

Lepton mass and flavour violation in Randall Sundrum Models

Abhishek M Iyer

Lepton mass and flavour violation in Randall Sundrum Models

Abhishek M Iyer

Centre for High Energy Physics Indian Institute of Science, Bangalore

> arXiv:1206.4383 [hep-ph] To appear in PRD with Sudhir K. Vempati

September 16, 2012

Outline

Lepton mass and flavour violation in Randall Sundrum Models

Abhishek M Iyer

Randall-Sundrum Model

Mass Models

Constraints from Flavour

Minimal Flavour Violation

2/34

Randall-Sundrum Model

2 Mass Models

- LLHH case
- Dirac Neutrinos
- Bulk Majorana case

Randall Sundrum Model Randall, Sundrum '99

Lepton mass and flavour violation in Randall Sundrum Models Abhishek M

lyer

Randall-Sundrum Model

Mass Models

Constraints from Flavour

Minimal Flavour Violation One extradimension compactified on ${\cal S}_1/{\cal Z}_2$

TeVUV $ds^2 = e^{-2kR\phi}\eta_{\mu\nu}dx^{\mu}dx^{\nu} - R^2d\phi^2$ $y = R\phi$ $kR \sim 11$ $\Lambda_{TeV} \sim e^{-kR\pi} M_{PI}$ Higgs Fermions + GaugeBosons $m_{\Psi} = c_{\Psi}k$ c > 0.5c < 0.5 $Y^{(4)} = Y^{(5)}q(c_L, c_R)$ y = 0 $y = \pi R$ ų

3/34

Leptonic sector

Lepton mass and flavour violation in Randall Sundrum Models

Abhishek M Iyer

Randall-Sundrum Model

Mass Models

Constraints from Flavour

Minimal Flavour Violation

- Leptonic sector in RS has been subject of intense study in the past Huber and Shafi '01-'04, Sundrum et al. '09,
- Offers numerous possibilities corresponding to Dirac or Majorana nature of neutrinos.
- Flavour consideration places very strict constraints on the model.

• Minimal RS incapable of satisfying mixing data and flavour constraints simulatneously. Mu-chun chen, Perez et al, Csaki

Goal of the study

Lepton mass and flavour violation in Randall Sundrum Models

Abhishek M Iyer

Randall-Sundrum Model

Mass Models

Constraints from Flavour

Minimal Flavour Violation

- Shed light on the finer details of two most important quantities involved in fitting in leptonic sector:
 - a) c parameters and

b) $\mathcal{O}(1)$ Yukawa parameters, both of which are varied to arrive at the best fit region for the bulk mass parameters

- While the $\mathcal{O}(1)$ Yukawa are varied in the interval [.08, 4], the c parameters should ideally lie in the interval [-1, 1]
- Constrain the parameter space by flavour considerations.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

χ^2 minimization

Lepton mass and flavour violation in Randall Sundrum Models

Abhishek M Iyer

Randall-Sundrum Model

Mass Models

Constraints from Flavour

Minimal Flavour Violation

- Fit the bulk RS parameters to the leptonic masses and mixing angles
- Results presented for normal hierarchy of neutrino masses.

- Perform the analysis for different models of neutrino masses
 - a) LHLH case
 - b) Dirac Case
 - c) Bulk 'Majorana' mass terms

Lepton mass
and flavour
violation in
Randall
Sundrum
Models

Abhishek M Iyer

Randall-Sundrum Model

Mass Models

LLHH case Dirac Neutrinos Bulk Majorana case

Constraints from Flavour

Minimal Flavour Violation

LLHH Case

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ

LLHH case

Lepton mass and flavour violation in Randall Sundrum Models

Abhishek M Iyer

Randall-Sundrum Model

Mass Models

LLHH case Dirac Neutrinos Bulk Majorana case

Constraints from Flavour

Minimal Flavour Violation

No Right Handed neutrinos

9+6+6=21 parameters The $\mathcal{O}(1)$ Yukawa parameters are defined as

$$Y'_E = 2kY_E \quad ; \quad \kappa' = 2k\kappa$$

and the mass matrices are given as

$$(\mathcal{M}_{e}^{(0,0)})_{ij} = \frac{v}{\sqrt{2}} (Y'_{E})_{ij} e^{(1-c_{L_{i}}-c_{E_{j}})kR\pi} N^{(0)}(c_{L_{i}}) N^{(0)}(c_{E_{j}})$$
$$(\mathcal{M}_{\nu}^{(0,0)})_{ij} = \frac{v^{2}}{2\Lambda^{(5)}} (\kappa')_{ij} e^{(2-c_{L_{i}}-c_{L_{j}})kR\pi} N^{(0)}(c_{L_{i}}) N^{(0)}(c_{L_{j}})$$

