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What are d!geometries?
 4D matter coupled supergravities originating from 5D by  Kaluza-Klein    
dimensional reduction

           is a constant symmetric  invariant tensor of  the duality group                
appearing in the 5D action with Chern-Simons term:                                        
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1 Introduction

The allowed moduli spaces for the N = 2 five dimensional supergravity coupled to Abelian

vector multiplets, parametrized by scalar fields �x, with x = 1, . . . , nV � 1, can be described as

the nV � 1 dimensional cubic hypersurface dIJK�I�J�K = 1 of an ambient space spanned by

nV coordinates �I = �I(�x)[2]. The cubic nature of this polynomial is related to the presence

of the Chern-Simons form dIJKF IF JAK in the action for the nV vector fields AI
µ, with nV

denoting the total number of D = 5 vector potentials (which include the graviphoton). A

complete classification of the allowed homogeneous moduli spaces was given in [3] and a lot

of their interesting properties, especially when they are restricted to be a coset of the Jordan

family, was given in [2].

When the theory is dimensionally reduced to four dimensions, it yields a particular class

of N=2 four dimensional matter coupled models with special Kahler target space geometries,

which were thoroughly studied in [12] and were called ”d-spaces”.

The uplift between four and five dimensions was there called ”r-map”, since it associates real

scalars to the N = 2 four dimensional complex scalar fields zi = X i/X0 = ai� i �i belonging to

the nV (i = 1, ..., nV ) 4d vector multiplets, with the index 0 referring to the 4d graviphoton. The

axions ai originate by Kaluza-Klein reduction from the vectors Ai
5, and the �i scalars include

the 5d scalars �x complemented by the Kaluza-Klein scalar � = g55. The r-map is similar to the

1

c-map relating a class of quaternionic sigma models for the hypermultiplets in N = 2 theories

[12]. In superstring theories, this map relates IIA and IIB string theories compactified on the

same (2,2) superconformal field theory at c=9, while in a purely supergravity context, it can

be viewed as a consequence of dimensional reduction from 4 to three dimensions.

Actually these N=2 matter coupled theories, where the holomorphic prepotential takes a

cubic form

F (X) ⌘ 1

3!
dijk

X iXjXk

X0
(i = 1, ..., nV ) , (1.1)

were first studied in [1] where they were shown to lead to supergravity couplings with flat

potentials characterized by the symmetric three index tensor dijk. They are particularly rel-

evant in connection with the large volume limit of Calabi-Yau compactifications of type IIA

superstrings. Formally, the d-tensor appears in the expression for the curvature tensor of any

special Käler manifold []

Ri!̄kl̄ = gi!̄gkl̄ + gil̄gk!̄ � CikpC !̄ l̄p̄g
pp̄ (1.2)

since Cijk = eK(z,z̄)dijk in “special coordinates”, K(z, z̄) being the Kähler potential, and they

are related to intersection forms of the Calabi-Yau.

Notice that a generic d-geometry of complex dimension nV is not necessarily a coset space,

but nevertheless it admits nV + 1 isometries, corresponding to Peccei-Quinn shifts of the nV

axions, and to an overall rescaling of the prepotential.

The goal of this paper is to study d-geometries by going beyond N=2 theories, and con-

sidering the r map for generically N � 2 extended supergravities along the lines of previous

work on this 4D/5D relation in the context of black hole supergravity solutions and their

attractors[20, 11]. Due to the structure of 5D spinor representations, these generalized d-

geometries encompass all extended supergravities with a number of supersymmetry charges

multiple of eight, and thus N = 2, 4, 6, 8.

dIJK is an invariant tensor of the underlying group G5 whose isometries are included in

Sp(2nV + 2, R) (for generic N > 1 one has Sp(2n) for a theory with n total vectors; for N=2

n = nv + 1). They are the classical U-duality symmetries of the five dimensional action [8]

corresponding to the continuous version of the non perturbative string symmetries of [7].

The dimensional reduction leads to interesting relations between the moduli spaces and the

isometries of the 5D and 4D theories. The four and five dimensional classical U-duality groups

G4 and G5, are always related by the chain of (maximal) embeddings

G5 ⇥ SO(1, 1) ⇢ G4⇢Sp(2nV + 2,R), (1.3)

Our main point is that the five dimensional origin selects a natural G5-covariant branching

of the D = 4 scalars, given by

� =
�
aI , ! , " x

 
, (1.4)

where now the " x scalars transform in a suitable representation of G5 which depends on N (for

N=8 there are 42 of them). Note that only in N=2 the number of axions exactly matches the
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1 Introduction

The allowed moduli spaces for theN = 2 Þve dimensional supergravity coupled to Abelian
vector multiplets, parametrized by scalar Þelds! x , with x = 1, . . . , nV ! 1, can be described as
the nV ! 1 dimensional cubic hypersurfacedIJK " I " J " K = 1 of an ambient space spanned by
nV coordinates" I = " I (! x )[2]. The cubic nature of this polynomial is related to the presence
of the Chern-Simons formdIJK F I F J AK in the action for the nV vector ÞeldsAI

µ, with nV

denoting the total number of D = 5 vector potentials (which include the graviphoton). A
complete classiÞcation of the allowed homogeneous moduli spaces was given in [3] and a lot
of their interesting properties, especially when they are restricted to be a coset of the Jordan
family, was given in [2].

When the theory is dimensionally reduced to four dimensions, it yields a particular class
of N=2 four dimensional matter coupled models with special Kahler target space geometries,
which were thoroughly studied in [12] and were called Ód-spacesÓ.

The uplift between four and Þve dimensions was there called Ór-mapÓ, since it associates real
scalars to theN = 2 four dimensional complex scalar Þeldszi = X i /X 0 = ai ! i " i belonging to
the nV (i = 1, ..., nV ) 4d vector multiplets, with the index 0 referring to the 4d graviphoton. The
axions ai originate by Kaluza-Klein reduction from the vectorsAi

5, and the " i scalars include
the 5d scalars! x complemented by the Kaluza-Klein scalar! = g55. The r-map is similar to the

1

N=2 scalar manifold    -model!

kinetic term for scalars:

N=2: gunaydin sierra 
townsend 1983

! I = ! I (" x )

dIJK ! I " µ ! J " µ ! K

kinetic matrix for vectors:

G5

H5

ûaIJ (! x )



5D/4D Reduction : N=2 SG + Vector Multiplets
de wit, van proeyen 

1984



History "1985#

Cremmer, Kounnas, Van Proeyen, Derendinger, Ferrara, De Wit, Girardello

Vector multiplets coupled to N=2 Supergravity : Super-BEH (Brout-Englert-Higgs) 
mechanism  study scalar potential arising from “gauging”

Examples of spontaneous breaking of local SUSY with vanishing cosmological 
constant       

“vanishing flat potentials”
404 

t o  

E. Creramer et al. / Vector multiplets 

c~(z a, ~.'~)= ~ d , ~ ( f ' ~ ( z A ) + f " ( ~ . A ) )  
ct.~.',¢= l 

x ( f O ( z n ) +  fO(2a ) ) ( f ' r ( zC)+  f v ( 2 c ) ) ,  (5.12) 

provided that we can invert the mapping y~ =f~(za.).  For N = 2 supergravity we 
are able to give a non-trivial extension for only one of the solutions (4.12) or (4.13): 

X a X B X  c 
F ( X  °, X a) = ida~c - ~  , (5.13) 

y = _¼ ida~c(z a _ ~A)(zB _ e~J)(zC _ ~c ) ,  (5.14) 

where the dasc are arbitrary real coefficients. With arbitrary gauge coupling con- 
stants this solution can be rewritten as 

d u r X  IX ~X r 
F ( X t ) = i  (5.15) g t X  L 

In N = 1 we know another general solution [17]: 

~b(za, ~a)=  ( f ( z , ) + f ( ~ , ) + p ( z ~ ,  ~ ) ) 3 ,  (a =2  . . . .  , n ) .  (5.16) 

This general solution is incompatible with N = 2 supersymmetry because it implies 
that all spin-½ particles are massless [17] contrary to the general mass formula (5.2). 

For the remainder of this section we will concentrate on models of the form 

F (  X t ) = • dl.IK x I X I X  r 
i hLX---- ~ , (5.17) 

where hL are real constants. The above analysis implies that the potential is flat if 

gt = aht .  (5.18) 
Using a parametrization with 

hl = 61o, (5.19) 

F is of the form (5.13). It is then remarkable that the matrix Nan, the potential, 
and the K~ihler metric depend only on the imaginary part of zA: 

X a ~ i ( z A  -- ~ a ) .  (5.20) 
We obtain the expression 

NAB = 3 dancx C -~ ~( dx) An, 

( Nz )a  = 3idaBcxnxC -- ~ i (dxx)a ,  (5.21) 

and the metric is 

6(dx)AB 9 ( d X X ) A ( d X x ) B  
~ ' ~  = ( d x x x i  - ( a x x x )  2 . (5.22) 



History "1992#
de wit,vanderseypen, Van Proeyen:

Symmetry structure of “special geometries”: study isometry algebra of Kahler and 
Quaternionic manifolds, which are both characterized by a single  holomorphic 
and homogeneous function F of the scalar fields

Relevant for Superstring compactifications on Calabi-Yau manifolds or on (2,2) 
superconformal theories with c=9       

Kahler and Quaternionic geometries are related by the “c-map” between IIA and 
IIB superstring compactifications

c!map  can be viewed as a dimensional reduction from 4D (coupling to vector 
multiplets) to 3D (coupling to hypermultiplets)

Òr!mapÓ:  5D            4D                         REAL              COMPLEX  scalars

Associated sigma model has complex geometry (Special Kahler Geometry)  which 
can be obtained from  5D and is given  by cubic F                                    

                                                         d!spaces

=!=!

=!

de wit, van proeyen 
1995



Classification of homogeneous special manifolds as cosets G/H

cubic geometries

G/H

symmetric
spaces

Special Geometries

de wit van proeyen 
1992

de wit,vanderseypen, 
van proeyen 1993



Various kinds of d!geometries



Counting  for  any N>1

                  #4D vectors  =   # 5D vectors  +  1
                                                           axions

#4D scalars = #5D scalars + # 5D vectors + 1number of scalars plus one, so that the two sets can be combined to give complex scalars. This

does not happen in higher N, although we will exploit the fact that the {aI = AI
5,� = g55} give

rise to a universal sector which is present in any extended supergravity.

In the study and classification of BPS and non-BPS black hole supergravity solutions, the

relation between 4D and 5D in the case of cubic holomorphic prepotentials F (X) was used in

[20] to relate the two N=2 e↵ective black hole potentials and to derive the 4D attractors and

entropies from the 5D ones. The key idea was to translate the 4D e↵ective black hole potential

in terms of 5D real special geometry data, reflecting the natural splitting of the 4D scalar fields

into the axions and 5D scalar field components (1.4).

