Toward a superpotential for the Papadopoulos-Tseytlin ansatz.

Antón F. Faedo
Swansea University

XVIII European Workshop on String Theory.

Work in progress with Davide Cassani and Gianguido Dall'Agata.
(1) Introduction.
(2) Domain Walls.
(3) $\mathcal{N}=4$ supergravity in 5 d .
(4) Examples.
(5) Summary and conclusions.

Introduction and motivation.

- Several illustrious solutions based on the conifold. Great insight into physics of strongly coupled gauge theories.
- Share some properties:
- Poincaré symmetric in $4 \mathrm{~d} \quad \Rightarrow \quad$ Domain Wall.
- Preserve $\mathcal{N}=1$ susy.
- Attainable from the PT ansatz. Known (empirical) superpotentials.
- Supersymmetrization of the PT ansatz. It's an $\mathcal{N}=4$ gauged sugra.
- Systematic, unifying picture for these solutions? Sugra origin for the superpotentials?
- We are led consider $1 / 4$ BPS Domain Walls of $5 \mathrm{~d} \mathcal{N}=4$ gauged sugra.
- Similar to how the FGPW flow was understood in $\mathcal{N}=2$ [Ceresole, Dall'Agata, Kallosh, Van Proeyen '01].
- A general, methodical procedure can give new solutions.
- If the sugra is a consistent truncation: solution of string theory!

Domain Walls

- Start from

$$
\left.S=\frac{1}{2 \kappa_{d}^{2}} \int\left[R-G_{x y}(\phi) d \phi^{x}\right\lrcorner d \phi^{y}-2 V(\phi)\right] *_{d} 1
$$

- Gravity solutions with (d-1)-dimensional Poincaré invariance

$$
d s^{2}=d r^{2}+a^{2}(r) \eta_{\mu \nu} d x^{\mu} d x^{\nu}
$$

supported by radial-dependent scalars.

- Special class: BPS

$$
V=\frac{d-2}{2}\left[(d-2) G^{x y} \partial_{x} W \partial_{y} W-(d-1) W^{2}\right]
$$

- The quantity W is called (fake) Superpotential. Gives $1^{\text {st }}$ order equations!

$$
\frac{a^{\prime}}{a}= \pm W, \quad \phi^{x \prime}=\mp(d-2) G^{x y} \partial_{y} W
$$

- The e.o.m.'s follow. Stability is ensured.
- In the sugra context, these are BPS equations coming from vanishing of fermionic variations.
- Conifold solutions are susy and admit superpotential. BPS Domain Walls of a suitable sugra?

$\mathcal{N}=4 d=5$ supergravity.

- The theory is characterized by the number of vectors and the gauging. Gravity multiplet $\{g, 6 A, \sigma\}$ and vector-tensor multiplet $\{A, 5 \Phi\}$.
- The scalar manifold is

$$
S O(1,1) \times \frac{S O(5, n)}{S O(5) \times S O(n)}
$$

- Gauging described by embedding tensor [Schön, Weidner '06];

$$
\Theta \supset f^{M N R}, \quad \xi^{M N}, \quad \xi^{M /} .
$$

- Fermionic variations read schematically (in DW ansatz)

$$
\begin{aligned}
\delta \psi & =\frac{a^{\prime}}{a} \epsilon+P \epsilon \\
\delta \chi & =\sigma^{\prime} \epsilon+\partial_{\sigma} P \epsilon \\
\delta \lambda & =\phi_{x}^{\prime} \epsilon+D_{x} P \epsilon+K_{x} \epsilon
\end{aligned}
$$

- Gauging information contained in the gravitino shift matrix

$$
P=P\left(\sigma, \phi^{x}\right) \quad \supset \quad f^{M N R}, \quad \xi^{M N}
$$

- Vanishing of variations will give:
- Superpotential and BPS equations.
- Projectors describing the embedding of $\mathcal{N}=1$ into $\mathcal{N}=4$.
- Algebraic constraints involving the scalars.
- R-symmetry is $U S p(4) \simeq S O(5)$. Choose preferred direction with a vector \mathcal{A} that breaks

$$
S O(5) \quad \rightarrow \quad S O(4) \simeq S U(2)_{+} \times S U(2)_{-}
$$

- Simultaneously \mathcal{A} defines a chirality. Project to singlets under one of the $\mathrm{SU}(2)$'s.
- We are left with one $\operatorname{SU}(2)$, situation similar to the $\mathcal{N}=2$ case.
- Distinguished $\operatorname{USp}(4)$ matrix $P_{a b}$. We can form a vector

$$
\mathcal{A}^{a} \sim \epsilon^{a b c d e} P_{b c} P_{d e}
$$

- Gravitino variation solved by the projectors

$$
\mathcal{A} \epsilon=\epsilon
$$

that selects the $S U(2)_{+}$subspace, and

$$
P \epsilon=W \epsilon=\frac{a^{\prime}}{a} \epsilon
$$

that singles out one of the residual spinors as required for $1 / 4 \mathrm{BPS}$.

