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Recent advances in understanding S-matrix of supergravity:
• tree level – twistor methods
• loop corrections – use string-type (KLT) relations
to construct supergravity amplitudes from SYM × SYM
• N = 8 supergravity: no 3-loop R4 in
in agreement with improved supersymmetry predictions
and E7 global symmetry
• N = 4 supergravity: no 3-loop R4

but so far no systematic explanation based on supersymmetry

role of anomaly [Marcus 85] of SU(1, 1) global symmetry ?
[Bossard,Howe, Stelle, Vanhove 11]
f(φ)R4 is allowed, divergences start from
5-point scalar– 4-graviton amplitude

Motivation to understand better
role of global symmetries of supergravities



Non-compact symmetries of supergravities:
involve duality rotations of 4d vector fields
These are on-shell symmetries – symmetries of eqs of motion
How such symmetries are realized in quantum theory –
in effective action, S-matrix ?
Their possible anomalies at quantum level?

history:
• use of F → F ∗ symmetry in Einstein-Maxwell (super) gravity
to restrict possible 1-loop on-shell counterterms:
only TmnTmn are allowed [Deser, van Nieuwenhuizen et al 75]
• duality invariance of stress tensor Tmn →
invariance of Hamiltonian→ invariance of S-matrix
[Gaillard, Zumino 81]

Aim: study some simple 2d and 4d examples of models
with similar symmetries



General srtructure of scalar-vector sector of (N > 4) supergravity

L = gIJ(Φ)∂mΦI∂mΦJ + frs(Φ)F rmnF
smn + hrs(Φ)F ∗rmnF

smn

F ∗kl ≡ 1
2ε
klmnFmn, k, l,m, n = 0, 1, 2, 3.

gIJ is metric of G/H space, eqs. of motion have G-covariance
or invariance if combine Fmn and Gmn, G∗ ≡ 2 ∂L∂F in doublet

prototypical example: N = 4 supergravity Φ = (φ, χ)

S = − 1
2

∫
d4x
[
(∂mφ)2 + e4φ(∂mχ)2

+ 1
2e
−2φF 2

mn + 1
2χF

∗
mnF

mn
]

scalar part is SO(1, 2)/SO(2) sigma model
its global invariance under SL(2, R) ≈ SO(1, 2) ≈ SU(1, 1)

is promoted to invariance of the full equations of motion



with vector-vector duality transformation(
F
G

)
→
(
a b
c d

)(
F
G

)
τ → aτ + b

cτ + d
, τ = e−2φ + iχ , ad− bc = 1

simplest example: χ = 0

φ→ −φ, Am → Ãm , F̃mn ≡ Gmn = e−2φF ∗kl

This symmetry is not a manifest local symmetry –
how it is realised in quantum theory?
If one integrates out the vector field – effective action Γ depending
only on the scalars is expected to be SL(2) invariant.

Performing vector-vector Am → Ãm duality in path integral
(via Lagrange multiplier term, etc.) gives same partition function
with Ãm coupled to SL(2)-transf. scalars;
integrating out vector should give invariant functional of scalars



[caveat: this is not automatically true in general on a curved
4d background one gets an “anomalous” local curvature coupling∫
φR∗R∗ as in dilaton shift under scalar-scalar duality in 2d case;

it can be removed by adding a local counterterm]

But what happens if one keeps both the scalars and vector in Γ

or as external states in the S-matrix?
• Natural expectation (ignoring issue of anomalies):
this on-shell duality symmetry should be present in
quantum effective action evaluated on equations of motion,
i.e. in on-shell S-matrix
Precise meaning of action of duality symmetry on S-matrix?
• far less clear possibility [Kallosh et al] : quantum eff. eq.
from off-shell effective action might be covariant under deformed
version of duality – if effective action is “self-dual”, i.e. covariant
under “Legendre” transform from original to dual variables
But why this “self-duality” should apply and does it?



Aim: clarify these questions using
“doubled” or “phase-space” formulation
4d vector-vector duality (or p-form – p-form duality in d = 2p+2)
naturally acts on phase space: first-order action is duality-invariant
[Deser, Teitelboim, 76]
similar actions for chiral scalars or p-forms
[Floreanini, Jackiw 87; Henneaux, Teitelboim 88]
Replace momenta by spatial derivative of a new (“dual”) field
→ phase-space action as an action of “doubled” set of fields
Then duality acts locally – as manifest off-shell symmetry
but achieved at expense of standard Lorentz invariance
(standard Lorentz invariance is recovered on equations of motion)