Special features arise for symmetric special geometries, where the d-symbols satisfy an

extra relation and there are cubic and quartic invariants which can be brought to normal

form[]XXXThe simplest example of d-geometry is given by the STU model [], with 3 scalar

fields spanning the coset (SU(1, 1)/U(1))3, which serves as the ubiquitous toy model in the

context of black holes arising from string and M-theory.

Going beyond N=2 special geometry is made easier by the generalised symplectic formalism

established in [9], which enlarges the rich geometric structure of special Kahler manifolds [?, ?]

to other extended supergravities. Indeed, the only di↵erence between N=2 and higher extended

theories is that in N=2 the scalar sigma model is not necessarily a coset space G/H and more

general structures are allowed. The formalism hinges on the definition of generalized sections

V = (f⇤
A , h⇤A) (with ⇤ = 0, . . . , nV ) of a flat symplectic bundle [13] that extends to N > 2 the

flat bundle underlying special geometry.

The sections (f, h), which satisfy h = Nf are square complex matrices XXX check and

add??? defined in N=2 by (f, h) = (L⇤, D̄āL̄⇤;M⇤, D̄āM̄⇤) withDa a flat covariant derivative in

moduli spaceDa = eaiDi with the vielbeins satisfying gi|̄ = eai e
b
|̄�ab (�ab is the moduli independent

flat metric on moduli space) and Di = @i +
1
2@iK with K(z, z̄) the K ä hler potential. XXX

They are acted upon by a generic element L of the flat Sp(2nV + 2,R)-bundle over the D = 4

scalar manifold [9]XXX)

✓
A B
C D

◆
�!

✓
f
h

◆
=

1p
2

✓
A �iB
C �iD

◆
, (1.5)

or the inverse transformation

L ⌘
✓
A B
C D

◆
=

p
2

✓
Re f �Im f
Reh �Imh

◆
. (1.6)

Our aim is to study the properties of a universal parametrization of d-geometries which

reflects their five dimensional origin, It yields a lower-triangular form for the matrix L char-

acterizing the flat symplectic bundle sigma model which generalizes that of N = 2 special

d-geometry to any N (with a number of supercharges multiple of 8). This parametrization

exploits nilpotent(of degree 3) translations parametrized by axion scalars, and acting on the

same space where the d-tensor is defined. The full sigma model is parametrized by additional

diagonal elements in the matrix L, one of them being a dilatation (in terms of the Kaulza-Klein

3

number of scalars plus one, so that the two sets can be combined to give complex scalars. This

does not happen in higher N, although we will exploit the fact that the {aI = AI
5,� = g55} give

rise to a universal sector which is present in any extended supergravity.

In the study and classification of BPS and non-BPS black hole supergravity solutions, the

relation between 4D and 5D in the case of cubic holomorphic prepotentials F (X) was used in

[20] to relate the two N=2 e↵ective black hole potentials and to derive the 4D attractors and

entropies from the 5D ones. The key idea was to translate the 4D e↵ective black hole potential

in terms of 5D real special geometry data, reflecting the natural splitting of the 4D scalar fields

into the axions and 5D scalar field components (1.4).

Special features arise for symmetric special geometries, where the d-symbols satisfy an

extra relation and there are cubic and quartic invariants which can be brought to normal

form[]XXXThe simplest example of d-geometry is given by the STU model [], with 3 scalar

fields spanning the coset (SU(1, 1)/U(1))3, which serves as the ubiquitous toy model in the

context of black holes arising from string and M-theory.

Going beyond N=2 special geometry is made easier by the generalised symplectic formalism

established in [9], which enlarges the rich geometric structure of special Kahler manifolds [?, ?]

to other extended supergravities. Indeed, the only di↵erence between N=2 and higher extended

theories is that in N=2 the scalar sigma model is not necessarily a coset space G/H and more

general structures are allowed. The formalism hinges on the definition of generalized sections

V = (f !
A , h! A) (with ⇤ = 0, . . . , nV ) of a flat symplectic bundle [13] that extends to N > 2 the

flat bundle underlying special geometry.

The sections (f, h), which satisfy h = Nf are square complex matrices XXX check and

add??? defined in N=2 by (f, h) = (L! , D̄āL̄! ;M! , D̄āM̄! ) withDa a flat covariant derivative in

moduli spaceDa = eaiDi with the vielbeins satisfying gi|̄ = eai e
b
|̄�ab (�ab is the moduli independent

flat metric on moduli space) and Di = @i +
1
2@iK with K(z, z̄) the K ä hler potential. XXX

They are acted upon by a generic element L of the flat Sp(2nV + 2,R)-bundle over the D = 4

scalar manifold [9]XXX)

✓
A B
C D

◆
�!

✓
f
h

◆
=

1p
2

✓
A �iB
C �iD

◆
, (1.5)

or the inverse transformation

L ⌘
✓
A B
C D

◆
=

p
2

✓
Re f �Im f
Reh �Imh

◆
. (1.6)

Our aim is to study the properties of a universal parametrization of d-geometries which

reflects their five dimensional origin, It yields a lower-triangular form for the matrix L char-

acterizing the flat symplectic bundle sigma model which generalizes that of N = 2 special

d-geometry to any N (with a number of supercharges multiple of 8). This parametrization

exploits nilpotent(of degree 3) translations parametrized by axion scalars, and acting on the

same space where the d-tensor is defined. The full sigma model is parametrized by additional

diagonal elements in the matrix L, one of them being a dilatation (in terms of the Kaulza-Klein

3

'x

               only in N=2  you have complex scalars
                  N=8:   28=27+1      vectors

               
                          70=42+27+1  scalars



Aim:

Consider generalized d-geometry structure for                 

Provide universal parametrization of scalar manifold  reflecting 
5D origin and display corresponding symplectic structure in 
axion frame

Applications to BH

Hope: useful to understand the structure of quantum 
corrections N=8,4

N � 2



Scalars live on G/H, charges are in fundamental representation of G

G global symmetry, H local symmetry:  “classical’’ e-m duality, limit of    
large charges; in full quantum theory  the duality is broken to discrete 
subgroup      G(Z)=U-duality

N=8:    d=4                                      d=5

N=4:    d=4                                                    d=5

N=2: Special geometry (Very special in d=5) defined by cubic F(X)

can be lifted to 5d

Symmetric Spaces G/H  in Sugra

E7(7)

SU(8)

E6(6)

USp(8)

SU(1, 1)
U(1)

⇥ SO(6, n)
SO(6)⇥ SO(n)

F (X) =
1

3!
dijk

XiXjXk

X0

 Hull & townsend 1995 

SO(1, 1)⇥ SO(5, n)

SO(5)⇥ SO(n)



A) Bottom Up:  
take specific geometry of spacetime and solve equations of 
motion to  construct solutions  
                        1) trivial reduction
                         2) Taub-NUT

B) Top Down: 
use symmetry of the theory  (geometry,  group theory) and extract 
general features 

for symmetric spaces, use invariants

Two way to use the 5D/4D relation in SG

G5 () G4

I3 !" I4

I3(p) =
1
3!
dijkp

ipjpk I3(q) =
1

3!
dijkqiqjqk

I4 = �(p0q0 + pi qi )
2 + 4[q0I3(p)� p0I3(q) +

! I3(p)
! p

! I3(q)
! q

]



Bottom up: consider stationary Taub-NUT metrics and check whether 
nonBPS solutions are remnants of susy solutions in one dimension 
higher 

Construct single centre rotating  5d solutions that are lifts of 4d BH’s 

Close to BH 
d=5

Away from 
BH d=4

5d electric charges qA= 4d electric charges (D2)
5d NUT charge p0 = 4d magnetic charge (D6)
5d rotation q0 = 4d electric charge (D0)

Cardoso, 
AC,G.DallÕagata,
Oberreuter-Perz

RESULT: two type of solutions, one type are BPS in 5d but one  are non 
BPS also in 5d



Top down:   Use U-duality relation

N=8:
N=2: special and real special geometries

Compare attractors in 4D and 5D by putting in relation the two 
geometries of moduli spaces  and the two effective potentials

Orbits are related because invariants are related

E7 ! E6 " O(1, 1)

gunaydin ferrara 



Menu

Review  Generalized  Special Geometry in Symplectic language                 

Determine universal representation of coset representative  in 
the axion frame by 5D/4D relation

Applications to BH



Special Geometry 101 
de wit van proeyen 1984

strominger 1990
castellani dÕauria ferrara 1990
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1 Introduction

The allowed moduli spaces for the N = 2 five dimensional supergravity coupled to Abelian

vector multiplets, parametrized by scalar fields �x, with x = 1, . . . , nV � 1, can be described as

the nV � 1 dimensional cubic hypersurface dIJK�I�J�K = 1 of an ambient space spanned by

nV coordinates �I = �I(�x)[2]. The cubic nature of this polynomial is related to the presence

of the Chern-Simons form dIJKF IF JAK in the action for the nV vector fields AI
µ, with nV

denoting the total number of D = 5 vector potentials (which include the graviphoton). A

complete classification of the allowed homogeneous moduli spaces was given in [3] and a lot

of their interesting properties, especially when they are restricted to be a coset of the Jordan

family, was given in [2].

When the theory is dimensionally reduced to four dimensions, it yields a particular class

of N=2 four dimensional matter coupled models with special Kahler target space geometries,

which were thoroughly studied in [12] and were called ”d-spaces”.

The uplift between four and five dimensions was there called ”r-map”, since it associates real

scalars to the N = 2 four dimensional complex scalar fields zi = X i/X0 = ai� i �i belonging to

the nV (i = 1, ..., nV ) 4d vector multiplets, with the index 0 referring to the 4d graviphoton. The

axions ai originate by Kaluza-Klein reduction from the vectors Ai
5, and the �i scalars include

the 5d scalars �x complemented by the Kaluza-Klein scalar � = g55. The r-map is similar to the

1

c-map relating a class of quaternionic sigma models for the hypermultiplets in N = 2 theories

[12]. In superstring theories, this map relates IIA and IIB string theories compactified on the

same (2,2) superconformal field theory at c=9, while in a purely supergravity context, it can

be viewed as a consequence of dimensional reduction from 4 to three dimensions.

Actually these N=2 matter coupled theories, where the holomorphic prepotential takes a

cubic form

F (X) ⌘ 1

3!
dijk

X iXjXk

X0
(i = 1, ..., nV ) , (1.1)

were first studied in [1] where they were shown to lead to supergravity couplings with flat

potentials characterized by the symmetric three index tensor dijk. They are particularly rel-

evant in connection with the large volume limit of Calabi-Yau compactifications of type IIA

superstrings. Formally, the d-tensor appears in the expression for the curvature tensor of any

special Käler manifold []

Ri|̄kl̄ = gi|̄gkl̄ + gil̄gk|̄ � CikpC |̄l̄p̄g
pp̄ (1.2)

since Cijk = eK(z,z̄)dijk in “special coordinates”, K(z, z̄) being the Kähler potential, and they

are related to intersection forms of the Calabi-Yau.

