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Aim I:
learn how to solve string theory in curved spaces

very few solvable examples known —
free fields, gauged WZW, plane waves, orbifolds of them, ...

RR background — extra complication

maximally supersymmetric case of AdS/CFT:

guidance from integrability and weak-coupling gauge theory side
Aim II:

learn how to solve non-trivial 4d quantum field theories

apparently simplest — supersymmetric CFT’s
no solvable examples known



Maximally symmetric case of gauge-string duality:

planar A" = 4 super Yang-Mills < free AdS5 x S° superstring

closed string states on R x S! <+ gauge-inv. SYM states on R x S°
marginal str. vertex ops on R? <+ conf. primary SYM ops on R*

correlators of AdSs x S° string vertex operators

— analogs of S-matrix elements in flat 10d space —
are dual to correlators of

conformal operators of planar ' = 4 SYM

In particular, relation of 2-point functions means that
spectrum of AdSs x S° string energies

<+ spectrum of dimensions of SYM primary operators

Then spectrum of N' = 4 SYM dimensions A(\)
should be described by 2d AdSs x S° superstring sigma :
integrability in 4d has 2d origin



Integrability:

allows “in principle” to solve the problem of spectrum

enormous progress in the last 10 years

Some key inputs:

e SYM action + perturbation theory (A < 1)

o AdSs x S® GS superstring action + o/-expansion (v A > 1)

e classical integrability of AdS5 x S° GS action

e perturbative integrability of SYM spectral problem:

(1-loop, 2-loop, ...) dilatation operator = spin chain Hamiltonian
[Minahan, Zarembo; Beisert, Staudacher, ...]

e guidance from large-charge limits: BMN, GKP, FT

Assume integrability extends to all orders on both sides

e construct interpolating Bethe ansatz guided by general
principles, symmetries and data from both weak+strong coupling
e check consistency of its predictions



I. Spectrum of “long” operators / “semiclassical” string states
determined by Asymptotic Bethe Ansatz (2002-2007)

e its final [Beisert-Eden-Staudacher] form found by intricate
superposition of data from A < 1 gauge theory (spin chain, BA,...)
and perturbative string theory (classical and 1-loop phase, BMN),
symmetries (S-matrix), assumption of exact integrability

e consequences checked against available gauge and string data
Key example: cusp anomalous dimension — dim of Tr(® D> ®)

A=S+2+fN)InS+.., S>1

A A 1A T3 4
a1 = 52 [1 —
T

Q[l

)\3
48+45.28_(@+F)?
31n2_ K
VA (V)2

CGe=Ck) =00 2, K=B(2)=> ", % —0.915...
from 2-loop string sigma-model integrals [Roiban, Tirziu,AT]

+ ]

Fron = _ } INOICREAL)

exact integral eq. [Basso, Korchemsky, Kotanski]: any order term



II. Spectrum of “short” operators = quantum string states

Thermodynamic Bethe Ansatz (2005-...)

e reconstructed from ABA using solely methods/intuition

of 2-d integrable QFT, 1.e. inspired by string-theory side

e highly non-trivial construction — lack of 2-d Lorentz invariance
in standard BMN-vacuum-adapted l.c. gauge

e in few cases ABA “improved” by Luscher corrections is enough:
4- and 5-loop Konishi dim, 4-loop dim. of twist 2 operator

e complicated set of integral equations 1n need of simplification;
so far predictions extracted only numerically starting from

weak coupling and interpolating to larger A

e need more data to check predictions at A < 1T and A > 1

— against perturbative gauge-theory and string-theory data



Key example:
dimension A = 2 + () of Konishi operator Tr(®;®;)
9" = Gy <1
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all coefficients in ~y are integer, divisible by 12 ....
new (multiple zeta?) numbers at 8 loops ? exact expression ?



5-loop results first found using integrability

[Banjok, Janik 11]

confirmed later by more standard QFT methods

[ Velizhanin; Eden et al 12]

Very recent progress:

6-loop term: derivation from TBA [Leurent, Serban, Volin 12]
6- and 7-loop terms: from Luscher corrections approach
[Banjok, Janik 12]

Suppose one can sum up (convergent) A < 1 expansion
and then re-expand at A > 1

What one should expect to get for v(A > 1)?