Such manifestly duality invariant action first written in 2d:
duality there is O(n, n) T-duality [AT, 90]
Similar construction later in 4d [Schwarz, Sen 93]



Recently applied to extended supergravity –
manifestly E7(7) invariant action of N = 8 supergravity
[Hillmann, 09; Bossard, Hillmann, Nicolai, 10]

Action for “doubled” set of fields is describing same number
of d.o.f. as original action (and equivalent quantum theory)
more suitable for addressing question of
realization of duality at quantum level

BHN: explicitly confirmed vector contribution to
rigid SU(8) ⊂ E7(7) anomaly [Marcus, 85] and thus
cancellation of anomaly = preservation of E7(7) at quantum level
But issue of on-shell Lorentz invariance and realization of
E7(7) duality on vector-scalar S-matrix was not addressed



General issues with quantum realization of duality
are same in any d = 2p+ 2 of dimensions –
concentrate on d = 2 instead of d = 4

S = − 1
2

∫
d2σ
[
(∂aφ)2 + e4φ(∂aχ)2

+ e−2φ(∂axs)
2 + εabεrsχ∂axr∂bxs

]
a, b = 0, 1, r, s = 1, 2

SL(2) symmetry of the (φ, χ) sector extended to the full set
of e.o.m. when combined with 2d duality on scalars xs
need at least n = 2 scalars xs to have the O(n, n) duality group
(acting on xs and their “momenta”)
big enough to contain SL(2) acting on (φ, χ)

[this sigma model is not conformal – has 3-form Hχrs = εrs

and target metric has only one component of Rmn: Rφφ = − 3
2 ]



If integrate out xs get SL(2) invariant quantum theory for (φ, χ)
but realization of duality on full set (φ, χ, xs) at quantum level?

In “doubled” formulation duality in xs sector and thus SL(2) of
full model is manifest; useful to split xs into its chiral parts

Will consider discrete subgroup of duality (φ→ −φ for χ = 0):
duality of the S-matrix translates into a symmetry under
flipping sign of anti-chiral part x−s and sign of φ

Similar transformation will apply to higher-dimensional models:
in 4d one is to flip the sign of the anti-chiral part of the vector field
Starting with duality symmetric “doubled” formulation will check
2d Lorentz inv of quantum on-shell effective action or S-matrix



AdS sigma model: duality-invariant theory in 2d
sigma-model based on euclidean AdSn+1 metric (s = 1, ..., n)

ds2 = dφ2 + e−2φdxsdxs

2d duality in all xs maps it into itself if combined with
coordinate transformation φ→ −φ [Kallosh, AT 98]
Note: this transformation interchanges manifest (Noether) charges
with equivalent subset of hidden charges (conserved due to
integrability of the model) [Ricci, Wolf, AT 07]
strong-coupling origin of “dual conformal symmetry”
[Berkovits, Maldacena 08; Beisert, Ricci, Wolf, AT 08]

Classical Theory: sigma model action in “first-order” form

S(φ, x) = 1
2

∫
d2σ
[
− (∂aφ)2 − e−2φ(∂axs)

2
]
→

S(φ, p, x) = 1
2

∫
d2σ
[
− (∂aφ)2 + 2psẋs − e−2φx′2s − e2φp2

s

]



introduce new field x̃s by ps = x̃′s
gives duality-invariant action [AT 90] (I, J = 1, ..., 2n)

Ŝ(φ, x, x̃) = −
∫
d2σ
[
(∂aφ)2 − ẋsx̃′s − ˙̃xsx

′
s + e−2φx′2s + e2φx̃′2s

]
= −

∫
d2σ
[
(∂aφ)2 − ΩIJẊ

IX ′J +MIJX
′IX ′J

]
X =

(
x
x̃

)
, Ω =

(
0 I
I 0

)
, M =

(
e−2φ 0

0 e2φ

)
duality symmetry X → ΩX, M → ΩMΩ, i.e.

xs → x̃s , x̃s → xs , φ→ −φ

O(n, n) transf.: X → ΛX, ΛTΩΛ = Ω,
preserves the structure of the action if also M → Λ−TMΛ−1

but this change of M cannot be in general compensated
by a redefinition of φ



Doubled action for full model with χ:

Ŝ = −
∫
d2σ
[
(∂aφ)2 + e4φ(∂aχ)2 − ΩIJẊ

IX ′J +MIJX
′IX ′J

]
X =

(
x
x̃

)
, Ω =

(
0 I
I 0

)
, M =

(
G−BG−1B BG−1

−G−1B G−1

)
(G−BG−1B)rs = (e−2φ + 4χ2e2φ)δrs
(BG−1)rs = 2χe2φεrs , G−1

rs = e2φδrs

symmetry is SO(1, 2) subgroup of O(2, 2) on M that can be
compensated by SL(2) transf. on (φ, χ)

