBI}[\text { Flavor }]
$$

$$
m_{q}=0
$$

$$
x=N_{f} / N_{c}
$$

OUTLINE

$>$ V-hQCD: hQCD in the Veneziano limit

- hQCD (Einstein-dilaton \rightarrow Glue)
- Flavor (\leftarrow DBI), XSB (tachyon condensation)
- V-hQCD. Phase structure $\left(x=N_{c} / N_{f}\right)$: XSB, conformal window...
> Computing the Spectrum
- Action, vacuum solution, DoFs.
- Sectors (mixing)
- Some numerical results
$>$ Outlook \& To do
\star iHQCD [Gursoy et al'07]
- 5d Holographic model ~ large N_{c} YM (Glue)

$$
S_{g}=M^{3} N_{c}^{2} \int d^{5} x \sqrt{-g}\left(R-\frac{4}{3} \frac{(\partial \lambda)^{2}}{\lambda^{2}}+V_{g}(\lambda)\right) \quad \begin{aligned}
& \bullet \lambda \equiv e^{\Phi}=N_{c} g_{\mathrm{YM}}^{2} \\
& \bullet g_{a b} \xrightarrow{\mathbf{\mathrm { UV }}} \mathrm{AdS}_{5}
\end{aligned}
$$

\star iHQCD [Gursoy et al'o7]

- 5d Holographic model ~ large N_{c} YM (Glue)

$$
S_{g}=M^{3} N_{c}^{2} \int d^{5} x \sqrt{-g}\left(R-\frac{4}{3} \frac{(\partial \lambda)^{2}}{\lambda^{2}}+V_{g}(\lambda)\right) \quad \begin{aligned}
& \bullet \lambda \equiv e^{\Phi}=N_{c} g_{\mathrm{YM}}^{2} \\
& \bullet g_{a b} \xrightarrow{\mathbf{\mathrm { UV }}} \mathrm{AdS}_{5}
\end{aligned}
$$

- Dilaton Potential $V(\lambda)$ fixes dynamics:

- iHQCD models nicely the glue sector

- $V(\lambda)$: UV Asymptotic freedom \rightarrow IR confinement
- Realistic (linear) glueball spectrum. Fits well to lattice data
- Generalization to $T \neq 0$
$\exists T_{c} \rightarrow$ deconfinement phase transition
Good fit to lattice data
. . . what about flavor?
\star Adding flavor [Casero et al'07]

\star Adding flavor [Casero et al'07]

\star Adding flavor [Casero et al'07]

\star Adding flavor [Casero et al'07]

$$
\begin{gathered}
S_{D B I}=\int d r d^{4} x \frac{N_{c}}{\lambda} \operatorname{Str}\left[V(T)\left(\sqrt{-\operatorname{det}\left(g_{\mu \nu}+D_{\{\mu} T^{\dagger} D_{\nu\}} T+F_{\mu \nu}^{L}\right)}+\sqrt{-\operatorname{det}\left(g_{\mu \nu}+D_{\{\mu} T^{\dagger} D_{\nu\}} T+F_{\mu \nu}^{R}\right.}\right)\right] \\
V(T)=T_{p} e^{-\frac{1}{N_{f}} T r\left(T T^{\dagger}\right)} \quad D T \equiv \partial_{\mu} T-i T A^{L}+i A^{R} T, \quad D T^{\dagger} \equiv \partial_{\mu} T^{\dagger}-i A^{L} T^{\dagger}+i T^{\dagger} A^{R}
\end{gathered}
$$

- $N_{f} \ll N_{c}$ Quenched FLAVOR. XSB through TACHYON Condensation in a confining background:

- $N_{f} \ll N_{c}$ Quenched FLAVOR. XSB through TACHYON Condensation
in a confining background:

with all mq equal $\rightarrow T=\tau \mathbb{I}_{N_{f}}$

The tachyon condenses $\Rightarrow U\left(N_{f}\right)_{L} \times U\left(N_{f}\right)_{R} \longrightarrow U\left(N_{f}\right)_{V}$

- $\left(\mathrm{N}_{\mathrm{f}}\right)^{2}$ Goldstone Bosons (Pions)
$N_{f} \ll N_{c}$
- GOR: $m_{\pi}^{2}=-2 \frac{m_{q}}{f_{\pi}^{2}} \sigma$
- Linear spectrum (some sectors)
- $N_{f} \ll N_{c}$ Quenched FLAVOR. XSB through TACHYON Condensation in a confining background:

