Dipartimento di Astronomia Università di Bologna

Max-Planck-Institut für Astrophysik

NUMERICAL SIMULATIONS OF GALAXY CLUSTERS IN DARK ENERGY COSMOLOGIES: *c-M* RELATION

Cristiano DE BONI

Klaus DOLAG (MPA) Stefano ETTORI (OABO) Lauro MOSCARDINI (UNIBO) Valeria PETTORINO (SISSA)

Corfu (Greece), 18.09.2012

OUTLINE

Largest bound objects in the Universe:

$$M \sim 10^{14} - 10^{15} \,\mathrm{M}_{\odot}$$

 $R \sim 1 \,\mathrm{Mpc}$
 $T_X \sim 1 - 10 \,\mathrm{keV}$
 $L_X \sim 10^{43} - 10^{44} \,\mathrm{erg/s}$
 $\sigma \sim 700 - 800 \,\mathrm{km/s}$

(NASA)

Galaxies ~ 5% of the total mass. Only 15-20% in form of visible matter.

- What is the influence of dark energy on structure formation?
- Is the *c*-*M* relation affected in some way by dark energy?
- How is the *c*-*M* relation influenced by the dynamical state of the sample?
- Simulations must be used to study galaxy clusters properties in cosmological context with different dark energy models

• w = -1• w = w(z) cosmological constant dynamical dark energy (quintessence)

$w = p/\rho$ dark energy equation of state

(courtesy of Marco Baldi)

- w = -1
- w = w(z)

cosmological constant dynamical dark energy (quintessence)

Minimally coupled quintessence:

minimal coupling between quintessence scalar field and gravity, inverse power-law potential (RP)

(Ratra & Peebles 1988)

- w = -1
- w = w(z)

cosmological constant dynamical dark energy (quintessence)

Minimally coupled quintessence:

minimal coupling between quintessence scalar field and gravity, inverse power-law potential with exponential term (SUGRA)

(Brax & Martin 1999)

- w = -1
- w = w(z)

cosmological constant dynamical dark energy (quintessence)

Scalar-tensor theories:

non-minimal positive/negative coupling between quintessence scalar field and gravity, extended quintessence (EQp/EQn)

ABLE I.	Summary	of	corrections	required	to	run	N-body
imulations	in CQ and	EQ	scenarios.				

CQ	EQ
$1 + 2C_c^2$	\tilde{G}/G_*
1	\tilde{G}/G_{\bullet}
1	\tilde{G}/G_{\bullet}
$1 - \frac{C_c \phi'}{2\ell}$	1
$e^{-C_c(\phi - \phi_0)}$	1
1	1
	CQ $1 + 2C_c^2$ 1 1 $1 - \frac{C_c \phi'}{e^{-C_c(\phi - \phi_0)}}$ 1

(Pettorino & Baccigalupi 2008)

• ACDM (cosmological constant)

DM-ONLY RUN

- GADGET-3 cosmological N-body simulation
- (300 Mpc/h)³ box resolved with (768)³ particles

•
$$m_{DM} = 4.4 \times 10^9 \,\mathrm{M_{\odot}}/h$$

(K. Dolag)

Background cosmology (WMAP3)

- $\Omega_{0m} = 0.268$
- $\Omega_{0\Lambda} = 0.732$
- $\Omega_{0b} = 0.044$
- $H_0 = 0.704$
- $\sigma_8 = 0.776$
- $n_s = 0.947$

Background cosmology (WMAP3)

- $\Omega_{0m} = 0.268$
- $\Omega_{0\Lambda} = 0.732$
- $\Omega_{0b} = 0.044$
- $H_0 = 0.704$
- $\sigma_8 = 0.776$

• $n_s = 0.947$

All the dark energy models are consistent with WMAP3 data, and σ_8 is always recalculated to agree with the CMB

(De Boni et al. 2011)

CONCENTRATION

Fit of a NFW profile in the range $[0.1-1]R_{200}$

$$\frac{\rho(r)}{\rho_c} = \frac{\delta_c}{(r/r_s)(1+r/r_s)^2}$$

(Poissonian errors)

$$\delta_c = \frac{200}{3} \frac{c_{200}^3}{\left[\ln(1+c_{200}) - \frac{c_{200}}{1+c_{200}}\right]}$$

$$c_{200} = R_{200} / r_s$$

$$\log_{10} c_{200} = \log_{10} A + B \, \log_{10} \left(\frac{M_{200}}{10^{14} \mathrm{M}_{\odot}} \right)$$

All the objects with $M_{200m} \ge 10^{14} \text{ M}_{\odot}/h$

The 200 objects with M_{200m} closest to $7 \times 10^{13} \text{ M}_{\odot}/h$ $5 \times 10^{13} \text{ M}_{\odot}/h$ $3 \times 10^{13} \text{ M}_{\odot}/h$ $10^{13} \text{ M}_{\odot}/h$ $M_{200m} \ge 10^{14} \text{ M}_{\odot}/h$ in groups of 200 starting from

the less massive ones

Complete sample: all the objects inside a bin

<u>Relaxed sample</u>: objects with $x_{off} < 0.07R_{200m}$

Super-relaxed sample: objects with

 x_{off} < median(x_{off}) and σ_{rms} < median(σ_{rms})

$$\sigma_{rms}^2 = \frac{1}{N_{bins}} \sum_{i=1}^{N_{bins}} [\log_{10}\rho_i - \log_{10}\rho_{NFW}]^2$$

RESULTS

RESULTS COMPARISON

CONCLUSIONS

- The dynamical state of the sample dominates the normalization and the intrinsic scatter
- For Λ CDM, RP and SUGRA the normalization of the *c*-*M* relation follows $\sigma_8 D_+$
- For EQp and EQn the effect of the coupling is to decrease the normalization of EQp and to increase the one of EQn

