On duality symmetry

in perturbative quantum field theory

Arkady Tseytlin

R. Roiban, AT, arXiv:1205.0176

Recent advances in understanding S-matrix of supergravity:

- tree level - twistor methods
- loop corrections - use string-type (KLT) relations
to construct supergravity amplitudes from $\mathrm{SYM} \times \mathrm{SYM}$
- $N=8$ supergravity: no 3-loop R^{4} in
in agreement with improved supersymmetry predictions and E_{7} global symmetry
- $N=4$ supergravity: no 3-loop R^{4} but so far no systematic explanation based on supersymmetry
role of anomaly [Marcus 85] of $S U(1,1)$ global symmetry?
[Bossard,Howe, Stelle, Vanhove 11]
$f(\phi) R^{4}$ is allowed, divergences start from
5-point scalar-4-graviton amplitude

Motivation to understand better
role of global symmetries of supergravities

Non-compact symmetries of supergravities:
involve duality rotations of 4 d vector fields
These are on-shell symmetries - symmetries of eqs of motion
How such symmetries are realized in quantum theory in effective action, S-matrix ?
Their possible anomalies at quantum level?
history:

- use of $F \rightarrow F^{*}$ symmetry in Einstein-Maxwell (super) gravity to restrict possible 1-loop on-shell counterterms: only $T_{m n} T^{m n}$ are allowed [Deser, van Nieuwenhuizen et al 75]
- duality invariance of stress tensor $T_{m n} \rightarrow$ invariance of Hamiltonian \rightarrow invariance of S-matrix
[Gaillard, Zumino 81]

Aim: study some simple 2 d and 4 d examples of models with similar symmetries

General srtructure of scalar-vector sector of $(\mathcal{N} \geqslant 4)$ supergravity

$$
L=g_{I J}(\Phi) \partial_{m} \Phi^{I} \partial^{m} \Phi^{J}+f_{r s}(\Phi) F_{m n}^{r} F^{s m n}+h_{r s}(\Phi) F_{m n}^{* r} F^{s m n}
$$

$F^{* k l} \equiv \frac{1}{2} \epsilon^{k l m n} F_{m n}, \quad k, l, m, n=0,1,2,3$.
$g_{I J}$ is metric of G / H space, eqs. of motion have G-covariance or invariance if combine $F_{m n}$ and $G_{m n}, G^{*} \equiv 2 \frac{\partial L}{\partial F}$ in doublet
prototypical example: $\mathcal{N}=4$ supergravity $\Phi=(\phi, \chi)$

$$
\begin{array}{r}
S=-\frac{1}{2} \int d^{4} x\left[\left(\partial_{m} \phi\right)^{2}+e^{4 \phi}\left(\partial_{m} \chi\right)^{2}\right. \\
\left.+\frac{1}{2} e^{-2 \phi} F_{m n}^{2}+\frac{1}{2} \chi F_{m n}^{*} F^{m n}\right]
\end{array}
$$

scalar part is $S O(1,2) / S O(2)$ sigma model
its global invariance under $S L(2, R) \approx S O(1,2) \approx S U(1,1)$
is promoted to invariance of the full equations of motion
with vector-vector duality transformation

$$
\begin{aligned}
& \binom{F}{G} \rightarrow\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{F}{G} \\
& \tau \rightarrow \frac{a \tau+b}{c \tau+d}, \quad \tau=e^{-2 \phi}+i \chi, \quad a d-b c=1
\end{aligned}
$$

simplest example: $\chi=0$

$$
\phi \rightarrow-\phi, \quad A_{m} \rightarrow \widetilde{A}_{m}, \quad \widetilde{F}_{m n} \equiv G_{m n}=e^{-2 \phi} F_{k l}^{*}
$$

This symmetry is not a manifest local symmetry how it is realised in quantum theory?
If one integrates out the vector field - effective action Γ depending only on the scalars is expected to be $S L(2)$ invariant.
Performing vector-vector $A_{m} \rightarrow \widetilde{A}_{m}$ duality in path integral (via Lagrange multiplier term, etc.) gives same partition function with \widetilde{A}_{m} coupled to $S L(2)$-transf. scalars;
integrating out vector should give invariant functional of scalars
[caveat: this is not automatically true in general on a curved 4d background one gets an "anomalous" local curvature coupling $\int \phi R^{*} R^{*}$ as in dilaton shift under scalar-scalar duality in 2d case; it can be removed by adding a local counterterm]

But what happens if one keeps both the scalars and vector in Γ or as external states in the S-matrix?

- Natural expectation (ignoring issue of anomalies): this on-shell duality symmetry should be present in quantum effective action evaluated on equations of motion, i.e. in on-shell S-matrix

Precise meaning of action of duality symmetry on S-matrix?

- far less clear possibility [Kallosh et al] : quantum eff. eq. from off-shell effective action might be covariant under deformed version of duality - if effective action is "self-dual", i.e. covariant under "Legendre" transform from original to dual variables But why this "self-duality" should apply and does it?

Aim: clarify these questions using
"doubled" or "phase-space" formulation
4 d vector-vector duality (or p-form $-p$-form duality in $d=2 p+2$)
naturally acts on phase space: first-order action is duality-invariant
[Deser, Teitelboim, 76]
similar actions for chiral scalars or p-forms
[Floreanini, Jackiw 87; Henneaux, Teitelboim 88]
Replace momenta by spatial derivative of a new ("dual") field \rightarrow phase-space action as an action of "doubled" set of fields
Then duality acts locally - as manifest off-shell symmetry but achieved at expense of standard Lorentz invariance (standard Lorentz invariance is recovered on equations of motion)

Such manifestly duality invariant action first written in 2 d : duality there is $O(n, n)$ T-duality [AT, 90]
Similar construction later in 4d [Schwarz, Sen 93]

Recently applied to extended supergravity manifestly $E_{7(7)}$ invariant action of $\mathcal{N}=8$ supergravity [Hillmann, 09; Bossard, Hillmann, Nicolai, 10]

Action for "doubled" set of fields is describing same number of d.o.f. as original action (and equivalent quantum theory) more suitable for addressing question of realization of duality at quantum level

BHN: explicitly confirmed vector contribution to rigid $S U(8) \subset E_{7(7)}$ anomaly [Marcus, 85] and thus cancellation of anomaly $=$ preservation of $E_{7(7)}$ at quantum level But issue of on-shell Lorentz invariance and realization of $E_{7(7)}$ duality on vector-scalar S-matrix was not addressed

General issues with quantum realization of duality are same in any $d=2 p+2$ of dimensions concentrate on $d=2$ instead of $d=4$

$$
\begin{aligned}
& S=-\frac{1}{2} \int d^{2} \sigma\left[\left(\partial_{a} \phi\right)^{2}+e^{4 \phi}\left(\partial_{a} \chi\right)^{2}\right. \\
& \left.\quad+e^{-2 \phi}\left(\partial_{a} x_{s}\right)^{2}+\epsilon^{a b} \epsilon^{r s} \chi \partial_{a} x_{r} \partial_{b} x_{s}\right]
\end{aligned}
$$

$a, b=0,1, \quad r, s=1,2$
$S L(2)$ symmetry of the (ϕ, χ) sector extended to the full set of e.o.m. when combined with 2 d duality on scalars x_{s} need at least $n=2$ scalars x_{s} to have the $O(n, n)$ duality group (acting on x_{s} and their "momenta")
big enough to contain $S L(2)$ acting on (ϕ, χ) [this sigma model is not conformal - has 3-form $H_{\chi r s}=\epsilon_{r s}$ and target metric has only one component of $\left.R_{m n}: R_{\phi \phi}=-\frac{3}{2}\right]$

If integrate out x_{s} get $S L(2)$ invariant quantum theory for (ϕ, χ) but realization of duality on full set (ϕ, χ, x_{s}) at quantum level?

