Higgs in the NMSSM and the LHC

Genevieve Bélanger LAPTH, Annecy-le-Vieux

GB, D. Albornoz Vasquez, C. Boehm, J. Da Silva, C. Wymant (1203.3446)GB, U. Ellwanger, J.Gunion, Y.Jiang, S. Kraml (1208.4952)

Corfu, september 2012

- Overview Higgs results, mass and couplings
- Higgs in NMSSM
- Specific NMSSM scenarios
 - Higgs in two-photons
 - Light DM

Introduction

- Higgs mass is compatible with SM up to high scale (see e.g. Degrassi's lecture)
- No sign (yet) of supersymmetry at LHC
- Supersymmetry offers a good DM candidate, remains strong motivation for beyond standard model
- Evidence for DM from many different scales + precise determination of relic density from cosmology (WMAP)
- WIMPs are still best explanation for DM and have naturally cross section that gives $\Omega h^2 \sim 0.1$

Higgs at LHC

- July 4th 2012: ATLAS and CMS reported a signal consistent with a Higgs boson with mass
- $m_h = 125.3 + -0.4 + -0.5 \text{GeV} (\text{CMS})$
- =126.0+/-0.4+/-0.4GeV (ATLAS)
- Such a mass can be reached in MSSM require large mixing in stop sector, fine-tuning
- Also measure the signal strength in various production/ decay channels : give indication whether the new particle is a SM Higgs
- Results not precise enough yet : indications that signal strength is larger than expected in two-photon mode
- If this result is confirmed : precious information/constraints on physics beyond the standard model, e.g. challenge for MSSM

CMS - Higgs results

ATLAS - Higgs results

- Also has an excess in two-photon mode
- Results for signal strength relative SM combining all production modes

jeudi 13 septembre 2012

- Mass at 12
 - need large radiative corrections

$$m_h^2 = M_Z^2 \cos^2 2\beta + \delta_t^2$$

- $-\delta_t \sim 85 \text{ GeV}$ (comparable to tree-level)
- Large stop mixing

$$m_h^2 \approx m_Z^2 \cos^2 2\beta + \frac{3}{(4\pi)^2} \frac{m_t^4}{v^2} \left[\ln \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{X_t^2}{m_{\tilde{t}}^2} \left(1 - \frac{X_t^2}{12m_{\tilde{t}}^2} \right) \right].$$

- Fine-tuning issue

$$M_Z^2 \simeq -2\mu^2 + \frac{2(m_{H_d}^2 - \tan^2\beta m_{H_u}^2)}{\tan^2\beta - 1}$$

$$\delta m_{H_u}^2 = -\frac{3y_t^2}{8\pi^2} \left(m_{Q_3}^2 + m_{u_3}^2 + |A_t|^2 \right) \ln\left(\frac{\Lambda}{m_{\tilde{t}}}\right)$$

7

- hyy: dominant contribution: W loop, top loop opposite sign
- If hWW coupling not modified, hyy not much affected
- possible large contributions from susy in the loop (stop,chargino,stau) - colored particles also affect gg
- Branching hyy can be modified because total width
- to increase branching $h\gamma\gamma \rightarrow suppress$ total width (see example in NMSSM)

$$R_{\gamma\gamma} = \frac{BR^{SUSY}(h \to \gamma\gamma)}{BR^{SM}(h \to \gamma\gamma)}$$

- hgg dominant contribution top loop
- Stop contribution can be large
 - Djouadi, PLB345(98) 101

$$V_{\tilde{t}_{1}\tilde{t}_{1}h} \simeq \frac{g}{M_{W}} \left(\sin^{2}(2\theta_{\tilde{t}}) \frac{(m_{\tilde{t}_{1}}^{2} - m_{\tilde{t}_{2}}^{2})}{4} + m_{t}^{2} + M_{Z}^{2} \cos(2\beta) \left((\frac{1}{2} - \frac{2}{3} \sin^{2}\theta_{W}) \cos^{2}\theta_{\tilde{t}} + \frac{2}{3} \sin^{2}\theta_{W} \sin^{2}\theta_{\tilde{t}} \right) \right)$$

