A Zip-Code for Quarks, Leptons and Higgs Bosons

universitätbonn

Damián K. Mayorga Peña
Based on ArXiV:1209.xxxx
In collaboration with H. P. Nilles and P.-K. Oehlmann
XVIII European Workshop on String Theory

Corfu, Greece, September 20, 2012

Outline:

(1) Motivation and Introduction
(2) The $\mathbb{Z}_{6-\text { II }}$ Mini-Landscape
(3) The $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ Orbifold
(-) Conclusion

Motivation and Outlook

- Heterotic Orbifolds are promising candidates for a stringy completion of the Standard Model.
- A vast amount of promising models has been identified within the $\mathbb{Z}_{6 \text {-II }}$ orbifold.
[Kobayashi et.al.'05, Buchmuller et.al.'06, Lebedev et. al.'08]
(1) Which are the properties of the models which make them so succesful?
(2) Are these results special for the $\mathbb{Z}_{6-\text { II }}$ or do they provide a general pattern?

Motivation and Outlook

- Heterotic Orbifolds are promising candidates for a stringy completion of the Standard Model.
- A vast amount of promising models has been identified within the $\mathbb{Z}_{6 \text {-II }}$ orbifold.
[Kobayashi et.al.'05, Buchmuller et.al.'06, Lebedev et. al.'08]
(1) Which are the properties of the models which make them so succesful? \rightarrow Locations of the fields in the extra dimensions seem to be a crucial ingredient.
(2) Are these results special for the $\mathbb{Z}_{6-\text { II }}$ or do they provide a general pattern?

Motivation and Outlook

- Heterotic Orbifolds are promising candidates for a stringy completion of the Standard Model.
- A vast amount of promising models has been identified within the $\mathbb{Z}_{6 \text {-II }}$ orbifold.
[Kobayashi et.al.'05, Buchmuller et.al.'06, Lebedev et. al.'08]
(1) Which are the properties of the models which make them so succesful? \rightarrow Locations of the fields in the extra dimensions seem to be a crucial ingredient.
(2) Are these results special for the $\mathbb{Z}_{6-\text { II }}$ or do they provide a general pattern? \rightarrow Construct the new $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ Orbifold.

Motivation and Outlook

- Heterotic Orbifolds are promising candidates for a stringy completion of the Standard Model.
- A vast amount of promising models has been identified within the $\mathbb{Z}_{6 \text {-II }}$ orbifold.
(1) Which are the properties of the models which make them so succesful? \rightarrow Locations of the fields in the extra dimensions seem to be a crucial ingredient.
(2) Are these results special for the $\mathbb{Z}_{6-\text { II }}$ or do they provide a general pattern? \rightarrow Construct the new $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ Orbifold.
- Can we confirm similar benchmarks in $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$?

The \mathbb{Z}_{6}-II Mini-Landscape

- Starting Point: The ten-dimensional $E_{8} \times E_{8}$ Heterotic String.
- Compactify the Extra Dimensions:

$$
\mathcal{M}_{9,1}=\mathcal{M}_{3,1} \times \mathbb{O}_{6}
$$

- Take \mathbb{O}_{6} as the torus of $G_{2} \times S U(3) \times S U(2)^{2}$ after modding out the isometry $\theta=\mathrm{e}^{2 \pi \mathrm{i} v}, v=\left(\frac{1}{6}, \frac{1}{3},-\frac{1}{2}\right)$, and its powers.
[Kobayashi, Raby, Zhang'04]

Gauge Symmetries

- Orbifolding breaks the $E_{8} \times E_{8}$:
- Consistency with modular invariance requires the "orbifolding" to act also in gauge space
- Simplest Alternative: Sifts and Wilson Lines

$$
\theta \hookrightarrow V \text {, such that } 6 V \text { belongs to the gauge lattice }
$$