In "doubled" formulation duality in x_{s} sector and thus $S L(2)$ of full model is manifest; useful to split x_{s} into its chiral parts

Will consider discrete subgroup of duality ($\phi \rightarrow-\phi$ for $\chi=0$): duality of the S -matrix translates into a symmetry under flipping sign of anti-chiral part x_{s}^{-}and sign of ϕ

Similar transformation will apply to higher-dimensional models: in $4 d$ one is to flip the sign of the anti-chiral part of the vector field Starting with duality symmetric "doubled" formulation will check 2d Lorentz inv of quantum on-shell effective action or S-matrix

AdS sigma model: duality-invariant theory in 2d

sigma-model based on euclidean $A d S_{n+1}$ metric ($s=1, \ldots, n$)

$$
d s^{2}=d \phi^{2}+e^{-2 \phi} d x_{s} d x_{s}
$$

2d duality in all x_{s} maps it into itself if combined with coordinate transformation $\phi \rightarrow-\phi$ [Kallosh, AT 98] Note: this transformation interchanges manifest (Noether) charges with equivalent subset of hidden charges (conserved due to integrability of the model) [Ricci, Wolf, AT 07] strong-coupling origin of "dual conformal symmetry" [Berkovits, Maldacena 08; Beisert, Ricci, Wolf, AT 08]

Classical Theory: sigma model action in "first-order" form

$$
\begin{aligned}
& S(\phi, x)=\frac{1}{2} \int d^{2} \sigma\left[-\left(\partial_{a} \phi\right)^{2}-e^{-2 \phi}\left(\partial_{a} x_{s}\right)^{2}\right] \rightarrow \\
& S(\phi, p, x)=\frac{1}{2} \int d^{2} \sigma\left[-\left(\partial_{a} \phi\right)^{2}+2 p_{s} \dot{x}_{s}-e^{-2 \phi} x_{s}^{\prime 2}-e^{2 \phi} p_{s}^{2}\right]
\end{aligned}
$$

introduce new field \widetilde{x}_{s} by $p_{s}=\widetilde{x}_{s}^{\prime}$ gives duality-invariant action [AT 90] $(I, J=1, \ldots, 2 n)$

$$
\begin{gathered}
\widehat{S}(\phi, x, \widetilde{x})=-\int d^{2} \sigma\left[\left(\partial_{a} \phi\right)^{2}-\dot{x}_{s} \widetilde{x}_{s}^{\prime}-\dot{\widetilde{x}}_{s} x_{s}^{\prime}+e^{-2 \phi} x_{s}^{\prime 2}+e^{2 \phi} \widetilde{x}_{s}^{\prime 2}\right] \\
=-\int d^{2} \sigma\left[\left(\partial_{a} \phi\right)^{2}-\Omega_{I J} \dot{X}^{I} X^{\prime J}+M_{I J} X^{\prime I} X^{\prime J}\right] \\
X=\binom{x}{\widetilde{x}}, \quad \Omega=\left(\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right), \quad M=\left(\begin{array}{cc}
e^{-2 \phi} & 0 \\
0 & e^{2 \phi}
\end{array}\right)
\end{gathered}
$$

duality symmetry $X \rightarrow \Omega X, M \rightarrow \Omega M \Omega$, i.e.

$$
x_{s} \rightarrow \widetilde{x}_{s}, \quad \widetilde{x}_{s} \rightarrow x_{s}, \quad \phi \rightarrow-\phi
$$

$O(n, n)$ transf.: $X \rightarrow \Lambda X, \quad \Lambda^{T} \Omega \Lambda=\Omega$,
preserves the structure of the action if also $M \rightarrow \Lambda^{-T} M \Lambda^{-1}$
but this change of M cannot be in general compensated
by a redefinition of ϕ

Doubled action for full model with χ :

$$
\begin{aligned}
& \widehat{S}=-\int d^{2} \sigma\left[\left(\partial_{a} \phi\right)^{2}+e^{4 \phi}\left(\partial_{a} \chi\right)^{2}-\Omega_{I J} \dot{X}^{I} X^{\prime J}+M_{I J} X^{\prime I} X^{\prime J}\right] \\
& X=\binom{x}{\widetilde{x}}, \quad \Omega=\left(\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right), \quad M=\left(\begin{array}{cc}
G-B G^{-1} B & B G^{-1} \\
-G^{-1} B & G^{-1}
\end{array}\right) \\
& \left(G-B G^{-1} B\right)_{r s}=\left(e^{-2 \phi}+4 \chi^{2} e^{2 \phi}\right) \delta_{r s} \\
& \left(B G^{-1}\right)_{r s}=2 \chi e^{2 \phi} \epsilon_{r s}, \quad G_{r s}^{-1}=e^{2 \phi} \delta_{r s}
\end{aligned}
$$

symmetry is $S O(1,2)$ subgroup of $O(2,2)$ on M that can be compensated by $S L(2)$ transf. on ($\phi, \chi)$

Classical eqs for x_{s} and \widetilde{x}_{s}

$$
\begin{aligned}
\left(\dot{x}_{s}-e^{2 \phi} \widetilde{x}_{s}^{\prime}\right)^{\prime}=0, & \left(\dot{\tilde{x}}_{s}-e^{-2 \phi} x_{s}^{\prime}\right)^{\prime}=0 \\
\rightarrow \quad \dot{x}_{s}-e^{2 \phi} \widehat{x}_{s}^{\prime}=0, & \dot{\tilde{x}}_{s}-e^{-2 \phi} x_{s}^{\prime}=0,
\end{aligned}
$$

[dropped τ-dependent integration functions: if none at $\sigma \rightarrow \pm \infty$]
equivalent form in terms of "chiral-scalar" combinations

$$
\begin{gathered}
\widehat{S}\left(\phi, x^{+}, x^{-}\right)=-\int d^{2} \sigma\left[\frac{1}{2}\left(\partial_{a} \phi\right)^{2}+x_{s}^{+^{\prime}} \partial_{-} x_{s}^{+}+x_{s}^{-^{\prime}} \partial_{+} x_{s}^{-}\right. \\
\left.\quad+f_{1}(\phi)\left(x_{s}^{+^{\prime 2}}+x_{s}^{-{ }^{\prime}}\right)-2 f_{2}(\phi) x_{s}^{+^{\prime}} x_{s}^{-\prime}\right] \\
x_{s}=x_{s}^{+}+x_{s}^{-}, \quad \widetilde{x}_{s}=x_{s}^{+}-x_{s}^{-}, \quad x_{s}^{ \pm}=\frac{1}{2}\left(x_{s} \pm \widetilde{x}_{s}\right) \\
f_{1}=2 \sinh ^{2} \phi, \quad f_{2}=\sinh 2 \phi
\end{gathered}
$$

duality symmetry:

$$
\phi \rightarrow-\phi, \quad x_{s}^{+} \rightarrow x_{s}^{+}, \quad x_{s}^{-} \rightarrow-x_{s}^{-}
$$