Classical eqs for xs and x̃s

(ẋs − e2φx̃′s)
′ = 0 , ( ˙̃xs − e−2φx′s)

′ = 0

→ ẋs − e2φx̃′s = 0 , ˙̃xs − e−2φx′s = 0 ,

[dropped τ -dependent integration functions: if none at σ → ±∞]



equivalent form in terms of “chiral-scalar” combinations

Ŝ(φ, x+, x−) = −
∫
d2σ
[

1
2 (∂aφ)2 + x+

s
′
∂−x

+
s + x−s

′
∂+x

−
s

+f1(φ) (x+
s
′2

+ x−s
′2

)− 2f2(φ) x+
s
′
x−s
′
]

xs = x+
s + x−s , x̃s = x+

s − x−s , x±s = 1
2 (xs ± x̃s)

f1 = 2 sinh2 φ , f2 = sinh 2φ

duality symmetry:

φ→ −φ , x+
s → x+

s , x−s → −x−s

Lorentz symmetry on shell for given f1, f2 only

Quantum theory
original and doubled theory are to be quantum-equivalent
for common observables, e.g. scattering amplitudes of x fields
where x̃ fields enter only through loops:
integrating out x̃ gives back original action



But doubled theory has larger set of observables, e.g.
scattering amplitudes of both x and x̃
with duality acting as standard symmetry
one expects this symmetry in effective action

Γ[φ, x, x̃] = Γ[−φ, x̃, x] , i.e. Γ[φ, x+, x−] = Γ[−φ, x+,−x−]

need maintain symmetry at quantum level by proper choice
of quantization (regularization / path integral measure)

Γ like the classical action Lorentz-invariant on-shell,
i.e. is S-matrix Lorentz-invariant?
On-shell invariance may have two different interpretations:
(I) Γ[φ, x, x̃] should be Lorentz-invariant once evaluated
on a solution of quantum e.o.m.
[quantum S-matrix generating functional Ŝ[ϕin] = Γ[ϕ(ϕin)]

ϕ(ϕin) is the solution of the quantum e.o.m. δΓδϕ = 0

with “in” b.c. ϕ = ϕin + ... , (∂2 +m2)ϕin = 0



Γ evaluated on classical solution may differ from
Γ on solution of δΓδϕ = 0 starting with 2-loop order]

(II) quantum equations of motion following from Γ[φ, x, x̃]

should be Lorentz-invariant
(I) is expected given that classical e.o.m. are Lorentz-invariant

and that integrating out x̃ leads back to Lorentz-invariant action;
(II) is less clear: should one expect

(some deformed version of) Lorentz invariance
to apply to full quantum equations of motion;
essentially equivalent to assumption that quantum equations
of motion derived from original Lorentz-covariant action
should admit an analog of the duality symmetry

As Γ[φ, x, x̃] on “in” solution is generating functional for S-matrix
(I) is equivalent to Lorentz invariance of the S-matrix
for {φ, x+

s , x
−
s } (in addition to duality invariance)



Key fact: on-shell conditions for chiral scalars are Lorentz-invariant

∂−x
+
s = 0 , ∂+x

−
s = 0

Can then demonstrate Lorentz invariance of S-matrix
using that tree-level Green’s functions with on-shell x±

and off-shell φ’s are Lorentz invariant
and that determinant of
x± -quadratic fluctuation operator
depending on an off-shell φ is Lorentz invariant



Compute 1-loop S-matrix elements explicitly
check (i) duality invariance and (ii) Lorentz invariance
simplest on-shell matrix elements are Lorentz-invariant

A(φ(p1), x+
s (p2), x+

s (p3)) = A(φ(p1), x−s (p2), x−s (p3)) = 0

A(φ(p1), x−s (p2), x+
s (p3)) ∼ p2−p3+ ln Λ + finite

Λ= UV cutoff
no 4-point scattering amplitudes with odd number of x−s ;
for even (e.g. 4) of x−s get Lorentz-invariant results