- $N_{f} \ll N_{c}$ Quenched FLAVOR. XSB through TACHYON Condensation
in a confining background:

The tachyon condenses $\Rightarrow U\left(N_{f}\right)_{L} \times U\left(N_{f}\right)_{R} \longrightarrow U\left(N_{f}\right)_{V}$

\star iHQCD in the Veneziano limit [Jarvinen \& Kiritsis'11]

$$
N_{c} \rightarrow \infty, \quad N_{f} \rightarrow \infty, \quad x \equiv N_{f} / N_{c} \text { fixed } \xrightarrow{\text { AdS/CFT ? }} \begin{gathered}
\text { Phase structure as function of } \mathbf{x}
\end{gathered} \text { [Conformal window, } \exists \mathbf{x}_{c}, \text { walking region ?] }
$$

\star iHQCD in the Veneziano limit [Jarvinen \& Kiritsis'11]

$N_{c} \rightarrow \infty, \quad N_{f} \rightarrow \infty, x \equiv N_{f} / N_{c}$ fixed $\xrightarrow{\text { AdS/CFT ? }} \begin{gathered}\text { Phase structure as function of } \mathbf{x} \\ \text { [Conformal window, } \exists \mathbf{x}_{c}, \text { walking region ?] }\end{gathered}$

Glue
V-hQCD: $\mathcal{L}=\left(M^{3} N_{c}^{2}\right) \int d^{4} x d r \sqrt{-g}\left(R-\frac{4}{3} \frac{(\partial \lambda)^{2}}{\lambda^{2}}+V_{g}(\lambda)\right)-x V_{f}(\lambda, T) \sqrt{\operatorname{det}\left(g_{a b}+(\lambda, T) \partial_{a} T \partial_{b} T\right)}$

\star iHQCD in the Veneziano limit [Jarvinen \& Kiritsis's'1]

$N_{c} \rightarrow \infty, \quad N_{f} \rightarrow \infty, x \equiv N_{f} / N_{c}$ fixed $\xrightarrow{\text { AdS/CFT ? }} \begin{gathered}\text { Phase structure as function of } \mathbf{x} \\ \text { [Conformal window, } \exists \mathbf{x}_{c}, \text { walking region ?] }\end{gathered}$

Glue
V-hQCD: $\left.\mathcal{L}=\left(M^{3} N_{c}^{2}\right) \int d^{4} x d r \sqrt{-g}\left(R-\frac{4}{3} \frac{(\partial \lambda)^{2}}{\lambda^{2}}+V_{g}(\lambda)\right)-x V_{f}(\lambda, T) \sqrt{\operatorname{det}\left(g_{a b}+(\lambda, T) \partial_{a} T \partial_{b} T\right)}\right]$

- Potentials: $\quad V_{g}(\lambda)$ as before. $V_{f}(\lambda, T)=V_{f 0}(\lambda) e^{-a(\lambda) T^{2}}$

$$
V_{f}(\lambda, T) \longleftarrow \begin{cases}\mathrm{UV}(\lambda \rightarrow 0): & \boldsymbol{\beta} \text {-functions, } \mathbf{B Z} \text { fixed point (x } \sim 11 / 2) \\ & \tau_{U V} \sim m_{q} r+\sigma r^{3} \\ & \\ \operatorname{IR}(\lambda \rightarrow \infty): & \text { Confinement, } \mathrm{T} \rightarrow \infty \text { at IR singularity }\end{cases}
$$

V-hQCD: vacuum solution \rightarrow Phase structure
$m_{q}=0$

V-hQCD: vacuum solution \rightarrow Phase structure
$m_{q}=0$

- Phase structure agrees w/ expectations for QCD
- Find walking region \rightarrow technicolor?
\longrightarrow Let's compute the spectrum

* iFluctuations of V -hQCD

- $S=S_{g}\left[g_{a b}, \lambda\right]+S_{f}\left[g_{a b}, \lambda, T, A_{a}^{L}, A_{a}^{R}\right]+S_{\mathrm{CP}-\text { odd }}$
- Vacuum: $T=\tau(r) \mathbb{I}_{N_{f}}, g_{a b}(r), \lambda(r), A_{a}^{L}=A_{b}^{R}=0$

\star iFluctuations of V -hQCD

- $S=S_{g}\left[g_{a b}, \lambda\right]+S_{f}\left[g_{a b}, \lambda, T, A_{a}^{L}, A_{a}^{R}\right]+S_{\mathrm{CP}-\text { odd }}$
- Vacuum: $T=\tau(r) \mathbb{I}_{N_{f}}, g_{a b}(r), \lambda(r), A_{a}^{L}=A_{b}^{R}=0$
- Degrees of freedom:

