Microstates for non-extremal black holes

Bert Vercnocke

CEA Saclay

ArXiv: $\quad 1109.5180+1208.3468$ with Iosif Bena and Andrea Puhm (Saclay)
$1110.5641+$ in progress with Borun Chowdhury (Amsterdam)

Corfu, Monday 24 September 2012

Outline

\author{

1. Motivation
}
2. Black hole microstate geometries
3. Non-extremal black holes and microstates
4. Conclusions/outlook

Outline

\author{

1. Motivation
}

2. Black hole microstate geometries

3. Non-extremal black holes and microstates
4. Conclusions/outlook

Motivation

What is a black hole?

" "Region of spacetime from which nothing can escape"

- Black hole uniqueness theorems (Einstein-Maxwell) M, Q, J determine stationary BH completely

Motivation

Semiclassical gravity [Hawking]
Black hole radiates: Entropy, Temperature

$$
S_{B H}=\frac{A_{H}}{4 G_{N}}, \quad T_{H}=\text { surface gravity }
$$

Problems:

- Entropy: $S_{B H}=\log N_{\text {micro }}$?
- Information paradox
- Singularity (classical!)

Outline

1. Motivation

2. Black hole microstate geometries

3. Non-extremal black holes and microstates

4. Conclusions/outlook

Black hole microstate geometries

$$
\text { Are there } N=e^{S_{B H}} \text { "microstates"? }
$$

Microstates in string theory:
a) Entropy
b) Information problem
c) Status

Microstates: Entropy

Where are the black hole microstates?
Counting states in a dual regime for supersymmetric black holes [Strominger,Vafa '96]

$$
\longrightarrow
$$

$$
G_{N} \sim g_{s}^{2} \text { larger }
$$

$$
S_{\text {micro }}=\log \left(N_{\text {micro }}\right) \underset{\text { protected (susy) }}{\longleftrightarrow} \quad S_{\text {macro }}=\frac{A_{H}}{4 G_{N}}
$$

Microstates: Entropy

Two shortcomings:

- Supersymmetric: no radiation, no solution for information problem
- No gravity interpretation of a single microstate

Microstates: Information Paradox

Naive picture:

- 'Normal' objects shrink with increasing G_{N}
- Black hole grows $r_{H}=2 G_{N} M$

Microstates: Information Paradox

Naive picture:

- 'Normal' objects shrink with increasing G_{N}
- Black hole grows $r_{H}=2 G_{N} M$

String theory microstates can actually grow with G_{N} :

- No horizon themselves; smooth (first ‘fuzzballs': [Lunin, Mathur '01])

2

- Information paradox could be solved

Microstates: Status

Can we realize order $N=e^{S_{B H}}$ microstates as geometries?
Supergravity: microstate geometries

- "Multi-center" configurations
- Same overall charge as a black hole

Microstates: Status

Can we realize order $N=e^{S_{B H}}$ microstates as geometries?
Supergravity: microstate geometries

- "Multi-center" configurations
- Same overall charge as a black hole

Supersymmetric microstate geometries

- D1-D5-P black hole (BMPV [Breckenridge, Myers, Peet, Vafa '96])
- Missing microstates:

$$
S_{B H}=\sqrt{N_{1} N_{5} N_{p}} \propto N^{3 / 2}, \quad S_{\text {micro }} \propto N^{5 / 4}
$$

[Bena,Bobev,Ruef,Warner '08],[de Boer, El-Showk, Messamah, Van den Bleeken '09]

Microstates: Outlook

Charged black holes \rightarrow cosmic censorship: $M \geq Q$

Microstates: Outlook

Charged black holes \rightarrow cosmic censorship: $M \geq Q$

Supersymmetric BH's are extremal

$$
M=Q
$$

Microstate: singularity resolution up to horizon size

Microstates: Outlook

Charged black holes \rightarrow cosmic censorship: $M \geq Q$

Supersymmetric BH's are extremal

$$
M=Q
$$

Microstate: singularity resolution up to horizon size

Non-extremal black holes

Which horizon?
Information paradox?

Outline

1. Motivation

2. Black hole microstate geometries

3. Non-extremal black holes and microstates

4. Conclusions/outlook

Non-extremal multi-center solutions

How to make non-extremal multi-center solutions?

"Do not pray to the saint who doesn't help you" Romanian proverb black-hole-ised by Iosif Bena

Non-extremal multi-center solutions

How to make non-extremal multi-center solutions?