An example

(1) Consider the shift

$$
V=\left(\frac{1}{3},-\frac{1}{2},-\frac{1}{2}, 0,0,0,0,0\right)\left(\frac{1}{2},-\frac{1}{6},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right),
$$

it leads to the breaking

$$
E_{8} \times E_{8} \xrightarrow{V}[S O(10) \times S U(2) \times S U(2) \times U(1)] \times[S O(14) \times U(1)]
$$

with the following spectrum

U	T_{2}	T_{3}	T_{4}	T_{5}
$(\mathbf{1 0}, \mathbf{2}, \mathbf{2}, \mathbf{1})_{0,0}$	$3(\mathbf{1}, \mathbf{2}, \mathbf{2}, \mathbf{1})-\frac{28}{3},-\frac{2}{3}$	$4+4(\mathbf{1}, \mathbf{1}, \mathbf{2}, \mathbf{1})_{12,-2}$	$3+3(\mathbf{1}, \mathbf{2}, \mathbf{2}, \mathbf{1}) \frac{28}{3}, \frac{2}{3}$	$12(\overline{\mathbf{1 6}}, \mathbf{1}, \mathbf{1}, \mathbf{1}) \frac{14}{3}, \frac{1}{3}$
$(\mathbf{1}, \mathbf{2}, \mathbf{2}, \mathbf{1})_{4,6}$	$3+3(\mathbf{1 0}, \mathbf{1}, \mathbf{1}, \mathbf{1})-\frac{28}{3},-\frac{2}{3}$	$4(\mathbf{1}, \mathbf{1}, \mathbf{2}, \mathbf{1 4})_{0,0}$	$3(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1 4})-\frac{20}{3},-\frac{10}{3}$	$12(\mathbf{1}, \mathbf{1}, \mathbf{2}, \mathbf{1}) \frac{20}{3}, \frac{10}{3}$
$(\overline{\mathbf{1 6}}, \mathbf{1}, \mathbf{2}, \mathbf{1})_{-2,-3}$	$3+3(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1 4}) \frac{20}{3}, \frac{10}{3}$	$4(\mathbf{1}, \mathbf{1}, \mathbf{2}, \mathbf{1})_{-12,2}$	$3(\mathbf{1 0}, \mathbf{1}, \mathbf{1}, \mathbf{1}) \frac{28}{3}, \frac{2}{3}$	$24(\mathbf{1}, \mathbf{2}, \mathbf{1}, \mathbf{1}) \frac{8}{3},-\frac{8}{3}$
$(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{6 4})_{6,-1}$	$9(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})-\frac{16}{3}, \frac{16}{3}$		$9(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}) \frac{16}{3},-\frac{16}{3}$	
$\left(\overline{\mathbf{1 6}, \mathbf{2}, \mathbf{1}, \mathbf{1})_{2,3}}\right.$				
$(\mathbf{1 0}, \mathbf{1}, \mathbf{1}, \mathbf{1})_{-4,-6}$				
$(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1 4})_{12,-2}$				

An example

(1) Consider the shift

$$
V=\left(\frac{1}{3},-\frac{1}{2},-\frac{1}{2}, 0,0,0,0,0\right)\left(\frac{1}{2},-\frac{1}{6},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right),
$$

it leads to the breaking

$$
E_{8} \times E_{8} \xrightarrow{V}[S O(10) \times S U(2) \times S U(2) \times U(1)] \times[S O(14) \times U(1)]
$$

(2) Turn on W_{2} and W_{3} to break the $S O(10)$ down to $G_{S M}$.

An example

(1) Consider the shift

$$
V=\left(\frac{1}{3},-\frac{1}{2},-\frac{1}{2}, 0,0,0,0,0\right)\left(\frac{1}{2},-\frac{1}{6},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right),
$$

it leads to the breaking

$$
E_{8} \times E_{8} \xrightarrow{V}[S O(10) \times S U(2) \times S U(2) \times U(1)] \times[S O(14) \times U(1)]
$$

Two families from the T_{5} sector.