GLUEBALLS

J^{PC}
2^{++}
0^{++}
0^{-+}

- Metric: $g_{M N}=g_{M N}^{(0)}+\hat{g}_{M N}, \hat{g}_{M N} d \xi^{M} d \xi^{N}=e^{2 A_{s}}\left(2 \phi d r^{2}+2 \hat{A}_{\mu} d r d x^{\mu}+h_{\mu \nu} d x^{\mu} d x^{\nu}\right)$
- Dilaton ($\boldsymbol{\lambda}$): $\Phi=\Phi_{0}+\chi$

MESONS
$J^{\text {PC }}$
1^{--}
1^{++}
0^{++}
0^{-+}

- Gauge fields: $A_{\mu}^{L}-A_{\mu}^{R}, A_{\mu}^{L}+A_{\mu}^{R}$
- Tachyon: $\quad T=(\tau+s) e^{i \theta}$
- Mass Spectra

Expand

$$
\begin{array}{r}
S=M^{3} N_{c}^{2} \int d^{5} x\left[\sqrt{-g}\left(R-\frac{4}{3} \frac{(\partial \lambda)^{2}}{\lambda^{2}}+V_{g}(\lambda)\right)-\frac{x}{2} V_{f}(\lambda, T)\left(\sqrt{-\operatorname{det} \mathbf{A}_{L}}+\sqrt{-\operatorname{det} \mathbf{A}_{R}}\right)\right]+S_{\mathrm{CP}-\mathrm{odd}} \\
\mathbf{A}_{(i) M N}=g_{M N}+\omega(\lambda, T) F_{M N}^{(i)}+\frac{\kappa(\lambda, T)}{2}\left[\left(D_{M} T\right)^{*}\left(D_{N} T\right)+\left(D_{N} T\right)^{*}\left(D_{M} T\right)\right]
\end{array}
$$

- Mass Spectra

Expand

$$
\begin{array}{r}
S=M^{3} N_{c}^{2} \int d^{5} x\left[\sqrt{-g}\left(R-\frac{4}{3} \frac{(\partial \lambda)^{2}}{\lambda^{2}}+V_{g}(\lambda)\right)-\frac{x}{2} V_{f}(\lambda, T)\left(\sqrt{-\operatorname{det} \mathbf{A}_{L}}+\sqrt{-\operatorname{det} \mathbf{A}_{R}}\right)\right]+S_{\mathrm{CP}-\mathrm{odd}} \\
\mathbf{A}_{(i) M N}=g_{M N}+\omega(\lambda, T) F_{M N}^{(i)}+\frac{\kappa(\lambda, T)}{2}\left[\left(D_{M} T\right)^{*}\left(D_{N} T\right)+\left(D_{N} T\right)^{*}\left(D_{M} T\right)\right]
\end{array}
$$

up to O(fluctuation ${ }^{2}$)

- SECTORS
- Scalar mesons ($0^{++}, S U\left(N_{f}\right)$-sector)
- Pseudoscalar mesons ($0^{-+}, \mathrm{SU}\left(\mathrm{N}_{\mathrm{f}}\right)$-sector) [pions]
- Axial-vector mesons (1^{++})
- Vector mesons (1^{--})
- Spin two glueballs (2^{++})
- Scalar mesons ($\mathrm{O}^{++}, \mathrm{U}(1)$-sector) mix with O^{++}Glueballs
- Pseudoscalar mesons $\left(0^{-+}, U(1)\right.$-sector) mix with QCD axion $\left(0^{-+}\right)$
- Mixing:
- Scalar mesons ($0^{++}, \mathrm{U}(1)$-sector) mix with O^{++}Glueballs
- Pseudoscalar mesons ($0^{-+}, U(1)$-sector) mix with QCD axion (0^{-+})

Tachyon
$T=\left(\tau+s+\mathfrak{s}^{a} \tau_{a}\right) \curvearrowright-i \pi^{a} \tau_{a}$
Vector
FLAVOR \longrightarrow
$V_{\mu}=\left(A_{\mu}^{L}+A_{\mu}^{R}\right) / 2$
Axial-Vector
$A_{\mu}=\left(A_{\mu}^{L}-A_{\mu}^{R}\right) / 2=A_{\mu}^{\perp}+A_{\mu}^{\|}, \quad A_{\mu}^{\|}=\hat{A}_{\mu} \rrbracket / \sqrt{N_{f}}+\tilde{A}_{\mu}^{a} \tau^{a}$