8 / 34

Parameter space for bulk masses in LLHH case

Lepton mass and flavour violation in Randall Sundrum Models

Abhishek M Iyer

Randall-Sundrum Model

Mass Models

LLHH case

Dirac Neutrinos Bulk Majorana case

Constraints from Flavour

Minimal Flavour Violation

Summary of LLHH case

Lepton mass and flavour violation in Randall Sundrum Models

Abhishek M Iyer

Randall-Sundrum Model

Mass Models

Dirac Neutrinos Bulk Majorana case

Constraints from Flavour

Minimal Flavour Violation Allowed range for the bulk parameters with minimum χ^2 . Neutrino masses have normal hierarchy. Range of first KK scale $M^{(1)}$ corresponding to the bulk mass parameter is also given.

parameter	range	range of $M^{(1)}$ (TeV)
c_{L_1}	0.87-0.995	1.49-1.59
c_{L_2}	0.86-0.98	1.48-1.58
c_{L_3}	0.84-0.92	1.47-1.53
c_{E_1}	-10.0 - $-5.0 imes10^6$	$7.9 extrm{-}3.9 imes10^6$
c_{E_2}	$-1.0 imes10^4$ - $-1.2 imes10^8$	$7.9\times10^3\text{-}9.5\times10^7$
c_{E_3}	$-7.0 imes 10^{5}$ - $-1 imes 10^{9}$	5.5×10^5 7.9×10^8

Implications of large negative c parameters

Lepton mass and flavour violation in Randall Sundrum Models

Abhishek M Iyer

Randall-Sundrum Model

Mass Models

LLHH case

Dirac Neutrinos Bulk Majorana case

Constraints from Flavour

Minimal Flavour Violation

- The bulk *c* parameters have a dual 4D description by means of the holographic duality _{Contino,Pomarol}
- The doublets in the LLHH case are completely elementary from the 4D point of view.
- However, the charged singlets are completely composite objects of the CFT.
- Composite singlets has 'interesting' flavour implications.

Lepton mass and flavour violation in Randall Sundrum Models

Abhishek M Iyer

Randall-Sundrum Model

Mass Models

LLHH case

Dirac Neutrinos Bulk Majorana case

Constraints from Flavour

Minimal Flavour Violation

Dirac Case

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ

Dirac Neutrinos

Lepton mass and flavour violation in Randall Sundrum Models

Abhishek M Iyer

Randall-Sundrum Model

Mass Models LLHH case Dirac Neutrinos Bulk Majorana case

Constraints from Flavour

Minimal Flavour Violation

Add three right Handed neutrinos

9+9+9=27 parameters and the effective four dimensional Yukawas for both the charged lepton and neutrinos read as

$$Y_{ij}^{(4)} = \frac{Y_{ij}^{\prime(5)}}{N_{0L}N_{0R}}e^{(1-c_{iL}-c_{iR})}$$

Parameter space for the bulk masses of doublets and charged singlets.

Lepton mass and flavour violation in Randall Sundrum Models

Abhishek M Iyer

Randall-Sundrum Model

Mass Models LLHH case Dirac Neutrinos Bulk Majorana case

Constraints from Flavour

Minimal Flavour Violation

Parameter space for the bulk masses of neutral singlets.

Lepton mass and flavour violation in Randall Sundrum Models

Abhishek M Iyer

Randall-Sundrum Model

Mass Models LLHH case Dirac Neutrinos Bulk Majorana case

Constraints from Flavour

Minimal Flavour Violation

イロト イポト イヨト イ

3.0

15/34

Distribution of charged $\mathcal{O}(1)$ Yukawa parameters.

