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Aim I:
learn how to solve string theory in curved spaces

very few solvable examples known –
free fields, gauged WZW, plane waves, orbifolds of them, ...

RR background – extra complication

maximally supersymmetric case of AdS/CFT:
guidance from integrability and weak-coupling gauge theory side

Aim II:
learn how to solve non-trivial 4d quantum field theories

apparently simplest – supersymmetric CFT’s
no solvable examples known



Maximally symmetric case of gauge-string duality:
planar N = 4 super Yang-Mills ↔ free AdS5 × S5 superstring
closed string states onR×S1↔ gauge-inv. SYM states onR×S3

marginal str. vertex ops on R2↔ conf. primary SYM ops on R4

correlators of AdS5 × S5 string vertex operators
– analogs of S-matrix elements in flat 10d space —
are dual to correlators of
conformal operators of planar N = 4 SYM
In particular, relation of 2-point functions means that
spectrum of AdS5 × S5 string energies
↔ spectrum of dimensions of SYM primary operators

Then spectrum of N = 4 SYM dimensions ∆(λ)

should be described by 2d AdS5 × S5 superstring sigma :
integrability in 4d has 2d origin



Integrability:
allows “in principle” to solve the problem of spectrum
enormous progress in the last 10 years
Some key inputs:
• SYM action + perturbation theory (λ� 1)
• AdS5 × S5 GS superstring action + α′-expansion (

√
λ� 1)

• classical integrability of AdS5 × S5 GS action
• perturbative integrability of SYM spectral problem:
(1-loop, 2-loop, ...) dilatation operator = spin chain Hamiltonian

[Minahan, Zarembo; Beisert, Staudacher, ...]
• guidance from large-charge limits: BMN, GKP, FT

Assume integrability extends to all orders on both sides
• construct interpolating Bethe ansatz guided by general
principles, symmetries and data from both weak+strong coupling
• check consistency of its predictions



I. Spectrum of “long” operators / “semiclassical” string states
determined by Asymptotic Bethe Ansatz (2002-2007)
• its final [Beisert-Eden-Staudacher] form found by intricate
superposition of data from λ� 1 gauge theory (spin chain, BA,...)
and perturbative string theory (classical and 1-loop phase, BMN),
symmetries (S-matrix), assumption of exact integrability
• consequences checked against available gauge and string data
Key example: cusp anomalous dimension – dim of Tr(ΦDSΦ)

∆ = S + 2 + f(λ) lnS + ... , S � 1
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∑∞
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(−1)n
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from 2-loop string sigma-model integrals [Roiban,Tirziu,AT]
exact integral eq. [Basso, Korchemsky, Kotanski]: any order term



II. Spectrum of “short” operators = quantum string states

Thermodynamic Bethe Ansatz (2005-...)
• reconstructed from ABA using solely methods/intuition
of 2-d integrable QFT, i.e. inspired by string-theory side
• highly non-trivial construction – lack of 2-d Lorentz invariance
in standard BMN-vacuum-adapted l.c. gauge
• in few cases ABA “improved” by Luscher corrections is enough:
4- and 5-loop Konishi dim, 4-loop dim. of twist 2 operator
• complicated set of integral equations in need of simplification;
so far predictions extracted only numerically starting from
weak coupling and interpolating to larger λ
• need more data to check predictions at λ� 1 and λ� 1

– against perturbative gauge-theory and string-theory data



Key example:
dimension ∆ = 2 + γ(λ) of Konishi operator Tr(Φ̄iΦi)

g2 = λ
(4π)2 � 1

∆ = 4 + 12g2 − 48g4 + 336g6

+96
[
− 26 + 6 ζ3 − 15 ζ5

]
g8

−96
[
− 158− 72 ζ3 + 54 ζ2

3 + 90 ζ5 − 315 ζ7

]
g10

−48
[
160 + 432 ζ2

3 − 2340 ζ5

−72 ζ3(−76 + 45 ζ5)− 1575 ζ7 + 10206 ζ9

]
g12

+48
[
− 44480− 8784 ζ2

3 + 2592 ζ3
3 − 4776 ζ5 − 20700 ζ2

5

+24 ζ3(4540 + 357 ζ5 − 1680 ζ7)

−26145 ζ7 − 17406 ζ9 + 152460 ζ11

]
g14 + ...

all coefficients in γ are integer, divisible by 12 ....
new (multiple zeta?) numbers at 8 loops ? exact expression ?