Notice that a generic d-geometry of complex dimension nV is not necessarily a coset space,

but nevertheless it admits nV + 1 isometries, corresponding to Peccei-Quinn shifts of the nV

axions, and to an overall rescaling of the prepotential.

The goal of this paper is to study d-geometries by going beyond N=2 theories, and con-

sidering the r map for generically N � 2 extended supergravities along the lines of previous

work on this 4D/5D relation in the context of black hole supergravity solutions and their

attractors[20, 11]. Due to the structure of 5D spinor representations, these generalized d-

geometries encompass all extended supergravities with a number of supersymmetry charges

multiple of eight, and thus N = 2, 4, 6, 8.

dIJK is an invariant tensor of the underlying group G5 whose isometries are included in

Sp(2nV + 2, R) (for generic N > 1 one has Sp(2n) for a theory with n total vectors; for N=2

n = nv + 1). They are the classical U-duality symmetries of the five dimensional action [8]

corresponding to the continuous version of the non perturbative string symmetries of [7].

The dimensional reduction leads to interesting relations between the moduli spaces and the

isometries of the 5D and 4D theories. The four and five dimensional classical U-duality groups

G4 and G5, are always related by the chain of (maximal) embeddings
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value of the quartic invariant, which is negative for the non-BPS case:

SnonBPS

π
=

√

−J4(p, q) , J4 < 0 (1.2)

The argument in support of the entropy formula (1.2) in [18] was based on a specific example
and on the duality symmetry. In this paper we will derive eqs. (1.1) and (1.2) in general case
by solving the new BPS/nonBPS attractor equations.

We will also construct a simple generalization of the tools of N = 2 special geometry to all
N > 2. This will allow us, as an application of the general formalism, to find the attractor
equations for any N . These equations are closely related to those in N = 2. In particular in
N = 8 case we will find a set of simple algebraic equations for N=8 BPS and non-BPS black
holes. Equations (1.1), (1.2) will be derived and the basic features of these black holes will be
explained. An analysis of the attractor equations for the moduli will be performed by using an
N = 2 language and properties of N = 2 vector multiplets embedded into N = 8 supergravity.

2 Generalization of N = 2 special geometry for N > 2

Here we present simplified version of flat symplectic bundles which were constructed in [12] as
a generalization of N=2 special geometry. Consider any N ≥ 2, d=4 supergravity interacting
with some vector multiplets. In N = 2 case the theory is defined by the elegant special geometry
[10], [11], based on symplectic sections (f, h) 1:

(f, h) ≡ (LΛ, Dˆ̄k
L̄Λ ; MΛ, Dˆ̄k

M̄Λ) (2.1)

Here the “hat” covariant derivative over the moduli Dk̂ means the flat derivative in the moduli
space. It is related to the “curved” derivative over the moduli as follows: Dk̂ = ek

k̂
Dk where

the inverse bein ek
k̂

is such that the metric of the curved moduli space is Gkk̄ = ek̂
ke

ˆ̄k
k̄δk̂ˆ̄k

and δ
k̂ˆ̄k

is the moduli independent flat metric. Here Dk ≡ ∂k + 1
2∂kK where K is the Kähler potential.

Note that (f, h) are square complex matrices.

Let us first introduce a real symplectic Sp(2n, R) matrix

S =

(

A B
C D

)

St Ω S = Ω Ω =

(

0 −I

I 0

)

(2.2)

so that
AtC − CtA = 0 BtD − DtB = 0 AtD − CtB = 1 (2.3)

The sections (f, h) are related to the elements of the real Sp(2n, R) matrix 2 (2.2) as follows 3

(

A B
C D

)

⇒
(

f
h

)

=
1√
2

(

A − iB
C − iD

)

(2.4)

1Here, as well as in refs. [12]-[14] (f, h) are the complex conjugate of those introduced in [10], [11].
2For N = 2, n = nv +1 where nv is the number of vector multiplets. For N > 2 n refers to the total number

of vectors in the theory, i. g. for N = 8, n = 28.
3This is a standard element of a flat symplectic bundle [9], [11].

3

use 2n x 2n complex square matrices for Sp(2n,R), with one vector 
index and one flat scalar index

h⇤A = N⇤⌃f
⌃
A

and vice versa

S =

(

A B
C D

)

=
√

2

(

Re f −Im f
Re h −Im h

)

(2.5)

For the elements of the section (f, h) this means that

i(f †h − h†f) = 1 , f th − htf = 0 (2.6)

where † means hermitian conjugation and t means transpose. We introduce the matrix [10]

N = hf−1 (2.7)

A more detailed structure of indices is useful. The flat, tangent ones we denote a whereas the
vector indices are Λ, so that the section is (fΛ

a , hΛa) and

f th → fΛ
a hΛb , f †h → f̄ΛahΛb , NΛΣ = hΛa(f

−1)a
Σ (2.8)

Introducing

Va =

(

fΛ
a

hΛa

)

(2.9)

we find few simple properties which are the generalizations of the special geometry relations.

〈 Va, Vb 〉 = V t
aΩVb = −f th + htf = 0 (2.10)

〈 V̄ a, Vb 〉 = V a†ΩVb = −f †h + h†f = iδa
b (2.11)

Example of N=2 special geometry

Va ⇒ (V, Dˆ̄k
V̄ ) (2.12)

In N=2 special geometry we have fΛ
a = (LΛ,Dˆ̄k

L̄Λ) and hΛa = (MΛ,Dˆ̄k
M̄Λ = NΛΣDˆ̄k

L̄Σ) so
that NΛΣ = hΛa(f−1)a

Σ.

In N=2 special geometry the following relations take place.

〈 V, Vk̂ 〉 = 0 , 〈 Vk̂, V ˆ̄k
〉 = iδ

k̂ ˆ̄k
(2.13)

i〈 V, V 〉 = 1 〈 V, V ˆ̄k
〉 = 0 (2.14)

If we now take into account that

Va = (V, V k̂) =

(

f
h

)

(2.15)
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related to the vector kinetic matrix:

symplectic conditions on the sub blocks

A = (0, a) ;⇤ = (0, nV )

N � 2

number of scalars plus one, so that the two sets can be combined to give complex scalars. This

does not happen in higher N, although we will exploit the fact that the {aI = AI
5,� = g55} give

rise to a universal sector which is present in any extended supergravity.

In the study and classification of BPS and non-BPS black hole supergravity solutions, the

relation between 4D and 5D in the case of cubic holomorphic prepotentials F (X) was used in

[20] to relate the two N=2 e↵ective black hole potentials and to derive the 4D attractors and

entropies from the 5D ones. The key idea was to translate the 4D e↵ective black hole potential

in terms of 5D real special geometry data, reflecting the natural splitting of the 4D scalar fields

into the axions and 5D scalar field components (1.4).

Special features arise for symmetric special geometries, where the d-symbols satisfy an

extra relation and there are cubic and quartic invariants which can be brought to normal

form[]XXXThe simplest example of d-geometry is given by the STU model [], with 3 scalar

fields spanning the coset (SU(1, 1)/U(1))3, which serves as the ubiquitous toy model in the

context of black holes arising from string and M-theory.

Going beyond N=2 special geometry is made easier by the generalised symplectic formalism

established in [9], which enlarges the rich geometric structure of special Kahler manifolds [?, ?]

to other extended supergravities. Indeed, the only di↵erence between N=2 and higher extended

theories is that in N=2 the scalar sigma model is not necessarily a coset space G/H and more

general structures are allowed. The formalism hinges on the definition of generalized sections

V = (f⇤
A , h⇤A) (with ⇤ = 0, . . . , nV ) of a flat symplectic bundle [13] that extends to N > 2 the

flat bundle underlying special geometry.

The sections (f, h), which satisfy h = Nf are square complex matrices XXX check and

add??? defined in N=2 by (f⇤
A, h⇤A) = (L⇤, DāL

⇤
;M⇤, DāM⇤) with Da a flat covariant

derivative in moduli space Da = eaiDi with the vielbeins satisfying gi|̄ = eai e
b
|̄�ab (�ab is the

moduli independent flat metric on moduli space) and Di = @i+
1
2@iK with K(z, z̄) the K ä hler

potential. XXX They are acted upon by a generic element L of the flat Sp(2nV + 2,R)-bundle
over the D = 4 scalar manifold [9]XXX)

✓
A B
C D

◆
�!

✓
f
h

◆
=

1p
2

✓
A �iB
C �iD

◆
, (1.5)

or the inverse transformation

L ⌘
✓
A B
C D

◆
=

p
2

✓
Re f �Im f
Reh �Imh

◆
. (1.6)

Our aim is to study the properties of a universal parametrization of d-geometries which

reflects their five dimensional origin, It yields a lower-triangular form for the matrix L char-

acterizing the flat symplectic bundle sigma model which generalizes that of N = 2 special

d-geometry to any N (with a number of supercharges multiple of 8). This parametrization

exploits nilpotent(of degree 3) translations parametrized by axion scalars, and acting on the

same space where the d-tensor is defined. The full sigma model is parametrized by additional

diagonal elements in the matrix L, one of them being a dilatation (in terms of the Kaulza-Klein

3

number of scalars plus one, so that the two sets can be combined to give complex scalars. This

does not happen in higher N, although we will exploit the fact that the {aI = AI
5,� = g55} give

rise to a universal sector which is present in any extended supergravity.

In the study and classification of BPS and non-BPS black hole supergravity solutions, the

relation between 4D and 5D in the case of cubic holomorphic prepotentials F (X) was used in

[20] to relate the two N=2 e↵ective black hole potentials and to derive the 4D attractors and

entropies from the 5D ones. The key idea was to translate the 4D e↵ective black hole potential

in terms of 5D real special geometry data, reflecting the natural splitting of the 4D scalar fields

into the axions and 5D scalar field components (1.4).

Special features arise for symmetric special geometries, where the d-symbols satisfy an

extra relation and there are cubic and quartic invariants which can be brought to normal

form[]XXXThe simplest example of d-geometry is given by the STU model [], with 3 scalar

fields spanning the coset (SU(1, 1)/U(1))3, which serves as the ubiquitous toy model in the

context of black holes arising from string and M-theory.

Going beyond N=2 special geometry is made easier by the generalised symplectic formalism

established in [9], which enlarges the rich geometric structure of special Kahler manifolds [?, ?]

to other extended supergravities. Indeed, the only di↵erence between N=2 and higher extended

theories is that in N=2 the scalar sigma model is not necessarily a coset space G/H and more

general structures are allowed. The formalism hinges on the definition of generalized sections

V = (f⇤
A , h⇤A) (with ⇤ = 0, . . . , nV ) of a flat symplectic bundle [13] that extends to N > 2 the

flat bundle underlying special geometry.

