Precision Higgs Measurements! Future Facilities

Albert De Roeck CERN, Geneva, Switzerland Antwerp University Belgium Davis University, California, USA IPPP, Durham UK

14 September 2012

Energy frontier: Future Facilities

Open Symposium - European Strategy Preparatory

10-12 September 2012 Krakow, Poland Europe/Zurich timezone

- Hadron colliders and ep machines
 - Emmanuel Tsesmelis
- Electron-positron colliders
- ILC
 - Karsten Buesser
- CLIC
- LEP3
- Muon colliders
 - Far future

1. CLIC two- beam acceleration

- A drive beam and a main linear accelerator
- Gradient: ~100 MV/m. Aim: reach multi-TeV e+e- collisions
- Studied since the 90's at CERN (and SLAC) with collaborating institutes -- about 20 institutes at present

CLIC: The Machine (2004 Layout)

Studies on CLIC Physics Potential

First report in 2004 CERN-2004-005 hep-ph/0412251

Many of the results are still used, eg for the 2012 ESG reports

ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE

CERN-EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

I personally was directly involved from 2000-2008

Second report in 2011 1300 authors

CLIC CONCEPTUAL DESIGN REPORT

Vol. 2: Physics and Detectors at CLIC

CDR REVIEW VERSION

18/Oct/2011-20/Oct/2011 Manchester, UK

- There was always a good collaboration between ILC and CLIC machine groups
 Since 2008 there is close collaboration between the ILC and CLIC on detectors and physics groups
- ESG common document submitted

CLIC Parameters and Issues (2004)

CLIC 3 TeV e+e- collider with a luminosity ~ 10^{35} cm⁻²s⁻¹ (1 ab⁻¹/year)

	-	•		-	
E_{cm}	[TeV]	0.5	3	3	
\mathcal{L}	$[10^{34} { m cm}^{-2} { m s}^{-1}]$	2.1	10.0	8.0	
$\mathcal{L}_{0.99}$	$[10^{34} { m cm}^{-2} { m s}^{-1}]$	1.5	3.0	3.1	
f_r	[Hz]	200	100	100	
N_b		1 5 4	154	154	
Δ_b	[ns]	0.67	0.67	0.67	
N	$[10^{10}]$	0.4	0.4	0.4	
σ_z	$[\mu \mathrm{m}]$	35	30	35	
ϵ_x	$[\mu \mathrm{m}]$	2	0.68	0.68	
ϵ_y	$[\mu \mathrm{m}]$	0.01	0.02	0.01	
σ_x^*	[nm]	202	43	pprox 60	
σ_y^*	[nm]	pprox 1.2	1	pprox 0.7	
δ	[%]	4.4	31	21 🖌	
n_{γ}		0.7	2.3	1.5	
$N_{\perp}^{'}$		7.2	60	43	
N_{Hadr}		0.07	4.05	2.3	
$N_{ m MJ}$		0.003	3.40	1.5	

To reach this high luminosity: CLIC has to operate in a regime of high beamstrahlung

Expect large backgrounds

- # of photons/beam particle
- e+e- pair production
- $\gamma \gamma$ events
- Muon backgrounds
- Neutrons
- Synchrotron radiation

Expect distorted lumi spectrum

Physics Menu at CLIC

- Higgs sector: properties of the 125 GeV particle, Higgs potential, searches for heavy Higgs particles.
- Supersymmetry: if exists, should be discovered at the LHC. Role of CLIC: completing the particle spectra with precision measurements (masses < √s/2)
- Particle Factory: if new particles have been detected/anticipated at the LHC (or lower energy LC) in the range of 1-3 TeV (New Gauge bosons, Kaluza-Klein resonances, resonances in WW scattering...): CLIC can produce them directly, provide an accurate determination of their couplings and establish their nature. Also exotic decays can be detected.
- If NO new particles are observed directly, probe scales up to the O(100-400) TeV indirectly via precision measurements
- QCD measurements: BFKL, photon structure, $\alpha_s,...$
- The unexpected???

e+e- at $\sqrt{s} \approx 3$ TeV: Expect to break new grounds

Cross Sections at CLIC

CLIC @ CERN?