A(x+
s (p1), x

+
s (p2), x

+
s (p3), x

+
s (p4)) =∫

d2l
[ (p1 + l)−
(p1 + l)+

+
(p2 + l)−
(p2 + l)+

][ (p3 − l)−
(p3 − l)+

+
(p4 − l)−
(p4 − l)+

] p1+p2+p3+p4+
l2(l + p1 + p2)2

A(x+
s (p1), x

+
s (p2), x

−
s (p3), x

−
s (p4)) =∫

d2l
[ (p1 + l)−
(p1 + l)+

+
(p2 + l)−
(p2 + l)+

][ (p3 − l)+
(p3 − l)−

+
(p4 − l)+
(p4 − l)−

] p1+p2+p3−p4−
l2(l + p1 + p2)2

A(x−
s (p1), x

−
s (p2), x

−
s (p3), x

−
s (p4)) =∫

d2l
[ (p1 + l)+
(p1 + l)−

+
(p2 + l)+
(p2 + l)−

][ (p3 − l)+
(p3 − l)−

+
(p4 − l)+
(p4 − l)−

] p1−p2−p3−p4−
l2(l + p1 + p2)2



Example of non-linear 2d scalar action
scalar theory depending on (∂x)2 with classical duality symmetry

S =

∫
d2σ L(x) , L(x) = −

√
1 + (∂ax)2

duality symmetry of equations of motion x→ x̃

with εab∂bx̃ = [1 + (∂ax)2]−1/2∂ax

duality at the quantum level?
phase-space or “doubled” theory: set momentum p ≡ x̃′

– get manifestly duality-invariant action

L̂(x, x̃) = x̃′ẋ−
√

1 + x′2
√

1 + x̃′2

classically equivalent but integral over x̃ (momentum) is non-gaussian:
quantum theories for L(x) and L(x, x̃) are not a priori equivalent
(but are in leading semiclassical approximation of integral over x̃)



Semiclassically L(x) equivalent to

L(x, φ) = − 1
2

[
G(∂ax)2 +G+G−1

]
, G ≡ e−2φ

G or φ – auxiliary 2d field (cf. Nambu vs Polyakov action)
corresponding “doubled” action

L̂(x, x̃, φ) = x̃′ẋ− 1
2G(1 + x′2)− 1

2G
−1(1 + x̃′2)

has manifest duality symmetry

x→ x̃ , x̃→ x , G→ G−1

solving for G leads back to L(x, x̃); integrating out x̃ gives L(x)

[ this and earlier action (∂aφ)2 + e−2φ(∂ax)2 are special cases of

L̂ = − 1
2 (∂aφ)2 − 1

2e
−2φ(∂ax)2 − cosh 2φ

also invariant under x↔ x̃, φ→ −φ ]



Define quantum theory by path integral with action L(x, φ)

or equivalent “doubled” action L(x, x̃, φ)

If start with L(x, φ) and integrate out x get Γ(φ) = Γ(−φ).
If keep background for x and evaluate effective action on shell
can show that that get duality-symmetric result.
Classical solution x(0), G(0)

G(0)n
a = εabñb , na ≡ ∂ax(0)

G(0) = (1 + n2)−1/2 = (1 + ñ2)1/2 = G̃−1
(0)

ña, G̃(0) is classical solution for dual action

L̃(x̃, G) = − 1
2

[
G−1(∂ax̃)2 +G+G−1

]
Expand near classical solution x = x(0) + η, G = G(0)(1 + ξ)

effective action Γ1(x(0), G(0))

inv under na = ∂ax(0) → ña = ∂ax̃(0), G(0) → G̃(0) = G−1
(0)



Special case of na = ∂ax(0) =const:
1-loop on-shell effective action

Γ1 = 1
2 ln detK , K = G−1

(0)∂
a∂a −G(0)(n

a∂a)2

Γ1 is duality invariant under x→ x̃, G→ G−1

Classical plus one-loop effective action for const na = ∂ax

Γ =

∫
d2σ
[
−
√

1 + (∂ax)2 + Λ2F
(√

1 + (∂ax)2
)]

duality symmetry: F (y) = F (G−1
(0)), G(0) = (1+n2)−1/2=const

F (y) = ln[ 1
2 (y1/2 + y−1/2)] , F (y) = F (y−1)



What if start with L(x) = −
√

1 + (∂ax)2:
tree-level action plus ∂x-dep. part of 1-loop eff action

Γ(∂x) = −
∫
d2σ
√

1 + (∂ax)2 + ~Γ1(∂x) +O(~2)

leads to duality-covariant quantum equations of motion?
Γ1 is same as found by starting from L(x,G)

depends on ∂ax only through G−1
(0) =

√
1 + (∂ax)2

To check duality do “Legendre” transform to dual variable:
replace ∂ax by independent field strength na
and introduce dual x̃ via Lagrange multiplier term

Γ̂(n, ∂x̃) = −
∫
d2σ
√

1 + n2
a + ~Γ1(n) +O(~2)

+

∫
d2σ εabna∂bx̃

Solve effective equation for na perturbatively in ~
As Γ1 is invariant under classical duality Γ1(∂x) = Γ1(∂x̃)



Γ̃(∂x̃) has same form as Γ(∂x) up to O(~2) terms

Γ̃(∂x̃) = −
∫
d2σ
√

1 + (∂ax̃)2 + ~Γ1

∣∣∣
na→∂ax̃

+O(~2)

If leading quantum correction to classically “self-dual” action
is duality-invariant, resulting effective action is “self-dual”
up to higher-order corrections
(relation of original and dual fields receives loop corrections).