Abhishek İyer

Randall-Sundrum Model

Mass Models LLHH case Dirac Neutrinos Bulk Majorana case

Constraints from Flavour

Minimal Flavour Violation

 $(Y'_E)_{21}$

(YE)m

16/34

(Y'E)22

Summary for Dirac Case

Lepton mass and flavour violation in Randall Sundrum Models

Abhishek M Iyer

Randall-Sundrum Model

Mass Models LLHH case Dirac Neutrinos Bulk Majorana case

Constraints from Flavour

Minimal Flavour Violation Table: Allowed ranges of bulk parameters with normal hierarchy of neutrino masses. The range of first KK scale corresponding to the range of c values is also given.

parameter	range	$M^{(1)}$ TeV
c_{L_1}	0.05-0.76	0.839-1.4
c_{L_2}	0.05-0.72	0.839-1.37
c_{L_3}	0.05-0.64	0.839-1.31
c_{E_1}	0.2-0.88	0.959-1.5
c_{E_2}	0.05-0.73	0.839-1.38
c_{E_3}	0.05-0.64	0.839-1.31
c_{N_1}	1.1-1.9	1.67-2.31
c_{N_2}	1.1-1.9	1.67-2.31
c_{N_3}	1.1-1.9	1.67-2.31

Lepton mass and flavour violation in Randall Sundrum Models

Abhishek M Iyer

Randall-Sundrum Model

Mass Models LLHH case Dirac Neutrinos Bulk Majorana case

Constraints from Flavour

Minimal Flavour Violation

Bulk Majorana case

Bulk Majorana mass term

Lepton mass and flavour violation in Randall Sundrum Models

Abhishek M Iyer

Randall-Sundrum Model

Mass Models LLHH case Dirac Neutrinos Bulk Majorana case

Constraints from Flavour

Minimal Flavour Violation Analysis with UV localized Majorana mass term has been considered earlier ${\sf Huber\&Shafi}$ '04: Perez & Randall '09

Similar terms can be added in the bulk of RS but 'Majorana' mass terms in 5D do not have the same interpretation as is 4D.

$$S_N = \int d^4x \int dy \sqrt{-g} \left(m_M \bar{N} N^c + m_D \bar{N} N + \delta(y - \pi R) Y_N \bar{L} \tilde{H} N \right)$$

where
$$N^c = C_5 \overline{N}^T$$
 and $m_D = c_N k, m_M = c_M k$.

Eigenvalue Equations

Lepton mass and flavour violation in Randall Sundrum Models

Abhishek M Iyer

Randall-Sundrum Model

Mass Models LLHH case Dirac Neutrinos Bulk Majorana case

Constraints from Flavour

Minimal Flavour Violation The eigenvalue equations for the left(right) profiles $g_L(g_R)$ of N are

$$(\partial_y + m_D)g_L^{(n)}(y) = m_n e^{\sigma} g_R^{(n)}(y) - m_M g_R^{(n)}(y)$$

$$(-\partial_y + m_D)g_R^{(n)}(y) = m_n e^{\sigma} g_L^{(n)}(y) - m_M g_L^{(n)}(y)$$

We assume $g_L(y)$ to be Z_2 even. Zero mode solutions not consistent with boundary conditions.

The decoupled second order equations are difficult to solve generally and we solve them numerically.

Profile plots

Abhishek M Iyer

Randall-Sundrum Model Mass Models LLHH case <u>Dir</u>ac Neutrinos

Bulk Majorana case

from Flavour Minimal

Flavour Violation

 $c_N=0.58. {\rm The \ profile \ becomes \ oscillatory \ as \ } c_M \stackrel{\rm becomes \ greater \ than \ } c_N \stackrel{\rm than \ c_N \stackrel{\rm than \ c_N}{\equiv} \ > \ < \stackrel{\rm than \ c_N \stackrel{\rm than \ c_N}{\equiv} \ > \ < \stackrel{\rm than \ c_N \stackrel{\rm than \ c_N}{\equiv} \ > \ < \stackrel{\rm than \ c_N \stackrel{\rm than \ c_N}{\equiv} \ > \ < \stackrel{\rm than \ c_N \stackrel{\rm than \ c_N}{\equiv} \ > \ < \stackrel{\rm than \ c_N \stackrel{\rm than \ c_N}{\equiv} \ > \ < \stackrel{\rm than \ c_N \stackrel{\rm than \ c_N}{\equiv} \ > \ < \stackrel{\rm than \ c_N \stackrel{\rm than \ c_N}{\equiv} \ > \ < \stackrel{\rm than \ c_N \stackrel{\rm than \ c_N}{\equiv} \ > \ < \stackrel{\rm than \ c_N \stackrel{\rm than \ c_N}{\equiv} \ > \ < \stackrel{\rm than \ c_N \stackrel{\rm than \ c_N}{\equiv} \ > \ < \stackrel{\rm than \ c_N \stackrel{\rm than \ c_N}{\equiv} \ > \ < \stackrel{\rm than \ c_N}{\equiv} \ > \ < \stackrel{\rm than \ c_N \stackrel{\rm than \ c_N}{\equiv} \ > \ < \stackrel{\rm than \ c_N}{=} \ > \ < \stackrel{\rm than \ c_N}{\equiv} \ > \ < \stackrel{\rm than \ c_N}{=} \ < \stackrel{\rm than \ c_N}{$