It is possible can build CLIC at CERN, but CLIC is a site independent study

CLIC 2012 Parameters

Parameter	Symbol	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	\sqrt{s}	GeV	500	1400	3000
Repetition frequency	frep	Hz	50	50	50
Number of bunches per train	n_b		354	312	312
Bunch separation	Δt	ns	0.5	0.5	0.5
Accelerating gradient	G	MV/m	80	80/100	100
Total luminosity	L	$10^{34} \text{ cm}^{-2} \text{s}^{-1}$	2.3	3.2	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{~cm}^{-2} \mathrm{s}^{-1}$	1.4	1.3	2
Main tunnel length		km	13.2	27.2	48.3
Charge per bunch	N	10 ⁹	6.8	3.7	3.7
Bunch length	σ_z	μm	72	44	44
IP beam size	σ_x/σ_y	nm	200/2.6	$\sim 60/1.5$	\sim 40/1
Normalised emittance (end of linac)	$\varepsilon_x/\varepsilon_y$	nm	2350/20	660/20	660/20
Normalised emittance (IP)	$\varepsilon_x/\varepsilon_y$	nm	2400/25	_	—
Estimated power consumption	Pwall	MW	272	364	589

Table 1: Parameters for the CLIC energy stages of scenario A.

Challenging: collisions every 0.5 nano-seconds; trains of 312 bunch-X
Read out all 312 bunch crossings without trigger

Running Scenarios

Assume 3 phases: Integrated luminosity per phase Two scenarios: A= low energy optimized - B= cost effective for TeV CLIC

When would be year "zero"? Construction time ~ 7 years. Start of construction earliest by 2023

Detectors for CLIC

Extended versions of the ILD can SiD detectors of the ILC \cdot Interaction lengths for the hadronic calorimeter extended to 8.5 λ use of tungsten in the barrel.

Magnetic fields are 4 & 5 Tesla for these detectors

These detectors are used for the 2012 physics studies

 \sim 20 TeV in the detector

\sim 100 GeV in the detector

2. Higgs Physics

Study properties of the Higgs particles with high precision

Reconstruct the Higgs potential

Higgs Production

Higgs Boson Production

 M_{H} = 125 GeV

At high energy VBF dominant

Higgs Studies Projections: Examples

350/500 GeV @ 500 fb⁻¹ and 1.4 (3.0) TeV at 1.5 (2) ab⁻¹

Higgs studies for $m_H = 120 \text{ GeV}$									
\sqrt{s} (GeV)	Process	Decay mode	Measured quantity	Unit	Generator value	Stat. error	Comment		
			σ	fb	4.9	4.9%	Model		
350		$ZH \rightarrow \mu^+\mu^- X$	Mass	GeV	120	0.131	independent, using Z-recoil		
	SM Higgs		$\sigma \times BR$	fb	34.4	1.6%	$ZH \rightarrow q\bar{q}q\bar{q}$		
500	production	ZH ightarrow q ar q q ar q	Mass	GeV	120	0.100	mass reconstruction		
500		$ZH, Hv\bar{v}$	$\sigma \times BR$	fb	80.7	1.0%	Inclusive		
200		$\rightarrow v \bar{v} q \bar{q}$	Mass	GeV	120	0.100	sample		
1400		$H ightarrow au^+ au^-$			19.8	<3.7%			
	WW	$H ightarrow bar{b}$	$\sigma \times BR$	fb	285	0.22%	-		
3000	fusion	$H \rightarrow c\bar{c}$			13	3.2%			
		$H \rightarrow \mu^+ \mu^-$			0.12	15.7%			
1400 3000	WW fusion		Higgs tri-linear coupling			$\sim 20\%$ $\sim 20\%$			
			8ннн				17		