U	T_{2}	T_{3}	T_{4}	T_{5}
$\begin{gathered} (\mathbf{1 0}, \mathbf{2}, \mathbf{2}, \mathbf{1})_{0,0} \\ (\mathbf{1}, \mathbf{2}, \mathbf{2}, \mathbf{1})_{4,6} \\ (\overline{\mathbf{1 6}}, \mathbf{1}, \mathbf{2}, \mathbf{1})_{-2,-3} \\ (\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{6 4})_{6,-1} \\ (\overline{\mathbf{1 6}}, \mathbf{2}, \mathbf{1}, \mathbf{1})_{2,3} \\ (\mathbf{1 0}, \mathbf{1}, \mathbf{1}, \mathbf{1})_{-4,-6} \\ (\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1 4})_{12,-2} \\ \hline \end{gathered}$	$\begin{gathered} 3(\mathbf{1}, \mathbf{2}, \mathbf{2}, \mathbf{1})-\frac{28}{3},-\frac{2}{3} \\ 3+3(\mathbf{1 0}, \mathbf{1}, \mathbf{1}, \mathbf{1})-\frac{28}{3},-\frac{2}{3} \\ 3+3(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1 4}) \frac{20}{3}, \frac{10}{3} \\ 9(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})-\frac{16}{3}, \frac{16}{3} \end{gathered}$	$\begin{gathered} 4+4(\mathbf{1}, \mathbf{1}, \mathbf{2}, \mathbf{1})_{12,-2} \\ 4(\mathbf{1}, \mathbf{1}, \mathbf{2}, \mathbf{1 4})_{0,0} \\ 4(\mathbf{1}, \mathbf{1}, \mathbf{2}, \mathbf{1})_{-12,2} \end{gathered}$	$\begin{gathered} 3+3(\mathbf{1}, \mathbf{2}, \mathbf{2}, \mathbf{1}) \frac{28}{3}, \frac{2}{3} \\ 3(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1 4})-\frac{20}{3},-\frac{10}{3} \\ 3(\mathbf{1 0}, \mathbf{1}, \mathbf{1}, \mathbf{1}) \frac{28}{3}, \frac{2}{3} \\ 9(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}) \frac{16}{3},-\frac{16}{3} \end{gathered}$	$\begin{aligned} & 12(\overline{\mathbf{1 6}}, \mathbf{1}, \mathbf{1}, \mathbf{1}) \frac{14}{3}, \frac{1}{3} \\ & 12(\mathbf{1}, \mathbf{1}, \mathbf{2}, \mathbf{1}) \frac{20}{3}, \frac{10}{3} \\ & 24(\mathbf{1}, \mathbf{2}, \mathbf{1}, \mathbf{1}) \frac{8}{3},-\frac{8}{3} \end{aligned}$

An example

(1) Consider the shift

$$
V=\left(\frac{1}{3},-\frac{1}{2},-\frac{1}{2}, 0,0,0,0,0\right)\left(\frac{1}{2},-\frac{1}{6},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right),
$$

it leads to the breaking

$$
E_{8} \times E_{8} \xrightarrow{V}[S O(10) \times S U(2) \times S U(2) \times U(1)] \times[S O(14) \times U(1)]
$$

\rightarrow A purely untwisted trilinear coupling.

U	T_{2}	T_{3}	T_{4}	T_{5}
$(\mathbf{1 0}, \mathbf{2}, \mathbf{2}, \mathbf{1})_{0,0}$	$3(\mathbf{1}, \mathbf{2}, \mathbf{2}, \mathbf{1})-\frac{28}{3},-\frac{2}{3}$	$4+4(\mathbf{1}, \mathbf{1}, \mathbf{2}, \mathbf{1})_{12,-2}$	$3+3(\mathbf{1}, \mathbf{2}, \mathbf{2}, \mathbf{1})_{\frac{28}{3}}, \frac{2}{3}$	$12(\overline{\mathbf{1 6}}, \mathbf{1}, \mathbf{1}, \mathbf{1}) \frac{14}{3}, \frac{1}{3}$
$(\overline{\mathbf{1 6}}, \mathbf{1}, \mathbf{2}, \mathbf{1})_{-2,-3}$	$3+3(\mathbf{1 0}, \mathbf{1}, \mathbf{1}, \mathbf{1})_{-\frac{28}{3},-\frac{2}{3}}$	$4(\mathbf{1}, \mathbf{1}, \mathbf{2}, \mathbf{1 4})_{0,0}$	$3(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1 4})-\frac{20}{3},-\frac{10}{3}$	$12(\mathbf{1}, \mathbf{1}, \mathbf{2}, \mathbf{1}) \frac{20}{3}, \frac{10}{3}$
$(\overline{\mathbf{1 6}}, \mathbf{2}, \mathbf{1}, \mathbf{1})_{2,3}$	$3+3(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1 4})_{\frac{20}{3}, \frac{10}{3}}$	$4(\mathbf{1}, \mathbf{1}, \mathbf{2}, \mathbf{1})_{-12,2}$	$3(\mathbf{1 0}, \mathbf{1}, \mathbf{1}, \mathbf{1})_{\frac{28}{3}, \frac{2}{3}}^{2(\mathbf{1}, \mathbf{2}, \mathbf{1}, \mathbf{1})} \frac{8}{3},-\frac{8}{3}$	
$(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{6 4})_{6,-1}$	$9(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})-\frac{16}{3}, \frac{16}{3}$		$9(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}) \frac{16}{3},-\frac{16}{3}$	
$(\mathbf{1}, \mathbf{2}, \mathbf{2}, \mathbf{1})_{4,6}$ $(\mathbf{1 0}, \mathbf{1}, \mathbf{1}, \mathbf{1})_{-4,-6}$ $(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1 4})_{12,-2}$				

