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Introduction.

Introduction and motivation.

Several illustrious solutions based on the conifold. Great insight into
physics of strongly coupled gauge theories.

Share some properties:

Poincaré symmetric in 4d ⇒ Domain Wall.

Preserve N = 1 susy.

Attainable from the PT ansatz. Known (empirical) superpotentials.

Supersymmetrization of the PT ansatz. It’s an N = 4 gauged sugra.

Systematic, unifying picture for these solutions? Sugra origin for the
superpotentials?
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Introduction.

We are led consider 1/4 BPS Domain Walls of 5d N = 4 gauged
sugra.

Similar to how the FGPW flow was understood in N = 2 [Ceresole,

Dall’Agata, Kallosh, Van Proeyen ’01].

A general, methodical procedure can give new solutions.

If the sugra is a consistent truncation: solution of string theory!
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Domain Walls.

Domain Walls

Start from

S =
1

2κ2d

∫ [
R − Gxy (φ) dφx y dφy − 2 V (φ)

]
∗d 1

Gravity solutions with (d-1)-dimensional Poincaré invariance

ds2 = dr2 + a2(r) ηµνdxµdxν

supported by radial-dependent scalars.

Special class: BPS

V =
d − 2

2

[
(d − 2) G xy ∂xW ∂yW − (d − 1) W 2

]
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Domain Walls.

The quantity W is called (fake) Superpotential. Gives 1st order equa-
tions!

a′

a
= ±W , φx ′ = ∓ (d − 2) G xy ∂yW

The e.o.m.’s follow. Stability is ensured.

In the sugra context, these are BPS equations coming from vanishing
of fermionic variations.

Conifold solutions are susy and admit superpotential. BPS Domain
Walls of a suitable sugra?
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N = 4 supergravity in 5d.

N = 4 d=5 supergravity.

The theory is characterized by the number of vectors and the gauging.
Gravity multiplet {g , 6 A, σ} and vector-tensor multiplet {A, 5 Φ}.

The scalar manifold is

SO(1, 1)× SO(5, n)

SO(5)× SO(n)

Gauging described by embedding tensor [Schön, Weidner ’06];

Θ ⊃ f MNR , ξMN , ��ξ
M .
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N = 4 supergravity in 5d.

Fermionic variations read schematically (in DW ansatz)

δψ =
a′

a
ε + P ε

δχ = σ′ ε + ∂σP ε

δλ = φ′x ε + DxP ε+ Kx ε

Gauging information contained in the gravitino shift matrix

P = P(σ, φx) ⊃ f MNR , ξMN

Vanishing of variations will give:

Superpotential and BPS equations.

Projectors describing the embedding of N = 1 into N = 4.

Algebraic constraints involving the scalars.
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N = 4 supergravity in 5d.

R-symmetry is USp(4) ' SO(5). Choose preferred direction with a
vector A that breaks

SO(5) → SO(4) ' SU(2)+ × SU(2)−

Simultaneously A defines a chirality. Project to singlets under one of
the SU(2)’s.

We are left with one SU(2), situation similar to the N = 2 case.

Distinguished USp(4) matrix Pab. We can form a vector

Aa ∼ εabcde Pbc Pde
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N = 4 supergravity in 5d.

Gravitino variation solved by the projectors

A ε = ε

that selects the SU(2)+ subspace, and

P ε = W ε =
a′

a
ε

that singles out one of the residual spinors as required for 1/4 BPS.

The superpotential reads

W = ±
√

2 Tr P2 ± X

with

X =

√
8 [Tr P2]2 − 16 Tr P4

Dilatino and gaugino variations yield BPS equations plus algebraic
constraints (∂σA = 0 = ∂σ(P/W ) . . . ).
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Examples.

Type IIB on squashed SE.

Is an N = 4 sugra with 2 vectors [Cassani, Dall’Agata, AF ’10], [Gauntlett,

Varela ’10].

Explicit embedding tensor: we can construct P and the rest of the
quantities.

Reduces to 3 non-trivial modes:

Tr (W2) , (first) Tr(W2W2
) (first and last)

One has to kill the (irrelevant, ∆ = 8) D-term source for AdS asymp-
totics.
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Examples.

Most general DW based on SE takes the D3-brane form

ds2 = h−1/2(ρ) ds2(M4) + h1/2(ρ) ds2(M6)

with transverse space

ds2(M6) =
e2ρ

(1− V0 e−6ρ)2/3
[
dρ2 + η2 + (1− V0 e−6ρ) ds2(BKE )

]

CY with blown-up 4-cycle at V0 [Benvenuti, Mahato, Pando-Zayas, Tachikawa

’05].

Reduces in appropriate limits to known solutions (GPPZ, [Benini, Canoura,
Cremonesi, Nuñez, Ramallo ’06])
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Examples.

T 1,1 within the PT ansatz.

Type IIB on T 1,1 is N = 4 with 3 vectors [Cassani, AF ’10], [Bena,

Giecold, Graña, Halmagyi, Orsi ’10].

PT ansatz is a subsector of it (consistent truncation).

Contains 2 fluxes {P,Q} and 9 scalars {p, x , g , a, b, h1, h2, K , χ}.
Some have nice geometric interpretation.

Algebraic constraints can be used to put h1 and h2 in terms of the
rest. Satisfied in the known susy solutions.

Taking this into account

W = e−2p−2x−ga S + e4p S−1
[
C + e−2x+φP2 (b − C ) (b C − 1)

]
with

C ≡ 1 + a2 + e2g

2a
S ≡

√
a4 + 2a2(−1 + e2g ) + (1 + e2g )2

2a
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Examples.

Can be thought of as a superpotential for the baryonic branch (sup-
plemented with the algebraic constraints).

Reduces to the ones given in PT in the pertinent limits except for
[Pando-Zayas, Tseytlin ’00]. It is non-susy!

The susy superpotential is

W = e−2p−2x cosh y +e4p +e4p−2x
√

e2x+φP2 sinh2 y + 1
4
[Q + P(f1 − f2)]2

Solution related to fractional D3-branes on the resolved conifold.

Numeric solutions (IR singular). The uplifted projectors show Myers
effect

ε− 1

8
Γ0123 ΓAB JAB ε = 0

ε− iΓ0123

(
cosβ ε+ sinβ

1

8
ΓAB JAB εc

)
= 0
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Summary and conclusions.

Summary and conclusions.

General construction of 1/4 BPS Domain Walls in N = 4 sugra.
Unifying picture for susy solutions on the conifold. Superpotential for
the baryonic branch.

New solutions: general SE and susy resolved conifold. Include modes
outside PT.

Inspiration for fake superpotentials and non-susy solutions.

Application to other consistent truncations (Romans SU(2)× U(1)).

Similar constructions in d=4.
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