900

ł

Sample Point

Lepton mass and flavour violation in Randall Sundrum Models

Abhishek M Iyer

Randall-Sundrum Model

Mass Models LLHH case Dirac Neutrinos Bulk Majorana case

Constraints from Flavour

Minimal Flavour Violation Table: Sample points with corresponding fits of observables for Normal and Inverted Hierarchy schemes in Bulk Majorana case with O(1) Yukawas. The masses are in GeV

Parameter	Normal	Inverted
M _{KK}	161.4	161.4
c_{M_i}	0.55	0.55
$g_L^{(1)}(\pi R)$	3×10^{-13}	1.2×10^{-12}
c _{L1}	0.58	0.59
c _{L2}	0.56	0.57
c_{L_3}	0.55	0.55
c_{E_1}	0.735	0.735
c _{E2}	0.5755	0.575
c_{E_3}	0.501	0.501
c_{N_i}	0.58	0.58
m_e	5.09×10^{-4}	5.08×10^{-4}
m_{μ}	0.1055	0.1055
m_{τ}	1.77	1.774
θ_{12}	0.58	0.58
θ_{23}	0.80	0.8
θ_{13}	0.13	0.13
Δm_{sol}^2	7.8×10^{-23}	7.8×10^{-23}
Δm^2_{atm}	2.4×10^{-21}	2.4×10^{-21}

<u>▼□> ▼@></u> < E> < E> E - りへで

Lepton mass and flavour violation in Randall Sundrum Models

Abhishek M Iyer

Randall-Sundrum Model

Mass Models LLHH case Dirac Neutrinos Bulk Majorana case

Constraints from Flavour

Minimal Flavour Violation

Flavour

æ

CHP Provide the State

 $l_i \rightarrow l_j l_k l_k$ and $l_i \rightarrow l_j \gamma$

Present Experimental Bounds on LFV Processes

Lepton mass and flavour violation in Randall Sundrum Models

Abhishek M Iyer

Randall-Sundrum Model

Mass Models

Constraints from Flavour

Minimal Flavour Violation

Process	Experiment	Present upper bound
$BR(\mu \to e\gamma)$	MEG	2.4×10^{-12}
$BR(\mu \to eee)$	MEG	1.0×10^{-12}
$CR(\mu \to e \operatorname{in} \mathbf{Ti})$	SINDRUM-II	6.1×10^{-13}
$BR(\tau \to \mu\gamma)$	BABAR/Belle	4.4×10^{-8}
$BR(\tau \to e\gamma)$	BABAR/Belle	3.3×10^{-8}
$BR(\tau \to \mu \mu \mu)$	BABAR/Belle	2.0×10^{-8}
$BR(\tau \to eee)$	BABAR/Belle	2.6×10^{-8}

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ

Minimal Flavour Violation

Figure: Coupling of two zero mode fermions to Z_1 as a function of bulk mass parameter

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Constraints on LHLH case

Lepton mass and flavour violation in Randall Sundrum Models

Abhishek M Iyer

Randall-Sundrum Model

Mass Models

Constraints from Flavour

Minimal Flavour Violation

- Doublets and the charged singlets couple universally to the KK gauge boson, thus leading order effects are highly suppressed.
 - $\bullet\,$ The large effective Yukawa coupling of the zero mode singlet to the KK mode $\propto \sqrt{0.5-c}$
- The dipole processes due to gauge boson contribution is suppressed due to heavy KK scales.
- The large universal shift in the gauge coupling can be suppressed by either a very high KK gauge boson scale or by invoking custodial symmetry.

Constraints on Dirac Case

Lepton mass and flavour violation in Randall Sundrum Models

Abhishek M Iyer

Randall-Sundrum Model

Mass Models

Constraints from Flavour

Minimal Flavour Violation

NO Point survives the $\mu \to e \gamma$ constraint-Requires fermionic KK scale $\mathcal{O}(10) {\rm TeV}$

Bulk Majorana case

Lepton mass and flavour violation in Randall Sundrum Models

Abhishek M Iyer

Randall-Sundrum Model

Mass Models

Constraints from Flavour

Minimal Flavour Violation For the tree-level decays, constraints obtained on the bulk masses apply in this case as well.

The dominant contribution to dipole decays in this case is due to Higgs exchange diagram.