"Do not pray to the saint who doesn't help you" Romanian proverb black-hole-ised by Iosif Bena

Method: one center $=$ probe

... Non-extremal background [Anninos,Anous,Barandes,Denef,Gaasbeek '11], [Chowdhury, BV '11]
... SUSY background, SUSY broken by relative orientation [Bena, Puhm, BV '11, '12]

Background

Microstate of SUSY black hole in $N=2$ supergravity in 5 dimensions [Breckenridge,Myers,Peet,Vafa '96]

- BMPV black hole - 4 Parameters:

$$
\begin{array}{l|l}
Q_{1}, Q_{2}, Q_{3} & \text { electric charges } \\
\left|J_{1}\right|=\left|J_{2}\right| & 2 \text { angular momenta }
\end{array}
$$

- Microstate: "bubbling geometry"

$$
d s_{5}^{2}=-\left(Z_{1} Z_{2} Z_{3}\right)^{-2 / 3}(d t+k)^{2}+\left(Z_{1} Z_{2} Z_{3}\right)^{1 / 3} d s_{\text {Taub-NUT }}^{2}
$$

Probe

Supertube: 3 parameters; carries no entropy

$$
\begin{aligned}
& q_{1}, q_{2} \text { electric charges } \\
& j_{\text {tube }} \text { angular momentum } \\
& {\left[d_{3}=q_{1} q_{2} / j_{\text {tube }} \mid \text { dipole charge }\right]}
\end{aligned}
$$

Probe DBI Potential

Interpret Supertube as D4 brane with dissolved D2 and F1:

$$
S_{D B I}+S_{W Z}=-T_{D 4} \int \sqrt{-\operatorname{det}(g+\mathcal{F})}+\mu_{D 4} \int\left(C_{5}+C_{3} \wedge \mathcal{F}\right)
$$

Probe DBI Potential

Interpret Supertube as D4 brane with dissolved D2 and F1:

$$
S_{D B I}+S_{W Z}=-T_{D 4} \int \sqrt{-\operatorname{det}(g+\mathcal{F})}+\mu_{D 4} \int\left(C_{5}+C_{3} \wedge \mathcal{F}\right)
$$

- Background with 7 centers on a line [Bena, Wang, Warner '06]

Probe DBI Potential

Interpret Supertube as D4 brane with dissolved D2 and F1:

$$
S_{D B I}+S_{W Z}=-T_{D 4} \int \sqrt{-\operatorname{det}(g+\mathcal{F})}+\mu_{D 4} \int\left(C_{5}+C_{3} \wedge \mathcal{F}\right)
$$

- Background with 7 centers on a line [Bena, Wang, Warner '06]

Probe DBI Potential

Interpret Supertube as D4 brane with dissolved D2 and F1:

$$
S_{D B I}+S_{W Z}=-T_{D 4} \int \sqrt{-\operatorname{det}(g+\mathcal{F})}+\mu_{D 4} \int\left(C_{5}+C_{3} \wedge \mathcal{F}\right)
$$

- Background with 7 centers on a line [Bena, Wang, Warner '06]

Properties

- Singularity resolution?

Properties

- Singularity resolution?
- Length of throat $L=\int \sqrt{g_{r r}} d r$ Black hole:

Microstate:

Properties

- Singularity resolution?
- Length of throat $L=\int \sqrt{g_{r r}} d r$ Black hole:

Microstate:

Probe calculation for many microstates:

- We find: $\left.L_{B H} \geq L_{M S}\right)^{\text {, }}$, but also $L_{B H}<L_{M S}$
- No dynamical mechanism

Outline

1. Motivation

2. Black hole microstate geometries

3. Non-extremal black holes and microstates
4. Conclusions/outlook

Summary

Black hole microstate geometries

- (smooth) Horizonless microstates
- Supersymmetric: not enough
- Non-extremal: 'none’

JMaRT [Jejjala, Madden, Thitchener, Ross '05]
Running Bolt [Bena, Giusto, Ruef, Warner '09]

Non-extremal multi-center bound states?

- Probe supertubes: metastable bound states

Outlook

Non-extremal microstates:

- No dynamical mechanism whether $L_{M S}<L_{B H}$ Entropic argument? Information paradox?
- Backreaction? Ergoregions?

We need full, backreacted non-extremal microstates!