Lorentz symmetry on shell for given f_{1}, f_{2} only

Quantum theory
original and doubled theory are to be quantum-equivalent for common observables, e.g. scattering amplitudes of x fields where \widetilde{x} fields enter only through loops: integrating out \widetilde{x} gives back original action

But doubled theory has larger set of observables, e.g.
scattering amplitudes of both x and \widetilde{x}
with duality acting as standard symmetry
one expects this symmetry in effective action

$$
\Gamma[\phi, x, \widetilde{x}]=\Gamma[-\phi, \widetilde{x}, x], \text { i.e. } \Gamma\left[\phi, x^{+}, x^{-}\right]=\Gamma\left[-\phi, x^{+},-x^{-}\right]
$$

need maintain symmetry at quantum level by proper choice of quantization (regularization / path integral measure)
Γ like the classical action Lorentz-invariant on-shell, i.e. is S-matrix Lorentz-invariant?

On-shell invariance may have two different interpretations:
(I) $\Gamma[\phi, x, \widetilde{x}]$ should be Lorentz-invariant once evaluated on a solution of quantum e.o.m.
[quantum S-matrix generating functional $\widehat{\mathrm{S}}\left[\varphi_{i n}\right]=\Gamma\left[\varphi\left(\varphi_{i n}\right)\right]$
$\varphi\left(\varphi_{i n}\right)$ is the solution of the quantum e.o.m. $\frac{\delta \Gamma}{\delta \varphi}=0$
with "in" b.c. $\varphi=\varphi_{i n}+\ldots,\left(\partial^{2}+m^{2}\right) \varphi_{i n}=0$
Γ evaluated on classical solution may differ from Γ on solution of $\frac{\delta \Gamma}{\delta \varphi}=0$ starting with 2-loop order] (II) quantum equations of motion following from $\Gamma[\phi, x, \widetilde{x}]$ should be Lorentz-invariant
(I) is expected given that classical e.o.m. are Lorentz-invariant and that integrating out \widetilde{x} leads back to Lorentz-invariant action;
(II) is less clear: should one expect
(some deformed version of) Lorentz invariance to apply to full quantum equations of motion; essentially equivalent to assumption that quantum equations of motion derived from original Lorentz-covariant action should admit an analog of the duality symmetry

As $\Gamma[\phi, x, \tilde{x}]$ on "in" solution is generating functional for S-matrix (I) is equivalent to Lorentz invariance of the S-matrix for $\left\{\phi, x_{s}^{+}, x_{s}^{-}\right\}$(in addition to duality invariance)

Key fact: on-shell conditions for chiral scalars are Lorentz-invariant

$$
\partial_{-} x_{s}^{+}=0, \quad \partial_{+} x_{s}^{-}=0
$$

Can then demonstrate Lorentz invariance of S-matrix using that tree-level Green's functions with on-shell $x^{ \pm}$ and off-shell ϕ 's are Lorentz invariant and that determinant of
$x^{ \pm}$-quadratic fluctuation operator depending on an off-shell ϕ is Lorentz invariant

Compute 1-loop S-matrix elements explicitly check (i) duality invariance and (ii) Lorentz invariance simplest on-shell matrix elements are Lorentz-invariant

$$
\begin{aligned}
& A\left(\phi\left(p_{1}\right), x_{s}^{+}\left(p_{2}\right), x_{s}^{+}\left(p_{3}\right)\right)=A\left(\phi\left(p_{1}\right), x_{s}^{-}\left(p_{2}\right), x_{s}^{-}\left(p_{3}\right)\right)=0 \\
& A\left(\phi\left(p_{1}\right), x_{s}^{-}\left(p_{2}\right), x_{s}^{+}\left(p_{3}\right)\right) \sim p_{2-} p_{3+} \ln \Lambda+\text { finite }
\end{aligned}
$$

$\Lambda=$ UV cutoff
no 4-point scattering amplitudes with odd number of x_{s}^{-};
for even (e.g. 4) of x_{s}^{-}get Lorentz-invariant results

$$
\begin{aligned}
& A\left(x_{s}^{+}\left(p_{1}\right), x_{s}^{+}\left(p_{2}\right), x_{s}^{+}\left(p_{3}\right), x_{s}^{+}\left(p_{4}\right)\right)= \\
& \int d^{2} l\left[\frac{\left(p_{1}+l\right)_{-}}{\left(p_{1}+l\right)_{+}}+\frac{\left(p_{2}+l\right)_{-}}{\left(p_{2}+l\right)_{+}}\right]\left[\frac{\left(p_{3}-l\right)_{-}}{\left(p_{3}-l\right)_{+}}+\frac{\left(p_{4}-l\right)_{-}}{\left(p_{4}-l\right)_{+}}\right] \frac{p_{1+} p_{2+} p_{3+} p_{4+}}{l^{2}\left(l+p_{1}+p_{2}\right)^{2}} \\
& A\left(x_{s}^{+}\left(p_{1}\right), x_{s}^{+}\left(p_{2}\right), x_{s}^{-}\left(p_{3}\right), x_{s}^{-}\left(p_{4}\right)\right)= \\
& \int d^{2} l\left[\frac{\left(p_{1}+l\right)_{-}}{\left(p_{1}+l\right)_{+}}+\frac{\left(p_{2}+l\right)_{-}}{\left(p_{2}+l\right)_{+}}\right]\left[\frac{\left(p_{3}-l\right)_{+}}{\left(p_{3}-l\right)_{-}}+\frac{\left(p_{4}-l\right)_{+}}{\left(p_{4}-l\right)_{-}}\right] \frac{p_{1+} p_{2+} p_{3-} p_{4-}}{l^{2}\left(l+p_{1}+p_{2}\right)^{2}} \\
& A\left(x_{s}^{-}\left(p_{1}\right), x_{s}^{-}\left(p_{2}\right), x_{s}^{-}\left(p_{3}\right), x_{s}^{-}\left(p_{4}\right)\right)= \\
& \int d^{2} l\left[\frac{\left(p_{1}+l\right)_{+}}{\left(p_{1}+l\right)_{-}}+\frac{\left(p_{2}+l\right)_{+}}{\left(p_{2}+l\right)_{-}}\right]\left[\frac{\left(p_{3}-l\right)_{+}}{\left(p_{3}-l\right)_{-}}+\frac{\left(p_{4}-l{)_{+}}_{\left(p_{4}-l\right)_{-}}\right] \frac{p_{1-} p_{2-} p_{3-} p_{4-}}{l^{2}\left(l+p_{1}+p_{2}\right)^{2}}}{}\right.
\end{aligned}
$$