An example

(1) Consider the shift

$$
V=\left(\frac{1}{3},-\frac{1}{2},-\frac{1}{2}, 0,0,0,0,0\right)\left(\frac{1}{2},-\frac{1}{6},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)
$$

it leads to the breaking

$$
E_{8} \times E_{8} \xrightarrow{V}[S O(10) \times S U(2) \times S U(2) \times U(1)] \times[S O(14) \times U(1)]
$$

\rightarrow A purely untwisted trilinear coupling.

- The coupling $(\mathbf{1 0}, \mathbf{2}, \mathbf{2}, \mathbf{1})_{0,0} \cdot(\overline{\mathbf{1 6}}, \mathbf{1}, 2,1)_{-2,-3} \cdot(\overline{\mathbf{1 6}}, 2,1,1)_{2,3}$ is allowed by all symmetries.
- Specific choice of WLs permits the splitting

$$
\begin{aligned}
(\mathbf{1 0}, \mathbf{2}, \mathbf{2}, \mathbf{1})_{0,0} & \rightarrow \overbrace{(1, \mathbf{2}, \mathbf{1}, \mathbf{1})_{1 / 2, \ldots}}^{H_{u}}+\overbrace{(1, \mathbf{2}, \mathbf{1}, \mathbf{1})_{-1 / 2, \ldots}}^{H_{d}} \\
(\overline{\mathbf{1 6}}, \mathbf{1}, \mathbf{2}, \mathbf{1})_{-2,-3} & \rightarrow \underbrace{(\overline{\mathbf{3}}, \mathbf{1}, \mathbf{1}, \mathbf{1})_{-2 / 3, \ldots}}_{\bar{U}}+(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})_{0, \ldots}+(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})_{0, \ldots} \\
(\overline{\mathbf{1 6}}, \mathbf{2}, \mathbf{1}, \mathbf{1})_{2,3} & \rightarrow \underbrace{(\mathbf{3}, \mathbf{2}, \mathbf{1}, \mathbf{1})_{1 / 6, \ldots}}_{Q}+(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})_{0, \ldots}
\end{aligned}
$$

An example

(1) Consider the shift

$$
V=\left(\frac{1}{3},-\frac{1}{2},-\frac{1}{2}, 0,0,0,0,0\right)\left(\frac{1}{2},-\frac{1}{6},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right),
$$

it leads to the breaking

$$
E_{8} \times E_{8} \xrightarrow{V}[S O(10) \times S U(2) \times S U(2) \times U(1)] \times[S O(14) \times U(1)]
$$

\rightarrow A purely untwisted trilinear coupling.

- Surviving pieces ensure a top-Yukawa

$$
(10,2,2,1) \cdot(\overline{16}, 1,2,1) \cdot(\overline{16}, 2,1,1) \xrightarrow{W_{2}, W_{3}} Q H_{u} \bar{U}
$$

- BONUS: $H_{u} \cdot H_{d} \subset(\mathbf{1 0}, \mathbf{2}, \mathbf{2}, \mathbf{1})^{2}$ is a neutral monomial under all selection rules, including R-symmetries!

