Toward a superpotential for the Papadopoulos–Tseytlin ansatz.

Antón F. Faedo

Swansea University

XVIII European Workshop on String Theory.

Work in progress with Davide Cassani and Gianguido Dall'Agata.

2 Domain Walls.

3 $\mathcal{N} = 4$ supergravity in 5d.

4 Examples.

Introduction and motivation.

- Several illustrious solutions based on the conifold. Great insight into physics of strongly coupled gauge theories.
- Share some properties:
 - Poincaré symmetric in 4d \Rightarrow Domain Wall.
 - Preserve $\mathcal{N} = 1$ susy.
 - Attainable from the PT ansatz. Known (empirical) superpotentials.
- Supersymmetrization of the PT ansatz. It's an $\mathcal{N} = 4$ gauged sugra.
- Systematic, unifying picture for these solutions? Sugra origin for the superpotentials?

 \bullet We are led consider 1/4 BPS Domain Walls of 5d $\mathcal{N}=$ 4 gauged sugra.

• Similar to how the FGPW flow was understood in $\mathcal{N}=2$ [Ceresole, Dall'Agata, Kallosh, Van Proeyen '01].

• A general, methodical procedure can give new solutions.

• If the sugra is a consistent truncation: solution of string theory!

Domain Walls

Start from

$$S = \frac{1}{2\kappa_d^2} \int \left[R - G_{xy}(\phi) d\phi^x \,\lrcorner\, d\phi^y - 2 V(\phi) \right] *_d 1$$

• Gravity solutions with (d-1)-dimensional Poincaré invariance

$$ds^2 = dr^2 + a^2(r) \eta_{\mu\nu} dx^{\mu} dx^{\nu}$$

supported by radial-dependent scalars.

Special class: BPS

$$V = \frac{d-2}{2} \left[\left(d-2 \right) G^{xy} \partial_x W \partial_y W - \left(d-1 \right) W^2 \right]$$

• The quantity W is called (fake) Superpotential. Gives 1st order equations!

$$\frac{a'}{a} = \pm W, \qquad \phi^{\times \prime} = \mp (d-2) G^{\times y} \partial_y W$$

- The e.o.m.'s follow. Stability is ensured.
- In the sugra context, these are BPS equations coming from vanishing of fermionic variations.
- Conifold solutions are susy and admit superpotential. BPS Domain Walls of a suitable sugra?

Toward a superpotential for the Papadopoulos–Tseytlin ansatz. $\mathcal{N} = 4$ supergravity in 5d.

$\mathcal{N} = 4$ d=5 supergravity.

• The theory is characterized by the number of vectors and the gauging. Gravity multiplet $\{g, 6A, \sigma\}$ and vector-tensor multiplet $\{A, 5\Phi\}$.

• The scalar manifold is

$$SO(1,1) imes rac{SO(5,n)}{SO(5) imes SO(n)}$$

• Gauging described by embedding tensor [Schön, Weidner '06];

$$\Theta \supset f^{MNR}, \xi^{MN}, \xi^{MN}.$$

• Fermionic variations read schematically (in DW ansatz)

$$\delta \psi = \frac{a'}{a} \epsilon + P \epsilon$$

$$\delta \chi = \sigma' \epsilon + \partial_{\sigma} \mathbf{P} \epsilon$$

$$\delta \lambda = \phi'_{x} \epsilon + D_{x} P \epsilon + K_{x} \epsilon$$

• Gauging information contained in the gravitino shift matrix

$$P = P(\sigma, \phi^{x})$$
 \supset f^{MNR}, ξ^{MN}

- Vanishing of variations will give:
 - Superpotential and BPS equations.
 - Projectors describing the embedding of $\mathcal{N} = 1$ into $\mathcal{N} = 4$.
 - Algebraic constraints involving the scalars.

• R-symmetry is $USp(4) \simeq SO(5)$. Choose preferred direction with a vector A that breaks

 $SO(5) \quad
ightarrow SO(4) \, \simeq \, SU(2)_+ imes SU(2)_-$

- Simultaneously A defines a chirality. Project to singlets under one of the SU(2)'s.
- We are left with one SU(2), situation similar to the $\mathcal{N} = 2$ case.

• Distinguished USp(4) matrix P_{ab} . We can form a vector

$$\mathcal{A}^a \sim \epsilon^{abcde} P_{bc} P_{de}$$

• Gravitino variation solved by the projectors

$$\mathcal{A}\epsilon = \epsilon$$

that selects the $SU(2)_+$ subspace, and

$$P \epsilon = W \epsilon = \frac{a'}{a} \epsilon$$

that singles out one of the residual spinors as required for 1/4 BPS.