Example of non-linear 2d scalar action

scalar theory depending on $(\partial x)^{2}$ with classical duality symmetry

$$
S=\int d^{2} \sigma L(x), \quad L(x)=-\sqrt{1+\left(\partial_{a} x\right)^{2}}
$$

duality symmetry of equations of motion $x \rightarrow \widetilde{x}$
with $\epsilon^{a b} \partial_{b} \widetilde{x}=\left[1+\left(\partial_{a} x\right)^{2}\right]^{-1 / 2} \partial^{a} x$
duality at the quantum level? phase-space or "doubled" theory: set momentum $p \equiv \widetilde{x}^{\prime}$

- get manifestly duality-invariant action

$$
\widehat{L}(x, \widetilde{x})=\widetilde{x}^{\prime} \dot{x}-\sqrt{1+x^{\prime 2}} \sqrt{1+\widetilde{x}^{\prime 2}}
$$

classically equivalent but integral over \widetilde{x} (momentum) is non-gaussian: quantum theories for $L(x)$ and $L(x, \widetilde{x})$ are not a priori equivalent (but are in leading semiclassical approximation of integral over \widetilde{x})

Semiclassically $L(x)$ equivalent to

$$
L(x, \phi)=-\frac{1}{2}\left[G\left(\partial_{a} x\right)^{2}+G+G^{-1}\right], \quad G \equiv e^{-2 \phi}
$$

G or ϕ-auxiliary 2d field (cf. Nambu vs Polyakov action) corresponding "doubled" action

$$
\widehat{L}(x, \widetilde{x}, \phi)=\widetilde{x}^{\prime} \dot{x}-\frac{1}{2} G\left(1+x^{\prime 2}\right)-\frac{1}{2} G^{-1}\left(1+\widetilde{x}^{\prime 2}\right)
$$

has manifest duality symmetry

$$
x \rightarrow \widetilde{x}, \quad \widetilde{x} \rightarrow x, \quad G \rightarrow G^{-1}
$$

solving for G leads back to $L(x, \widetilde{x})$; integrating out \widetilde{x} gives $L(x)$ [this and earlier action $\left(\partial_{a} \phi\right)^{2}+e^{-2 \phi}\left(\partial_{a} x\right)^{2}$ are special cases of

$$
\widehat{L}=-\frac{1}{2}\left(\partial_{a} \phi\right)^{2}-\frac{1}{2} e^{-2 \phi}\left(\partial_{a} x\right)^{2}-\cosh 2 \phi
$$

also invariant under $x \leftrightarrow \widetilde{x}, \phi \rightarrow-\phi]$

Define quantum theory by path integral with action $L(x, \phi)$ or equivalent "doubled" action $L(x, \widetilde{x}, \phi)$
If start with $L(x, \phi)$ and integrate out x get $\Gamma(\phi)=\Gamma(-\phi)$.
If keep background for x and evaluate effective action on shell can show that that get duality-symmetric result.
Classical solution $x_{(0)}, G_{(0)}$

$$
\begin{aligned}
& G_{(0)} n^{a}=\epsilon^{a b} \widetilde{n}_{b}, \quad n_{a} \equiv \partial_{a} x_{(0)} \\
& G_{(0)}=\left(1+n^{2}\right)^{-1 / 2}=\left(1+\widetilde{n}^{2}\right)^{1 / 2}=\widetilde{G}_{(0)}^{-1}
\end{aligned}
$$

$\widetilde{n}_{a}, \widetilde{G}_{(0)}$ is classical solution for dual action

$$
\widetilde{L}(\widetilde{x}, G)=-\frac{1}{2}\left[G^{-1}\left(\partial_{a} \widetilde{x}\right)^{2}+G+G^{-1}\right]
$$

Expand near classical solution $x=x_{(0)}+\eta, \quad G=G_{(0)}(1+\xi)$ effective action $\Gamma_{1}\left(x_{(0)}, G_{(0)}\right)$ inv under $n_{a}=\partial_{a} x_{(0)} \rightarrow \widetilde{n}_{a}=\partial_{a} \widetilde{x}_{(0)}, G_{(0)} \rightarrow \widetilde{G}_{(0)}=G_{(0)}^{-1}$

Special case of $n_{a}=\partial_{a} x_{(0)}=$ const:
1-loop on-shell effective action

$$
\Gamma_{1}=\frac{1}{2} \ln \operatorname{det} K, \quad K=G_{(0)}^{-1} \partial^{a} \partial_{a}-G_{(0)}\left(n^{a} \partial_{a}\right)^{2}
$$

Γ_{1} is duality invariant under $x \rightarrow \widetilde{x}, G \rightarrow G^{-1}$

Classical plus one-loop effective action for const $n_{a}=\partial_{a} x$

$$
\Gamma=\int d^{2} \sigma\left[-\sqrt{1+\left(\partial_{a} x\right)^{2}}+\Lambda^{2} F\left(\sqrt{1+\left(\partial_{a} x\right)^{2}}\right)\right]
$$

duality symmetry: $F(y)=F\left(G_{(0)}^{-1}\right), G_{(0)}=\left(1+n^{2}\right)^{-1 / 2}=$ const

$$
F(y)=\ln \left[\frac{1}{2}\left(y^{1 / 2}+y^{-1 / 2}\right)\right], \quad F(y)=F\left(y^{-1}\right)
$$

What if start with $L(x)=-\sqrt{1+\left(\partial_{a} x\right)^{2}}$:
tree-level action plus ∂x-dep. part of 1-loop eff action

$$
\Gamma(\partial x)=-\int d^{2} \sigma \sqrt{1+\left(\partial_{a} x\right)^{2}}+\hbar \Gamma_{1}(\partial x)+\mathcal{O}\left(\hbar^{2}\right)
$$

leads to duality-covariant quantum equations of motion?
Γ_{1} is same as found by starting from $L(x, G)$
depends on $\partial_{a} x$ only through $G_{(0)}^{-1}=\sqrt{1+\left(\partial_{a} x\right)^{2}}$
To check duality do "Legendre" transform to dual variable:
replace $\partial_{a} x$ by independent field strength n_{a} and introduce dual \widetilde{x} via Lagrange multiplier term

$$
\begin{aligned}
\widehat{\Gamma}(n, \partial \widetilde{x}) & =-\int d^{2} \sigma \sqrt{1+n_{a}^{2}}+\hbar \Gamma_{1}(n)+\mathcal{O}\left(\hbar^{2}\right) \\
& +\int d^{2} \sigma \epsilon^{a b} n_{a} \partial_{b} \widetilde{x}
\end{aligned}
$$

Solve effective equation for n_{a} perturbatively in \hbar
As Γ_{1} is invariant under classical duality $\Gamma_{1}(\partial x)=\Gamma_{1}(\partial \widetilde{x})$
$\widetilde{\Gamma}(\partial \widetilde{x})$ has same form as $\Gamma(\partial x)$ up to $\mathcal{O}\left(\hbar^{2}\right)$ terms
$\widetilde{\Gamma}(\partial \widetilde{x})=-\int d^{2} \sigma \sqrt{1+\left(\partial_{a} \widetilde{x}\right)^{2}}+\left.\hbar \Gamma_{1}\right|_{n_{a} \rightarrow \partial_{a} \widetilde{x}}+\mathcal{O}\left(\hbar^{2}\right)$
If leading quantum correction to classically "self-dual" action is duality-invariant, resulting effective action is "self-dual" up to higher-order corrections (relation of original and dual fields receives loop corrections).