Rare Higgs Decays

120 GeV H-> $\mu\mu$ 60 events for 3 TeV 2 ab⁻¹ 150 GeV H-> bb for 3 TeV 2 ab⁻¹

Rare Higgs Decays: $H \rightarrow \mu \mu$

 $H \rightarrow \mu^+ \mu^-$: Branching Ratio $\sim 10^{-4}$

2004 study

 δ BR/BR 0.072 0.121 0.210 ⇒ Precision on $g_{Hµµ}$: 3.5% → 10%

Projected Relative Precision

Reconstruct the Higgs Potential

Reconstruct shape of the Higgs potential to complete the study of the Higgs profile and to obtain a direct proof of the EW symmetry breaking mechanism

Results: e+e- \rightarrow **HHvv (2004)**

Triple Higgs Coupling: 2012

Two Higgs events

120 GeV Higgs

CLIC can differentiate at the 10-20% level

Not all tricks used yet...

(Very) Heavy Higgs Searches

ee-> HA and ee-> H+H- Higgs mass reconstruction for Higgs' around 800 GeV, decaying into di-jets

M_A-tanβ Coverage (2012)

3. Supersymmetry

Masses of Sparticles

Depend on SUSY parameters, SUSY breaking mechanism...

SUSY Mass Measurements (2004)

Smuon Mass Precision (2004)

Point E:	m _ս =	= ~1500 GeV
Point H:	\dot{m}_{μ}	=~1000 GeV

Battaglia et al. benchmarks hep-ph/0106204

Point		Beam-	Pol.	\sqrt{s}	$\int \mathcal{L}$	δM
		strahlung		(TeV)	(ab ⁻¹)	(GeV)
Н	$\tilde{\mu}_L$	none	0/0	3.0-3.5	1	± 11
Н	$\tilde{\mu}_L$	Std.	0/0	3.0-3.5	1	± 15
Е	$\tilde{\mu}_L$	none	0/0	3.8-4.2	1	± 29
E	$\tilde{\mu}_L$	Std.	0/0	3.8-4.2	1	± 36
E	$\tilde{\mu}_L$	none	80/60	3.8-4.2	1	± 17
E	$\tilde{\mu}_L$	Std.	80/60	3.8-4.2	1	± 22

Mass measurements to O(1%) possible

Example SUSY Spectrum (2012)

Benchmark: Used for studies at CLIC

Warning: LHC is cleaning out these scenarios soon...

SUSY Benchmark Studies

Full detector simulation with 2 ab⁻¹ each point

Particle	Mass	Stat. acc.	Particle	Mass	Stat. acc	Particle	Mass
$ \widetilde{\chi}^{0}_{1} \widetilde{\chi}^{0}_{2} \widetilde{\chi}^{0}_{3} \widetilde{\chi}^{0}_{4} \widetilde{\chi}^{0}_{4} $	340.3 643.1 905.5 916.7	$\pm 3.3 \\ \pm 9.9 \\ \pm 19.0^{*} \\ \pm 20.0^{*}$	$ \frac{h}{A^0} \\ \frac{H^0}{H^\pm} $	118.5 742.0 742.0 747.6	$\pm 0.1^{*}$ ± 1.7 ± 1.7 ± 2.1	$ \begin{array}{c} \widetilde{\tau}_1 \\ \widetilde{\tau}_2 \\ \widetilde{t}_1 \\ \widetilde{t}_2 \\ \widetilde{t}_1 \\ \widetilde{t}_2 \\ \widetilde{t}_1 \end{array} $	670 974 1393 1598
χ_1^{\perp} $\tilde{\chi}_2^{\pm}$ \tilde{e}_R^{\pm}	643.2 916.7 1010.8	± 3.7 $\pm 7.0^{*}$ ± 2.8	Quantity $\Gamma(A^0)$	Value	Stat. acc.	$b_1 \\ \widetilde{b}_2 \\ \widetilde{u}_R$	1544 1610 1818
$\widetilde{\mu}_R^{\perp}$ \widetilde{V}_1	1010.8 1097.2	±5.6 ±3.9	$\Gamma(H^{\perp})$	21.4	±4.9		1870 1812