5-loop results first found using integrability
[Banjok, Janik 11]
confirmed later by more standard QFT methods
[Velizhanin; Eden et al 12]
very recent progress:

6-loop term: derivation from TBA [Leurent, Serban, Volin 12]
6- and 7-loop terms: from Luscher corrections approach
[Banjok, Janik 12]

Suppose one can sum up (convergent) λ� 1 expansion
and then re-expand at λ� 1

What one should expect to get for γ(λ� 1)?



Duality to string theory predicts the structure
of strong-coupling expansion:
leading term – near-flat-space expansion for fixed quant. numbers
[Gubser, Klebanov, Polyakov 98]

∆ =

√
2N
√
λ+ ...

Subleading terms: α′ = 1√
λ

expansion of 2d anom. dimensions

of corresponding vertex operators [Roiban, AT 09] (N = 2)
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Values of bk from string theory? From TBA?



Dimensions of “short” SYM operators
= energies of quantum string states

find leading α′ = 1√
λ

corrections to energy of

“lightest” massive string states on first massive string level
dual to operators in Konishi multiplet in SYM theory
– compare with predictions of TBA approach

important to check integrability-based approach
which involves subtle assumptions
directly against perturbative string sigma model



TBA results:
start at weak coupling for sl(2) Konishi descendant Tr(ΦD2Φ)

use TBA to find ∆(λ) numerically;
match to expected form of strong-coupling expansion to extract bk
[Gromov, Kazakov, Vieira 09; Frolov 10, 12]

b1 ≈ 1.988 , b2 ≈ −3.07

Compare to string theory:
One can find bk using semiclassical “short string” expansion
[Roiban, AT 09, 11; Gromov, Serban, Shenderovich, Volin 11]

b1 = 2 , b2 = a− 3ζ3

rational a was found [Gromov, Valatka 11] using “2-loop”
coefficient in exact slope function E2 = h(λ)S [Basso 11]

b2 =
1

2
− 3ζ3 ≈ −3.106...

Remarkable agreement with TBA - check of quantum integrability



Figure 1: Plot from Gromov, Kazakov, Vieira [09]



Recent work on string side: [BGMRT 12; BT12]

• highest transcendentality terms in bk
are ∼ ζ2k−1 and have 1-loop origin, e.g.,

b3 = a1 + a2ζ3 + a3ζ5

rational a1 receives contribution from 3 loops; a2 from
2-loops, etc.; b4 ∼ ζ7 + ..., etc.

• supermultiplet structure: universality of coefficients in E
for string states with spins in different AdS5 × S5 directions:
dual operators from Konishi multiplet have same energy
(up to constant shift depending on position in the multiplet)

• states on leading Regge trajectory:
general structure of dependence of energy on
string tension

√
λ, string level (spin) and S5 orbital momentum J



Some open questions:

• Analytic form of strong-coupling expansion from TBA?

• only ζk coefficients in ∆(λ) in both
weak and strong coupling expansions
or other transcendental constants appear?
(cf. cusp anomalous dimension)
[2-loop string computation may shed light on this ...]

• Asymptotic form of strong coupling expansion:

e−k
√
λ corrections to cusp dimension

absent for short strings / operators like Konishi?
[no such corrections in slope function; no massless S5 modes]

• Energies of other quantum states: general structure of spectrum?



