

university of groningen

faculty of mathematics and natural sciences Andrea Borghese A geometric bound on F-term inflation

Based on: A.B., D.Roest, I.Zavala, [1203.2909]

00000000

CORFÙ 22/09/12

predictions on cosmological observables are (so far) perfectly consistent with observations

CORFÙ 22/09/12

IS IT POSSIBLE TO EMBED INFLATION IN A UV-COMPLETE THEORY?

Andrea Borghese

CORFÙ 22/09/12

IS IT POSSIBLE TO EMBED INFLATION IN A UV-COMPLETE THEORY?

4 dimensional lagrangians

IS IT POSSIBLE TO EMBED INFLATION IN A UV-COMPLETE THEORY?

4 dimensional lagrangians

> Inflationary lagrangians

IS IT POSSIBLE TO EMBED INFLATION IN A UV-COMPLETE THEORY?

IS IT POSSIBLE TO EMBED INFLATION IN A UV-COMPLETE THEORY?

CORFÙ 22/09/12

Supergravity is like a bridge between the EFT of inflation and the UV complete theory

SUPERGRAVITY SPECTRA dozens of scalar fields

during inflation we have a deSitter (*dS*) space-time in which SUSY is broken completely non-supersymmetric configurations high probability of tachyonic directions (no stable dS vacua in $\mathcal{N} = 4, 8$) SUPERGRAVITY SPECTRA dozens of scalar fields

during inflation we have a deSitter (dS) space-time in which SUSY is broken completely

 m^2 m^2 m^2 m^2 m^2 m^2 m^2 $m^2_{\rm INF}$ m^2 $m^2_{\rm INF}$ m^2 m^2 m^2 non-supersymmetric configurations high probability of tachyonic directions (no stable dS vacua in $\mathcal{N} = 4, 8$)

CORFÙ 22/09/12

SUPERGRAVITY SPECTRA dozens of scalar fields

during inflation we have a deSitter (dS) space-time in which SUSY is broken completely

other scalars Hubble scale (during inflation is given by the value of the scalar potential) $m_{\rm INF}^2$ inflaton mass non-supersymmetric configurations high probability of tachyonic directions (no stable dS vacua in $\mathcal{N} = 4, 8$)

CORFÙ 22/09/12

Andrea Borghese

 m^2

SUPERGRAVITY SPECTRA dozens of scalar fields

during inflation we have a deSitter (dS) space-time in which SUSY is broken completely

other scalars

Hubble scale (during inflation is given by the value of the scalar potential) inflaton mass non-supersymmetric configurations high probability of tachyonic directions (no stable dS vacua in $\mathcal{N} = 4, 8$)

CORFÙ 22/09/12

Andrea Borghese

 H^2

 $m^2_{\scriptscriptstyle \rm INF}$

 m^2

SCALARS ARRANGETHEMSELVES IN MANIFOLDS

for $\mathcal{N} > 2$ they are coset manifolds for $\mathcal{N} = 1,2$ they are complex manifolds such as Hodge-Kähler, special Kähler or quaternionic-Kähler

SCALARS ARRANGE THEMSELVES IN MANIFOLDS

for $\mathcal{N} > 2$ they are coset manifolds for $\mathcal{N} = 1,2$ they are complex manifolds such as Hodge-Kähler, special Kähler or quaternionic-Kähler

CORFÙ 22/09/12

SGOLDSTINI

Super-Higgs mechanism = Higgs mechanism "+ 1/2 " For every broken SUSY we have a spin-1/2 field $\eta^i \propto N^i{}_a \chi^a$ $i = 1, \dots, \mathcal{N}$ we have a spin-1/2 field $\eta^i \propto N^i{}_a \chi^a$ a labels spin-1/2 fields called Goldstino

the Goldstini are "eaten up" by the gravitini ψ^{i}_{μ} the gravitini eventually become massive

sGoldstini are the supersymmetric partners of Goldstini

SGOLDSTINI $\eta^i \propto N^i{}_a \chi^a$ $\left(\varepsilon^{j} \right)$ ${\tilde \eta}^{ij} \propto N^{ij}{}_{lpha} \phi^{lpha}$

 \mathcal{N}^2 directions in the scalar manifold lpha labels the scalar fields

CORFÙ 22/09/12

sGoldstini are the supersymmetric partners of Goldstini

 $\mathcal{N} = 1$

one complex direction corresponding to two real scalar d.o.f.