The sections (f, h), which satisfy h = Nf are square complex matrices XXX check and

add??? defined in N=2 by VA = (f⇤
A, h⇤A) = (L⇤, DāL
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where H4 is the maximal compact subgroup of E7(7). The 70 real D = 4 scalars zi sit in the

rank-4 self-real antisymmetric irrep. 70 of SU(8).

The symplectic sections (2.2) and (2.3) are given in the particular symplectic frame defined by

the partial Iwasawa decomposition of L (2.12) in a solvable basis, which is manifestly covariant

with respect to H5 = USp(8), the local symmetry of the D = 5 uplifted theory. Furthermore,

E (�x) is the coset representative of the rank-6 symmetric D = 5 scalar manifold

G5

H5
=

E6(6)

USp(8)
, dimR = 42. (2.16)

The 42 real D = 5 scalars �x sit in the rank-4 self-real antisymmetric skew-traceless irrep. 42

of USp(8). Note that (2.5) is consistent with the well known fact that the N = 8, D = 5

kinetic vector matrix (a�1) J
I is the square of the D = 5 coset representative [13]. The scalar

decomposition (1.4) in this case becomes

SU(8) � USp(8); (2.17)

70 = 42

�x

+ 27

aI
+ 1

�
, (2.18)

where the axions aI (??) form a representation of JO
s

3 , because

E6(6) � USp(8); (2.19)

27 = 27. (2.20)

3 Relation between the matrices M and L

We now consider a further consequence of the symplectic structure of generalized special geom-

etry [9], holding for every D = 4 Maxwell-Einstein supergravity even beyond d-geometries. It

can be useful in the present context and in view of applications to black holes. The black hole

e↵ective potential for dyonic charges Q = (p⇤, q⇤) is given by

VBH = �1

2
QtM(N )Q =< Q, VA >< Q, V̄ A > (3.1)

where VA = (f⇤
A , h⇤ A) and the central charges ZA =< Q, VA > are defined by the symplectic

product

ZA =< Q, VA >= QT⌦VA = f⇤
Aq⇤ � h⇤ Ap

⇤ , (3.2)

in terms of the symplectic invariant metric

⌦ =

✓
0 �11
11 0

◆
. (3.3)
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value of the quartic invariant, which is negative for the non-BPS case:

SnonBPS

π
=

√
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The argument in support of the entropy formula (1.2) in [18] was based on a specific example
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is such that the metric of the curved moduli space is Gkk̄ = ek̂
ke

ˆ̄k
k̄δk̂ˆ̄k

and δ
k̂ˆ̄k

is the moduli independent flat metric. Here Dk ≡ ∂k + 1
2∂kK where K is the Kähler potential.

Note that (f, h) are square complex matrices.

Let us first introduce a real symplectic Sp(2n, R) matrix

S =

(

A B
C D

)

St Ω S = Ω Ω =

(

0 −I

I 0

)

(2.2)

so that
AtC − CtA = 0 BtD − DtB = 0 AtD − CtB = 1 (2.3)

The sections (f, h) are related to the elements of the real Sp(2n, R) matrix 2 (2.2) as follows 3

(

A B
C D

)

⇒
(

f
h

)

=
1√
2

(

A − iB
C − iD

)

(2.4)

1Here, as well as in refs. [12]-[14] (f, h) are the complex conjugate of those introduced in [10], [11].
2For N = 2, n = nv +1 where nv is the number of vector multiplets. For N > 2 n refers to the total number

of vectors in the theory, i. g. for N = 8, n = 28.
3This is a standard element of a flat symplectic bundle [9], [11].
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value of the quartic invariant, which is negative for the non-BPS case:

SnonBPS

π
=

√

−J4(p, q) , J4 < 0 (1.2)
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number of scalars plus one, so that the two sets can be combined to give complex scalars. This

does not happen in higher N, although we will exploit the fact that the {aI = AI
5,� = g55} give

rise to a universal sector which is present in any extended supergravity.

In the study and classification of BPS and non-BPS black hole supergravity solutions, the

relation between 4D and 5D in the case of cubic holomorphic prepotentials F (X) was used in

[20] to relate the two N=2 e↵ective black hole potentials and to derive the 4D attractors and

entropies from the 5D ones. The key idea was to translate the 4D e↵ective black hole potential

in terms of 5D real special geometry data, reflecting the natural splitting of the 4D scalar fields

into the axions and 5D scalar field components (1.4).

Special features arise for symmetric special geometries, where the d-symbols satisfy an

extra relation and there are cubic and quartic invariants which can be brought to normal

form[]XXXThe simplest example of d-geometry is given by the STU model [], with 3 scalar

fields spanning the coset (SU(1, 1)/U(1))3, which serves as the ubiquitous toy model in the

context of black holes arising from string and M-theory.

Going beyond N=2 special geometry is made easier by the generalised symplectic formalism

established in [9], which enlarges the rich geometric structure of special Kahler manifolds [?, ?]

to other extended supergravities. Indeed, the only di↵erence between N=2 and higher extended

theories is that in N=2 the scalar sigma model is not necessarily a coset space G/H and more

general structures are allowed. The formalism hinges on the definition of generalized sections

V = (f⇤
A , h⇤A) (with ⇤ = 0, . . . , nV ) of a flat symplectic bundle [13] that extends to N > 2 the

flat bundle underlying special geometry.

The sections (f, h), which satisfy h = Nf are square complex matrices XXX check and

add??? defined in N=2 by (f, h) = (L⇤, D̄āL̄⇤;M⇤, D̄āM̄⇤) withDa a flat covariant derivative in

moduli spaceDa = eaiDi with the vielbeins satisfying gi|̄ = eai e
b
|̄�ab (�ab is the moduli independent

flat metric on moduli space) and Di = @i +
1
2@iK with K(z, z̄) the K ä hler potential. XXX

They are acted upon by a generic element L of the flat Sp(2nV + 2,R)-bundle over the D = 4

scalar manifold [9]XXX)

✓
A B
C D

◆
�!

✓
f
h

◆
=

1p
2

✓
A �iB
C �iD

◆
, (1.5)

or the inverse transformation

L ⌘
✓
A B
C D

◆
=

p
2

✓
Re f �Im f
Reh �Imh

◆
. (1.6)

Our aim is to study the properties of a universal parametrization of d-geometries which

reflects their five dimensional origin, It yields a lower-triangular form for the matrix L char-

acterizing the flat symplectic bundle sigma model which generalizes that of N = 2 special

d-geometry to any N (with a number of supercharges multiple of 8). This parametrization

exploits nilpotent(of degree 3) translations parametrized by axion scalars, and acting on the

same space where the d-tensor is defined. The full sigma model is parametrized by additional

diagonal elements in the matrix L, one of them being a dilatation (in terms of the Kaulza-Klein

3

LT⌦L = ⌦

I want to compute the generic symplectic representative 
using the 5D/4D relation, in the axion bases

Goal:



5D/4D relation ! Lesson 1: N=2 Black Holes
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Express the 4D N=2 extremal BH potential for cubic geometries in 
terms of 5D real special geometry data            

VBH  is a polynomial of degree 6 in the axions whose coefficients 
depend on           and on 

      Study  generic attractors for various charge configurations and non    
trivial axions

Connect 5D and 4D attractors and their entropies, compare their susy 
features (BPS and non-BPS orbit stratification)

The case of special Kähler d-geometry in the 4D/ 5D special coordinates ’ symplectic frame

is discussed in App. C of [15]. In particular, by recalling (2.7), one can compute the axionic

generators of the partial Iwasawa solvable parametrization of the D = 4 scalar manifold treated

above as

@T(a)/ @aK =

0

BB@

0 0 0 0
�JK 0 0 0
0 0 0 ��IK
0 dIJK 0 0

1

CCA . (8.7)

Up to relabelling of rows and columns, (8.7) matches the expression of C↵ (for n = 27) given

by (3.6) of [15].

For N = 2 special Kähler d-geometries (namely, for those special geometries admitting an

uplift to D = 5) in 4D/ 5D special coordinates, this highlights the relation between the partial

Iwasawa solvable parametrization of the D = 4 scalar manifold discussed in Sec. 2 and the

nilpotent connection of the reformulation à la Strominger in the holomorphic gauge (8.3).

15
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5D/4D relation ! Lesson 2: N=8 Black Holes

When the moduli space is an homogeneous space G/H, this corresponds to a speciÞc partial
Iwasawa decomposition among those considered in [12] for normal spaces. This decomposition
must be compared with the deÞnition (1.6) and complemented with the results of [10], where
the 4D/5D connection was used for N=8 to determine the 28! 28 symplectic sections (f !

A , h! A )
in a Þve-dimensionally covariant symplectic frame. They are purely expressed in terms of 5D
geometric data:

f !
A =

1
"

2

!

"
"
"
"
#

e�3! 0

e�3! aI e�! (a�1/ 2)I
a

$

%
%
%
%
&

; (2.2)

h! A =
1

"
2

!

"
"
"
"
#

# e�3! d
6 # ie3! # 1

2e�! dK (a�1/ 2)K
a + ie! aK (a1/ 2) a

K

1
2e�3! dI e�! dIJ (a�1/ 2)J

a # ie! (a1/ 2) a
I

$

%
%
%
%
&

, (2.3)

with
d $ dIJK aI aJ ak , dI $ dIJK aJ ak , dIJ $ dIJK aK , (2.4)

and where we denote
E (! ) $ (a�1/ 2) J

a = E J
a . (2.5)

By generalizing this approach to the class of theories under consideration and interpreting the
indices⇤, A on the appropriate representations, we determine the generic expression for each
factor in (2.1).

The axionic generators
A(a) $ eT (a) , (2.6)

was computed in [14]) in the context of gauging of ßat groups in 4D supergravity, and they are
given by the following matrix

T(a) =

!

"
"
#

0 0 0 0
aJ 0 0 0
0 0 0 # aI

0 dIJ 0 0

$

%
%
& . (2.7)

It is easily checked thatT(a) is nilpotent of order three:

T4(a) = 0 % A(a) = Id + T(a) +
1
2

T2(a) +
1
3!

T3(a), (2.8)

which, by deÞnition (2.6), yields (cfr. (46) of [16])

A(a) =

!

