

Search for new physics with same-sign isolated dilepton events in CMS

> Aniello Spiezia University of Perugia

Summer School and Workshop on the Standard Model and Beyond September 8 - 17, 2012

CMS experiment

- Supersymmetry
- Same Sign DiLepton topology
- TriLepton topology
- Analysis strategy
- Interpretation of the results

CMS Experiment @ LHC

CMS = Compact Muon Solenoid

- General-purpose particle physics detector built at the Large Hadron Collider (LHC)
- Overall diameter 15 m and length 22 m
- Five layers: 1
 - tracker
 - electromagnetic calorimeter
 - 3 hadronic calorimeter
 - 4 magnet
 - 5 muon chambers

The Standard Model is a *success*, but many questions are still open

- Why Higgs Boson has a finite mass?
- Does an energy scale at which the interaction coupling constants assume the same value exist?
- What is the 96% of the Universe?

SuperSymmetry helps to solve several problems of the SM...

...and introduces many new particles and many parameters that could be measured!

SuperSymmetry

SM gives great quantum corrections to the Higgs mass

$$\Delta m_H^2 = -rac{|\lambda_f|^2}{8\pi^2}\Lambda_{UV}^2$$

Hierarchy problem:

- Higgs mass is finite
- m_H^2 has a quadratic divergence due to Λ_{UV}

Introduction of a new symmetry to solve the problem

- Introduces *superpartners* to each SM particle → called *superparticles* or *sparticles*
- Introduces a new quantum number: R-parity → conservation of it gives dark matter candidate

SuSy search at CMS

- Many searches at CMS have focused on the study of models with new heavy strongly interacting particles
- Strongly interacting particles can be produced with large cross sections and hence could be *easily* seen with early LHC data

Chargino-Neutralino pair production

- Electroweak production of *sparticles* does not yield to large hadronic activity
- Models with electroweak production of *sparticles* could have eluded detection in early searches
- We decide to study a *simplified model*: the **chargino-neutralino pair production** (Phys. Rev. D79 (2009) 075020, arXiv:0810.3921)
- This model has been investigated in two complementary ways:

* = missing energy of the events due to the lightest superparticle

SSDL with τ

Focalize on the τ -enriched scenario:

✓ chargino decays exclusively to *τ* leptons
 ✓ neutralino decays democratically

We will search for two same sign dilepton (SSDL) of which one is a τ decaying hadronically:

- \blacksquare if one of the three leptons is missed \rightarrow <code>SSDL</code>
- chargino has an higgsino component \rightarrow its decay to slepton could favor the τ lepton

To be considered: Request for the SSDL signature permits to suppress the SM background

Look for final state:

$$pp \rightarrow e^{\pm}\tau^{\pm}, \mu^{\pm}\tau^{\pm}, \tau^{\pm}\tau^{\pm} + MET$$

Background evaluation

Fake(s) τ : data-driven study Events with one real lepton and hadronic activity that mimics the τ (*ttbar*, W + *jets*, QCD) This is the **dominant** contribution Mis-reconstructed charge: data-driven study • An **opposite sign event** can pass the selection if one lepton is reconstructed with the wrong charge • We evaluate this **only** for τ : charge mis-id $\sim 10^{-2}$ Electron and muon have charge misidentification rate of the order of $\sim 10^{-3}$ and $\sim 10^{-5}$

Prompt leptons from SM

from MC study

- Production of two prompt same sign lepton from SM processes
- The main contribution is from the production of two gauge bosons that decay leptonically that is qq̄ → WZ, ZZ
- Predicted from MC studies

Background evaluation

Fake(s) τ :

- Prediction using the fake-ratio method
- \blacksquare Choose a data sample reach of QCD events and poor of real τ
- Measure the **probability** that a *fake* τ passes the signal selection
- Use this probability to evaluate the contribution to the background of the fake τ events

Mis-reconstructed charge:

Estimate the probability to mis-reconstruct the τ charge from $Z \rightarrow \tau \tau \rightarrow \mu \tau$

Validation of the background evaluation methods

- The signal region is defined requesting for high transverse missing energy, i.e. MET > 200 GeV
- Validation of the background evaluation methods is done in bins of MET
- The agreement is good in each bin

Results for SSDL

Definition of **Signal Region**:

- Two same sign leptons (of which one is a hadronically decaying τ)
- Transverse missing energy greater than 200 GeV
- No requirement on hadronic activity

Comparison between observation and background prediction

Channel	Prediction	Observation
${ m e} au$	$1.6\pm0.3(\textit{stat})\pm1.1(\textit{syst})$	1
μau	$1.9\pm0.3(\textit{stat})\pm1.0(\textit{syst})$	1
au au	$0.0\pm0.0(\textit{stat})\pm0.0(\textit{syst})$	0
Total	$3.5\pm0.5(ext{stat})\pm1.5(ext{syst})$	2

3 Leptons + M_T (I)

Definition of **Signal Region**:

- Three leptons with at least one OSSF (*Opposite Sign Same Flavor*) pair
- Transverse missing energy greater than 50 GeV
- Veto on the events with b-jet

Six signal regions defined in a plane of *transverse mass*, M_T , and the *invariant mass*, $M_{\ell\ell}$, between the OSSF, are studied.

Background sources:

- **Events with two prompt** leptons and one fake lepton
 - fake-ratio method is used
- **2** Events with three prompt leptons
 - MC studies are used

3 Leptons $+ M_T$ (II)

- No excess of events has been observed with respect to the background prediction
- Within the errors there is agreement between prediction and observation

Region	WZ	Non-prompt	Rare SM	Total background	Data
Ι	16.2 ± 2.9	4.7 ± 2.4	2.1 ± 1.5	23.0 ± 5.1	31
Π	3.6 ± 0.8	1.94 ± 1.02	0.4 ± 0.2	6.0 ± 1.3	3
Ш	15.6 ± 5.7	0.2 ± 0.1	0.8 ± 0.4	16.6 ± 5.7	17
IV	1.6 ± 0.4	0.2 ± 0.1	0.4 ± 0.2	2.2 ± 0.5	2
V	8.7 ± 1.7	1.4 ± 0.8	0.9 ± 0.4	11.0 ± 1.9	12
VI	150.6 ± 25.7	2.6 ± 1.4	11.7 ± 5.8	164.90 ± 26.4	173

- Results are interpreted in the contest of the *τ*-enriched chargino neutralino pair production
- Two are the parameters of the model, while two choices for intermediate slepton mass are done

Results probe charginos/neutralinos up to \sim 400 GeV

- Supersymmetry is one of the favored extension of the SM at higher energy
- Early search at CMS focused on the search of strongly interacting particles that can be produced with large cross sections
- Models with electroweak production of sparticles could have eluded detection in early searches
- We studied the process known as chargino-neutralino pair production
- **Two complementary searches** have been performed:
 - 3 leptons + M_T
 - 2 same sign leptons + MET
- No excess of events has been observed with respect to the prediction
- \blacksquare We put limits on the charginos/neutralinos masses up to \sim 400 GeV

THANK YOU