Higher-loop corrections Γ_{n} must satisfy constraints
for Γ to be "self-dual" at higher order e.g. 2-loop effective action should be solution of

$$
\Gamma_{2}(\partial \widetilde{x})=\Gamma_{2}\left(n_{(0)}\right)+\int d^{2} \sigma \frac{1}{\left(1+n_{(0)}^{2}\right)^{1 / 2}}\left[n_{(1)}^{2}-\frac{\left(n_{(0)} \cdot n_{(1)}\right)^{2}}{1+n_{(0)}^{2}}\right]
$$

It is not a priori clear why Γ_{2} should obey this constraint, i.e why effective action should be invariant under modified duality

Duality in 4 d vector models

"doubled" formalism:

- duality symmetry is manifest off-shell symmetry
- action has a symmetry becoming standard Lorentz inv on shell
- main features same for discrete or continuous duality
- "doubled" action duality inv \rightarrow effective action duality inv
- on-shell S-matrix should have duality and Lorentz symmetry

4 d vector case is very similar to 2 d scalar case start with first-order phase-space action for

$$
\begin{array}{r}
S=-\frac{1}{2} \int d^{4} x\left[\left(\partial_{m} \phi\right)^{2}+e^{4 \phi}\left(\partial_{m} \chi\right)^{2}\right. \\
\left.+\frac{1}{2} e^{-2 \phi} F_{m n}^{2}+\frac{1}{2} \chi F_{m n}^{*} F^{m n}\right]
\end{array}
$$

fixing $A_{0}=0$ and introducing $\widetilde{A}_{i}: \partial_{0} A_{i}=\epsilon_{i j k} \partial_{j} \widetilde{A}_{k}(i=1,2,3)$

$$
\widehat{S}=-\frac{1}{2} \int d^{4} x\left[\left(\partial_{a} \phi\right)^{2}+e^{4 \phi}\left(\partial_{a} \chi\right)^{2}-\widehat{L}(A, \widetilde{A} ; \phi, \chi)\right]
$$

$$
\begin{gathered}
\widehat{L}=\mathrm{E}_{i}^{T} \widehat{\Omega} \mathrm{~B}_{i}-\mathrm{B}_{i}^{T} M \mathrm{~B}_{i} \\
\mathrm{E}_{i}=\partial_{0} \mathrm{~A}_{i}, \quad \mathrm{~B}_{i}=\epsilon_{i j k} \partial_{j} \mathrm{~A}_{k}, \quad \mathrm{~A}_{i}=\binom{A_{i}}{\widetilde{A}_{i}} \\
\widehat{\Omega}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad M=\left(\begin{array}{cc}
e^{-2 \phi}+4 \chi^{2} e^{2 \phi} & -2 \chi e^{2 \phi} \\
-2 \chi e^{2 \phi} & e^{2 \phi}
\end{array}\right)
\end{gathered}
$$

for $\chi=0$ invariant under Z_{2} duality: $\mathrm{A}_{i}^{\prime}=\widehat{\Omega} \mathrm{A}_{i} \quad M^{\prime}=\widehat{\Omega}^{T} M \widehat{\Omega}$

$$
A_{i}^{\prime}=\widetilde{A}_{i}, \quad \widetilde{A}_{i}^{\prime}=-A_{i}, \quad \phi^{\prime}=-\phi
$$

equations of motion: $E_{i}-e^{2 \phi} \widetilde{B}_{i}=0, \quad \widetilde{E}_{i}+e^{-2 \phi} B_{i}=0$
\widehat{S} has modified Lorentz-type symmetry [Schwarz, Sen 93]
which becomes standard Lorentz symmetry on e.o.m. as in 2 d case expect S -matrix to have duality and Lorentz inv as $\widehat{\Omega}^{2}=-I$ introduce

$$
\mathrm{A}_{i}^{ \pm} \equiv A_{i} \pm \mathrm{i} \widetilde{A}_{i}, \quad \overline{\mathrm{~A}}_{i}^{+}=\mathrm{A}_{i}^{-}
$$

which transform under duality as

$$
\left(\mathrm{A}_{i}^{ \pm}\right)^{\prime}=\mp \mathrm{iA}_{i}^{ \pm}, \quad \phi^{\prime}=-\phi
$$

classical equations in terms of derivatives of $\mathrm{A}_{i}^{ \pm}$

$$
\begin{aligned}
& \mathrm{E}^{+}+\mathrm{i}\left(\mathrm{~B}^{+} \cosh 2 \phi-\mathrm{B}^{-} \sinh 2 \phi\right)=0 \\
& \mathrm{E}^{-}-\mathrm{i}\left(\mathrm{~B}^{-} \cosh 2 \phi-\mathrm{B}^{+} \sinh 2 \phi\right)=0
\end{aligned}
$$

if $\phi=0$ become (anti)self-duality conditions: $\mathrm{F}_{m n}^{ \pm}= \pm \mathrm{i} \epsilon_{m}{ }_{n}^{k l} \mathrm{~F}_{k l}^{ \pm}$ $\mathrm{A}_{i}^{ \pm}$thus describe on shell photons of definite helicity

Lagrangian \widehat{L} in terms of $\mathrm{A}_{i}^{ \pm}$

$$
\begin{aligned}
\widehat{L}= & \mathrm{i}\left(\mathrm{E}_{i}^{+} \mathrm{B}_{i}^{-}-\mathrm{E}_{i}^{-} \mathrm{B}_{i}^{+}\right) \\
& -2 \cosh 2 \phi \mathrm{~B}_{i}^{+} \mathrm{B}_{i}^{-}-\sinh 2 \phi\left(\mathrm{~B}_{i}^{+} \mathrm{B}_{i}^{+}+\mathrm{B}_{i}^{-} \mathrm{B}_{i}^{-}\right)
\end{aligned}
$$

dulity $\left(\mathrm{A}_{i}^{ \pm}\right)^{\prime}=\mp \mathrm{iA}_{i}^{ \pm}, \quad \phi^{\prime}=-\phi$ implies:
S-matrix elements without external ϕ lines $\left(\mathrm{A}^{+}\right)^{n_{+}}\left(\mathrm{A}^{-}\right)^{n_{-}}$
transform by phase $i^{-n_{+}+n_{-}}$but must be invariant
so are nonvanishing only if $n_{+}-n_{-}=4 k$

Similar discussion for 4d Born-Infeld theory $(\phi, \chi=0)$

$$
L(A)=-\sqrt{1+\frac{1}{2} F^{m n} F_{m n}-\frac{1}{16}\left(F^{m n} F_{m n}^{*}\right)^{2}}
$$

semiclassically equivalent to action with real U, V [Rocek, AT 98]

$$
L(A ; U, V)=\frac{1}{2}\left(V F^{m n} F_{m n}-U F^{m n} F_{m n}^{*}\right)+V+V^{-1}+V^{-1} U^{2}
$$