"
"
#

1 0 0 0
aJ 1 0 0

# 1
6d # 1

2dI 1 # aI

1
2dJ dIJ 0 1

$

%
%
& . (2.9)

5

4 Identities in the 5D covariant frame

In the 5D covariant formalism introduced in [10], it was found that the kinetic vector matrix

N!" in N = 8, D = 4 supergravity can be decomposed as:

ReN =

!
d
3 �d

I

2
�d

J

2 dIJ

"
, ImN =

!
�e6� � e2�aIaJaIJ aIJaJ

aIJaI �e2�aIJ

"
. (4.1)

In virtue of the discussion of Sec.2, we can interpret these formulae as valid for any d-

geometry. Note that ImN depends on the axions aI but not on dIJK , whereas ReN only

depends on axions, and only through dIJK . It is immediate to realize that this is a consequence

of the solvable decomposition (2.1) of L , as well as of the relation (3.10) between M and L .
Indeed, using (3.5), the matrix A (2.9) can be rewritten as

A =

!
11 0

ReN 11

"
#

$
$
%

1 0 0 0
aI 1 0 0
0 0 1 �aJ

0 0 0 1

&

'
'
( ⌘ (R )�1AD(a

I) , (4.2)

thus yielding

L = (R )�1ADDG . (4.3)

Then, since DG is a diagonal matrix, (3.10) implies

M = �(LT )�1L�1 = �(R )T
)
(A T

D)
�1(DG)�1(DG)�1A�1

D

*
R . (4.4)

Using (2.10), (2.11) and (4.2), one can check that

�(A T
D)

�1(DG)�1(DG)�1A�1
D =

!
ImN 0
0 ImN �1

"
. (4.5)

As mentioned, this explains the dependence of ImN on axions alone and not on the d-tensor,

and that of ReN on axions only through dIJK .

5 A related case : N = 4, D = 4 pure Supergravity

Although pure 4D N = 4 supergravity cannot be obtained from five dimensions by Kaluza-

Klein reduction (as it would always give rise to the coupling to matter multiplets) and has no

d-tensor, we mention it here as a simple instance of the splitting of scalar fields associated with

(2.1).

The vector kinetic matrix N!" in this case reads [17] (⇤,⌃ = 1, ..., 6)

N!" = �S! !" , (5.1)

where the axio-dilatonic complex scalar field S of the gravity multiplet, spanning the rank-1

symmetric coset G/H = SL(2,R)/SO(2), is defined as

S ⌘ ie� + a , (5.2)

9

Decompose                                              28=27+1       E7 ! E6 " O(1, 1)

Relate the 5D kinetic vector matrix to the 4D one 

ReN does not depend on 5D scalars 

ImN does not depend on the d-tensor

AC,Ferrara, gnecchi  
2009



5D/4D relation ! Lesson 2: N=8 Black Holes

When the moduli space is an homogeneous space G/H, this corresponds to a specific partial

Iwasawa decomposition among those considered in [12] for normal spaces. This decomposition

must be compared with the definition (1.6) and complemented with the results of [10], where

the 4D/5D connection was used for N=8 to determine the 28⇥28 symplectic sections (f⇤
A , h⇤A)

in a five-dimensionally covariant symplectic frame. They are purely expressed in terms of 5D

geometric data:

f⇤
A =

1p
2

0

BBBB@

e�3! 0

e�3! aI e�! (a�1/2)Ia

1

CCCCA
; (2.2)

h⇤A =
1p
2

0

BBBB@

�e�3! d
6 � ie3! �1

2e
�! dK(a�1/2)Ka + ie! aK(a1/2) a

K

1
2e

�3! dI e�! dIJ(a�1/2)Ja � ie! (a1/2) a
I

1

CCCCA
, (2.3)

with

d ⌘ dIJKa
IaJak , dI ⌘ dIJKa

Jak , dIJ ⌘ dIJKa
K , (2.4)

and where we denote

E (! ) ⌘ (a�1/2) J
a = E J

a . (2.5)

By generalizing this approach to the class of theories under consideration and interpreting the

indices ! , A on the appropriate representations, we determine the generic expression for each

factor in (2.1).

The axionic generators

A (a) ⌘ eT (a) , (2.6)

was computed in [14]) in the context of gauging of flat groups in 4D supergravity, and they are

given by the following matrix

T (a) =

0

BB@

0 0 0 0
aJ 0 0 0
0 0 0 �aI

0 dIJ 0 0

1

CCA . (2.7)

It is easily checked that T (a) is nilpotent of order three:

T 4(a) = 0 ) A (a) = Id + T (a) +
1

2
T 2(a) +

1

3!
T 3(a), (2.8)

which, by definition (2.6), yields (cfr. (46) of [16])

A (a) =

0

BB@

1 0 0 0
aJ 1 0 0
�1

6d �1
2dI 1 �aI

1
2dJ dIJ 0 1

1

CCA . (2.9)

5
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Iwasawa decomposition among those considered in [12] for normal spaces. This decomposition
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When the moduli space is an homogeneous space G/H, this corresponds to a specific partial

Iwasawa decomposition among those considered in [12] for normal spaces. This decomposition

must be compared with the definition (1.6) and complemented with the results of [10], where

the 4D/5D connection was used for N=8 to determine the 28⇥28 symplectic sections (f⇤
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and where we denote
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By generalizing this approach to the class of theories under consideration and interpreting the

indices ⇤, A on the appropriate representations, we determine the generic expression for each

factor in (2.1).

The axionic generators

A(a) ⌘ eT (a) , (2.6)

was computed in [14]) in the context of gauging of flat groups in 4D supergravity, and they are

given by the following matrix

T (a) =

0

BB@

0 0 0 0
aJ 0 0 0
0 0 0 �aI

0 dIJ 0 0

1

CCA . (2.7)

It is easily checked that T (a) is nilpotent of order three:

T 4(a) = 0 ) A(a) = Id+ T (a) +
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1
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0
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Compute the 28x28 symplectic sections from N in terms of 5D fields:     

square root of 5D vector kinetic matrix
coset representative of 5D scalar manifold                 

Interpret this for any d-geometry, N=0,2,4,6,8 by taking appropriate 
representations!     



Note: Freedom on the symplectic sections 

Given     a) N⇤⌃ = h⇤A(f�1)A
⌃ ,

b) i(f †h� h

†
f) = Id ,

c) f

T
h� h

T
f = 0 .

Notice that one still has the freedom of a further transformation

h! hM ,

f ! fM , (2.15)

as it leaves invariant the vector kinetic matrix N , as well as relations a)� c), when M is

a unitary matrix

MM † = 1 . (2.16)

Indeed, when the central charge transforms as

Z ! ZM ,

ZZ† ! ZMM †Z† = ZZ† , (2.17)

the black hole potential

VBH ⌘ ZZ† (2.18)

is left invariant. In our case, we rearrange the 28 indices into a single complex vector index,

to be identified, for a suitable choice of M , with the two-fold antisymmetric representation

of SU(8), according to the decomposition 28! 27 + 1 of SU(8)! USp(8); we thus have

Z0 = f⇤
0q⇤ � h⇤ 0p

⇤ =

= f 0
0q0 + fJ

0qJ � h0 0p
0 � hJ 0p

J ,

Za = f⇤
aq⇤ � h⇤ ap

⇤ =

= f 0
aq0 + fJ

aqJ � h0 ap
0 � hJ ap

J ;

(2.19)

which, from the definition in (2.9) yields

Z0 =
1p
2


e�3�q0 + e�3�aIqI +

✓
e�3� d

6
+ ie3�

◆
p0 � 1

2

�
e�3�dI

�
pI

�
,

Za =
1p
2


e��qI(a

�1/2)I
a +

✓
1

2
e��dI(a

�1/2)I
a � ie�aJ(a1/2) a

J

◆
p0+

� �
e��dIJ(a�1/2)I

a � ie�(a1/2) a
J

�
pJ

�
.

(2.20)
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can still perform any 
unitary transformation:   

a) N⇤⌃ = h⇤A (f ! 1)A
⌃ ,

b) i(f  
h ! h

 
f) = Id ,

c) f

T
h ! h

T
f = 0 .

Notice that one still has the freedom of a further transformation

h " hM ,

f " fM , (2.15)

as it leaves invariant the vector kinetic matrix N , as well as relations a) ! c), when M is

a unitary matrix

MM   = 1 . (2.16)

Indeed, when the central charge transforms as

Z " ZM ,

ZZ   " ZMM   Z   = ZZ   , (2.17)

the black hole potential

VBH # ZZ   (2.18)

is left invariant. In our case, we rearrange the 28 indices into a single complex vector index,

to be identified, for a suitable choice of M , with the two-fold antisymmetric representation

of SU(8), according to the decomposition 28 " 27 + 1 of SU(8) " USp(8); we thus have

Z0 = f⇤
0q⇤ ! h⇤ 0p

⇤ =
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0q0 + f J
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aq0 + f J
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(2.19)

which, from the definition in (2.9) yields

Z0 =
1

$
2

!
e! 3! q0 + e! 3! aI qI +

"
e! 3! d

6
+ ie3!

#
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1

2

$
e! 3! dI

%
pI

&
,

Za =
1

$
2

!
e! ! qI (a

! 1/ 2)I
a +

"
1

2
e! ! dI (a

! 1/ 2)I
a ! ie! aJ (a1/ 2) a

J

#
p0+

!
$
e! ! dIJ (a! 1/ 2)I

a ! ie! (a1/ 2) a
J

%
pJ

&
.

(2.20)
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a) N!" = h! A (f ! 1)A
" ,

b) i (f   h ! h  f ) = Id ,

c) f T h ! hT f = 0 .

Notice that one still has the freedom of a further transformation

h " hM ,

f " fM , (2.15)

as it leaves invariant the vector kinetic matrixN , as well as relationsa) ! c), when M is
a unitary matrix

MM   = 1 . (2.16)

Indeed, when the central charge transforms as

Z " ZM ,

ZZ   " ZMM   Z   = ZZ   , (2.17)

the black hole potential

VBH # ZZ   (2.18)

is left invariant. In our case, we rearrange the 28 indices into a single complex vector index,
to be identiÞed, for a suitable choice ofM , with the two-fold antisymmetric representation
of SU(8), according to the decomposition28 " 27 + 1 of SU(8) " USp(8); we thus have
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BH potential is invariant:  

The kinetic matrix depends on the 70 scalars of theN = 8 theory, which are given,
in the 5d/ 4d KK reduction, by the 42 scalars of the 5d theory (encoded in the 5d vector
kinetic matrix aIJ = aJI ), by the 27 axionsaI and the dilaton Þelde! . In a normalization
that is suitable for comparison toN = 2 , it has the form

N!" =
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"
"
"
"
"
"
#

1
3d ! i
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e2! aIJ aI aJ + e6!