Table: BR for dipole decays for the case with bulk Majorana mass

Hierarchy	$BR(\mu \to e\gamma)$	$BR(\tau \to \mu \gamma)$	$BR(\tau \to e\gamma)$
Inverted	2.4×10^{-5}	1.9×10^{-5}	$7.6 imes 10^{-6}$
Normal	1.4×10^{-5}	3.4×10^{-5}	1.3×10^{-5}

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

branching fractions are evaluated for $M_{KK} \sim 1250 \text{ GeV}$

Need for Flavour symmetries

Lepton mass and flavour violation in Randall Sundrum Models

Abhishek M Iyer

Randall-Sundrum Model

Mass Models

Constraints from Flavour

Minimal Flavour Violation

- The constraints from dipole processes are far more severe. No point survives the $\mu \to e\gamma$ constraint for low fermion KK scale.
- Large contributions to FCNC are due to the 'large' misalignment between the flavor structure of the diagram and the zero mode mass matrix.
- The mass square matrix in the charge lepton sector goes as $Y_E F_E F_E^{\dagger} Y_E^{\dagger}$ while the mixing is controlled by $Y_E Y_E^{\dagger}$

Flavour symmetries

Lepton mass and flavour violation in Randall Sundrum Models

Abhishek M Iyer

Randall-Sundrum Model

Mass Models

Constraints from Flavour

Minimal Flavour Violation

- The parameter space of Dirac and the bulk Majorana case are not consistent with flavour constraints.
- Turn to the ansatz of Minimal Flavour Violation (MFV)Perez & Randall, Mu-chun Chen & Hai-Bo Yu
- Dipole Constriaints can be satisfied for KK fermion scales as low as 3 TeV
- We are looking at various definitions of MFV applicable to the bulk Majorana case.

Summary and Conclusions

Lepton mass and flavour violation in Randall Sundrum Models

Abhishek M Iyer

Randall-Sundrum Model

Mass Models

Constraints from Flavour

Minimal Flavour Violation

- The LLHH case is not very favourable in the RS scenario owing to the extreme choice of bulk mass parameters required to fit the data.
- The Dirac and the bulk Majorana cases offers a very viable alternative.
- The constraints from flavour considerations are severe and one is forced to invoke flavour symmetries.
- Future work involves exploring various schemes of MFV in the Majorana case.

Minimal Flavour Violation in Dirac Case

Cirigliano et al. '08

Lepton mass and flavour violation in Randall Sundrum Models

Abhishek M Iyer

Randall-Sundrum Model

Mass Models

Constraints from Flavour

Minimal Flavour Violation

- In the presence of right handed neutrinos the flavour group is $SU(3)_L \times SU(3)_E \times SU(3)_N$
- $Y_E \to (3, \bar{3}, 1) \ Y_N \to (3, 1, \bar{3})$
- The Yukawa couplings are aligned with the five dimensional bulk mass matrices

$$c_L = a_1 I + a_2 Y'_E Y'_E^{\dagger} + a_3 Y'_N Y'_N^{\dagger} ; c_E = b Y'_E^{\dagger} Y'_E ; c_N = c Y'_N^{\dagger} Y'_N$$

- Owing to the flavor symmetry we work in a basis in which Y'_E is diagonal. In this basis $Y'_N \to V_{PMNS} {\rm Diag}(Y'_N)$
- Flavor violating part

$$\Delta = Y'_N {Y'}_N^{\dagger}$$

• Lowering of fermion KK scale required to satisfy all constraints from dipole processes to as low as 3 TeV.

MFV with bulk Majorana Neutrinos

Lepton mass and flavour violation in Randall Sundrum Models

Abhishek M Iyer

Randall-Sundrum Model

Mass Models

Constraints from Flavour

Minimal Flavour Violation

- We choose the flavour group $SU(3)_L \times SU(3)_E \times O(3)_N$
 - $Y_E
 ightarrow (3, \bar{3}, 1)$ and $Y_N
 ightarrow (3, 1, 3)$
 - The bulk Majorana term $\bar{N}^c N$ transforms as (1,1,6)
 - The bulk mass parameters can be expressed as

$$c_{L} = a_{1}I + a_{2}Y'_{E}Y'_{E}^{\dagger} + a_{3}Y'_{N}Y'_{N}^{T}$$
$$c_{E} = 1 + bY'_{E}^{\dagger}Y'_{E} \quad c_{N} = 1 + cY'_{N}T'_{N} \quad c_{M} = dI_{3\times3}$$