Konishi multiplet:

long multiplet related to singlet [0, 0, 0](0,0) by susy

[J2 − J3, J1 − J2, J2 + J3](sL,sR)

sL,R = 1
2 (S1 ± S2)

SO(6) (J1, J2, J3) and SO(4) (S1, S2) labels
of SO(2, 4)× SO(6) global symmetry

∆ = ∆0 + γ(λ), ∆0 = 2, 5
2 , 3, ..., 10

same anomalous dimension γ for all members

singlet eigen-state of anom. dim. matrix with lowest eigenvalue



Examples of gauge-theory operators in Konishi multiplet:

[0, 0, 0](0,0):
Tr(Φ̄iΦi), i = 1, 2, 3, ∆0 = 2

[2, 0, 2](0,0):
Tr([Φ1,Φ2]2) in su(2) sector, ∆0 = 4

[0, 2, 0](1,1):
Tr(Φ1D

2Φ1) in sl(2) sector, ∆0 = 4



∆0

2 [0, 0, 0](0,0)
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2
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2
)
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2
, 1
2
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2
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2
) + [0, 0, 4](0,0)
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2
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2
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, 1
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2
, 1
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[0, 0, 1](0, 1
2
)+(0, 3

2
)+(1, 1

2
) + [0, 1, 1]( 1

2
,0)+( 1

2
,1) + [1, 0, 0]( 1
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2
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+[1, 1, 0](0, 1
2
)+(1, 1

2
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2
,0)

9 [0, 0, 0]( 1
2
, 1
2
) + [0, 0, 2](0,0) + [0, 1, 0](0,1)+(1,0) + [1, 0, 1]( 1

2
, 1
2
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2

[0, 0, 1]( 1
2
,0) + [1, 0, 0](0, 1

2
)

10 [0, 0, 0](0,0)

Table 1: Long Konishi multiplet (part of it)



Comparison between gauge and string theory states:
• λ� 1 : gauge-theory operators built out of free fields,
canonical dim. ∆0 determines operators that can mix
• λ� 1: in near-flat-space expansion string states built out of
free oscillators, level N determines states that can mix

(i) relate states with same global charges
(ii) assume direct interpolation (no “level crossing”) for states with
same quantum numbers as λ changes from small to large values

• Konishi operator dual to
“lightest” among massive AdS5 × S5 string states

• large
√
λ = R2

α′ :
“short” strings probe near-flat limit of AdS5 × S5

• members of supermultiplet:
strings with spins/oscillators in different AdS5 × S5 directions



String spectrum in AdS5 × S5 :
long multiplets of PSU(2, 2|4)

highest weight states:
[J2 − J3, J1 − J2, J2 + J3]

(s1,s2)

s1,2 = 1
2 (S1 ± S2)

Flat-space string spectrum can be re-organized
in multiplets of SO(2, 4)× SO(6) ⊂ PSU(2, 2|4)

[Bianchi, Morales, Samtleben 03; Beisert et al 03]

SO(4)× SO(5) ⊂ SO(9) rep.
lifted to SO(4)× SO(6) rep. of SO(2, 4)× SO(6)

Konishi multiplet:
K = (1 +Q+Q ∧Q+ ...)[0, 0, 0](0,0)

determines the “floor” of 1-st excited string level∑∞
J=0[0, J, 0](0,0) ×K



Spins: S1, S2 in AdS5; (J1, J2) in S5

orbital momentum J = J3 in S5

Examples:
• folded string with spin S1 and momentum J :
S1 = J = 2 → [0, 2, 0](1,1), ∆0 = 4

• folded string with spin J1 and momentum J :
J1 = J = 2 → [2, 0, 2](0,0), ∆0 = 4

• circular string with spins J1 = J2 and momentum J :
J1 = J2 = 1, J = 2 → [0, 1, 2](0,0), ∆0 = 6

• circular string with spins S1 = S2 and momentum J :
S1 = S2 = 1, J = 2 → [0, 2, 0](0,1), ∆0 = 6

• circular string with spins S1 = J1 and momentum J :
S1 = J1 = 1, J = 2 → [1, 1, 1]

(
1
2 ,

1
2 )