%
! 1

2dJ + ie2! aKJ aK

! 1
2dI + ie2! aIK aK dIJ ! ie2! aIJ

&

'
'
'
'
'
'
(

, (2.4)

where
d " dIJK aI aJ aK , dI " dIJK aJ aK , dIJ " dIJK aK . (2.5)

The black hole potential of [33], computed from (2.1) using the above formulas, can
be rearranged as
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+
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* 2

+

+
1
2

)
1
2
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*
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*
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1
2

# 2
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+
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+
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+
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+
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+
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%
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(2.6)

with aIJ = a! 1
IJ . This form shows that it can be written in terms of squares of electric

and magnetic components as

VBH =
1
2

(Z e
0)2 +

1
2

$
Z 0

m

%2
+

1
2

Z e
I aIJ Z e

J +
1
2

Z I
maIJ Z J

m , (2.7)
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Important to connect  real and complex central charges 
in N=2   and N=8



Note: Freedom on the symplectic sections 
In N=2, this unitary M transform the axion basis into the usual 
symplectic basis:   

Thus we consider

f !
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$
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%
%
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From f ! 1

(f ! 1) A
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"
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%
%
%
%
%
%
&

, (2.23)

by matrix multiplication, we find that relations a) b) and c) are fulfilled by f and h, that

we now recognize to be the symplectic sections.

We finally perform the transformation f " = fM (where M = f ! 1f " = h! 1h"), with M

unitary matrix, in virtue of identities a), b) and c), valid for both (f, h) and (f ", h"). A

model independent formula for M valid for any N = 2 d-geometry (in particular, for any

truncation of N = 8 to an N = 2 geometry, such as the models treated in this paper) is

given by the matrix [42]

M = A1/ 2M̂G! 1/ 2 , (2.24)

with

A =
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.
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!
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4
e! 4! aIJ , (2.25)

where M̂ is given by
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øJ + ie! 2! " I ! øJ K

(
, (2.26)

8

Thus we consider

f !
A =

1
!

2

!

"
"
"
"
"
"
#

e! 3! 0

e! 3! aI e! ! (a! 1/ 2)I
a

$

%
%
%
%
%
%
&

, (2.21)

h! A =
1

!
2

!

"
"
"
"
"
"
#

" e! 3! d
6 " ie3! " 1

2e! ! dK (a! 1/ 2)K
a + ie! aK (a1/ 2) a

K

1
2e! 3! dI e! ! dIJ (a! 1/ 2)J

a " ie! (a1/ 2) a
I

$

%
%
%
%
%
%
&

. (2.22)

From f ! 1

(f ! 1) A
! =

!
2

!

"
"
"
"
"
"
#

e3! 0

" e! aI (a1/ 2) a
I e! (a1/ 2) a

I

$

%
%
%
%
%
%
&

, (2.23)

by matrix multiplication, we Þnd that relations a) b) and c) are fulÞlled byf and h, that
we now recognize to be the symplectic sections.

We Þnally perform the transformationf " = fM (whereM = f ! 1f " = h! 1h"), with M
unitary matrix, in virtue of identities a), b) and c), valid for both ( f, h ) and (f ", h"). A
model independent formula forM valid for any N = 2 d-geometry (in particular, for any
truncation of N = 8 to an N = 2 geometry, such as the models treated in this paper) is
given by the matrix [42]

M = A1/ 2 öMG! 1/ 2 , (2.24)

with

A =

!

"
"
"
"
#

1 0...0
0
.
.
0

aIJ

$

%
%
%
%
&

, G =

!

"
"
"
"
#

1 0...0
0
.
.
0

gIJ

$

%
%
%
%
&

, gIJ =
1
4

e! 4! aIJ , (2.25)

where öM is given by

öM =
1
2

'
1 ! øJ K

" i " I e! 2! e! 2! #I
øJ + ie! 2! " I ! øJ K

(
, (2.26)

8

Thus we consider

f !
A =

1
!

2

!

"
"
"
"
"
"
#

e! 3! 0

e! 3! aI e! ! (a! 1/ 2)I
a

$

%
%
%
%
%
%
&

, (2.21)

h! A =
1

!
2

!

"
"
"
"
"
"
#

" e! 3! d
6 " ie3! " 1

2e! ! dK (a! 1/ 2)K
a + ie! aK (a1/ 2) a

K

1
2e! 3! dI e! ! dIJ (a! 1/ 2)J

a " ie! (a1/ 2) a
I

$

%
%
%
%
%
%
&

. (2.22)

From f ! 1

(f ! 1) A
! =

!
2

!

"
"
"
"
"
"
#

e3! 0

" e! aI (a1/ 2) a
I e! (a1/ 2) a

I

$

%
%
%
%
%
%
&

, (2.23)

by matrix multiplication, we Þnd that relations a) b) and c) are fulÞlled byf and h, that
we now recognize to be the symplectic sections.

We Þnally perform the transformationf " = fM (whereM = f ! 1f " = h! 1h"), with M
unitary matrix, in virtue of identities a), b) and c), valid for both ( f, h ) and (f ", h"). A
model independent formula forM valid for any N = 2 d-geometry (in particular, for any
truncation of N = 8 to an N = 2 geometry, such as the models treated in this paper) is
given by the matrix [42]

M = A1/ 2 öMG! 1/ 2 , (2.24)

with

A =

!

"
"
"
"
#

1 0...0
0
.
.
0

aIJ

$

%
%
%
%
&

, G =

!

"
"
"
"
#

1 0...0
0
.
.
0

gIJ

$

%
%
%
%
&

, gIJ =
1
4

e! 4! aIJ , (2.25)

where öM is given by

öM =
1
2

'
1 ! øJ K

" i " I e! 2! e! 2! #I
øJ + ie! 2! " I ! øJ K

(
, (2.26)

8

where Ò! ! I Ó are the imaginary parts of the complex modulizI = aI ! i ! I , and K is
the K¬ahler potential K = ! ln(8V), with V = 1

3!dIJK ! I ! J ! K ; the matrix öM satisÞes the
properties

A öMG! 1 öM   = Id ,

G! 1 öM   A öM = Id . (2.27)

For the models considered below, this matrixM does indeed reproduce, for the given
special conÞgurations, the formula in eq. (4.7).

Note that öM performs the change of basis between the central charges deÞned as

Z0 =
1

"
2

(Z e
0 + iZ 0

m) ,

ZI =
1

"
2

(Z e
I + iaIJ Z J

m) , (2.28)

and the special geometry charges (Z, D øI Z ), that is the charges in ÒcurvedÓ rather than
the ÒßatÓ indices.

3 Attractors in the 5 dimensional theory

It was shown in [23] that the cubic invariant of the Þve dimensions can be written as

I 3 = Z 5
1 Z 5

2 Z 5
3 , (3.1)

where Z 5
a Õs are related to the skew eigenvalues of theUSp(8) central charge matrix in

the normal frame

eab =

!

"
"
#

Z 5
1 + Z 5

2 ! Z 5
3 0 0 0

0 Z 5
1 + Z 5

3 ! Z 5
2 0 0

0 0 Z 5
2 + Z 5

3 ! Z 5
1 0

0 0 0 ! (Z 5
1 + Z 5

2 + Z 5
3 )

$

%
%
& #

'
0 1

! 1 0

(
.

(3.2)

We consider a conÞguration of only three non-vanishing electric charges (q1, q2, q3), that
we can take all non-negative. We further conÞne to two moduli! 1, ! 2, describing a
geodesic submanifoldSO(1, 1)2 $ E6(6) /USp(8) whose special geometry is determined by
the constraint

1
3!

dIJK
ö! I ö! J ö! K = ö! 1ö! 2ö! 3 = 1 , (3.3)

where ö! I = V! 1/ 3! I , deÞning thestu! model [29].
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Main Message:

Because of the 5D origin, there is a natural splitting of the 4D scalars,
covariant with respect to         :

c-map relating a class of quaternionic sigma models for the hypermultiplets inN = 2 theories
[12]. In superstring theories, this map relates IIA and IIB string theories compactiÞed on the
same (2,2) superconformal Þeld theory at c=9, while in a purely supergravity context, it can
be viewed as a consequence of dimensional reduction from 4 to three dimensions.

Actually these N=2 matter coupled theories, where the holomorphic prepotential takes a
cubic form

F (X ) !
1
3!

dijk
X i X j X k

X 0
(i = 1, ..., nV ) , (1.1)

were Þrst studied in [1] where they were shown to lead to supergravity couplings with ßat
potentials characterized by the symmetric three index tensordijk . They are particularly rel-
evant in connection with the large volume limit of Calabi-Yau compactiÞcations of type IIA
superstrings. Formally, the d-tensor appears in the expression for the curvature tensor of any
special K¬aler manifold []

Ri ø!køl = gi ø! gkøl + giølgkø! " Cikp Cø!øl øpgpøp (1.2)

sinceCijk = eK (z,øz)dijk in Òspecial coordinatesÓ,K (z, øz) being the K¬ahler potential, and they
are related to intersection forms of the Calabi-Yau.

Notice that a generic d-geometry of complex dimensionnV is not necessarily a coset space,
but nevertheless it admitsnV + 1 isometries, corresponding to Peccei-Quinn shifts of thenV

axions, and to an overall rescaling of the prepotential.
The goal of this paper is to study d-geometries by going beyond N=2 theories, and con-

sidering the r map for genericallyN # 2 extended supergravities along the lines of previous
work on this 4D/5D relation in the context of black hole supergravity solutions and their
attractors[20, 11]. Due to the structure of 5D spinor representations, these generalized d-
geometries encompass all extended supergravities with a number of supersymmetry charges
multiple of eight, and thus N = 2, 4, 6, 8.

dIJK is an invariant tensor of the underlying groupG5 whose isometries are included in
Sp(2nV + 2, R) (for generic N > 1 one has Sp(2n) for a theory with n total vectors; for N=2
n = nv + 1). They are the classical U-duality symmetries of the Þve dimensional action [8]
corresponding to the continuous version of the non perturbative string symmetries of [7].

The dimensional reduction leads to interesting relations between the moduli spaces and the
isometries of the 5D and 4D theories. The four and Þve dimensional classical U-duality groups
G4 and G5, are always related by the chain of (maximal) embeddings

G5 $ SO(1, 1) % G4%Sp(2nV + 2, R), (1.3)

Our main point is that the Þve dimensional origin selects a naturalG5-covariant branching
of the D = 4 scalars, given by

! =
!

aI , ! , " x
"

, (1.4)

where now the" x scalars transform in a suitable representation ofG5 which depends on N (for
N=8 there are 42 of them). Note that only in N=2 the number of axions exactly matches the

2
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The 5D and 4D U-duality groups are always related by:

partial Iwasawa decomposition into a translation along axions, a 
dilatation and a          -dependent transformation

G5



The axionic translations

When the moduli space is an homogeneous space G/H, this corresponds to a specific partial

Iwasawa decomposition among those considered in [12] for normal spaces. This decomposition

must be compared with the definition (1.6) and complemented with the results of [10], where

the 4D/5D connection was used for N=8 to determine the 28⇥28 symplectic sections (f⇤
A , h⇤A)

in a five-dimensionally covariant symplectic frame. They are purely expressed in terms of 5D

geometric data:

f⇤
A =

1p
2

0

BBBB@

e�3� 0

e�3�aI e��(a�1/2)Ia

1

CCCCA
; (2.2)

h⇤A =
1p
2

0

BBBB@

�e�3� d
6 � ie3� �1

2e
��dK(a�1/2)Ka + ie�aK(a1/2) a

K

1
2e

�3�dI e��dIJ(a�1/2)Ja � ie�(a1/2) a
I

1

CCCCA
, (2.3)

with

d ⌘ dIJKa
IaJak , dI ⌘ dIJKa

Jak , dIJ ⌘ dIJKa
K , (2.4)

and where we denote

E (�) ⌘ (a�1/2) J
a = E J

a . (2.5)

By generalizing this approach to the class of theories under consideration and interpreting the

indices ⇤, A on the appropriate representations, we determine the generic expression for each

factor in (2.1).