- large mixing : stop interferes destructively with top
- When m_h=125GeV : suppression of ggh larger than increase in hyp - no large increase in $R_{gg\gamma\gamma}$ $R_{gg\gamma\gamma} = \frac{\sigma(gg \rightarrow h)_{MSSM}BR(h \rightarrow \gamma\gamma)_{MSSM}}{\sigma(gg \rightarrow h)_{SM}BR(h \rightarrow \gamma\gamma)_{SM}}$
- Only way to increase R_{ggγγ} is use weak sector chargino/stau, (for example R ~1.5-2 for light stau with large mixing Carena et al 1205.5842)

NMSSM

• MSSM with additional singlet superfield

$$W_{\text{NMSSM}} = W_F + \lambda \hat{H}_u \cdot \hat{H}_d \hat{S} + \frac{1}{3} \kappa \hat{S}^3,$$

$$V_{\text{soft}}^{\text{NMSSM}} = \tilde{m}_u^2 |H_u|^2 + \tilde{m}_d^2 |H_d|^2 + \tilde{m}_S^2 |S|^2 + (A_\lambda \lambda S H_u \cdot H_d + \frac{A_\kappa}{3} \kappa S^3 + h.c.).$$

- μ parameter is related to vev of singlet $\mu = \lambda s$ - naturally of order of weak scale
- Higgs sector : 3 CP-even, 2 CP-odd + charged Higgs
 much richer phenomenology than in MSSM
- Also extra neutralino -> singlino
 - can impact dark matter properties

Higgs mass

- Light Higgs mass : new contribution at tree level
- Increase in Higgs mass $m_h^2 < M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta$
- largest increase is for low values of tanβ
- Easier to reach 125GeV even without very large stop corrections (Ellwanger et al JHEP1109,105; Hall et al 1112.2703)
- Fine tuning reduced :
 - With large lambda stop mass/mixing not so large, m_{Hu} not so large
 - in constrained NMSSM (Ellwanger, Espitalier-Noel, Hugonie, 1107.2472)
- Doublet singlet mixing the lightest Higgs scalar can be very light escape LEP bounds

• Mixing can lead to reduce hbb, reduced total width--> increased branching ratios

$$H_1 = S_{1,d} H_d + S_{1,u} H_u + S_{1,s} S$$

$$c_{D_i} = \frac{S_{i,d}}{\cos\beta} , \qquad c_{U_i} = \frac{S_{i,u}}{\sin\beta} , \qquad c_{V_i} = \cos\beta S_{i,d} + \sin\beta S_{i,u}$$

• Possible to increase branching ratios in two photons.

– Ellwanger, 1012.1201,1112.3548

- $R_{gg\gamma\gamma}>1$ for $m_H=125$ GeV, when λ large (determines singlet-doublet mixing), tan β small
- In NMSSM with input parameters at EW scale, what are implication of Higgs results after taking into account B physics, DM and LHC SUSY searches?

weak scale NMSSM

- MCMC with 14 free parameters :
 - $\lambda, \kappa, A_{\lambda}, A_{\kappa}$ $M_{1}, M_{2}, M_{3}, \mu, \tan \beta$ $M_{\tilde{l}_{L}}, M_{\tilde{l}_{R}}, M_{\tilde{q}_{1,2}}, M_{\tilde{q}_{3}}, A_{t}.$
- Constraints : B, g-2, relic density...
- NMSSMTools (Higgs)
- a posteriori:
 - HiggsBounds3.6.1
 - LHC jets+missing $E_T(1fb^{-1})$,
 - direct detection (Xenon100),
 - FermiLAT (photons from dwarf Spheroidals)
 - LHCb (B_s-> $\mu^{+}\mu^{-}$)

constraint	value/range	tolerance		
Smasses	_	none		
$\Omega_{WMAP}h^2$	0.01131 - 0.1131	0.0034		
$(g-2)_{\mu}$	$25.5 \ 10^{-10}$	stat: 6.3 10 ⁻¹⁰		
		sys: 4.9 10 ⁻¹⁰		
Δρ	≤ 0.002	0.0001		
$b \rightarrow s\gamma$	3.52 10 ⁻⁴ [??]	th: 0.24 10 ⁻⁴		
		exp: 0.23 10 ⁻⁴		
$B_s ightarrow \mu^+ \mu^-$	$\leq 4.7 \; 10^{-8}$	$4.7 \ 10^{-10}$		
$R(B \to \tau \nu)$	1.28 [?]	0.38		
$Z \rightarrow \chi_1 \chi_1$	$\leq 1.7 \text{ MeV}$	0.3 MeV		
		none		
$e^+e^- \rightarrow \chi_1 \chi_{2,3}$	≤ 0.1 pb [?]	0.001 pb		
		none		
ΔM_s	117.0 10 ⁻¹³ GeV	th: 21.1 10 ⁻¹³ GeV		
		exp: 0.8 10 ⁻¹³ GeV		
ΔM_d	3.337 10 ⁻¹³ GeV	th: $1.251 \ 10^{-13} \text{ GeV}$		
		exp: $0.033 \ 10^{-13} \text{ GeV}$		