 $\eta^i \propto N^i{}_a \chi^a$ $\left(\varepsilon^{j} \right)$ $ilde{\eta}^{ij} \propto N^{ij}{}_{lpha} \overline{\phi}^{lpha}$ $\mathcal{N}=2$ 4 complex directions I anti-symmetric correspond to a gauge direction

SGOLDSTINI

and 3 symmetric

 \mathcal{N}^2 directions in the scalar manifold lpha labels the scalar fields

 $\mathcal{N} = 8$

64 complex directions 28 anti-symmetric correspond to gauge directions 36 symmetric are real scalar d.o.f.

sGoldstini are the supersymmetric partners of Goldstini

 $\mathcal{N} = 1$

one complex direction corresponding to two real scalar d.o.f.

$$\eta^{i} \propto N^{i}{}_{a} \chi^{a}$$
hers
$$\left(\varepsilon^{j}\right)$$

$$\tilde{\eta}^{ij} \propto N^{ij}{}_{\alpha} \phi^{\alpha}$$

$$\mathcal{N} = 2$$
4 complex directions
I anti-symmetric
correspond to a

gauge direction

and 3 symmetric

SGOLDSTINI

 \mathcal{N}^2 directions in the scalar manifold lpha labels the scalar fields

 $\mathcal{N} = 8$

64 complex directions 28 anti-symmetric correspond to gauge directions 36 symmetric are real scalar d.o.f.

CORFÙ 22/09/12

Used to check perturbative stability of critical points in 4D supergravity

[Gomez-Reino, Scrucca, 06-07; Gomez-Reino, Louis, Scrucca, 08; A.B., Roest, 10; A.B., Linares, Roest, 11]

Andrea Borghese

5

 $\mathcal{N} = 1$ only chiral-multiplets

[Covi, Gomez-Reino, Gross Louis, Palma, Scrucca, 08]

theory completely specified by

Kähler potential $\mathcal{K} = \mathcal{K}(\phi^{\alpha}, \bar{\phi}^{\bar{\alpha}})$ super potential $\mathcal{W} = \mathcal{W}(\phi^{\alpha})$

> $\overline{N_{\alpha}} = e^{\mathcal{K}/2} \mathcal{D}_{\alpha} \mathcal{W}$ two real directions

 $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \circ \circ \circ \circ$

$$V(\underline{\phi}) = e^{\mathcal{K}} \left(-3 \,\mathcal{W}\overline{\mathcal{W}} + \mathcal{K}^{\alpha\bar{\beta}} \,\mathcal{D}_{\alpha} \mathcal{W} \,\mathcal{D}_{\bar{\beta}} \overline{\mathcal{W}} \right)$$

 $\mathcal{N} = 1$ only chiral-multiplets

theory completely specified by

[Covi, Gomez-Reino, Gross Louis, Palma, Scrucca, 08]

Kähler potential $\mathcal{K} = \mathcal{K}(\phi^{\alpha}, \overline{\phi}^{\overline{\alpha}})$ super potential $\mathcal{W} = \mathcal{W}(\phi^{\alpha})$

> $N_{\alpha} = e^{\mathcal{K}/2} \mathcal{D}_{\alpha} \mathcal{W}$ two real directions

 $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \circ \circ \circ \circ$

 $V(\underline{\phi}) = e^{\mathcal{K}} \left(-3 \mathcal{W} \overline{\mathcal{W}} + \mathcal{K}^{\alpha \overline{\beta}} \mathcal{D}_{\alpha} \mathcal{W} \mathcal{D}_{\overline{\beta}} \overline{\mathcal{W}} \right)$

$$\eta_{\rm sG} \equiv \frac{m_{\rm sG}^2}{V} \le \frac{2}{3\gamma} + \frac{4}{\sqrt{3}} \frac{1}{\sqrt{1+\gamma}} \sqrt{\epsilon} + \frac{\gamma}{1+\gamma} \epsilon - \frac{1+\gamma}{\gamma} \tilde{\mathcal{R}}$$