Fitted parameters for the chargino-neutralino sector

M_1	342.1 ± 4.1	-341.9 ± 4.1	341.9 ± 4.1	-342.2 ± 1.0
M_2	655.3 ± 6.5	655.3 ± 6.5	654.2 ± 6.5	654.2 ± 6.5
μ	924.8 ± 6.2	924.8 ± 6.2	-925.5 ± 6.2	-925.5 ± 6.2

Four-fold sign ambiguity Needs polarization

Supersymmetry: Precision

Extrapolation of the SUSY breaking parameters to the GUT scale

 1σ uncertainties on the mass parameters on the GUT scale for different sfermion mass precision assumption (5%, 3% and 1%)

Dark Matter Connection

Reconstructed relic density and predicted dark matter cross section from the measurements of the sparticles

~20% precision (for this benchmark point) ~5% precision (for this benchmark point)

Different Scenarios

Fig. 1.19: Resolving SUSY breaking models and masses with CLIC: Shown are the nearly degenerate spectra of a mSUGRA model and a mGMSB model. Assuming some of the SUSY particles masses are measured, with a spectrum of the type above predicted by the different models of Supersymmetry breaking, CLIC would be able to discern not only some of the slepton masses and the heavier charginos within the two models, but also the SUSY Higgs masses. For mSUGRA the soft masses are $m_0 = 175 \text{ GeV}, m_{1/2} = 645 \text{ GeV}, A_0 = 0$, with $\tan \beta = 10$ and $\mu > 0$. For mGMSB the number of messengers are $n_l = n_q = 5$, and $\Lambda_{\text{SUSY}} = 4 \cdot 10^4 \text{ GeV}, M_{\text{Mess}} = 10^{12} \text{ GeV}$, with $\tan \beta = 10$.

4. Large Extra Dimensions

Move the Planck scale closer to the EW scale, eg. in the TeV region (ADD)

KK Towers

Extra Dimensions Randall-Sundrum phenomenology (curves by T. Rizzo)

Can determine parameters c up to 0.2%, M to O(0.1%)

Universal Extra Dimensions UED

- All particles can go into the bulk KK-partners for all particles!
- Resulting spectrum looks very similar to a SUSY spectrum (there are subtle differences)
- $\Rightarrow\,$ Did we discover SUSY or UEDs?
- Important difference: spin of the KK same as SM partner, while it differs by ½ from SUSY sparticles → measure spin
- Not easy at the LHC but doable at a LC
- Compare SUSY/UED for 500 GeV
 (c)muons

 $e^+e^- \rightarrow \tilde{\mu}^+\tilde{\mu}^-$

$$e^+e^- \rightarrow \mu_1^+\mu$$

Production polar angle θ of the decay muons

Extra Dimensions

5. New Gauge Theories Contact Interactions etc.

Assume $M_{Z'} = 3.0$ TeV and $\Gamma(Z')/M_{Z'} \simeq \Gamma(Z^0)/M_{Z^0}$

 $\Rightarrow \text{Fit Accuracy (1ab^{-1})} \\ \delta M'_Z/M'_Z \sim 10^{-4}; \ \delta \Gamma'_Z/\Gamma'_Z \sim 3 \cdot 10^{-3}$

- New Z' resonances in the TeV range
- WW scattering at high energy
- Little Higgs models
- Triple Gauge couplings
- Contact interactions
- Excited lepton production
- non-commutative interactions
- Transplanckian effects
- Lepton size measurements

Some of these being ruled out by the LHC

Resonance Production

 $4\sqrt{s}$ Scan (Z⁰-like Lineshape Scan) $e^+e^- \rightarrow Z' \rightarrow f\bar{f}$

★ Assume $M_{Z'} = 3.0$ TeV and $\Gamma(Z')/M_{Z'} \simeq \Gamma(Z^0)/M_{Z^0}$ (Γ_{SM});