Duality to string theory predicts the structure
of strong-coupling expansion:

leading term — near-flat-space expansion for fixed quant. numbers
[Gubser, Klebanov, Polyakov 98]

A =1\/2NV\+ ...

Subleading terms: o’ = —= expansion of 2d anom. dimensions

VA
of corresponding vertex operators [Roiban, AT 09] (V = 2)
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Dimensions of “short” SYM operators
= energies of quantum string states

find leading o’ = % corrections to energy of

“lightest” massive string states on first massive string level
dual to operators in Konishi multiplet in SYM theory
— compare with predictions of TBA approach

important to check integrability-based approach
which involves subtle assumptions

directly against perturbative string sigma model



TBA results:
start at weak coupling for sl(2) Konishi descendant Tr(®D?*®)

use TBA to find A(\) numerically;
match to expected form of strong-coupling expansion to extract by
[Gromov, Kazakov, Vieira 09; Frolov 10, 12]

b1 ~ 1.988 , bo ~ —3.07

Compare to string theory:
One can find by, using semiclassical “short string” expansion
[Roiban, AT 09, 11; Gromov, Serban, Shenderovich, Volin 11]

61:27 bQZCL—SC3
rational a was found [Gromov, Valatka 11] using “2-loop”

coefficient in exact slope function £? = h())S [Basso 11]
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Remarkable agreement with TBA - check of quantum integrability
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Figure 1: Plot from Gromov, Kazakov, Vieira [09]
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Recent work on string side: [BGMRT 12; BT12]

e highest transcendentality terms in by,
are ~ (211 and have 1-loop origin, e.g.,

bs = a1 + az(s + as(s

rational aq receives contribution from 3 loops; ao from
2-loops, etc.; by ~ (7 + ..., etc.

e supermultiplet structure: universality of coefficients in &/
for string states with spins in different AdSs x S° directions:
dual operators from Konishi multiplet have same energy

(up to constant shift depending on position in the multiplet)

e states on leading Regge trajectory:
general structure of dependence of energy on
string tension v/, string level (spin) and S° orbital momentum .J



Some open questions:
e Analytic form of strong-coupling expansion from TBA?

e only (; coefficients in A(\) in both

weak and strong coupling expansions

or other transcendental constants appear?

(cf. cusp anomalous dimension)

[2-loop string computation may shed light on this ...]

e Asymptotic form of strong coupling expansion:

e~FVA corrections to cusp dimension
absent for short strings / operators like Konishi?
[no such corrections in slope function; no massless S° modes]

e Energies of other quantum states: general structure of spectrum?



Konishi multiplet:
long multiplet related to singlet |0, 0, 0] (o ¢y by susy

[Jo — J3, J1 — J2, Jo 4 J3](s, 5R)
SL,R — %(Sl + 52)

50(6) (Jl, JQ, Jg) and 30(4) (Sl, Sg) labels
of SO(2,4) x SO(6) global symmetry

A=ANg+7(N), Ap=2,23,..,10

’ 99
same anomalous dimension -y for all members

singlet eigen-state of anom. dim. matrix with lowest eigenvalue



Examples of gauge-theory operators in Konishi multiplet:

[0707_0](0,0):
TI'((I)Z(I)Z), 1= 1, 2, 3, AQ =2

[27 07 2](0,0):
Tr([®1, P2]?) in su(2) sector, Ag =4

[07 27 O](l,l):
Tr(®,D?*®,) in sl(2) sector, Ag =4
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4 [0707O](O,O)+(O,2)+(1,1)+(2,0) + [070 2](% %)4_(%,%) -+ [07 170] (2 7 2)4_(2,2)4_(2,2 + [27()? 2](0,0)
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6 [O 0, 0]3(0 0)+3(1,1)4+(2,2) + [0 0, 2]3(2,2)4_(2,2)4_(2,2)_,_(2,2) + [07 170]4(2,2)4_2(2,2)4_2(2,2)4_
+[0,1, 2](0,0)42(0,1)+2(1,0)+(1,1) T (0,2, 0]3(0,0)+(0,1)+(0,2)+(1,0)+3(1,1)+(2,0) T [0, 2 2](2,2
+10,3 0]2(1 + 10,4, 0](0,0) + [1,0,1}(0,0)+3(0,1)+3(1,0)+4(1,1)+(1,2)+(2,1) + [1, 0, 3](§ 1+ 0
HL LTy dyeach racd.d) + 12000 +0.0+00) + 20053 10403, 84(3.2 3 g
+12,0,2](0,0)+(1,1) + [2,1,0](0,0)+2(0,1)+2(1,0)+(1,1) T [2,2 0](2,2 + 3,0, 1](%,%) 4,0, 0] (g