Lessons from the Mini-Landscape

1. The Higgs System

- Compactifications provide plenty of Higgs candidates
- Neutral Higgs bilinear from the untwisted sector occurs very often in the models
- Preference for gauge-Higgs unification.
- A miraculous solution to the μ problem:
$\rightarrow R$-symmetries are remnants of the Lorentz group in compact space
$\rightarrow \mu H_{u} H_{d} \not \subset \mathcal{W}$ thanks to the R-symmetries
$\rightarrow R$-symmetry breaking scale \sim SUSY breaking scale

Lessons from the Mini-Landscape

2. The top-quark

- Top quark mass of the order of the weak scale Stringy top-Yukawa at trilinear order
- Usually, this coupling exists if \bar{U}_{3}, Q_{3} and H_{u} are in the bulk
\rightarrow Top family is a patchwork of fields sitting at different positions in the extra dimensions
\rightarrow Gauge-Higgs-Top Unification

Lessons from the Mini-Landscape

3. The Light Families

- Two complete families as multiplets of an underlying GUT (e.g. SO(10) or $\left.E_{6}\right)$
- No trilinear couplings \rightarrow Masses are suppressed
- Light families are a doublet of a D_{4} flavor symmetry.
\rightarrow ameliorates the flavor problem

Lessons from the Mini-Landscape

4. The SUSY Breaking Pattern

- Hidden sector gaugino condensation is favored
- Dilaton stabilized at a realistic GUT value $\Rightarrow m_{3 / 2}$ in the multi- TeV range.
\rightarrow Mirage mediation

[Lebedev, Nilles, Ratz'06]
- Fields sitting at F.P. feel only $\mathcal{N}=1$ SUSY
\rightarrow Scalar masses $\sim m_{3 / 2}$
- Bulk and F.T. fields feel remnants of $\mathcal{N}=4,2$
\rightarrow Superpartner masses
suppresed by $\log \left(M_{\mathrm{Pl}} / m_{3 / 2}\right)$
\rightarrow Natural SUSY

The $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ orbifold

- Point group generators

$$
\begin{array}{lll}
\mathbb{Z}_{2}: & \omega & v_{2}=\left(\frac{1}{2},-\frac{1}{2}, 0\right) \\
\mathbb{Z}_{4}: & \theta & v_{4}=\left(0, \frac{1}{4},-\frac{1}{4}\right)
\end{array}
$$

- Compactification lattice

$$
\mathrm{SU}(2)^{2} \times \mathrm{SO}(4) \times \mathrm{SO}(4)
$$

The $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ orbifold

- Point group generators

$$
\begin{array}{lll}
\mathbb{Z}_{2}: & \omega & v_{2}=\left(\frac{1}{2},-\frac{1}{2}, 0\right) \\
\mathbb{Z}_{4}: & \theta & v_{4}=\left(0, \frac{1}{4},-\frac{1}{4}\right)
\end{array}
$$

- Twisted sectors

Twisted Sector $T_{(0,1)}\left(T_{(0,3)}\right): 4$ fixed tori (5-branes)

The $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ orbifold

- Point group generators

$$
\begin{array}{lll}
\mathbb{Z}_{2}: & \omega & v_{2}=\left(\frac{1}{2},-\frac{1}{2}, 0\right) \\
\mathbb{Z}_{4}: & \theta & v_{4}=\left(0, \frac{1}{4},-\frac{1}{4}\right)
\end{array}
$$

- Twisted sectors

Twisted Sector $T_{(0,2)}: 10$ fixed tori (5-branes)

The $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ orbifold

- Point group generators

$$
\begin{array}{lll}
\mathbb{Z}_{2}: & \omega & v_{2}=\left(\frac{1}{2},-\frac{1}{2}, 0\right) \\
\mathbb{Z}_{4}: & \theta & v_{4}=\left(0, \frac{1}{4},-\frac{1}{4}\right)
\end{array}
$$

- Twisted sectors

Twisted Sector $T_{(1,0)}: 12$ fixed tori (5-branes)

The $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ orbifold

- Point group generators

$$
\begin{array}{lcl}
\mathbb{Z}_{2}: & \omega & v_{2}=\left(\frac{1}{2},-\frac{1}{2}, 0\right) \\
\mathbb{Z}_{4}: & \theta & v_{4}=\left(0, \frac{1}{4},-\frac{1}{4}\right)
\end{array}
$$