- The superpotential reads

$$
W= \pm \sqrt{2 \operatorname{Tr} P^{2} \pm X}
$$

with

$$
x=\sqrt{8\left[\operatorname{Tr} P^{2}\right]^{2}-16 \operatorname{Tr} P^{4}}
$$

- Dilatino and gaugino variations yield BPS equations plus algebraic constraints $\left(\partial_{\sigma} \mathcal{A}=0=\partial_{\sigma}(P / W) \ldots\right)$.

Type IIB on squashed SE.

- Is an $\mathcal{N}=4$ sugra with 2 vectors [Cassani, Dall'Agata, AF '10], [Gauntlett, Varela '10].
- Explicit embedding tensor: we can construct P and the rest of the quantities.
- Reduces to 3 non-trivial modes:

$$
\left.\operatorname{Tr}\left(\mathcal{W}^{2}\right), \quad(\text { first }) \quad \operatorname{Tr}\left(\mathcal{W}^{2} \overline{\mathcal{W}}^{2}\right) \quad \text { (first and last }\right)
$$

- One has to kill the (irrelevant, $\Delta=8$) D-term source for AdS asymptotics.
- Most general DW based on SE takes the D3-brane form

$$
d s^{2}=h^{-1 / 2}(\rho) d s^{2}\left(M_{4}\right)+h^{1 / 2}(\rho) d s^{2}\left(M_{6}\right)
$$

with transverse space

$$
d s^{2}\left(M_{6}\right)=\frac{e^{2 \rho}}{\left(1-V_{0} e^{-6 \rho}\right)^{2 / 3}}\left[d \rho^{2}+\eta^{2}+\left(1-V_{0} e^{-6 \rho}\right) d s^{2}\left(B_{K E}\right)\right]
$$

- CY with blown-up 4-cycle at V_{0} [Benvenuti, Mahato, Pando-Zayas, Tachikawa '05].
- Reduces in appropriate limits to known solutions (GPPZ, [Benini, Canoura, Cremonesi, Nuñez, Ramallo '06])

$T^{1,1}$ within the PT ansatz.

- Type IIB on $T^{1,1}$ is $\mathcal{N}=4$ with 3 vectors [Cassani, AF '10], [Bena, Giecold, Graña, Halmagyi, Orsi '10].
- PT ansatz is a subsector of it (consistent truncation).
- Contains 2 fluxes $\{P, Q\}$ and 9 scalars $\left\{p, x, g, a, b, h_{1}, h_{2}, K, \chi\right\}$. Some have nice geometric interpretation.
- Algebraic constraints can be used to put h_{1} and h_{2} in terms of the rest. Satisfied in the known susy solutions.
- Taking this into account

$$
W=e^{-2 p-2 x-g} a S+e^{4 p} S^{-1}\left[C+e^{-2 x+\phi} P^{2}(b-C)(b C-1)\right]
$$

with

$$
C \equiv \frac{1+a^{2}+e^{2 g}}{2 a}
$$

$$
S \equiv \frac{\sqrt{a^{4}+2 a^{2}\left(-1+e^{2 g}\right)+\left(1+e^{2 g}\right)^{2}}}{2 a}
$$

- Can be thought of as a superpotential for the baryonic branch (supplemented with the algebraic constraints).
- Reduces to the ones given in PT in the pertinent limits except for [Pando-Zayas, Tseytlin '00]. It is non-susy!
- The susy superpotential is

$$
W=e^{-2 p-2 x} \cosh y+e^{4 p}+e^{4 p-2 x} \sqrt{e^{2 x+\phi} P^{2} \sinh ^{2} y+\frac{1}{4}\left[Q+P\left(f_{1}-f_{2}\right)\right]^{2}}
$$

Solution related to fractional D3-branes on the resolved conifold.

- Numeric solutions (IR singular). The uplifted projectors show Myers effect

$$
\begin{aligned}
\epsilon-\frac{1}{8} \Gamma^{0123} \Gamma^{A B} J_{A B} \epsilon & =0 \\
\epsilon-i \Gamma^{0123}\left(\cos \beta \epsilon+\sin \beta \frac{1}{8} \Gamma^{A B} J_{A B} \epsilon^{c}\right) & =0
\end{aligned}
$$

Summary and conclusions.

- General construction of $1 / 4$ BPS Domain Walls in $\mathcal{N}=4$ sugra. Unifying picture for susy solutions on the conifold. Superpotential for the baryonic branch.
- New solutions: general SE and susy resolved conifold. Include modes outside PT.
- Inspiration for fake superpotentials and non-susy solutions.
- Application to other consistent truncations (Romans $S U(2) \times U(1)$).
- Similar constructions in $\mathrm{d}=4$.