, ∆0 = 6



Direct approaches to computation of quantum string energies:
(i) vertex operator approach:
use AdS5 × S5 string sigma model perturbation theory to find
leading terms in 2d anomalous dimension of corresponding
vertex operators and impose marginality condition
[Polyakov 01; AT 03]

(ii) “light-cone” gauge approach:
start with AdS light-cone gauge AdS5 × S5 string action and
compute corrections to energy of corresponding flat-space
oscillator string state [Metsaev, Thorn, AT 00]

both approaches yet to be developed in detail;
here will be guided by vertex operator approach
but use indirect “semiclassical” approach:
“short string” limit of semiclassical expansion
[Tirziu, AT 08; Roiban, AT 09, 11]



Massive string states in curved background:∫
dDx
√
g
[
Φ...(−D2 +m2 +X)Φ... + ...

]
m2 = 2N

α′ , X = R.... +O(α′)

case of AdS5 × S5 background

Rmn − 1
96 (F5F5)mn = 0, R = 0 , F 2

5 = 0

Find leading-order term in X ...
leading α′ correction to scalar string state mass is 0 (?!)

[−D2 +m2 +O( 1√
λ

)]Φ = 0

∆ = 2 +
√

2N + 4 +O( 1√
λ

)

∆
N=2

= 2 + 2
4
√
λ
[
1 + 1

2
√
λ

+O( 1
(
√
λ)2

)
]

Too naive: SO(6) scalar, not 10d scalar, mixing,...
What is found for non-singlet (susy descendant) Konishi states?



Vertex operator approach
calculate 2d anomalous dimensions from “first principles”–
superstring theory in AdS5 × S5 :

I =

√
λ

4π

∫
d2σ
[
∂Yp∂̄Y

p + ∂Xk∂̄Xk + fermions
]

−Y 2
0 − Y 2

5 + Y 2
1 + ...+ Y 2

4 = −1 , X2
1 + ...+X2

6 = 1

construct marginal (1,1) operators in terms of Yp and Xk

e.g. vertex operator for dilaton (in NSR framework)

VJ = (Y+)−∆ (Xx)J
[
∂Yp∂̄Y

p + ∂Xk∂̄Xk + fermions
]

Y+ ≡ Y0 + iY5 = z + z−1xmxm ∼ eit

Xx ≡ X1 + iX2 ∼ eiϕ

2 = 2 +
1

2
√
λ

[∆(∆− 4)− J(J + 4)] +O( 1
(
√
λ)2

)

i.e. ∆ = 4 + J (BPS)



Vertex operators = eigenstates of 2d anomalous dimension matrix
particular linear combinations like

V = fk1...k`m1...m2s
Xk1 ...Xk`∂Xm1

∂̄Xm2
...∂Xm2s−1

∂̄Xm2s

their renormalization studied in O(n) sigma model [Wegner 90]
simplest case: fk1...k`Xk1 ...Xk` with traceless fk1...k`
h.-w. rep. VJ = (Xx)J , γ̂ = 2− 1

2
√
λ
J(J + 4) + ...

AdS5×S5 : candidates for operators on leading Regge trajectory:

VJ = (Y+)−∆
(
∂Xx∂̄Xx

)J/2
, Xx ≡ X1 + iX2

VS = (Y+)−∆
(
∂Yu∂̄Yu

)S/2
, Yu ≡ Y1 + iY2

+ fermionic terms
+ α′ ∼ 1√

λ
terms from diagonalization of anom. dim. op.

– mixing with ops with same charges and dimension



Example of higher-level scalar/singlet operator:

Y −∆
+

[
(∂Xk∂̄Xk)r + ...

]
, N = 2(r − 1)

Marginality condition:
[cf. Kravtsov, Lerner, Yudson 89; Castilla, Chakravarty 96]

0 = 2(r − 1)− 1

2
√
λ

[
∆(∆− 4) + 2r(r − 1)

]
− 1

(
√
λ)2

[
2
3r(r − 1)(r − 7

2 ) + 4r
]

+ ...

r = 1: ground level– fermions should make r = 1 zero of γ̂
r = 2: excited level – analog of singlet Konishi state ∆0 = 2

∆(∆− 4) = 4
√
λ− 4 +O( 1√

λ
) ,

∆−∆0 = 2
4
√
λ
[
1 + 0× 1√

λ
+O( 1

(
√
λ)2

)
]

fermionic contributions change subleading coefficients



How to take fermionic contributions into account?