♦ Compute $\sigma(e^+e^- \rightarrow Z')$ vs. \sqrt{s} including ISR and beamstrahlung for a range of mass and $\Gamma(Z')/\Gamma_{SM}$ values;

♦ Assume $\int L = 1000 \text{ fb}^{-1}$ (CLIC.01) or 400 fb⁻¹ (CLIC.02) shared in 3-7 points scan and extract $M_{Z'}$, $\Gamma(Z')/\Gamma_{SM}$ and σ_{peak} from χ^2 fit:

Absolute energy calibration $\sim 10^{-3}$, Relative energy calibration $\sim 10^{-4}$

Contact Interactions

Fig. 1.14: Limits on the scale of contact interactions (Λ/g) that can be set by CLIC in the $\mu^+\mu^-$ (left) and $b\overline{b}$ (right) channels with $\sqrt{s} = 3$ TeV and $\mathscr{L} = 1$ ab⁻¹. A degree of polarisation $P_- = 0, 0.8$ ($P_+ = 0, 0.6$) has been assumed for the electrons (positrons). The various models are defined in Table 6.6 of [20], except the model V1 which is defined as { $\eta_{LL} = \pm, \eta_{RR} = \mp, \eta_{LR} = 0, \eta_{RL} = 0$ }.

WW Scattering

In case that there is no Higgs: WW scattering will show effects of strong dynamics in the TeV region \Rightarrow Study WW \rightarrow WW scattering

Resonances can form in the TeV range that can be observed directly These measurements are difficult at the LHC.

Summary Table

Taken from ESG document but based on Ellis, Ganotti & ADR 2001

Particle / parameter	Collider: £:	LHC14 100 fb ⁻¹	SLHC 1 ab ⁻¹	LC800 500 fb ⁻¹	CLIC3 1 ab ⁻¹
Squarks [TeV]		2.5	3	0.4	1.5
Sleptons [TeV]		0.3	9 - 9	0.4	1.5
Z' (SM couplings) [TeV]		5	7	8	20
2 extra dims M _D [TeV]		9	12	5-8.5	20-30
TGC (95%) (λ_{γ} coupling)		0.001	0.0006	0.0004	0.0001
μ contact scale [TeV]		15	-	20	60
Higgs compos. scale [TeV]		5-7	9-12	45	60

CLIC Timescale Projection

2012-16 Development Phase

Develop a Project Plan for a staged implementation in agreement with LHC findings; further technical developments with industry, performance studies for accelerator parts and systems, as well as for detectors.

2016-17 Decisions

On the basis of LHC data and Project Plans (for CLIC and other potential projects), take decisions about next project(s) at the Energy Frontier.

2017-22 Preparation Phase

Finalise implementation parameters, Drive Beam Facility and other system verifications, site authorisation and preparation for industrial procurement.

Prepare detailed Technical Proposals for the detector-systems.

2022-23 Construction Start

Ready for full construction and main tunnel excavation.

2023-2030 Construction Phase

Stage 1 construction of a 500 GeV CLIC, in parallel with detector construction.

Preparation for implementation of further stages.

2030 Commissioning

From 2030, becoming ready for data-taking as the LHC programme reaches completion.

Finally: Price Estimate

Table 4: Value	and labour	estimates of	CLIC	500 GeV.
----------------	------------	--------------	------	----------

Staging scenario	Value [MCHF]	Labour [FTE years]
А	8300^{+1900}_{-1400}	15700
В	7400^{+1700}_{-1300}	14100

Will need very broad consensus in the field for such a project...

LEP3: a Circular e+e- Collider?

LEP3?

What if the Higgs is 120-125 GeV? Do we need a Linear Collider for a Higgs factory?