"doubled" action $\widehat{L}(A, \widetilde{A} ; U, V)$ is quantum-equivalent to $L(A ; U, V)$ "doubled" action for original BI theory from phase-space action written in terms of derivatives of $\mathrm{A}_{i}^{ \pm}=A_{i}+\mathrm{i} \widetilde{A}_{i}$:

$$
\begin{aligned}
& \widehat{L}(A, \widetilde{A})=\frac{1}{2}\left(E_{i} \widetilde{B}_{i}-\widetilde{E}_{i} B_{i}\right)-\sqrt{1+B_{i}^{2}+\widetilde{B}_{i}^{2}+B_{i}^{2} \widetilde{B}_{k}^{2}-\left(B_{i} \widetilde{B}_{i}\right)^{2}} \\
& =\frac{1}{4} \mathrm{i}\left(\mathrm{E}_{i}^{+} \mathrm{B}_{i}^{-}-\mathrm{E}_{i}^{-} \mathrm{B}_{i}^{+}\right)-\sqrt{1+\mathrm{B}_{i}^{+} \mathrm{B}_{i}^{-}+\frac{1}{4}\left(\mathrm{~B}_{i}^{+} \mathrm{B}_{i}^{-}\right)^{2}-\frac{1}{4}\left(\mathrm{~B}_{i}^{+} \mathrm{B}_{i}^{+}\right)\left(\mathrm{B}_{k}^{-} \mathrm{B}_{k}^{-}\right)}
\end{aligned}
$$

- as in non-linear scalar theory quantum equivalence to $\widehat{L}(A, \widetilde{A} ; U, V)$ only semiclassically (at tree and 1-loop level): integral over \widetilde{A}_{i} (or \widetilde{B}_{i}) is non-gaussian
- $\widehat{L}(A, \widetilde{A})$ invariant under same duality $A_{i}^{\prime}=\widetilde{A}_{i}, \widetilde{A}_{i}^{\prime}=-A_{i}$ [on-shell relation of dual and original field strengths is modified; in this sense BI e.o.m. are covariant with respect to "deformed" Maxwell duality; this distinction absent in "doubled" description]
- consequence of duality for scattering amplitudes is also same: difference between no. of positive and negative helicity photons must be $n_{+}-n_{-}=4 k, k=0,1,2, \ldots$
- S-matrix corresponding to $\widehat{L}(A, \widetilde{A})$ is actually helicity-conserving $n_{+}=n_{-} \quad(k=0)$ [earlier demonstrations of this for BI theory: Rosly, Selivanov 02; Boels, Larsen, Obers, Vonk 08]
- S -matrix is more constrained than required by duality: helicity conservation reflects special property of BI action: apart from discrete duality $\widehat{L}(A, \widetilde{A})$ has continuous symmetry: $\left(\mathrm{A}_{i}^{ \pm}\right)^{\prime}=e^{ \pm \mathrm{i} \alpha} \mathrm{A}_{i}^{ \pm}$; as a consequence $n_{+}-n_{-}=0$

Comments on duality in extended supergravities

$\mathcal{N}=8$ supergravity may be obtained
from IIB 10d supergravity on a 6 -torus
$O(6,6)$ symmetry is part of $E_{7(7)}$ duality group realized on scalars + duality rotations of 28 vectors
[Cremmer, Julia, Scherk 77]
$E_{7(7)}$ duality may be viewed as closure of 6 commuting Z_{2} subgroups of $O(6,6)$ together with $S L(2, R)$ of IIB SG and global $S U(8)$ symmetry acting on physical states

Discussion of realisation of duality in quantum theory applies to full duality symmetry of $\mathcal{N}=8 \mathrm{SG}$; suggests that S-matrix and thus on-shell counterterms computed in perturbative loop expansion should be invariant under $E_{7(7)}$ on scalars together with duality acting on vectors on-shell

Duality on vectors manifest in the "doubled" formulation:
action is not invariant under the standard (tangent-space) Lorentz symmetry but on-shell effective action or S-matrix should have this symmetry along with the duality symmetry

- as discussed above on simple examples

No need to consider deformation of duality when looking for leading UV counterterms

Anomalies of duality?

Local non-invariant terms: depend on quantization prescription, may be cancelled by local counterterms

Chiral anomaly:
non-invariant non-local term in 1-loop Γ

- scalars couple to fermions via chiral currents possible global $S U(8) \subset E_{7(7)}$ anomaly in $\mathcal{N}=8$ case and $U(1) \subset S U(1,1)$ anomaly in $\mathcal{N}=4$ case
[Girardello, Di Vecchia, Ferrara 84]
- vectors also contribute to anomaly [Marcus, 85]
as transform chirally, e.g. $(F+i G) \rightarrow e^{i \alpha}(F+i G), G \sim F^{*}$ seen explicitly in doubled approach [Bossard,Hillmann,Nicolai 11]
- anomaly cancels in $\mathcal{N}=8$ case but survives in $\mathcal{N}=4$ case

Local "anomaly" of duality on curved background

 anomalies depend on definition of theory:- which symmetries are expected to be preserved
- reflected in definition of regularization/measure/counterterms

2d scalar case
Integrating x, \widetilde{x} out in $\widehat{S}(\phi, x, \widetilde{x})$
expect to find $\phi \rightarrow-\phi$ symmetry in Γ
not automatic if other fields/symmetries present:
depends on quantization prescription
2d scalar x in external scalar ϕ and metric $g_{a b}$
$e^{-\Gamma\left[\phi, g_{a b}\right]}=\int[d x] \exp \left[-\frac{1}{2} \int d^{2} \sigma \sqrt{g} g^{a b} e^{-2 \phi} \partial_{a} x \partial_{b} x\right]$
$G \equiv e^{-2 \phi}$ as target space metric in direction x

2d on-shell duality: $G \rightarrow G^{-1}, x \rightarrow \widetilde{x}, \quad G \sqrt{g} g^{a b} \partial_{a} x=i \epsilon^{a b} \partial_{b} \widetilde{x}$

$$
\Gamma\left[\phi, g_{a b}\right]-\Gamma\left[-\phi, g_{a b}\right]=\frac{1}{8 \pi} \int d^{2} \sigma \sqrt{g} \phi R
$$

$R=$ curvature of $g_{a b} \quad$ [Schwarz, AT 92]
i.e. under T-duality $G \rightarrow G^{-1}$ target-space dilaton gets shifted by $\phi=-\frac{1}{2} \ln G$ [Buscher 88]
may interpret this as anomaly of $\phi \rightarrow-\phi$ duality present in curved 2 d background not a genuine non-local anomaly but rather a finite local counterterm required for preservation of other symmetry - target space reparametrization covariance: in 2 d sigma model context target space covariance is assumed in definition of path integral measure breaking of $\phi \rightarrow-\phi$ symmetry means
2 d duality and target space rep. inv. cannot be both manifest