Higher-loop corrections Γn must satisfy constraints
for Γ to be “self-dual” at higher order
e.g. 2-loop effective action should be solution of

Γ2(∂x̃) = Γ2(n(0)) +

∫
d2σ

1

(1 + n2
(0))

1/2

[
n2

(1) −
(n(0) · n(1))

2

1 + n2
(0)

]
It is not a priori clear why Γ2 should obey this constraint,
i.e why effective action should be invariant under modified duality



Duality in 4d vector models
“doubled” formalism:
• duality symmetry is manifest off-shell symmetry
• action has a symmetry becoming standard Lorentz inv on shell
• main features same for discrete or continuous duality
• “doubled” action duality inv→ effective action duality inv
• on-shell S-matrix should have duality and Lorentz symmetry

4d vector case is very similar to 2d scalar case
start with first-order phase-space action for

S = − 1
2

∫
d4x
[
(∂mφ)2 + e4φ(∂mχ)2

+ 1
2e
−2φF 2

mn + 1
2χF

∗
mnF

mn
]

fixing A0 = 0 and introducing Ãi: ∂0Ai = εijk∂jÃk (i = 1, 2, 3)

Ŝ = − 1
2

∫
d4x
[
(∂aφ)2 + e4φ(∂aχ)2 − L̂(A, Ã;φ, χ)

]



L̂ = ETi Ω̂Bi − BTi MBi

Ei = ∂0Ai , Bi = εijk∂jAk , Ai =

(
Ai
Ãi

)
Ω̂ =

(
0 1
−1 0

)
, M =

(
e−2φ + 4χ2e2φ −2χe2φ

−2χe2φ e2φ

)
for χ = 0 invariant under Z2 duality: A′i = Ω̂Ai M ′ = Ω̂TM Ω̂

A′i = Ãi, Ã′i = −Ai, φ′ = −φ

equations of motion: Ei − e2φB̃i = 0, Ẽi + e−2φBi = 0

Ŝ has modified Lorentz-type symmetry [Schwarz, Sen 93]
which becomes standard Lorentz symmetry on e.o.m.
as in 2d case expect S-matrix to have duality and Lorentz inv
as Ω̂2 = −I introduce

A±i ≡ Ai ± iÃi , Ā+
i = A−i

which transform under duality as

(A±i )′ = ∓iA±i , φ′ = −φ



classical equations in terms of derivatives of A±i

E+ + i(B+ cosh 2φ− B− sinh 2φ) = 0
E− − i(B− cosh 2φ− B+ sinh 2φ) = 0

if φ = 0 become (anti)self-duality conditions: F±mn = ±iε kl
mn F±kl

A±i thus describe on shell photons of definite helicity

Lagrangian L̂ in terms of A±i

L̂ = i(E+
i B−i − E−i B+

i )
−2 cosh 2φ B+

i B−i − sinh 2φ (B+
i B+

i + B−i B−i )

dulity (A±i )′ = ∓iA±i , φ
′ = −φ implies:

S-matrix elements without external φ lines (A+)n+(A−)n−

transform by phase i−n++n− but must be invariant
so are nonvanishing only if n+ − n− = 4k



Similar discussion for 4d Born-Infeld theory (φ, χ = 0)

L(A) = −
√

1 + 1
2F

mnFmn − 1
16 (FmnF ∗mn)2

semiclassically equivalent to action with real U, V [Rocek, AT 98]

L(A;U, V ) = 1
2 (V FmnFmn − UFmnF ∗mn) + V + V −1 + V −1U2

“doubled” action L̂(A, Ã;U, V ) is quantum-equivalent toL(A;U, V )

“doubled” action for original BI theory from phase-space action
written in terms of derivatives of A±i = Ai + iÃi:

L̂(A, Ã) = 1
2 (EiB̃i − ẼiBi)−

√
1 +B2

i + B̃2
i +B2

i B̃
2
k − (BiB̃i)2

= 1
4 i(E+

i B−i − E−i B+
i )−

√
1 + B+

i B−i + 1
4 (B+

i B−i )2 − 1
4 (B+

i B+
i )(B−k B−k )