(i) compute energies of semiclassical string states in 1√
λ

expansion

using full AdS5 × S5 Green-Schwarz action

(ii) compare to structure of E = ∆

expected from marginality condition

(iii) determine unknown coefficients in E expanded in 1√
λ



General structure of dimension/energy ∆ = E
marginality condition – condition on quantum numbers Qi
Q = (E(λ), S1, S2; J1, J2, J3; ...); N =

∑
i aiQi = level

0 = 2N +
1√
λ

(∑
i,j

cijQiQj +
∑
i

ciQi

)
+

1

(
√
λ)2

(∑
i,j,k

cijkQiQjQk +
∑
i,j

c′ijQiQj +
∑
i

c′iQi

)
+ ...

States on “leading Regge trajectory”: (max spin for given E)
marginality condition: Q = (E, J ;N), N= spin

0 = 2N +
1√
λ

(
− E2 + J2 + n02N

2 + n11N
)

+
1

(
√
λ)2

(
n01J

2N + n03N
3 + n12N

2 + n21N
)

+ ...



solution for E2 takes form [Roiban, AT 09, 11; BGMRT 12]

E2 = 2
√
λN + J2 + n02N

2 + n11N

+
1√
λ

(
n01J

2N + n03N
3 + n12N

2 + n21N
)

+
1

(
√
λ)2

(
ñ11J

2N + ñ02J
2N2 + n04N

4 + n13N
3 + n22N

2 + n31N
)

+ ...

Expanding in large
√
λ for fixed N, J

E =

√
2
√
λN
[
1 +

A1√
λ

+
A2

(
√
λ)2

+O(
1

(
√
λ)3

)
]

A1 =
1

4N
J2 +

1

4
(n02N + n11)

A2 = −1

2
A2

1 +
1

4
(n01J

2 + n03N
2 + n12N + n21)

Gives strong-coupling dimension of dual SYM operator



States on 1-st excited superstring level: N = 2

Konishi multiplet states: N = 2, J = 2

E =
4
√
λ
[
2 +

b1√
λ

+
b2

(
√
λ)2

+O(
1

(
√
λ)3

)
]

b1 = 1 + n02 + 1
2n11

b2 = −4b21 + 2n01 + 2n03 + n12 + 1
2n21

coefficients nkm =? – use semiclassical “short string” expansion:
• start with solitonic string carrying same charges
as vertex operator representing particular quantum string state
• perform semiclassical expansion:

√
λ� 1

for fixed classical parameters N = 1√
λ
N , J = 1√

λ
J

• expand E in small values of N ,J
• re-interpret the resulting E in terms of N, J : get nkm

Key point: limit N = N√
λ
→ 0, J = J√

λ
→ 0

corresponds to
√
λ� 1 for fixed values of quantum charges N, J



Digression: Slope function
Semicl. expansion of E2 organized as expansion in smallN or N

E2 = J2 + h1(λ, J) N + h2(λ, J) N2 + h3(λ, J) N3 + ...

h1 = 2
√
λ+ n11 +

n21√
λ

+
n31

(
√
λ)2

+ ...+ J2
(n01√

λ
+

ñ11

(
√
λ)2

+ ...
)

+ ...

h2 = n02 + n12√
λ

+ ... , h3 = n03√
λ

+ ...

exact “slope” h1 for sl(2) sector operator Tr(DSΦJ)

dual to AdS5 folded spinning string (N = S)
from BA (IJ - modif. Bessel of 1st type) [Basso 11,12;Gromov 12]

h1(λ, J) = 2J + 2
√
λ
IJ+1(

√
λ)

IJ(
√
λ)

= 2
√
λ
√

1 + J 2 − 1

1 + J 2
−

1
4 − J

2

√
λ(1 + J 2)5/2

+ ...