4d vector case
corresponding 4 d example on curved 4 d background

$$
e^{-\Gamma\left[\phi, g_{m n}\right]}=\int[d A] \exp \left[-\int d^{4} x \sqrt{g} g^{m n} g^{p q} e^{-2 \phi} F_{m p} F_{n q}\right]
$$

classical equations of motion invariant under

$$
A \rightarrow \widetilde{A}, \quad \phi \rightarrow-\phi \text { with } e^{-2 \phi}(d A)^{*}=d \widetilde{A}
$$

symmetry of effective action $\Gamma\left[\phi, g_{m n}\right]=\Gamma\left[-\phi, g_{m n}\right]$?
expected from formal path integral transformation argument:
Γ should depend only on $\partial \phi$ and only even powers of ϕ [true, e.g. for UV div. and Weyl-anomalous part of Γ, Osborn 03]
If follow same steps as in 2d example:
set of 2 nd order operators appearing in duality transf.
is 4 d elliptic complex (scalar, vector and 2-tensor operators)
$\frac{1}{2} \sum_{n=0}^{d}(-1)^{n}(n+1) \ln \operatorname{det} \Delta_{n}$
given by combination of Seeley coefficients $b_{4} \sim R_{m n k l}^{2}+\ldots$

Under same assumption as in 2d case that all measure factors are same for all operators in the complex get direct analog of 2d "dilaton shift" wih 2d Euler density $\rightarrow 4 d$ Euler density [Gilkey et al 02]

$$
\begin{aligned}
& \Gamma\left[\phi, g_{m n}\right]-\Gamma\left[-\phi, g_{m n}\right]=-\frac{1}{32 \pi^{2}} \int d^{2} x \sqrt{g} \phi R^{*} R^{*} \\
& R^{*} R^{*}=R_{m n k l}^{2}-4 R_{m n}^{2}+R^{2}=\partial_{n} w^{n}
\end{aligned}
$$

local term - interpret its presence as consequence of preservation some other symmetry at expense of duality $\phi \rightarrow-\phi$

In contrast to 2d sigma model or string path integral in 4d vector case do not have "target space" diffs on vectors
Here may insist on preservation of the duality:
cancel this "anomaly" by local counterterm

Chiral anomaly of $S L(2)$ duality in $\mathcal{N}=4 \mathrm{SG}$

scalar sector of $\mathcal{N}=4$ conformal or Poincare supergravity or type IIB supergravity: $S U(1,1) / U(1)$ coset
may describe by 2 complex scalars Φ_{α} with spurious local $U(1)$
$\eta^{\alpha \beta} \Phi_{\alpha} \Phi_{\beta}^{*}=\Phi_{1} \Phi_{1}^{*}-\Phi_{2} \Phi_{2}^{*}=\Phi^{\alpha} \Phi_{\alpha}=1$
Φ_{α} transform under global $S U(1,1)$ and local $U(1)$
$\Phi_{\alpha}^{\prime}=e^{-i \gamma(x)} U_{\alpha}^{\beta} \Phi_{\beta}$

$$
L=D_{m} \Phi^{\alpha} D^{m} \Phi_{\alpha}, \quad D_{m} \Phi_{\alpha}=\partial_{m} \Phi_{\alpha}+i a_{m} \Phi_{\alpha}, \quad a_{m}=i \Phi^{\alpha} \partial_{m} \Phi_{\alpha}
$$

a_{m} is $S U(1,1)$ invariant, $a_{m} \rightarrow a_{m}+\partial_{m} \gamma$ under $U(1)$
fermions couple to scalars via a_{m} - have chiral weights
In physical gauge, e.g., $\Phi_{1}=\Phi_{1}^{*}$

$$
\begin{aligned}
& \Phi_{1}=\left(1-|C|^{2}\right)^{-1 / 2}, \quad \Phi_{2}=C\left(1-|C|^{2}\right)^{-1 / 2} \\
& a_{m}=\frac{i}{2}\left(1-|C|^{2}\right)^{-1}\left(C^{*} \partial_{m} C-C \partial_{m} C^{*}\right)
\end{aligned}
$$

$S U(1,1)$ acts non-linearly on C and by gradient shift on a_{m}

Chiral anomaly of local $U(1)$ translates into rigid $S U(1,1)$ anomaly: gravitational anomaly of rigid $U(1) \subset S U(1,1)$ from fermions and self-dual tensors coupled to a_{m} and gravitational connection It can be found from local $U(1)$ anomaly (not fixing gauge) adding a local counterterm to cancel it but breaking $S U(1,1)$ if $\psi^{\prime}=e^{i \gamma(x)} \psi$ then

$$
\partial_{m} j^{m}=-\frac{1}{24(4 \pi)^{2}} R R^{*}
$$

as $j^{m}=\frac{\delta \Gamma}{\delta a_{m}}$ get corresponding term in 1-loop effective action split $a_{m}=a_{m}^{\|}+a_{m}^{\perp}, \quad \nabla^{m} a_{m}^{\perp}=0$
integrating $U(1)$ anomaly find effective action for a_{m} and $g_{m n}$

$$
\begin{aligned}
& \Gamma\left[a_{m} ; g_{m n}\right]=\Gamma_{a n o m}\left[a_{m}^{\|} ; g_{m n}\right]+\Gamma_{i n v}\left[a_{m}^{\perp} ; g_{m n}\right] \\
& \Gamma_{\text {anom }}\left[a^{\|}, g\right]=k \int R R^{*} \nabla^{-2} \nabla^{m} a_{m}
\end{aligned}
$$

$a_{m}^{\|}$and a_{m}^{\perp} are separately $S U(1,1)$ invariant
same applies to $\Gamma_{a n o m}$ and $\Gamma_{i n v}$
parametrize scalars as

$$
\Phi_{1}=\sqrt{1+r^{2}} e^{i(a-b)}, \quad \Phi_{2}=r e^{i(a+b)}
$$

r, a, b are real; a transforms under local $U(1)$ by shift all 3 fields transform under $S U(1,1)$

$$
\begin{aligned}
& a_{m}=-\partial_{m} a+\left(1+2 r^{2}\right) \partial_{m} b \\
& L=\left|D_{m} \Phi_{1}\right|^{2}-\left|D_{m} \Phi_{2}\right|^{2}=-\frac{\left(\partial_{m} r\right)^{2}}{1+r^{2}}-4\left(1+r^{2}\right) r^{2}\left(\partial_{m} b\right)^{2}
\end{aligned}
$$

$S U(1,1)$ and local $U(1)$ invariant - does not depend on a

$$
\begin{aligned}
& \Gamma=\Gamma_{a n o m}[a, b, r ; g]+\Gamma_{i n v}[b, r ; g] \\
& \Gamma_{a n o m}=-k \int R R^{*} a+k \int R R^{*} \nabla^{-2} \nabla^{m}\left[\left(1+2 r^{2}\right) \partial_{m} b\right]
\end{aligned}
$$

Γ is $S U(1,1)$ invariant, but not invariant under local $U(1)$.
But anomalous term is local - can cancell it by local counterterm.