- Twisted sectors

Twisted Sector $T_{(1,1)}\left(T_{(1,3)}\right)$: 16 fixed points (3-branes)

The $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ orbifold

- Point group generators

$$
\begin{array}{lll}
\mathbb{Z}_{2}: & \omega & v_{2}=\left(\frac{1}{2},-\frac{1}{2}, 0\right) \\
\mathbb{Z}_{4}: & \theta & v_{4}=\left(0, \frac{1}{4},-\frac{1}{4}\right)
\end{array}
$$

- Twisted sectors

Twisted Sector $T_{(1,2)}: 12$ fixed tori (5-branes)

Gauge Embedding

- Two shifts V_{2} and V_{4} required to embed the point group
- Equivalences up to lattice vectors and lattice automorphisms lead to a finite amount of physical theories
- Modular invariance constraints

$$
\operatorname{gcd}\left(N_{i}, N_{j}\right)\left(V_{i} \cdot V_{g}-v_{i} \cdot v_{j}\right)=0 \bmod 2, \quad i, j=1,2
$$

[Ploger et. al.'07]
have to be satisfied.

- 144 inequivalent embeddings for $\left(V_{2}, V_{4}\right)$. Two inequivalent models per embedding.
(3) 35 embeddings lead to the presence an $\mathrm{SO}(10)$ factor in the gauge group.
(2) 26 include E_{6}.
- 25 include $\mathrm{SU}(5)$.

Our Strategy

- Concentrate on E_{6} and $S O(10)$ shifts.

Our Strategy

- Concentrate on E_{6} and $S O(10)$ shifts.
- Compute the spectra at the GUT level.

Model	Untwisted	$(0,1)$	$(0,2)$	$(0,3)$		$(1,0)$	$(1,1)$	$(1,2)$	$(1,3)$
:	:	:		\vdots	\vdots	:	:	$\vdots \quad \vdots$	\vdots
67	2(10), 2(16),				16	10,16			
	$2(\overline{\mathbf{1 6}})$				10	10,16			
	:		\vdots :	:	:			$\vdots \quad \vdots$:
Multiplicities		4	46	4	8	4	16	84	16

Our Strategy

- Concentrate on E_{6} and $S O(10)$ shifts.
- Compute the spectra at the GUT level.
- Search for Wilson line configurations which are likely to give three families

Our Strategy

- Concentrate on E_{6} and $S O(10)$ shifts.
- Compute the spectra at the GUT level.
- Search for Wilson line configurations which are likely to give three families \Rightarrow The matter content at protected and split fixed points descends directly from the spectrum at the GUT level.

Our Strategy

- Concentrate on E_{6} and $S O(10)$ shifts.
- Compute the spectra at the GUT level.
- Search for Wilson line configurations which are likely to give three families \Rightarrow The matter content at protected and split fixed points descends directly from the spectrum at the GUT level.
- Assume renormalizable top-Yukawa coupling does not involve unshielded states
\Rightarrow Search for locations and models which make the coupling possible upon a certain choice of WLs.

Wilson Lines and Gauge Topographies

- Four different posibilites for Wilson lines, all WL have to be of order two.

Wilson Lines and Gauge Topographies

- Four different posibilites for Wilson lines, all WL have to be of order two. 16 possible configurations!
- How do the WLs affect the gauge topographies?

Consider for instance the $T_{(1,0)}$ sector: e_{2}

Wilson Lines and Gauge Topographies

- Four different posibilites for Wilson lines, all WL have to be of order two. 16 possible configurations!
- How do the WLs affect the gauge topographies?

Consider for instance the $T_{(1,0)}$ sector:

Config.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
W_{1}		\checkmark				\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark		\checkmark
W_{2}			\checkmark			\checkmark			\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark
W_{3}				\checkmark			\checkmark		\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
W_{4}					\checkmark			\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark

Wilson Lines and Gauge Topographies

- Four different posibilites for Wilson lines, all WL have to be of order two. 16 possible configurations!
- How do the WLs affect the gauge topographies? Consider for instance the $T_{(1,0)}$ sector:

Config.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
W_{1}		\checkmark				\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark		\checkmark
W_{2}			\checkmark			\checkmark			\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark
W_{3}				\checkmark			\checkmark		\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
W_{4}					\checkmark			\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark

Flavor Symmetries

The Space Group Selection Rule SGSR

A coupling $\Phi_{1} \cdot \Phi_{2} \ldots . \Phi_{L}$ is allowed in the superpotential only if the product of conjugacy classes for the fields contains the identity element.