A. Blondel and F. Zimmerman: LEP3? arXiv:1112.2518v1 **Proposal:** Reinstall an e+e- collider in the LHC tunnel With LC RF to make up for the energy loss of 7 GeV for a 120 GeV/beam

Note: beam lifetime ~ 15-30 minutes. Needs top-up ring

RF power Max 100MW

Gain lumi by having 2 or 4 experiments on the ring

ESG contributions this week

Prospective Studies for LEP3 with the CMS Detector

submitted to the European Strategy Preparatory Group

Patrizia Azzi³, Colin Bernet¹, Cristina Botta¹, Patrick Janot¹, ⁰ Markus Klute², Piergiulio Lenzi¹, Luca Malgeri¹, and Marco Zanetti²

¹ CERN, Geneva
 ² Massachusetts Institute of Technology
 ³ INFN, Sezione di Padova

CERN-ATS-NOTE-2012-062 TECH

LEP3: A HIGH LUMINOSITY E+E- COLLIDER TO STUDY THE HIGGS BOSON

Submitted to the European Strategy Preparatory Group

A. Blondel, U. Geneva, Switzerland;

M. Koratzinos, Geneva, Switzerland;

R. W. Assmann, A. Butterworth, P. Janot, J. M. Jimenez, C. Grojean, A. Milanese, M. Modena, J.A. Osborne, F. Zimmermann, CERN, Geneva, Switzerland;

H. Piekarz, FNAL, U.S.A.; K. Oide, K. Yokoya, KEK Japan;

J. Ellis, King's College London and CERN, Geneva, Switzerland;

M. Klute, M. Zanetti, MIT, Cambridge, Massachusetts, USA;

M. Velasco, Northwestern U., U.S.A.;

V. Telnov, Budker INP, Novosibirsk, Russia;

L. Rivkin, PSI, Villigen, Switzerland;

Y. Cai, SLAC National Accelerator Laboratory, Stanford, U.S.A.

Initial Studies

LEP3 in the LHC Tunnel?

There are other ideas: 53 km tunnel, 80 km tunnel, SSC tunnel...?

Timeline for LEP3: 5-7 years preparation. Decision around 2018? Installation? LEP was installed in 18 months but this is more complicated Cost? Likely much cheaper that other Higgs machine proposals...

Beam Energy

For LHC/LEP tunnel: 120 GeV/beam

This is within 6% of the cross section maximum

LEP3 Parameters

	LEP2	LHeC	LEP3	DLEP	TLEP
beam energy Eb [GeV]	104.5	60	120	120	175
circumference [km]	26.7	26.7	26.7	53.4	80
beam current [m.A.]	4	100	7.2	14.4	5.4
#bunches/beam	4	2808	4	60	12
#e-/beam [10 ¹²]	2.3	56	4.0	16.0	9.0
horiz.emit.[nm]	48	5	25	10	20
vert. emit. [nm]	0.25	2.5	0.10	0.05	0.1
bending radius [km]	3.1	2.6	2.6	5.2	9.0
partition number J.	11	15	15	15	10
momentum compaction a. [10"5]	18.5	8.1	8.1	2.0	1.0
SR power/beam [MW]	11	44	50	50	50
$\beta'_{x}[m]$	1.5	0.18	0.2	0.2	0.2
$\beta_{v}^{*}[em]$	5	10	0.1	0.1	0.1
σ', [µm]	270	30	71	45	63
0. [um]	3.5	16	0.32	0.22	0.32
hourglass Fhe	0.98	0.99	0.67	0.75	0.65
E ^{SR} lace/turn [GeV]	3.41	0.44	6.99	3.5	9.3
V _{RF} ,tot [GV]	3.64	0.5	12.0	4.6	12.0
Smar RF [%]	0.77	0.66	4.2	5.0	4.9
ξ./IP	0.025	N/A	0.09	0.05	0.05
ξ,/IP	0.065	N/A	0.08	0.05	0.05
f. [kHz]	1.6	0.65	3.91	0.91	0.43
Em [MV/m]	7.5	11.9	20	18	20
eff. RF length [m]	485	42	606	376	600
fRE [MHz]	352	721	1300	1300	700
δ ^{SR}	0.22	0.12	0.23	0.16	0.22
o ^{SR} mer [em]	1.61	0.69	0.23	0.17	0.25
$L/IP[10^{32} cm^{-2} s^{-1}]$	1.25	N/A	107	142	65
number of IPs	4	1	2	2	2
beam lifetime [min]	360	N/A	16	22	54
Y _{BS} [10 ⁻⁴]	0.2	0.05	10	8	15
n./collision	0.08	0.16	0.60	0.25	0.51
ΔE ^{BS} /col. [MeV]	0.1	0.02	33	12	61
ΔE^{BS} /col. [MeV]	0.3	0.07	48	26	95