- Mixing:
- Scalar mesons ($0^{++}, \mathrm{U}(1)$-sector) mix with 0^{++}Glueballs $\longrightarrow \xi=\psi-\frac{A_{s}^{\prime}}{\Phi^{\prime}} \chi$
- Pseudoscalar mesons ($0^{-+}, \mathrm{U}(1)$-sector) mix with QCD axion $\left(0^{-+}\right) \longrightarrow S_{\mathrm{CP}-\text { odd }}$
- Fields $\left(r, x^{\mu}\right)$

- Mixing (DBI):
- Pseudoscalar mesons ($0^{-+}, \mathrm{U}(1)$-sector) mix with QCD axion $\left(0^{-+}\right) \longrightarrow S_{\mathrm{CP}-\text { odd }}$

$$
S_{\mathrm{CP}-\text { odd }} \sim \int d^{5} x \sqrt{g} Z(\lambda)\left[d a+N_{f}(V(\lambda, T) \hat{A}+\theta d V(\lambda, T))\right]^{2} \quad\left[\leftrightarrow \mathbf { Q C D } \mathbf { U } \left(\mathbf{1}_{\mathrm{A}}\right.\right. \text { anomaly] }
$$

$\Rightarrow \eta^{\prime}-Q C D$ axion mixing

- Spectrum. Vector mesons

> Tech Specs:

>-Action (vector mesons sector) \& potential ('type II')

- Results (numerics)

- Spectrum. Vector mesons
- Results (numerics)

- Spectrum. Vector mesons
- Action: $\quad S_{V}=-x M^{3} N_{c}^{2} \mathbb{T} r \int d^{4} x d r V_{f}(\lambda, T) \omega(\lambda, T)^{2}\left[\frac{1}{2} \tilde{g}_{r r}^{\frac{1}{2}} V V+e^{2 A} \tilde{g}_{r r}^{-\frac{1}{2}} \partial_{r} V_{\mu} \partial_{r} V^{\mu}\right]$
- Potential: $V_{f}(\lambda, T)=\left(W_{0}+W_{1} \lambda+W_{2} \lambda^{2}\right) e^{-a(\lambda) T^{2}}$

$$
a(\lambda)=\frac{a_{0}+a_{1} \lambda+a_{2} \lambda^{2}}{\left(1+\frac{\lambda}{\lambda_{0}}\right)^{4 / 3}}
$$

$$
\omega(\lambda, T)=1 \quad \kappa(\lambda)=\frac{\kappa_{0}}{\left(1+\frac{\lambda}{\lambda_{0}}\right)^{4 / 3}}
$$

- Results (numerics)

- Spectrum. SCALARS (U(1)-sector, $\left.0^{++}\right)$

> Tech Specs:

>2 2 coupled ODES (with page-sized coefficients)

- Results (numerics)

- Spectrum. SCALARS (U(1)-sector, $\left.0^{++}\right)$
- Results (numerics)

- Spectrum. SCALARS (U(1)-sector, $\left.0^{++}\right)$
- EoMs

$$
\begin{aligned}
& \xi^{\prime \prime}+m(r) \xi^{\prime}+p(r) \zeta^{\prime}+\square \xi+N_{1}(r)(\xi-\zeta)=0 \\
& \zeta^{\prime \prime}+q(r) \xi^{\prime}+n(r) \zeta^{\prime}+t(r) \square \zeta+N_{2}(r)(\zeta-\xi)=0
\end{aligned}
$$

$$
\begin{aligned}
& \zeta=\psi-\frac{\bar{A}_{s}^{\prime}}{\tau^{\prime}} s \\
& \xi=\psi-\frac{\bar{A}_{s}^{\prime}}{\Phi^{\prime}} \chi
\end{aligned}
$$

- Results (numerics)

- Walking Technicolor
$>$ For $\mathrm{K}-\mathrm{n}_{\mathbf{c}}$ Background shows Walking behauiour
>> Solution approaches IR fixed point but misses it
- Walking Technicolor
- Walking Technicolor

'walking'

- Walking Technicolor

'walking'

- Technicolor S-parameter $\quad s=4 \pi \frac{d}{d q^{2}}\left(\Pi_{V}(q)-\Pi_{A}(q)\right)$

* OUTLOOK \& TO DO

- Fluctuations of $V-h Q C D ~ \checkmark$
- Spectrum \& 2-point functions
- Linear spectrum (type I potentials)
- Technicolor: s-parameter ...