• The superpotential reads

$$W = \pm \sqrt{2 \, Tr \, P^2 \pm X}$$

with

$$X = \sqrt{8 [Tr P^2]^2 - 16 Tr P^4}$$

• Dilatino and gaugino variations yield BPS equations plus algebraic constraints ($\partial_{\sigma} \mathcal{A} = 0 = \partial_{\sigma} (P/W) \dots$).

Examples.

Type IIB on squashed SE.

- Is an $\mathcal{N} = 4$ sugra with 2 vectors [Cassani, Dall'Agata, AF '10], [Gauntlett, Varela '10].
- Explicit embedding tensor: we can construct P and the rest of the quantities.
- Reduces to 3 non-trivial modes:

 $Tr(W^2)$, (first) $Tr(W^2\overline{W}^2)$ (first and last)

• One has to kill the (irrelevant, $\Delta=8)$ D-term source for AdS asymptotics.

Most general DW based on SE takes the D3-brane form

$$ds^2 = h^{-1/2}(\rho) \ ds^2(M_4) + h^{1/2}(\rho) \ ds^2(M_6)$$

with transverse space

$$ds^{2}(M_{6}) = \frac{e^{2\rho}}{(1 - V_{0} e^{-6\rho})^{2/3}} \left[d\rho^{2} + \eta^{2} + (1 - V_{0} e^{-6\rho}) ds^{2}(B_{KE}) \right]$$

- CY with blown-up 4-cycle at V_0 [Benvenuti, Mahato, Pando-Zayas, Tachikawa '05].
- Reduces in appropriate limits to known solutions (GPPZ, [Benini, Canoura, Cremonesi, Nuñez, Ramallo '06])

$T^{1,1}$ within the PT ansatz.

- Type IIB on $T^{1,1}$ is $\mathcal{N} = 4$ with 3 vectors [Cassani, AF '10], [Bena, Giecold, Graña, Halmagyi, Orsi '10].
- PT ansatz is a subsector of it (consistent truncation).
- Contains 2 fluxes {P, Q} and 9 scalars {p, x, g, a, b, h₁, h₂, K, χ}.
 Some have nice geometric interpretation.
- Algebraic constraints can be used to put h_1 and h_2 in terms of the rest. Satisfied in the known susy solutions.
- Taking this into account

$$W = e^{-2p-2x-g} aS + e^{4p} S^{-1} \left[C + e^{-2x+\phi} P^2 \left(b-C\right) \left(bC-1\right)\right]$$

with

$$C \equiv \frac{1 + a^2 + e^{2g}}{2a} \qquad S \equiv \frac{\sqrt{a^4 + 2a^2(-1 + e^{2g}) + (1 + e^{2g})^2}}{2a}$$

- Can be thought of as a superpotential for the baryonic branch (supplemented with the algebraic constraints).
- Reduces to the ones given in PT in the pertinent limits except for [Pando-Zayas, Tseytlin '00]. It is non-susy!
- The susy superpotential is

$$W = e^{-2p-2x} \cosh y + e^{4p} + e^{4p-2x} \sqrt{e^{2x+\phi}P^2 \sinh^2 y} + \frac{1}{4}[Q + P(f_1 - f_2)]^2$$

Solution related to fractional D3-branes on the resolved conifold.

• Numeric solutions (IR singular). The uplifted projectors show Myers effect

$$\epsilon - \frac{1}{8} \, \Gamma^{0123} \, \Gamma^{AB} \, J_{AB} \, \epsilon \quad = \quad 0$$

$$\epsilon - i\Gamma^{0123} \left(\cos\beta \ \epsilon + \sin\beta \ \frac{1}{8} \ \Gamma^{AB} \ J_{AB} \ \epsilon^{c} \right) = 0$$

Toward a superpotential for the Papadopoulos–Tseytlin ansatz. Summary and conclusions.

Summary and conclusions.

- General construction of 1/4 BPS Domain Walls in $\mathcal{N}=4$ sugra. Unifying picture for susy solutions on the conifold. Superpotential for the baryonic branch.
- New solutions: general SE and susy resolved conifold. Include modes outside PT.
- Inspiration for fake superpotentials and non-susy solutions.
- Application to other consistent truncations (Romans $SU(2) \times U(1)$).
- Similar constructions in d=4.