The axionic generators

A(a) ⌘ eT (a) , (2.6)

was computed in [14]) in the context of gauging of flat groups in 4D supergravity, and they are

given by the following matrix

T (a) =

0

BB@

0 0 0 0
aJ 0 0 0
0 0 0 �aI

0 dIJ 0 0

1

CCA . (2.7)

It is easily checked that T (a) is nilpotent of order three:

T 4(a) = 0 ) A(a) = Id+ T (a) +
1

2
T 2(a) +

1

3!
T 3(a), (2.8)

which, by definition (2.6), yields (cfr. (46) of [16])

A(a) =

0

BB@

1 0 0 0
aJ 1 0 0
�1

6d �1
2dI 1 �aI

1
2dJ dIJ 0 1

1

CCA . (2.9)
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gaugings of 4D supergravity and Scherk-Shwarz mechanism

  nilpotent of order 3  (relation with flat connections in Special 
Geometry):



Dilatation and G5 transformatio$

This is in agreement with the N=2 interpretation of [15]), which will be discussed in Section

?? XXX below. The 1-dimensional Abelian SO(1, 1) factor in (2.1) is given by

D(�) =

0

BB@

e�3� 0 0 0
0 e�� 0 0
0 0 e3� 0
0 0 0 e�

1

CCA , (2.10)

as computed in [16]), whereas the (2nV + 2)⇥ (2nV + 2) matrix G is

G(�) =

0

BB@

1 0 0 0
0 E 0 0
0 0 1 0
0 0 0 E�1

1

CCA . (2.11)

By matrix multiplication of (2.9)-(2.11) according to (2.1), one finds that the symplectic

matrix L (1.6) in terms of the 5D data takes the triangular form:

L(aI ,�, E (�))=

0

BB@

e�3� 0 0 0
aIe�3� e��E I

a 0 0
�1

6de
�3� �1

2dKE
K

a e�� e3� �aK(E�1)aKe
�

1
2dIe

�3� dIKE K
a e�� 0 e�(E�1)aI

1

CCA . (2.12)

We see that, in this particular basis, B = Im f = 0, and the f section is purely real:

f = Ref =
1p
2
A(aI ,�, E (�a)). (2.13)

On the other hand, one has

h =
1p
2
(C � iD) )

Reh = 1p
2
C(aI ,�, E (�) , dIJK)

Imh = � 1p
2
D(aI ,�, E (�)) ,

along with the normalization

fT Imh =
1

2
. (2.14)

Notice that the C sub-block is the only one depending on dIJK .

Conversely, one can say that Eqs. (2.12)-(2.14) yield explicit expressions for the symplectic

sections f and h which match Eqs. (2.2) and (2.3), respectively. ⌅

2.1 Application to N = 8 Supergravity

To make the discussion concrete, let us consider N = 8 supergravity, where the JTS is the

rank-3 Euclidean Jordan algebra JO
s

3 over the split octonions, the D = 5 U -duality group is

G5 = E6(6) and dIJK is the invariant tensor of the fundamental irrep. 27 (I, J,K = 1, ..., 27 =

nV � 1, x = 1, ..., 42, i = 1, ...70). The Sp(56,R) matrix L (1.6) is the coset representative of

the rank-7 symmetric D = 4 scalar manifold

G4

H4
=

E7(7)

SU(8)
, dimR = 70, (2.15)

6
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Symplectic representative in the axion basis
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In this bases L is lower triangular,  Im f =0 
(different from the usual basis of N=2: ) 

Dependence on               only in lower left block

Can use it to compute vielbeins, connections on coset spaces

number of scalars plus one, so that the two sets can be combined to give complex scalars. This

does not happen in higher N, although we will exploit the fact that the {aI = AI
5,� = g55} give

rise to a universal sector which is present in any extended supergravity.

In the study and classification of BPS and non-BPS black hole supergravity solutions, the

relation between 4D and 5D in the case of cubic holomorphic prepotentials F (X) was used in

[20] to relate the two N=2 e↵ective black hole potentials and to derive the 4D attractors and

entropies from the 5D ones. The key idea was to translate the 4D e↵ective black hole potential

in terms of 5D real special geometry data, reflecting the natural splitting of the 4D scalar fields

into the axions and 5D scalar field components (1.4).

Special features arise for symmetric special geometries, where the d-symbols satisfy an

extra relation and there are cubic and quartic invariants which can be brought to normal

form[]XXXThe simplest example of d-geometry is given by the STU model [], with 3 scalar

fields spanning the coset (SU(1, 1)/U(1))3, which serves as the ubiquitous toy model in the

context of black holes arising from string and M-theory.

Going beyond N=2 special geometry is made easier by the generalised symplectic formalism

established in [9], which enlarges the rich geometric structure of special Kahler manifolds [?, ?]

to other extended supergravities. Indeed, the only di↵erence between N=2 and higher extended

theories is that in N=2 the scalar sigma model is not necessarily a coset space G/H and more

general structures are allowed. The formalism hinges on the definition of generalized sections

V = (f⇤
A , h⇤A) (with ⇤ = 0, . . . , nV ) of a flat symplectic bundle [13] that extends to N > 2 the

flat bundle underlying special geometry.

The sections (f, h), which satisfy h = Nf are square complex matrices XXX check and

add??? defined in N=2 by (f, h) = (L⇤, D̄āL̄⇤;M⇤, D̄āM̄⇤) withDa a flat covariant derivative in

moduli spaceDa = eaiDi with the vielbeins satisfying gi|̄ = eai e
b
|̄�ab (�ab is the moduli independent

flat metric on moduli space) and Di = @i +
1
2@iK with K(z, z̄) the K ä hler potential. XXX

They are acted upon by a generic element L of the flat Sp(2nV + 2,R)-bundle over the D = 4

scalar manifold [9]XXX)

✓
A B
C D

◆
�!

✓
f
h

◆
=

1p
2

✓
A �iB
C �iD

◆
, (1.5)

or the inverse transformation

L ⌘
✓
A B
C D

◆
=

p
2

✓
Re f �Im f
Reh �Imh

◆
. (1.6)

Our aim is to study the properties of a universal parametrization of d-geometries which

reflects their five dimensional origin, It yields a lower-triangular form for the matrix L char-

acterizing the flat symplectic bundle sigma model which generalizes that of N = 2 special

d-geometry to any N (with a number of supercharges multiple of 8). This parametrization

exploits nilpotent(of degree 3) translations parametrized by axion scalars, and acting on the

same space where the d-tensor is defined. The full sigma model is parametrized by additional

diagonal elements in the matrix L, one of them being a dilatation (in terms of the Kaulza-Klein
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Some PropertiesThe matrix M is given by

M =

✓
11 �ReN
0 11

◆✓
ImN 0
0 (ImN )�1

◆✓
11 0

�ReN 11

◆
⌘ RTMDR ; (3.4)

R ⌘
✓

11 0
�ReN 11

◆
; (3.5)

MD ⌘
✓
ImN 0
0 (ImN )�1

◆
, (3.6)

where N = hf�1 is the D = 4 kinetic vector matrix.

In generalized special geometry [9] one introduces the Sp(2nV + 2) Hermitian matrix

C ⌘ 1

2
(M+ i⌦) ; C† = C, (3.7)
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ZA = L�1Q

where H4 is the maximal compact subgroup of E7(7). The 70 real D = 4 scalars zi sit in the

rank-4 self-real antisymmetric irrep. 70 of SU(8).

The symplectic sections (2.2) and (2.3) are given in the particular symplectic frame defined by

the partial Iwasawa decomposition of L (2.12) in a solvable basis, which is manifestly covariant

with respect to H5 = USp(8), the local symmetry of the D = 5 uplifted theory. Furthermore,

E (�x) is the coset representative of the rank-6 symmetric D = 5 scalar manifold

G5

H5
=

E6(6)

USp(8)
, dimR = 42. (2.16)

The 42 real D = 5 scalars �x sit in the rank-4 self-real antisymmetric skew-traceless irrep. 42

of USp(8). Note that (2.5) is consistent with the well known fact that the N = 8, D = 5

kinetic vector matrix (a�1) J
I is the square of the D = 5 coset representative [13]. The scalar

decomposition (1.4) in this case becomes

SU(8) � USp(8); (2.17)

70 = 42

�x

+ 27

aI
+ 1

�
, (2.18)

where the axions aI (??) form a representation of JO
s

3 , because

E6(6) � USp(8); (2.19)

27 = 27. (2.20)

3 Relation between the matrices M and L

We now consider a further consequence of the symplectic structure of generalized special geom-

etry [9], holding for every D = 4 Maxwell-Einstein supergravity even beyond d-geometries. It

can be useful in the present context and in view of applications to black holes. The black hole

e↵ective potential for dyonic charges Q = (p⇤, q⇤) is given by

VBH = �1

2
QtM(N )Q =< Q, VA >< Q, V̄ A > (3.1)

where VA = (f⇤
A , h⇤ A) and the central charges ZA =< Q, VA > are defined by the symplectic

product

ZA =< Q, VA >= QT⌦VA = f⇤
Aq⇤ � h⇤ Ap

⇤ , (3.2)

in terms of the symplectic invariant metric

⌦ =

✓
0 �11
11 0

◆
. (3.3)

7
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Example: N=8 

This is in agreement with the N=2 interpretation of [15]), which will be discussed in Section

?? XXX below. The 1-dimensional Abelian SO(1, 1) factor in (2.1) is given by

D(�) =

0

BB@

e�3� 0 0 0
0 e�� 0 0
0 0 e3� 0
0 0 0 e�

1

CCA , (2.10)

as computed in [16]), whereas the (2nV + 2)⇥ (2nV + 2) matrix G is

G(�) =

0

BB@

1 0 0 0
0 E 0 0
0 0 1 0
0 0 0 E�1

1

CCA . (2.11)

By matrix multiplication of (2.9)-(2.11) according to (2.1), one finds that the symplectic

matrix L (1.6) in terms of the 5D data takes the triangular form:

L(aI ,�, E (�))=

0

BB@

e�3� 0 0 0
aIe�3� e��E I

a 0 0
�1

6de
�3� �1

2dKE
K

a e�� e3� �aK(E�1)aKe
�

1
2dIe

�3� dIKE K
a e�� 0 e�(E�1)aI

1

CCA . (2.12)

We see that, in this particular basis, B = Im f = 0, and the f section is purely real:

f = Ref =
1p
2
A(aI ,�, E (�a)). (2.13)

On the other hand, one has

h =
1p
2
(C � iD) )

Reh = 1p
2
C(aI ,�, E (�) , dIJK)

Imh = � 1p
2
D(aI ,�, E (�)) ,

along with the normalization

fT Imh =
1

2
. (2.14)

Notice that the C sub-block is the only one depending on dIJK .