Number of Higgs events

500 fb⁻¹

Total over a period of 5 years

Signal	BR (%)	Events	Background	σ (pb)	Events	Rate (Hz)
$H \rightarrow b\bar{b}$	57.9	57,870	$e^+e^- \rightarrow Z^*/\gamma^* \rightarrow q\bar{q}$	50	25,000,000	0.50
${\rm H} ightarrow {\rm W}^+ {\rm W}^-$	21.6	21,630	${ m e^+e^-} ightarrow { m Z^*}/\gamma^* ightarrow \ell^+\ell^-$	12.5	6,250,000	0.12
$H \rightarrow gg$	8.19	8,200	$e^+e^- \rightarrow W^+W^-$	16	8,000,000	0.16
${ m H} ightarrow au^+ au^-$	6.40	6,400	$e^+e^- \rightarrow ZZ$	1.3	650,000	0.01
$H \rightarrow c\bar{c}$	2.83	2,820	$e^+e^- \rightarrow We\nu$	1.35	700,000	0.01
$H \rightarrow ZZ$	2.62	2,620	$e^+e^- \rightarrow Ze^+e^-$	3.8	1,900,000	0.04
${ m H} ightarrow \gamma \gamma$	0.27	266	$e^+e^- \rightarrow Z \nu \bar{\nu}$	0.032	16,000	_
$H \rightarrow Z\gamma$	0.16	160	$e^{\dagger}e^{} \rightarrow e^{\dagger}e^{}$ (Bhabha)	5,000	2.5 10 ⁹	50
$H \rightarrow \mu^+ \mu^-$	0.02	22	$\gamma\gamma ightarrow\ell^+\ell^-,$ qq	15,000	7.5 1 0 ⁹	150

(Re)-using the CMS detector

Precision Measurements

Tera-Z factory! With $\sim 5.10^{35}$ cm⁻²s⁻¹ one can collect 10^{12} Zs Mega-W factory! With 10^{35} cm⁻²s⁻¹ one can collect a few times 10^{6} Ws

Mass of W to O(1) MeV; EWK variables improved by factor 25-100 @ Z-pole

Precise W and Z measurements. Do the whole LEP program in 10 minutes!

Comparison of Facilities

From the ESG note: slightly provocative...

	ILC	LEP3 (2)	LEP3 (4)	LHC
$\sigma_{ m HZ}$	3%	2.7%	1.9%	_
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \rightarrow {\rm b}\bar{\rm b})$	1%	1.2%	0.8%	-
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to \tau^+ \tau^-)$	6%	3.1%	2.2%	_
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \rightarrow {\rm invisible})$?	1%	0.7%	_
8 HZZ	1.5%	1.3%	1%	13%
<i>g</i> Hbb	1.6%	1.5%	1%	21%
$g_{\rm H au au}$	3%	2.0%	1.5%	13%
8 _{Hcc}	4%	?	?	?
<i>g</i> Hww	4%	?	?	11%

Take away as indicative...

Summary

- CLIC: the path to multi-TeV e+e- collisions!
- Will be important if the LHC sees a signal for new physics
- Potential to go beyond the LHC in physics reach in a number of channels
- Precision measurements of the Higgs; information on the the Higgs potential & rare decays, heavy Higgs' up to a TeV
- LEP3: may be a fast and not so expensive path to a Higgs factory. Cohabitation with the LHC? Installation?
- Precise measurements of a number of Higgs properties
- Precise measurements at the Z and of the W mass
- But limited energy & scope of the physics program