• as in non-linear scalar theory quantum equivalence to L̂(A, Ã;U, V )

only semiclassically (at tree and 1-loop level):
integral over Ãi (or B̃i) is non-gaussian



• L̂(A, Ã) invariant under same duality A′i = Ãi, Ã
′
i = −Ai

[on-shell relation of dual and original field strengths is modified;
in this sense BI e.o.m. are covariant with respect to “deformed”
Maxwell duality; this distinction absent in “doubled” description]
• consequence of duality for scattering amplitudes is also same:
difference between no. of positive and negative helicity photons
must be n+ − n− = 4k, k = 0, 1, 2, ...

• S-matrix corresponding to L̂(A, Ã) is actually
helicity-conserving n+ = n− (k = 0)
[earlier demonstrations of this for BI theory:
Rosly, Selivanov 02; Boels, Larsen, Obers, Vonk 08]
• S-matrix is more constrained than required by duality:
helicity conservation reflects special property of BI action:
apart from discrete duality L̂(A, Ã) has continuous symmetry:
(A±i )′ = e±iαA±i ; as a consequence n+ − n− = 0



Comments on duality in extended supergravities
N = 8 supergravity may be obtained
from IIB 10d supergravity on a 6-torus
O(6, 6) symmetry is part of E7(7) duality group
realized on scalars + duality rotations of 28 vectors
[Cremmer, Julia, Scherk 77]
E7(7) duality may be viewed as closure of 6 commuting
Z2 subgroups of O(6, 6) together with SL(2, R) of IIB SG
and global SU(8) symmetry acting on physical states

Discussion of realisation of duality in quantum theory
applies to full duality symmetry of N = 8 SG;
suggests that S-matrix and thus on-shell counterterms
computed in perturbative loop expansion
should be invariant under E7(7) on scalars
together with duality acting on vectors on-shell



Duality on vectors manifest in the “doubled” formulation:
action is not invariant under the standard
(tangent-space) Lorentz symmetry but
on-shell effective action or S-matrix
should have this symmetry along with the duality symmetry
– as discussed above on simple examples

No need to consider deformation of duality
when looking for leading UV counterterms



Anomalies of duality?

Local non-invariant terms:
depend on quantization prescription,
may be cancelled by local counterterms

Chiral anomaly:
non-invariant non-local term in 1-loop Γ

• scalars couple to fermions via chiral currents –
possible global SU(8) ⊂ E7(7) anomaly in N = 8 case
and U(1) ⊂ SU(1, 1) anomaly in N = 4 case
[Girardello, Di Vecchia, Ferrara 84]
• vectors also contribute to anomaly [Marcus, 85]
as transform chirally, e.g. (F + iG)→ eiα(F + iG), G ∼ F ∗

seen explicitly in doubled approach [Bossard,Hillmann,Nicolai 11]
• anomaly cancels in N = 8 case but survives in N = 4 case



Local “anomaly” of duality on curved background
anomalies depend on definition of theory:
– which symmetries are expected to be preserved
– reflected in definition of regularization/measure/counterterms

2d scalar case
Integrating x, x̃ out in Ŝ(φ, x, x̃)

expect to find φ→ −φ symmetry in Γ

not automatic if other fields/symmetries present:
depends on quantization prescription
2d scalar x in external scalar φ and metric gab

e−Γ[φ,gab] =

∫
[dx] exp

[
− 1

2

∫
d2σ
√
ggabe−2φ∂ax∂bx

]
G ≡ e−2φ as target space metric in direction x



2d on-shell duality: G→ G−1, x→ x̃, G
√
ggab∂ax = iεab∂bx̃

Γ[φ, gab]− Γ[−φ, gab] =
1

8π

∫
d2σ
√
g φR

R = curvature of gab [Schwarz, AT 92]
i.e. under T-duality G→ G−1 target-space dilaton
gets shifted by φ = − 1

2 lnG [Buscher 88]

may interpret this as anomaly of φ→ −φ duality
present in curved 2d background
not a genuine non-local anomaly but rather
a finite local counterterm required for preservation of
other symmetry – target space reparametrization covariance:
in 2d sigma model context target space covariance
is assumed in definition of path integral measure
breaking of φ→ −φ symmetry means
2d duality and target space rep. inv. cannot be both manifest