I7

2 [0707 1](O’§)+(07§)+(1,§ + [07 1, 1](%’0)4_(%,1) + [1a 0, O](§70)+(§,1)+(%,0) + [1707 2](07%)
‘|‘[17 17 O](O’%)+(1,% + [27 07 1](%,0)

9 [07070](%,%) + [07 0, 2](0,0) + [07 170](0,1)+(1,0) + [17 0, 1](%7%) + [27070](0,0)

% [0707 1](%,0) +[17070](0,%)

10 [07070](0,0)

Table 1: Long Konishi multiplet (part of it)



Comparison between gauge and string theory states:

e A\ < 1: gauge-theory operators built out of free fields,
canonical dim. A( determines operators that can mix

e A\ > 1: in near-flat-space expansion string states built out of
free oscillators, level N determines states that can mix

(1) relate states with same global charges
(1) assume direct interpolation (no “level crossing”) for states with
same quantum numbers as A changes from small to large values

e Konishi operator dual to
“lightest” among massive AdS5 x S° string states

o large V) = %—?:
“short” strings probe near-flat limit of AdSs x S°
e members of supermultiplet:

strings with spins/oscillators in different AdSs x S° directions



String spectrum in AdS5 x S° :

long multiplets of PSU(2,2|4)

highest weight states:

|Jo — J3,J1 — Ja, Jo + J3]
s1,2 = 2(S1 £ S2)

(s1,s2)

Flat-space string spectrum can be re-organized

in multiplets of SO(2,4) x SO(6) C PSU(2,2|4)
[Bianchi, Morales, Samtleben 03; Beisert et al 03]
SO(4) x SO(5) C SO(9) rep.

lifted to SO(4) x SO(6) rep. of SO(2,4) x SO(6)

Konishi multiplet:
K={1+Q+QAQ+..)[0,0,0]0,)
determines the “floor” of 1-st excited string level

Z;O:() [07 J7 O](O,O) x K



Spins: S1,S3 in AdSs; (Jp,J2)in S°
orbital momentum J = J3 in S°

Examples:

e folded string with spin S7; and momentum J:
S1=J=2 — [0,2,0](1’1), A0:4

e folded string with spin J; and momentum J:
J=J=2 — [2,0,2](0,0), A0:4

e circular string with spins J; = J9 and momentum .J:
Ji=Jo=1J=2 — [0,1,2]0,0), Ao=6

e circular string with spins 51 = S and momentum J:
5125221,J=2 — [0,2,0](0’1), A0=6

e circular string with spins .S; = J; and momentum J:

51:J1:1,J:2 — [17171](l l)’ AO:
2’2



Direct approaches to computation of quantum string energies:
(1) vertex operator approach:

use AdSs x S° string sigma model perturbation theory to find
leading terms in 2d anomalous dimension of corresponding

vertex operators and impose marginality condition
[Polyakov O1; AT 03]

(1) “light-cone” gauge approach:

start with AdS light-cone gauge AdS5 x S° string action and
compute corrections to energy of corresponding flat-space
oscillator string state [Metsaev, Thorn, AT 00]

both approaches yet to be developed in detail;
here will be guided by vertex operator approach
but use indirect “semiclassical” approach:
“short string” limit of semiclassical expansion
[Tirziu, AT 08; Roiban, AT 09, 11]



Massive string states in curved background:

/dDa:\/§ [cb_,,(—D2 +m?+ X))+ ...
m? = 2V X=R. . +0()

o’ )

case of AdSs x S° background
Ryn — 55 (F5F5)mn =0, R=0, Fg=0

Find leading-order term in X ...
leading o’ correction to scalar string state mass is 0 (?!)