= 2
√
λ+ J2 − λ

λ+ J2
−
λ( 1

4λ− J
2)

(λ+ J2)5/2
+ ...



h1: does not depend on wrappings or dressing phase corrections
[h1 from direct summation of 4d or 2d graphs or localization ?]
h1 in large J expansion:

h1 = 2J +
∞∑
n=1

cn(λ)

Jn

cn = a1λ
k + ...+ akλ+ ak+1 – same finite polynomials for

λ� 1, J � 1 and
√
λ� 1, J = J√

λ
� 1

same coefficients “seen” in opposite string and gauge expansions:
an extension of known “non-renormalization” relations
[Beisert, Minahan, Staudacher, Zarembo; Frolov, AT03;...]

Slope function in su(2) sector [Beccaria, AT 12; Gromov 12]

state in su(2) sector Tr(ZJΦJ
′
) dual to folded string in S5

Relation between folded string inAdS5 (E ,S;J ) and in S5:(E ;J ′,J )

analytic continuation [Beisert,Frolov,Staudacher,AT 03]
E → −J , J → −E , J ′ → S,

√
λ→ −

√
λ



su(2) slope function h̃1 is then related to sl(2) one

E2 = J2 + h̃1(J, λ)J ′ + ... , h̃1(J, λ) = −h1(−J,−
√
λ)

h̃1(λ, J) = 2J + 2
√
λ
KJ−1(

√
λ)

KJ(
√
λ)

KJ= modified Bessel function of 2nd type
regular λ� 1 expansion but singularities at λ� 1 at fixed J

h1(J, λ) = 2J+ λ
J+1−

λ2

4 (J+1)2 (J+2) + λ3

8 (J+1)3 (J+2) (J+3) +· · · ,

h̃1(J, λ) = 2J+ λ
J−1−

λ2

4 (J−1)2 (J−2)+ λ3

8 (J−1)3 (J−2) (J−3)+· · · .

resummation reflected in λn lnk λ terms

J = 2 : h̃1 = 4 + λ+
1

4
λ2( ln λ

4
+ 2γE

)
+ ...

J = 3 : h̃1 = 6 +
λ

2
− λ2

16
− λ3

128

(
2 ln λ

4
+ 4γE − 1

)
+ . . . ,

J = 4 : h̃1 = 8 +
λ

3
− λ2

72
+

λ3

432
+

λ4

20736

(
9 ln λ

4
+ 18 γE − 8

)
+ . . . ,

J = 5 : h̃1 = 10 +
λ

4
− λ2

192
+

λ3

3072
− 7λ4

147456
− λ5

2359296

(
16 ln λ

4
+ 32γE − 19

)



meaning of λJ lnλ terms ?
• defn of slope function at finite J is non-trivial:
requires analytic continuation to small values of spin
in su(2) sector J ′ is bounded by the fixed length of spin chainL = J ′+J

su(2) slope is defined only in the large J limit ?
• in contrast to sl(2) slope, the su(2) slope may (?) receive
wrapping contributions which also start at (λL)J′→0 ∼ λJ order
starting with a TBA generalization of ABA may (?) lead to
cancellation of λJ lnλ terms
• may be λJ lnλ terms have physical meaning:
non-perturbative terms from resummation of λn expansion
analogous to λn lnλ+... terms appearing in (ladder-diagram) IR-resummed
perturbation theory for Wilson loop for q-q̄ potential
[Erickson,Semenoff,Szabo,Zarembo 00; Correa,Maldacena,Sever 12]
< W (φ, λ) > for cusp is described by an integrable TBA system
analogy between expectation value of the cusp Wilson loop
at small φ and sl(2) slope function h1 at J = 1

suggests that q-q̄ potential (φ→ π) is related to the su(2) slope h̃1?