 $m_{\rm sG}^2 = \frac{1}{2} \left(m_1^2 + m_2^2 \right)$

 $\mathcal{N} = 1$ only chiral-multiplets

theory completely specified by

[Covi, Gomez-Reino, Gross Louis, Palma, Scrucca, 08]

Kähler potential $\mathcal{K} = \mathcal{K}(\phi^{\alpha}, \bar{\phi}^{\bar{\alpha}})$ super potential $\mathcal{W} = \mathcal{W}(\phi^{\alpha})$

> $N_{\alpha} = e^{\mathcal{K}/2} \mathcal{D}_{\alpha} \mathcal{W}$ two real directions

> > CORFÙ 22/09/12

 $V(\underline{\phi}) = e^{\mathcal{K}} \left(-3 \mathcal{W} \overline{\mathcal{W}} + \mathcal{K}^{\alpha \overline{\beta}} \mathcal{D}_{\alpha} \mathcal{W} \mathcal{D}_{\overline{\beta}} \overline{\mathcal{W}} \right)$

$$\eta_{\rm sG} \equiv \frac{m_{\rm sG}^2}{V} \le \frac{2}{3\gamma} + \frac{4}{\sqrt{3}} \frac{1}{\sqrt{1+\gamma}} \sqrt{\epsilon} + \frac{\gamma}{1+\gamma} \epsilon - \frac{1+\gamma}{\gamma} \tilde{\mathcal{R}}$$

 $m_{\rm sG}^2 = \frac{1}{2} \left(m_1^2 + m_2^2 \right)$

$$\gamma \equiv \frac{V}{3 |m_{3/2}|^2}$$
$$\tilde{\mathcal{R}} = \mathcal{R}_{\alpha \bar{\beta} \gamma \bar{\delta}} \, \bar{\hat{N}}^{\alpha} \, \hat{N}^{\bar{\beta}} \, \bar{\hat{N}}^{\gamma} \, \hat{N}^{\bar{\delta}}$$
$$\epsilon \equiv \frac{\mathcal{K}^{\alpha \bar{\beta}} \, \mathcal{D}_{\alpha} V \, \mathcal{D}_{\bar{\beta}} V}{2 \, V^2}$$

Ratio between Hubble scale and gravitino mass

sectional curvature related to the plane spanned by sGoldstino directions

first slow-roll parameter

Andrea Borghese

$\bullet \bullet \bullet \bullet \bullet \bullet \circ \circ \circ \circ$

$$\eta_{\rm sG} \equiv \frac{m_{\rm sG}^2}{V} \le \frac{2}{3\gamma} + \frac{4}{\sqrt{3}} \frac{1}{\sqrt{1+\gamma}} \sqrt{\epsilon} + \frac{\gamma}{1+\gamma} \epsilon - \frac{1+\gamma}{\gamma} \tilde{\mathcal{R}}$$

$$\begin{split} \eta_{\rm sG} &\equiv \frac{m_{\rm sG}^2}{V} \leq \frac{2}{3\gamma} + \frac{4}{\sqrt{3}} \frac{1}{\sqrt{1+\gamma}} \sqrt{\epsilon} + \frac{\gamma}{1+\gamma} \epsilon - \frac{1+\gamma}{\gamma} \tilde{\mathcal{R}} \\ \gamma &\equiv \frac{V}{3 |m_{3/2}|^2} \qquad \text{take the limit } \gamma \longrightarrow \infty \end{split}$$

 $\eta_{\mathrm{sG}} \leq \epsilon - \tilde{\mathcal{R}}$

$$\begin{split} \eta_{\rm sG} &\equiv \frac{m_{\rm sG}^2}{V} \leq \frac{2}{3\gamma} + \frac{4}{\sqrt{3}} \frac{1}{\sqrt{1+\gamma}} \sqrt{\epsilon} + \frac{\gamma}{1+\gamma} \epsilon - \frac{1+\gamma}{\gamma} \tilde{\mathcal{R}} \\ \gamma &\equiv \frac{V}{3 |m_{3/2}|^2} \qquad \text{take the limit } \gamma \longrightarrow \infty \end{split}$$