[—D? +m? +0(5)]® =0
_ 1
A_2+\/2N+4+O(W)

_ 4 1 1
Ay =242V 14 512+ O( )

Too naive: SO(6) scalar, not 10d scalar, mixing,...
What is found for non-singlet (susy descendant) Konishi states?



Vertex operator approach
calculate 2d anomalous dimensions from ““first principles”—
superstring theory in AdS5 x S° :

A\ _ _
= ZLL A0 |0Y,dY " + 9X,DX), + fermions |
T
Y7 Y24+ Y 4+ Y =1, X+, . +Xi=1

construct marginal (1,1) operators in terms of Y, and X},
e.g. vertex operator for dilaton (in NSR framework)

Vjy= (Y+)_A (Xm)‘] [BYpéYp + 0X,0X, + fermions}

Y. =Yy +iYs =2+ 2z tex, ~e?
X, =X{+iXy ~ e'?

2_2+F[ (A—4) = J(J + 4] + O(As)

ie. A=4+.J (BPS)




Vertex operators = eigenstates of 2d anomalous dimension matrix
particular linear combinations like

V= fk1...kem1...m23Xk1 "'Xke 6‘)(7’”15)(””‘2 0X aXmQS

mas—1

their renormalization studied in O(n) sigma model [Wegner 90]
simplest case: fx, .. k, Xk,-.-Xk, With traceless fx, . &,

h.-w.rep. V; = (X,)!, F=2- T‘](’]_'_ 4) + ..

AdSs x S® : candidates for operators on leading Regge trajectory:

V= (V) 2 (0X,0X,)"% . X.=X +iX,

Vo= (Vi) 2(0%,0v,)"%,  Yu=Y+iYs

+ fermionic terms

+a ~ % terms from diagonalization of anom. dim. op.

— mixing with ops with same charges and dimension



Example of higher-level scalar/singlet operator:
A (OXLDX))" + } | N =2(r—1)

Marginality condition:

[cf. Kravtsov, Lerner, Yudson 89; Castilla, Chakravarty 96]

1 ¢ i
0=2(r—1)— —|AA—4)+2r(r—1)
— 21\5:27“(7"1)(7“7)+4r:+
e L3 . |+

r = 1: ground level- fermions should make = 1 zero of %
r = 2: excited level — analog of singlet Konishi state Ay = 2
A(A—4)=4VA -4+ 0(Z)

A= Ao =2VA[140x & +0( 4]

fermionic contributions change subleading coefficients



How to take fermionic contributions into account?

(i) compute energies of semiclassical string states in —< expansion

vV
using full AdS5 x S° Green-Schwarz action

(i1) compare to structure of £ = A
expected from marginality condition

(iii) determine unknown coefficients in E expanded in —<

VA



General structure of dimension/energy A = E

marginality condition — condition on quantum numbers (;

Q — (E()\)7317S2;J17J27J3; )’ N = Z@ a’iQi = level
0=2N + L(Z%]’Qi@j + Z%Qi)
VA i, i

1
+ cijk@iQiQr + ) ¢i;QiQ; + ) Qi) + ...
T (2 eun2i@ 24+ 2 )

i,k

States on “leading Regge trajectory”: (max spin for given F)
marginality condition: @ = (E,J; N), N=spin

1
O:QN—I—ﬁ(—E2+J2—|—n02N2—|—?’L11N)

1
(n01J2N 4+ 13 N° +niaN? + n21N) + ...

(VA)?

_|_



solution for E? takes form [Roiban, AT 09, 11; BGMRT 12]

E2 = 2\/XN—|—J2 —|—7”L()2N2 —|—7”L11N

1
+ \?)\(n()lJQN —+ n03N3 —+ n12N2 —+ nglN)

1 - ~
+ (n11J2N + n02J2N2 + 7?,04N4 + 7?,13N3 + n22N2 + nglN) + ...
(VA)?
Expanding in large v/ for fixed N, J
Aq Ao 1
E=\2VaN[1+ L + +O( )|
1 VA (V)2 (V)3
1
Al = @J2 + %(TLOQN —|—n11)
A2 = —§A% -+ Z(n01<]2 —+ 77,03N2 —+ 77,12N -+ n21)