Back to spectrum problem:
To find E for quantum states one need coefficients in higher “slopes”
h2, h3, ... which already depend on wrapping corrections

Strategy: consider examples of “small” semiclassical string states
corresponding to quantum string states with angular momentum J

and few oscillator (spin-carrying) modes excited
• start with classical string solutions in flat space
representing states on leading Regge trajectory
• find the corresponding solutions in AdS5 × S5

• find 1-loop correction to their energy E
• expand E inN = N√

λ
→ 0 – interpolate result to finite N

• find the coefficients nkm
• check universality of E for N = 2 (implied by susy)

Examples studied: folded strings with S1 = J = 2; with J1 = J = 2;
circular strings with J1 = J2 = 1, J = 2; with S1 = S2 = 1, J = 2;
with S1 = J1 = 1, J = 2



Results: for several states on leading Regge trajectory

E2 = 2
√
λN + J2 + n02N

2 + n11N

+
1√
λ

(
n01J

2N + n03N
3 + n12N

2 + n21N
)

+
1

(
√
λ)2

(
ñ11J

2N + ñ02J
2N2 + n04N

4 + n13N
3 + n22N

2 + n31N
)

+
1

(
√
λ)3

(
ñ01J

4N + ñ21J
2N + ñ12J

2N2 + n05N
5 + ...

)
+ ...

• n01 = 1, ñ01 = − 1
4
, ... from near-BMN expansion (J �

√
λ)

E2 = J2 + 2N
√
λ+ J2 + ... = J2 +N(2

√
λ+ J2

√
λ

+ ...)

• “tree-level” coeffs n02, n03, n04, ... are all rational
• leading 1-loop n11 is rational [Roiban, AT 09; Gromov et al 11]
• ñ11 = −n11, i.e. in general [BGMRT 12]

h1 = 2
√
λ
√

1 + J 2 + n11
1+J 2 + 1√

λ

(
n21 + ñ21J 2 + ...

)
+ ...

h2 = n02+J 2

1+J 2 + 1√
λ

(
n12 + ñ12J 2 + ...

)
+ ...

• n12 = n′12 − 3ζ3, n′12 = − 3
8
− 2n03 is rational

[Tirziu, AT 08; Roiban, AT 09; Gromov-Valatka 11]



ζ3 term is universal for states on leading Regge trajectory
• ñ12 = ñ′12 + 3ζ3 + 15

4
ζ5, ñ′12 rational

• n1k contains universal ζ2k−1 (universal UV n� 1 asymptotics)
e.g. n13 = ñ′12 + ñ′′1kζ3 + 15

4
ζ5

• leading 2-loop coefficient n21 is universal: n21 = − 1
4

for folded string state [Basso]; evidence from universality [BGMRT]
of the Konishi state energy (J = N = 2)

EN=J=2 =
4
√
λ
[
2 +

b1√
λ

+
b2

(
√
λ)2

+
b3

(
√
λ)3

+ ...
]

b1 = 1 + n02 +
1

2
n11 = 2

b2 = −1

4
b21 + 2n01 + 2n03 + n12 +

1

2
n21 =

1

2
− 3ζ3

b3 = a1 + a2ζ3 +
15

2
ζ5 , ...

b1, b2: match TBA predictions interpolated to λ� 1

• need 2-loop string sigma model computation
to confirm universality of n21, fix n22→ determine b3



Conclusions
• progress in understanding of AdS5 × S5 string spectrum
or spectrum of conformalN = 4 SYM operators
• agreement with numerical results from TBA:
non-trivial check of quantum string integrability
• prediction of transcendental structure of leading coefficients:
reproduce them by an analytic solution of TBA at strong coupling?
• evidence of universality of some coefficients in strong coupling
expansion of dimensions of states on leading Regge trajectory
• exact results for leading “slope” functions

• need systematic study of quantum string theory in AdS5 × S5

in near-flat-space expansion

• still need first-principles solution for
spectrum of AdS5 × S5 superstring = spectrum ofN = 4 SYM
based on integrability
... it now seems within reach...