Important difference compared to standard gauge theory where a_{m} is fundamental field and anomalous term is non-local:
here variables in path integral are scalars a, b, r not a_{m}

$$
\begin{aligned}
& \Gamma^{\prime}=\Gamma_{a n o m}^{\prime}[b, r ; g]+\Gamma_{i n v}[b, r ; g] \\
& \Gamma_{a n o m}^{\prime}=\Gamma_{a n o m}+S_{\text {c.t. }}, \quad S_{c . t .}=k \int R R^{*}[a+f(b, r)]
\end{aligned}
$$

$S_{\text {c.t. }}$ restores local $U(1)$ - independence of a
$\int R R^{*} a=\frac{1}{4} \int R R^{*} \ln \frac{\Phi_{1} \Phi_{2}}{\Phi_{1}^{*} \Phi_{2}^{*}}: S U(1,1)$ non-invariant
$f(b, r)$ parametrizes ambiguity in local counterterm
but no $S U(1,1)$ invariant from algebraic functions of a, b, r

- cannot restore $S U(1,1)$
non-local Γ^{\prime} cannot be eliminated by local c.t.; since $S_{c . t \text {. }}$ is not $S U(1,1)$ invariant, same is for Γ^{\prime}
Illustration of general "compensator" mechanism
[Grisaru, de Wit 85]
removable $U(1)$ anomaly means:
from classical theory in two different $U(1)$ gauges get two effective actions but differing only by local term
may then specify to particular $U(1)$ gauge from the start and interterpret $\Gamma_{\text {anom }}$ as $S U(1,1)$ anomalous part of eff. action
$a=b$ gauge: real, $\Phi_{1}, \Phi_{2}=C \Phi_{1}, C=\frac{r}{\sqrt{1+r^{2}}} e^{2 i b}$
$a=0$ gauge: $\Phi_{1}=\sqrt{1+r^{2}} e^{-i b}, \Phi_{2}=r e^{i b}$

$$
\begin{aligned}
& \left(\Gamma_{a n o m}\right)_{a=b}=k \int R R^{*} \nabla^{-2} \nabla^{m}\left(2 r^{2} \partial_{m} b\right) \\
& \left(\Gamma_{a n o m}\right)_{a=0}=k \int R R^{*} b+\left(\Gamma_{a n o m}\right)_{a=b}
\end{aligned}
$$

anomalous terms seen in graviton-graviton-scalars amplitudes
$U(1) \subset S U(1,1)$ gravitational anomaly in $\mathcal{N}=4$ Poincare SG
anomaly does not cancel [Marcus 85]
implies $S U(1,1)$ breaking in some 1-loop amplitudes
from triangular graph with 2 graviton and $U(1)$ current legs

- graviton-scalar sector: leading is 2 -graviton-4-scalar amplitude from $\int R R^{*} \partial^{-2}\left(C^{2} \partial_{m} C^{*} \partial^{m} C^{*}-C^{* 2} \partial_{m} C \partial^{m} C\right)$
- S -matrix elements with vectors:
$S O(4)$ invariant formulation of $\mathcal{N}=4 \mathrm{SG}$

$$
\begin{aligned}
L= & -\frac{1}{4} R-\frac{1}{2} \frac{\partial^{m} C \partial_{m} C^{*}}{\left(1-|C|^{2}\right)^{2}} \\
& -\frac{1}{8}\left(\left[h_{1}(C) \delta_{i j} \delta_{k l}-h_{2}(C) \epsilon_{i j k l}\right] F_{m n}^{+i k} F^{+j l m n}+c . c .\right) \\
h_{1} & =\frac{1+C^{2}}{1-C^{2}}, \quad h_{2}=\frac{C}{1-C^{2}}, \quad i, j,, l=1, \ldots, 4
\end{aligned}
$$

$\partial^{m} a_{m}=\frac{i}{2}\left(C \partial^{2} C^{*}-C^{*} \partial^{2} C\right)+\ldots$ on "in" soln for C

$$
\begin{aligned}
& \partial^{2} C^{*}+\ldots=-\frac{1}{8} \epsilon_{i j k l} F_{m n}^{+i k} F^{+j l m n}+C F_{m n}^{+i k} F^{+i k m n}+\ldots \\
& \partial^{m} a_{m}=-\frac{i}{16}\left(C \epsilon_{i j k l} F_{m n}^{+i k} F^{+j l m n}-C^{*} \epsilon_{i j k l} F_{m n}^{-i k} F^{-j l m n}\right)+\ldots
\end{aligned}
$$

anomalous term contributes to 5-point amplitude with 2 gravitons, one complex scalar and two chiral $S O(4)$ vectors helicity structure consistent with global susy?
cf. $2 i R R^{*}=\left(R^{+}\right)^{2}-\left(R^{-}\right)^{2}$
yes, there are other parity-even terms
in full effective action - e.g. $R^{*} R^{*} \phi$
[unpublished discussions with R. Kallosh and R. Roiban]
$S U(4)$ invariant formulation of $\mathcal{N}=4 \mathrm{SG}$:
related by local field redefs and on-shell duality rotation of vectors effective actions equivalent modulo local counterterm non-local part of $S U(1,1)$ anomalous term in eff action remains relevant bosonic terms $(I=1, \ldots, 6)$

$$
\begin{aligned}
L=- & \frac{1}{4} R-\frac{1}{2}\left(\partial^{m} \phi \partial_{m} \phi+e^{4 \phi} \partial^{m} \chi \partial_{m} \chi\right) \\
& -\frac{1}{4} e^{-2 \phi} F_{m n}^{I} F^{I m n}-\frac{1}{2} \chi F_{m n}^{I} F^{* I m n}
\end{aligned}
$$

ϕ and χ correspond to Poincare coordinates of Euclidean $A d S_{2}$:

$$
\begin{aligned}
& C=C_{1}+i C_{2}=\frac{1-e^{-2 \phi}+2 i \chi}{1+e^{-2 \phi}-2 i \chi} \approx \phi+i \chi+\ldots \\
& a_{m}=-\phi \partial_{m} \chi+\chi \partial_{m} \phi-\left(\chi^{2}+2 \phi^{2}\right) \partial_{m} \chi+\ldots \\
& \partial^{m} a_{m}=\frac{1}{2} \chi F_{m n}^{I} F^{I m n}+\frac{1}{2} \phi F_{m n}^{I} F^{* I m n}+\ldots
\end{aligned}
$$

anomalous term starts contributing from 5-point amplitude:
2 gravitons, 2 vectors and 1 scalar

Comments

- such "anomalous" amplitudes are present in Bern et al construction of $\mathcal{N}=4$ SG S-matrix by "doubling" SYM \otimes YM S-matrix
- checked recently for 3-point $h h \chi$ functions [Bern, Dixon]
- relation to absence of R^{4} 3-loop counterterm?
[cf. Bossard,Howe, Stelle, Vanhove 11, and to appear]

Conclusions

- doubled approach natural framework for understanding duality
- on-shell effective action and S-matrix in doubled formalism are Lorentz-invariant
- duality acts in simple (tree-level) way on on-shell S-matrix
- not clear if quantum effective equations remain covariant under deformed duality (but not needed for study of leading divergences)
- detailed consequences of possible duality anomalies remain to be clarified further