- The point group becomes a discrete symmetry of the $4 D$ QFT. \Rightarrow Assume that the field Φ_{i} belongs to $T_{\left(n_{i}, m_{i}\right)}$, then the L-point couplings does not vanish, provided

$$
\sum_{i=1}^{L} n_{i}=0 \bmod 2, \quad \sum_{i=1}^{L} m_{i}=0 \bmod 4
$$

Flavor Symmetries

The Space Group Selection Rule SGSR

A coupling $\Phi_{1} \cdot \Phi_{2} \ldots . \Phi_{L}$ is allowed in the superpotential only if the product of conjugacy classes for the fields contains the identity element.
[Dixon et. al.'86, Erler et. al.'92]

- The location of the singularities in the extra dimensions introduces four additional \mathbb{Z}_{2} symmetries.

Flavor Symmetries

Permutation symmetries

There are some fixed points/tori which have exactly the same matter and can not be distinguished by means of the CFT.

For $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ we obtain

$$
G_{\text {Flavor }}=\frac{\left(\frac{D_{4} \times D_{4}}{\mathbb{Z}_{2}}\right) \times\left(\frac{D_{4} \times \mathbb{Z}_{4}}{\mathbb{Z}_{2}}\right) \times\left(\frac{D_{4} \times \mathbb{Z}_{4}}{\mathbb{Z}_{2}}\right)}{\mathbb{Z}_{2} \times \mathbb{Z}_{4}}=\frac{D_{4}^{4} \times \mathbb{Z}_{4}}{\mathbb{Z}_{2}^{4}} .
$$

Wilson lines break the flavor group blockwise, they affect only the non-Abelian parts.
\rightarrow Topography + Flavor symmetry structure allow for the two light families to complete GUT multiplets transforming as a flavor doublet.

R-Symmetries

There is a discrete subgroup of $S O(6) \subset S O(9,1)$ which survives compactification and orbifolding.
\rightarrow Potential candidates for R-symmetries in the low energy

- Lattice isometries acting only in each plane fulfill these conditions.
- For the specific case of $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$, non vanishing couplings in the superpotential must satisfy

$$
\sum_{\alpha=1}^{L} R_{\alpha}^{1}=1 \bmod 2, \quad \sum_{\alpha=1}^{L} R_{\alpha}^{2}=1 \bmod 4, \quad \sum_{\alpha=1}^{L} R_{\alpha}^{3}=1 \bmod 4
$$

VERY IMPORTANT: If Higgses have R-charges ($1,0,0$), the Higgs bilinear is neutral under all selection rules!

Trilinear Top-Yuakawa Coupling

- Selection rules leave a few possibilities for a trilinear coupling
- All except a purely untwisted coupling turn out to be disfavored because
(1) Models contain more than one heavy family
(3) There is no shift embedding with the desired features
(Rule out the possibility for the light families to be complete GUT multiplets
- Untwisted trilinear coupling is verified to exist in 75% of all $S O(10)$ models
\rightarrow Left- and right-chiral top and up type Higgs live in the bulk
\rightarrow Down-type Higgs likely to live also in the untwisted sector.

Conclusions

- The $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ seems to confirm the $\mathbb{Z}_{6 \text {-II }}$ location picture.
- The presence of a \mathbb{Z}_{2} plane favors the Higgses to arise as a vector-like pair from the bulk.
- The amount of twisted sectors gives more flexibility for the light families to be accommodated in the extra dimensions.

Prospects

- Explicit construction of $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ models is work in progress
- Algorithms developed for classifying embeddings and obtaining matter spectra can be extended to other $\mathbb{Z}_{N} \times \mathbb{Z}_{M}$ orbifolds

$\varepsilon v \chi \alpha \rho \iota \sigma \tau \omega$