4d vector case
corresponding 4d example on curved 4d background

e−Γ[φ,gmn] =

∫
[dA] exp

[
−
∫
d4x
√
ggmngpq e−2φFmpFnq

]
classical equations of motion invariant under
A→ Ã, φ→ −φ with e−2φ(dA)∗ = dÃ

symmetry of effective action Γ[φ, gmn] = Γ[−φ, gmn] ?
expected from formal path integral transformation argument:
Γ should depend only on ∂φ and only even powers of φ
[true, e.g. for UV div. and Weyl-anomalous part of Γ, Osborn 03]
If follow same steps as in 2d example:
set of 2nd order operators appearing in duality transf.
is 4d elliptic complex (scalar, vector and 2-tensor operators)
1
2

∑d
n=0(−1)n(n+ 1) ln det ∆n

given by combination of Seeley coefficients b4 ∼ R2
mnkl + ...



Under same assumption as in 2d case that
all measure factors are same for all operators in the complex
get direct analog of 2d “dilaton shift” wih
2d Euler density → 4d Euler density [Gilkey et al 02]

Γ[φ, gmn]− Γ[−φ, gmn] = − 1

32π2

∫
d2x
√
g φ R∗R∗

R∗R∗ = R2
mnkl − 4R2

mn +R2 = ∂nw
n

local term – interpret its presence as consequence of preservation
some other symmetry at expense of duality φ→ −φ

In contrast to 2d sigma model or string path integral
in 4d vector case do not have “target space” diffs on vectors
Here may insist on preservation of the duality:
cancel this “anomaly” by local counterterm



Chiral anomaly of SL(2) duality in N = 4 SG
scalar sector of N = 4 conformal or Poincare supergravity
or type IIB supergravity: SU(1, 1)/U(1) coset
may describe by 2 complex scalars Φα with spurious local U(1)

ηαβΦαΦ∗β = Φ1Φ∗1 − Φ2Φ∗2 = ΦαΦα = 1

Φα transform under global SU(1, 1) and local U(1)

Φ′α = e−iγ(x)UβαΦβ

L = DmΦαDmΦα , DmΦα = ∂mΦα + iamΦα , am = iΦα∂mΦα

am is SU(1, 1) invariant, am → am + ∂mγ under U(1)

fermions couple to scalars via am – have chiral weights
In physical gauge, e.g., Φ1 = Φ∗1

Φ1 = (1− |C|2)−1/2 , Φ2 = C(1− |C|2)−1/2

am =
i

2
(1− |C|2)−1(C∗∂mC − C∂mC∗)

SU(1, 1) acts non-linearly on C and by gradient shift on am



Chiral anomaly of localU(1) translates into rigid SU(1, 1) anomaly:
gravitational anomaly of rigid U(1) ⊂ SU(1, 1) from fermions
and self-dual tensors coupled to am and gravitational connection
It can be found from local U(1) anomaly (not fixing gauge)
adding a local counterterm to cancel it but breaking SU(1, 1)

if ψ′ = eiγ(x)ψ then

∂mj
m = − 1

24(4π)2
RR∗

as jm = δΓ
δam

get corresponding term in 1-loop effective action

split am = a
||
m + a⊥m, ∇ma⊥m = 0

integrating U(1) anomaly find effective action for am and gmn

Γ[am; gmn] = Γanom[a||m; gmn] + Γinv[a
⊥
m; gmn]

Γanom[a||, g] = k

∫
RR∗∇−2∇mam

a
||
m and a⊥m are separately SU(1, 1) invariant



same applies to Γanom and Γinv

parametrize scalars as

Φ1 =
√

1 + r2 ei(a−b) , Φ2 = r ei(a+b)

r, a, b are real; a transforms under local U(1) by shift
all 3 fields transform under SU(1, 1)

am = −∂ma+ (1 + 2r2)∂mb

L = |DmΦ1|2 − |DmΦ2|2 = − (∂mr)
2

1 + r2
− 4(1 + r2)r2(∂mb)

2

SU(1, 1) and local U(1) invariant – does not depend on a

Γ = Γanom[a, b, r; g] + Γinv[b, r; g] ,

Γanom = −k
∫
RR∗a+ k

∫
RR∗∇−2∇m

[
(1 + 2r2) ∂mb

]
Γ is SU(1, 1) invariant, but not invariant under local U(1).
But anomalous term is local – can cancell it by local counterterm.