14

Higgs signal strength

- Both H₁ and H₂ can be in 122-128GeV range H₁ has R_{ggγγ}~1
- MCMC+HiggsBounds3.6.1

- Insisting on WMAP lower/upper limit most points with $R_{gg\gamma\gamma} > 1$ disappear
- Few points with $H_2 \sim 125 GeV$
- $R_{gg\gamma\gamma} > 1$ associated with small μ , light charginos because singlet mass light $m_S^2 = \kappa \mu / \lambda (A_\kappa + 4\kappa \mu / \lambda)$
- small μ means LSP has significant higgsino component
 - efficient annihilation into WW
 - 'typically' $\Omega < 0.1$

- $R_{gg\gamma\gamma} > 1$ in NUHNMSSM- Ellwanger et al (1203.5048)
- large λ in NMSSM- (Chang etal, 1202.0054)

16

- While it is possible to satisfy all constraints and R>1 confined to very special corner of parameter space
- Hard to explain also all of DM (could have other DM component)
- Light 'Higgsinos' present
- Challenge for LHC ... nearly mass degenerate -> di,tri-lepton signatures have soft p_T spectrum (Baer et al 1107.5581)
- Signal for NMSSM Higgs sector ?

NMSSM signal already there?

• Could it be that Tevatron and LHC have seen two Higgs bosons?

- At Tevatron enhanced signal in VH,H->bb between 110-140GeV best value, M_H~135GeV,
- Can this be compatible with two lightest Higgses in NMSSM?

Sample point

- 'Fit' CMS+Tevatron Higgs signal
- Here ignore DM requirement

λ	0.617	$\mu_{\rm eff}$	143
κ	0.253	A_{λ}	164
$\tan\beta$	1.77	A_{κ}	337
M_{H_1}	125	M_{A_1}	95
M_{H_2}	136	M_{A_2}	282
M_{H_3}	289	$M_{H^{\pm}}$	272

Higgs	$R^{\gamma\gamma}(ggF)$	$R^{\gamma\gamma}(VBF)$	$R^{VV^{(*)}}(ggF)$	$R^{VV^{(*)}}(VH)$	$R^{bb}(VH)$	$R^{\tau\tau}(ggF)$
H_1	1.30	1.09	0.90	0.75	0.36	0.42
H_2	0.16	0.27	0.18	0.31	0.74	0.43
H_3	0.58	0.01	0.04	0.004	0.23	19.6

• At Tevatron - poor mass resolution in $bb + production H_1 > H_2$

 $R_{\rm eff}^{bb}(VH) \simeq R_2^{bb}(VH) + 1.3 \times R_1^{bb}(VH) \sim 1.3$

- More data at LHC ($\gamma\gamma$) will confirm/rule out this possibility
- Search for H₃ look at decays in light Higgs/ neutralino pairs

• Higgs searches at LHC could still provide exciting news - certainly powerful constraints on extended Higgs sector

Light neutralino DM in the NMSSM

NMSSM with light neutralino

- A closer look at the light neutralino ($\langle m_Z/2 \rangle$)
- Possibility of invisible Higgs is it ruled out? specific signatures?
- Light neutralino motivated by hints in direct detection (although latest Xenon2012 make it hard to reconcile all DD results)

$$\sigma_{\mathrm{p}}^{\mathrm{SI}} = \lim_{m_{\chi} \to \infty} \sigma \left\{ m_{\mathrm{N}} = m_{\mathrm{p}}, m_{\chi} \right\}$$