Gives strong-coupling dimension of dual SYM operator



States on 1-st excited superstring level: N = 2
Konishi multiplet states: N =2, J = 2

b2 1

RYVE

b1
E=VX2+ =+ +
N
b1 =1+ ng2 + 3111
by = —4b7 + 2ng1 + 2no3 + N2 + N1

)

coefficients ny,, =7 — use semiclassical “short string”” expansion:
e start with solitonic string carrying same charges
as vertex operator representing particular quantum string state
e perform semiclassical expansion: v\ > 1
- _ 1 _ 1
for fixed classical parameters N = \/XN , T 7 J

e expand F in small values of N, 7
e re-interpret the resulting £ in terms of IV, J: get ngm,

Key point:  limit N = % —0, J= % — 0

corresponds to v/ > 1 for fixed values of quantum charges N, J



Digression: Slope function
Semicl. expansion of £ organized as expansion in small A" or IV

E?=J%4+ hi(\J) N+ hao(N\,J) N* + hs(\,J) N° + ...
ﬁll

n21 n31 2 (1001
hi =2V A4+ ni1 + — + +o T2+ +0) +
VA (V)2 <ﬁ (V)2 )
h2:n02—|—"—\/1§—|—..., hgzn—\/of—k

exact “slope” h; for sl(2) sector operator Tr(D> )

dual to AdS5 folded spinning string (N = S)
from BA (I - modif. Bessel of 1st type) [Basso 11,12;Gromov 12]

B Ii1(VA)
hﬂxjy4u+2%ilﬂ%ﬂ

1 i—J?
=2VI\/1+ J? - -
VAVI+T 1+ 7% VA1 + J2)5/2 "

AN — 2
=2V A+ J2? — N A )+...

A+ J2 (A4 J?2)5/2




h1: does not depend on wrappings or dressing phase corrections
A1 from direct summation of 4d or 2d graphs or localization ?]
h1 in large J expansion:

00 n)\
h1=2J+ZCJ(n)
n=1

Cn = a1 \¥ 4 ... + ap\ + ap1 — same finite polynomials for
A< 1, J>1land V> 1, J=x>1

same coefficients “seen’” in opposite string and gauge expansions:
an extension of known “non-renormalization” relations

[Beisert, Minahan, Staudacher, Zarembo; Frolov, AT03;...]

Slope function in su(2) sector [Beccaria, AT 12; Gromov 12]

state in su(2) sector Tr(Z7®7") dual to folded string in S°

Relation between folded string in AdSs (£,S;J) andin S°:(E; 7", J)
analytic continuation [Beisert,Frolov,Staudacher,AT 03]

E—-J, T——-E JT =8, VA= —-VA



su(2) slope function %1 is then related to sl(2) one

E?=J2 4+ hi(JN)J + ..., hi(J,A) = —hi(=J,—VA)
K 1(V)
K(V)

K y=modified Bessel function of 2nd type

ha(\, J) = 2J + 2V

regular A > 1 expansion but singularities at A < 1 at fixed J

A \? A3
h(JA) =2+ 75— Do s s T

7 A 22 A3
(LA =20+ -1 ro s tso oo

resummation reflected in \™ In” )\ terms

~ 1
J=2: h1:4+A+Z>\2(lng+2yE)+...

J=3: h —6+§—A2— A (2In2 + 4y — 1) +
T M TP T T g T s TR
- DD A
—4: hy= M 9ln 2 + 18 v — 8) + ...
J 1 =843 72;%132?:20736(4“4Jr ZE ) +
- DY A o) A
J=5: hh=104+ - — — 4+ — — —
! t 4 192 T 3072 147456 2359296<

Y

161n 3 + 32vg — 19)



meaning of A’ In \ terms ?

e defn of slope function at finite J is non-trivial:

requires analytic continuation to small values of spin

in su(2) sector J' is bounded by the fixed length of spin chain L = J'+.J
su(2) slope is defined only in the large J limit ?