Important difference compared to standard gauge theory where
am is fundamental field and anomalous term is non-local:
here variables in path integral are scalars a, b, r not am

Γ′ = Γ′anom[b, r; g] + Γinv[b, r; g] ,

Γ′anom = Γanom + Sc.t. , Sc.t. = k

∫
RR∗

[
a+ f(b, r)

]
Sc.t. restores local U(1) – independence of a∫
RR∗a = 1

4

∫
RR∗ ln Φ1Φ2

Φ∗
1Φ∗

2
: SU(1, 1) non-invariant

f(b, r) parametrizes ambiguity in local counterterm
but no SU(1, 1) invariant from algebraic functions of a, b, r
– cannot restore SU(1, 1)

non-local Γ′ cannot be eliminated by local c.t.;
since Sc.t. is not SU(1, 1) invariant, same is for Γ′

Illustration of general “compensator” mechanism
[Grisaru, de Wit 85]



removable U(1) anomaly means:
from classical theory in two different U(1) gauges
get two effective actions but differing only by local term

may then specify to particular U(1) gauge from the start
and interterpret Γanom as SU(1, 1) anomalous part of eff. action
a = b gauge: real, Φ1, Φ2 = CΦ1, C = r√

1+r2
e2ib

a = 0 gauge: Φ1 =
√

1 + r2e−ib, Φ2 = reib

(Γanom)a=b = k

∫
RR∗∇−2∇m

(
2r2 ∂mb

)
,

(Γanom)a=0 = k

∫
RR∗b+ (Γanom)a=b

anomalous terms seen in graviton-graviton-scalars amplitudes



U(1) ⊂ SU(1, 1) gravitational anomaly in N = 4 Poincare SG

anomaly does not cancel [Marcus 85]
implies SU(1, 1) breaking in some 1-loop amplitudes
from triangular graph with 2 graviton and U(1) current legs
• graviton-scalar sector: leading is 2-graviton– 4-scalar amplitude
from

∫
RR∗∂−2(C2∂mC

∗∂mC∗ − C∗2∂mC∂mC)

• S-matrix elements with vectors:
SO(4) invariant formulation of N = 4 SG

L = −1

4
R− 1

2

∂mC∂mC
∗

(1− |C|2)2

−1

8

([
h1(C)δijδkl − h2(C)εijkl

]
F+ik
mn F

+jlmn + c.c.
)

h1 =
1 + C2

1− C2
, h2 =

C

1− C2
, i, j, , l = 1, ..., 4



∂mam = i
2 (C∂2C∗ − C∗∂2C) + ... on “in” soln for C

∂2C∗ + ... = −1

8
εijklF

+ik
mn F

+jlmn + CF+ik
mn F

+ikmn + ...

∂mam = − i

16

(
CεijklF

+ik
mn F

+jlmn − C∗εijklF−ikmn F
−jlmn)+ ...

anomalous term contributes to 5-point amplitude with 2 gravitons,
one complex scalar and two chiral SO(4) vectors
helicity structure consistent with global susy?
cf. 2iRR∗ = (R+)2 − (R−)2

yes, there are other parity-even terms
in full effective action – e.g. R∗R∗φ
[unpublished discussions with R. Kallosh and R. Roiban]



SU(4) invariant formulation of N = 4 SG:
related by local field redefs and on-shell duality rotation of vectors
effective actions equivalent modulo local counterterm
non-local part of SU(1, 1) anomalous term in eff action remains
relevant bosonic terms (I = 1, ..., 6)

L = −1

4
R− 1

2
(∂mφ∂mφ+ e4φ∂mχ∂mχ)

−1

4
e−2φF ImnF

Imn − 1

2
χF ImnF

∗Imn

φ and χ correspond to Poincare coordinates of Euclidean AdS2:

C = C1 + iC2 =
1− e−2φ + 2iχ

1 + e−2φ − 2iχ
≈ φ+ iχ+ ...

am = −φ∂mχ+ χ∂mφ− (χ2 + 2φ2)∂mχ+ ...

∂mam =
1

2
χF ImnF

Imn +
1

2
φF ImnF

∗Imn + ...

anomalous term starts contributing from 5-point amplitude:
2 gravitons, 2 vectors and 1 scalar



Comments
• such “anomalous” amplitudes are present in Bern et al
construction of N = 4 SG S-matrix by “doubling”
SYM ⊗ YM S-matrix
– checked recently for 3-point hhχ functions [Bern, Dixon]
• relation to absence of R4 3-loop counterterm?
[cf. Bossard,Howe, Stelle, Vanhove 11, and to appear]

Conclusions
• doubled approach natural framework for understanding duality
• on-shell effective action and S-matrix in doubled formalism
are Lorentz-invariant
• duality acts in simple (tree-level) way on on-shell S-matrix
• not clear if quantum effective equations remain covariant under
deformed duality (but not needed for study of leading divergences)
• detailed consequences of possible duality anomalies
remain to be clarified further