• Case m<15 GeV

- $\mu = \lambda s$ related to vev of singlet
- 5 neutralinos

$$\begin{pmatrix} M_1 & 0 & M_Z \sin\theta_W \sin\beta & -M_Z \sin\theta_W \cos\beta & 0 \\ 0 & M_2 & -M_Z \cos\theta_W \sin\beta & M_Z \cos\theta_W \cos\beta & 0 \\ M_Z \sin\theta_W \sin\beta & -M_Z \cos\theta_W \sin\beta & 0 & -\mu & -\lambda v \cos\beta \\ -M_Z \sin\theta_W \cos\beta & M_Z \cos\theta_W \cos\beta & -\mu & 0 & -\lambda v \sin\beta \\ 0 & 0 & -\lambda v \cos\beta & -\lambda v \sin\beta & 2v \end{pmatrix}$$

- LSP can be either bino or singlino (higgsino only if m>100GeV)
- Singlino : handle to differentiate NMSSM from MS^SM

NMSSM parameter space

- MCMC with 11 free parameters :
 - $M_1, M_2 = M_3/3, \mu, \tan\beta, M_1, M_q, A_t, \lambda, \kappa, A_\lambda, A_\kappa$
- Constraints : B, g-2, relic density...
- NMSSMTools (Higgs)
- a posteriori:
 - HiggsBounds3.6.1
 - LHC jets+missing $E_T(1fb^{-1})$,
 - direct detection (Xenon100)
 - FermiLAT (photons from dwarf Spheroidals)
 - LHCb ($B_s \rightarrow \mu^+ \mu^-$)
 - Require invisible branching Higgs <60% (3sigma)

Direct DM detection

- Direct detection : DM elastic scattering on nuclei
- Dominate by Higgs exchange
- Enhanced for very light Higgs

$W^{-}, Z, \overline{t}, \overline{b}, \overline{t}^{-}$. Jirat detection

- Annihilation of pairs of DM into SM particles : decay products observed
- FermiLAT : Photons from Dwarf Spheroidal Galaxies $Q(x, \mathbf{E}) = \frac{\langle \sigma v \rangle}{2} \left(\frac{\rho(\mathbf{x})}{m_{\chi}}\right)^2 \frac{dN}{dE}$ and the effective section at freeze-out for light DM $\langle \sigma v \rangle = 3 \times 10^{-26} \text{cm}^3/\text{sec}$
- Also if 2m_{LSP}~m_A possible resonance enhancement at v~0.001c

NMSSM with light neutralino

- To satisfy DM constraints (Relic density) need an efficient annihilation mechanism for light neutralino
 - H₁ or A₁ ~2M_{LSP}
 - H₁ or H₂ in 122-128GeV range

Yellow: Direct detection Red : gamma-ray Fermi

Higgs signal strength

- H_1 or usually H_2 MSSM-like $R_{gg\gamma\gamma} < 1$
- invisible modes possible strong suppression

LHC -SUSY searches

- Jets + missing E_T ATLAS 1fb⁻¹
- MCMC+micrOMEGAs+NMSSMTools-> SLHA file
- Event generator Herwig++2.5.1
- Rivet 1.5.2 (Grellscheid et al 1111.3365)
- Limits on squarks can be weaker than in MSSM when LSP is singlino

NMSSM signatures

- SUSY sector: main difference with MSSM: singlino LSP
 bino -> singlino + soft leptons (Kraml, Raklev, White, 0811.0011)
- Higgs sector (in addition to standard channels):
 - H_2 ->2 $A_1(H_1)$ ->ττττ,μμττ
 - Englert et al, PRD84 075026(2011) Lisanti, Wacker PRD79 115006(2009)
 - Higgs-> $\chi_2\chi_1$, χ_2 -> χ_1 f f or χ_2 -> χ_1 H/A
- Also search for light Higgs but couplings of H₁ to SM suppressed because singlet component
 - H₁bb at most SM-like (even though coupling can be tan β enhanced)

31

• Higgs production in SUSY decays

- If NLSP partly singlino -> can be lighter than 100GeV
- Non standard H decays: $[H_2 \rightarrow \tilde{\chi}_{1,2}^{0}\tilde{\chi}_{1,2}^{0}, H_1H_1 \text{ or } A_1A_1]$

CONCLUSION

- NMSSM is extension of MSSM that provide a Higgs 125 GeV which satisfies all constraints
- Possibility of increasing two-photon signal
- Specific signatures both in Higgs sector (including extra states) and in SUSY sector (especially if singlino LSP)
- Detailed investigation of Higgs sector at LHC