e in contrast to sl(2) slope, the su(2) slope may (?) receive

wrapping contributions which also start at (A\") ;/_,o ~ A” order
starting with a TBA generalization of ABA may (?) lead to

cancellation of A7 In A terms

e may be A’ In \ terms have physical meaning:

non-perturbative terms from resummation of A™ expansion

analogous to A™ In A+... terms appearing in (ladder-diagram) IR-resummed
perturbation theory for Wilson loop for ¢-g potential
[Erickson,Semenoff,Szabo,Zarembo 00; Correa,Maldacena,Sever 12]

< W (¢, A) > for cusp is described by an integrable TBA system
analogy between expectation value of the cusp Wilson loop

at small ¢ and s[(2) slope function hy at J = 1

suggests that ¢-g potential (¢ — ) is related to the su(2) slope h1?



Back to spectrum problem:
To find E for quantum states one need coefficients in higher “slopes”
ha, hs, ... which already depend on wrapping corrections

Strategy: consider examples of “small” semiclassical string states
corresponding to quantum string states with angular momentum .J
and few oscillator (spin-carrying) modes excited

e start with classical string solutions in flat space

representing states on leading Regge trajectory

e find the corresponding solutions in AdSs x S°

e find 1-loop correction to their energy £

e expand F in N = % — 0 — interpolate result to finite NV

e find the coefficients ngm,

e check universality of £/ for N = 2 (implied by susy)

Examples studied: folded strings with S1 = J = 2; with J; = J = 2;
circular strings with J; = Jo =1,J =2;with 51 = S =1,J = 2;
with S1 = J; = 1,J:2



Results: for several states on leading Regge trajectory

E2 = 2\/1XN—|— J2 —|—n02N2 —|—n11N
+ —(n01J2N + nosN® + niaN° + TL21N)

VA
1

" (VP
(VA)?

(ﬁ11J2N + 7102 J°N? + noaN* + nisN® + noa N + nSlN)

(ﬁ01J4N -+ ﬁ21J2N -+ ﬁ12J2N2 -+ n05N5 - ) 4+ ...

® no1 =1, no1 = —i, ... from near-BMN expansion (J < \/X)
E? = J2 4+ 2NVAT I 4. = 2 - NVA+ 25 + .
e “tree-level” coeffs ngz2, no3, no4, ... are all rational
e leading 1-loop m11 1s rational [Roiban, AT 09; Gromov et al 11]
® n11 = —Nni1,i.e. in general [BGMRT 12]
hi =2V M1+ 72+ 11{}2 + %(77&1 + N1 J? + ) + ...

ha = n(ff}g + \}X(nm +n12J? + ) + ...

e N1z =njs — 3(3, Nio = —% — 2nyp3 1s rational

[Tirziu, AT 08; Roiban, AT 09; Gromov-Valatka 11]




(3 term 1s universal for states on leading Regge trajectory

12 = N + 3(s + 2(5, M)y rational

e 11} contains universal (21 (universal UV n > 1 asymptotics)
e.g. niz = nis + Y3 + %CB

e leading 2-loop coefficient n2; 1s universal: ng; = —i
for folded string state [Basso]; evidence from universality [BGMRT]

of the Konishi state energy (J = N = 2)

b1 bo b3
E. :<*/X[2+ + + +]
A VA (VA2 (V)3
1
b1 =1+ no2+ =ni1 =2
2
1, 1 1
ba = _Zbl + 2n01 + 2n03 + n12 + 57%21 =5~ 3(3

15
bs = a1 + a2(3 + ?C5 :

b1, b2: match TBA predictions interpolated to A > 1

e need 2-loop string sigma model computation

to confirm universality of na1, fix no2 — determine b3



Conclusions

e progress in understanding of AdSs x S° string spectrum

or spectrum of conformal ' = 4 SYM operators

e agreement with numerical results from TBA:

non-trivial check of quantum string integrability

e prediction of transcendental structure of leading coefficients:
reproduce them by an analytic solution of TBA at strong coupling?
e evidence of universality of some coefficients in strong coupling
expansion of dimensions of states on leading Regge trajectory

e exact results for leading “slope” functions

e need systematic study of quantum string theory in AdSs x S°

in near-flat-space expansion

e still need first-principles solution for
spectrum of AdSs x S° superstring = spectrum of N' = 4 SYM
based on integrability

... 1t now seems within reach...