Conversely, one can say that Eqs. (2.12)-(2.14) yield explicit expressions for the symplectic

sections f and h which match Eqs. (2.2) and (2.3), respectively. ⌅

2.1 Application to N = 8 Supergravity

To make the discussion concrete, let us consider N = 8 supergravity, where the JTS is the

rank-3 Euclidean Jordan algebra JO
s

3 over the split octonions, the D = 5 U -duality group is

G5 = E6(6) and dIJK is the invariant tensor of the fundamental irrep. 27 (I, J,K = 1, ..., 27 =

nV � 1, x = 1, ..., 42, i = 1, ...70). The Sp(56,R) matrix L (1.6) is the coset representative of

the rank-7 symmetric D = 4 scalar manifold

G4

H4
=

E7(7)

SU(8)
, dimR = 70, (2.15)
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rank-4 self-real antisymmetric irrep. 70 of SU(8).

The symplectic sections (2.2) and (2.3) are given in the particular symplectic frame defined by

the partial Iwasawa decomposition of L (2.12) in a solvable basis, which is manifestly covariant

with respect to H5 = USp(8), the local symmetry of the D = 5 uplifted theory. Furthermore,

E (�x) is the coset representative of the rank-6 symmetric D = 5 scalar manifold

G5

H5
=

E6(6)

USp(8)
, dimR = 42. (2.16)

The 42 real D = 5 scalars �x sit in the rank-4 self-real antisymmetric skew-traceless irrep. 42

of USp(8). Note that (2.5) is consistent with the well known fact that the N = 8, D = 5

kinetic vector matrix (a�1) J
I is the square of the D = 5 coset representative [13]. The scalar

decomposition (1.4) in this case becomes

SU(8) � USp(8); (2.17)

70 = 42

�x

+ 27

aI
+ 1

�
, (2.18)

where the axions aI (??) form a representation of JO
s

3 , because

E6(6) � USp(8); (2.19)

27 = 27. (2.20)

3 Relation between the matrices M and L

We now consider a further consequence of the symplectic structure of generalized special geom-

etry [9], holding for every D = 4 Maxwell-Einstein supergravity even beyond d-geometries. It

can be useful in the present context and in view of applications to black holes. The black hole

e↵ective potential for dyonic charges Q = (p⇤, q⇤) is given by

VBH = �1

2
QtM(N )Q =< Q, VA >< Q, V̄ A > (3.1)

where VA = (f⇤
A , h⇤ A) and the central charges ZA =< Q, VA > are defined by the symplectic

product

ZA =< Q, VA >= QT⌦VA = f⇤
Aq⇤ � h⇤ Ap

⇤ , (3.2)

in terms of the symplectic invariant metric

⌦ =

✓
0 �11
11 0

◆
. (3.3)
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This is in agreement with the N=2 interpretation of [15]), which will be discussed in Section

?? XXX below. The 1-dimensional Abelian SO(1, 1) factor in (2.1) is given by

D(�) =

0

BB@

e�3� 0 0 0
0 e�� 0 0
0 0 e3� 0
0 0 0 e�

1

CCA , (2.10)

as computed in [16]), whereas the (2nV + 2)⇥ (2nV + 2) matrix G is

G(�) =

0

BB@

1 0 0 0
0 E 0 0
0 0 1 0
0 0 0 E�1

1

CCA . (2.11)

By matrix multiplication of (2.9)-(2.11) according to (2.1), one finds that the symplectic

matrix L (1.6) in terms of the 5D data takes the triangular form:

L(aI ,�, E (�))=

0

BB@

e�3� 0 0 0
aIe�3� e��E I

a 0 0
�1

6de
�3� �1

2dKE
K

a e�� e3� �aK(E�1)aKe
�

1
2dIe

�3� dIKE K
a e�� 0 e�(E�1)aI

1

CCA . (2.12)

We see that, in this particular basis, B = Im f = 0, and the f section is purely real:

f = Ref =
1p
2
A(aI ,�, E (�a)). (2.13)

On the other hand, one has

h =
1p
2
(C � iD) )

Reh = 1p
2
C(aI ,�, E (�) , dIJK)

Imh = � 1p
2
D(aI ,�, E (�)) ,

along with the normalization

fT Imh =
1

2
. (2.14)

Notice that the C sub-block is the only one depending on dIJK .

Conversely, one can say that Eqs. (2.12)-(2.14) yield explicit expressions for the symplectic

sections f and h which match Eqs. (2.2) and (2.3), respectively. ⌅

2.1 Application to N = 8 Supergravity

To make the discussion concrete, let us consider N = 8 supergravity, where the JTS is the

rank-3 Euclidean Jordan algebra JO
s
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Application to BH: STU model

Simple example of cubic special geometry, with prepotential F=STU

 3  complex scalar S, T, U each parametrizing  SU(1,1)/U(1)

Can be viewed as a truncation of N=8

It yields a non trivial test of the use of the axion frame



Defining  a real                     ,  extremal black holes are described by

BPS BH’s are a special case with W = |Z|

But other possible solutions  are the non!BPS BHÕs  !

                               gives non!BPS critical points!

�
U � = �eUW

��i = �2eUgi⇤̄⇥⇤̄W

AC, G. DallÕAgata

VBH(�, q, p) = W 2 + 4gi⌅̄⇤iW⇤⌅̄W

⇥iW (�, �̄) = 0

W (�,�)

W (�,�)

“fake’’ superpotential eUW |! � MADM

First order black hole attractor ßows 



W was found for generic charge configuration using duality invariance:

1.  Take W for STU model in S=T=U limit
2.Compute it in simple charge configuration and then boost it to generic 
charges by a duality transformation               

W 2 =
i1 + i2

4
+

3

8

2

4
 
4 i3

p
�I4 � (i1 + i2) I4 +

✓
i1 �

i2
3

◆3
!1/3

+

+

 
�4 i3

p
�I4 � (i1 + i2) I4 +

✓
i1 �

i2
3

◆3
!1/3

3

5 .

=! non polynomial expression, but at non-BPS attractor point:

i2 = 3i1 =
3

4

p
�I4 , i3 = 0 =⇥ SBH = W 2 =

p
�|I4|

bellucci, 
ferrara,marrani,yeranyan 

2008

AC, DallÕAgata, 
Ferrara, Yeranyan 

2009



Cerchiai Marrani 
Ferrara Zumino 

2009

 Give W in terms of a complete set of duality invariants for N=2
  respect the Sp(2n+2,R) structure

[14]. We will then provide explicit forms for the fake superpotential W for all small orbits

in N = 2 symmetric theories. Our goal here is to describe the amount of supersymmetry

preserved in each small orbit and to find the relevant fake superpotential W for each of

them. After revisiting the large orbits, we intend to use this universal description in terms of

invariants also towards the classification of orbits of the N = 2 charge vector for symmetric

special geometries, extending similar results obtained in [8] for maximally extended theories.

Duality invariant quantities are those that remain unchanged (transform as scalars) under

the simultaneous action of the duality group on the charge vector Q = (p�, q�) and on the

scalar fields (expressed through the symplectic sections (X�, F�), with � = (0, i) = 0, . . . , n).

Here we recall that the complete set of invariants in N = 2 special geometry found in [20] is

given by

i1 = ZZ (1.4)

i2 = gi�̄ZiZ �̄ (Zi = DiZ , Z ı̄ = Dı̄ Z) , (1.5)

i3 =
1

6

�
ZN3(Z) + ZN3(Zi)

⇥
, i4 =

i

6

�
ZN3(Z)� ZN3(Z)

⇥
, (1.6)

i5 = g īıCijkCı̄�̄k̄Z
j
Z

k
Z �̄Z k̄ , (1.7)

where the cubic norms are given by

N3(Z) = CijkZ
i
Z

j
Z

k
, N3(Z) = Cı̄�̄k̄Z

ı̄ Z �̄ Z k̄. (1.8)

These five invariants in the case of symmetric special geometries are not independent, and

although each one of them depends on the scalar fields, they satisfy a constraint which

involves the quartic invariant I4:

I4 = (i1 � i2)
2 + 4i4 � i5 . (1.9)

The objects (i1, . . . , i5) behave as scalar functions of the charges and the scalar fields under

duality transformations.

Our main interest is to compute the superpotential W, as its value at radial infinity gives

the ADM mass of the given black hole. In extended supergravity, the BPS bound states that

MADM = W (��, Q) ⇤ |zh| (1.10)

where zh is the highest skew eigenvalue of the central charge ZAB, which is saturated for

BPS solutions. In the N=8 case, an interesting bound holds for the non-BPS orbits[12, 14]

|zh|2 < W 2
nonBPS ⇥ 4|zh|2 , (1.11)

3
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3

cubic norms:

Ansatz:
AC, DallÕAgata, 

Ferrara, Yeranyan 
2009W (�, �̄) = W (i1, i2, i3, i4, i5)



Results for                            agree with time reduction approach

Bossard,Michel, Pioline arXiv:0908.1742
compute W by “reduction over time”

 given implicitly as a “non standard diagonalization problem’’: 
solution of a sextic polynomial in whose coefficients are SU(8) 
invariants 

CHECK:  using the axion basis for the central charges,
after a unitary rotation, find the fake superpotential for 

p0 q0 charge configuration of t^3 model 

T 3, ST 2, STU

W 2

alessandra gnecchi 2012
AC, ferrara, marrani



Summary

   d-geometry is relevant for  extended (even N) supergravities 

Interesting to use universal parametrization of scalar manifold  
reflecting 5D origin (axion frame)

Coset representative has lower triangular form, f section is real

Application to black hole flows, explain stratification of charge 
orbits, computation of fake superpotential

Hope: useful to understand the structure of quantum corrections 
in extended SG, in particular N=8



Outlook "view %om above#



Dear Costas...

Thank you!!!