 $\eta_{\mathrm{sG}} \leq \epsilon - \tilde{\mathcal{R}}$

single field inflation implies $\eta_{sG} \ge \frac{1}{2}$

slow-roll inflation implies $\epsilon \ll 1$

canonical kinetic terms for all scalars imply $\hat{\mathcal{R}} = 0$

7

 $\eta_{\rm sG} \equiv \frac{m_{\rm sG}^2}{V} \le \frac{2}{3\gamma} + \frac{4}{\sqrt{3}} \frac{1}{\sqrt{1+\gamma}} \sqrt{\epsilon} + \frac{\gamma}{1+\gamma} \epsilon - \frac{1+\gamma}{\gamma} \tilde{\mathcal{R}}$ $\gamma \equiv \frac{V}{3 |m_{3/2}|^2} \qquad \text{take the limit } \gamma \longrightarrow \infty$

 $\eta_{\mathrm{sG}} \leq \epsilon - \tilde{\mathcal{R}}$

single field inflation implies $\eta_{sG} \ge \frac{1}{2}$

slow-roll inflation implies $\ \epsilon \ll 1$

canonical kinetic terms for all scalars imply $\mathcal{R}=0$

7

CORFÙ 22/09/12

 $\eta_{\rm sG} \equiv \frac{m_{\rm sG}^2}{V} \le \frac{2}{3\gamma} + \frac{4}{\sqrt{3}} \frac{1}{\sqrt{1+\gamma}} \sqrt{\epsilon} + \frac{\gamma}{1+\gamma} \epsilon - \frac{1+\gamma}{\gamma} \tilde{\mathcal{R}}$ $\gamma \equiv \frac{V}{3 |m_{3/2}|^2} \qquad \text{take the limit } \gamma \longrightarrow \infty$

 $\eta_{\mathrm{sG}} \leq \epsilon - \tilde{\mathcal{R}}$

single field inflation implies $\eta_{\rm sG} \geq rac{1}{2}$

slow-roll inflation implies $\ \epsilon \ll 1$

canonical kinetic terms for all scalars imply $\tilde{\mathcal{R}}=0$

7

CORFÙ 22/09/12

 $\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\circ\circ$

GENERALISATION TO EXTENDED SUPERGRAVITY

$$\mathcal{N} = I \qquad \eta_{\mathrm{sG}} \equiv \frac{m_{\mathrm{sG}}^2}{V} \le \frac{2}{3\gamma} + \frac{4}{\sqrt{3}} \frac{1}{\sqrt{1+\gamma}} \sqrt{\epsilon} + \frac{\gamma}{1+\gamma} \epsilon - \frac{1+\gamma}{\gamma} \tilde{\mathcal{R}}$$

GENERALISATION TO EXTENDED SUPERGRAVITY

$$\mathcal{N} = I \qquad \eta_{\mathrm{sG}} \equiv \frac{m_{\mathrm{sG}}^2}{V} \le \frac{2}{3\gamma} + \frac{4}{\sqrt{3}} \frac{1}{\sqrt{1+\gamma}} \sqrt{\epsilon} + \frac{\gamma}{1+\gamma} \epsilon - \frac{1+\gamma}{\gamma} \tilde{\mathcal{R}}$$

a similar bound can be obtained in the case of extended supergravities

[W.I.P.]

CORFÙ 22/09/12

$$\mathcal{N} = 2$$

$$\eta_{sG} \le c_0 \left(f(\gamma) + g(\gamma) \,\tilde{\mathcal{R}} \right) + c_{1/2} \, \frac{1}{\sqrt{1+\gamma}} \, \sqrt{\epsilon} + c_1 \, \frac{\gamma}{1+\gamma} \, \epsilon$$

$$\mathcal{N} = 8$$

CONCLUSIONS

VIABILITY OF INFLATION IN F-TERM SUPERGRAVITY

Geometry is tightly entangled with dynamics of scalar fields

Constraints on inflationary dynamics: average sGoldstino mass is bounded from above by first slow roll parameter and geometric data

Similarities in the analysis for minimal and extended supergravity

 \diamond

THANKYOU!

university of groningen

faculty of mathematics and natural sciences

Andrea Borghese

A geometric bound on F-term inflation