Neutrinoless double β decay with small neutrino masses An effective field theory point of view

Arcadi Santamaria

(In collaboration with: F. del Águila, A. Aparici, S. Bhattacharya, J. Wudka)

IFIC/Univ. València

Arcadi Santamaria

Introduction

New Physics Contributions to $0\nu\beta\beta$

Effective Lagrangian Approach

Content

Introduction

Content

Introduction

- New Physics Contributions to 0vββ
 Effective Lagrangian Approach
- An example of LR-type model
- 4 An example of RR-type model

Content

Introduction

- New Physics Contributions to 0vββ
 Effective Lagrangian Approach
- An example of LR-type model
- 4 An example of RR-type model

5 Conclusions

Introduction

- 2 New Physics Contributions to $0\nu\beta\beta$
- An example of LR-type model
- An example of RR-type model
- 6 Conclusions

Much is known on v's: Δm_{21}^2 , $|\Delta m_{31}^2|$, θ_{12} , θ_{23} , θ_{13} Still do not know: sign (Δm_{31}^2) , δ , absolute mass scale, ... but

Arcadi Santamaria

Much is known on *v*'s: Δm_{21}^2 , $|\Delta m_{31}^2|$, θ_{12} , θ_{23} , θ_{13} Still do not know: sign (Δm_{31}^2) , δ , absolute mass scale, ... but

Main question: v's Dirac or Majorana?

If Dirac v's can be accomodated in the SM as the charged fermions If v's are Majorana LN is not conserved \implies new physics scale!

Much is known on v's: Δm_{21}^2 , $|\Delta m_{31}^2|$, θ_{12} , θ_{23} , θ_{13} Still do not know: sign (Δm_{31}^2) , δ , absolute mass scale, ... but

Main question: v's Dirac or Majorana?

If Dirac v's can be accomodated in the SM as the charged fermions If v's are Majorana LN is not conserved \implies new physics scale!

Can we test for Majorana v masses?

We have only seen *v* masses in oscillations which conserve LN (LNV oscillations suppressed by (m_v/E) , very difficult!)

Much is known on *v*'s: Δm_{21}^2 , $|\Delta m_{31}^2|$, θ_{12} , θ_{23} , θ_{13} Still do not know: sign (Δm_{31}^2) , δ , absolute mass scale, ... but

Main question: v's Dirac or Majorana?

If Dirac v's can be accomodated in the SM as the charged fermions If v's are Majorana LN is not conserved \implies new physics scale!

Can we test for Majorana v masses?

We have only seen *v* masses in oscillations which conserve LN (LNV oscillations suppressed by (m_v/E) , very difficult!)

Can we test for LN violation ?

Many processes ($K^+ \rightarrow \pi^- \mu^+ \mu^- \dots$) but only $0v\beta\beta$ can match, perhaps, the precision of *v* masses

Arcadi Santamaria

How are $0\nu\beta\beta$ and Majorana ν masses related?

How are $0\nu\beta\beta$ and Majorana ν masses related?

But depends on the *v* spectrum, $(M_v)_{ee}$ could be zero even if $m_{v_1,v_2,v_3} \neq 0$

Arcadi Santamaria

Large $0v\beta\beta$ with small m_v

$m_{\rm v}$ Contribution to $0\nu\beta\beta$

Arcadi Santamaria

Large $0v\beta\beta$ with small m_v

m_{ν} Contribution to $0\nu\beta\beta$

Arcadi Santamaria

Large $0v\beta\beta$ with small m_v

m_{ν} Contribution to $0\nu\beta\beta$

Arcadi Santamaria

Large $0v\beta\beta$ with small m_v

m_{ν} Contribution to $0\nu\beta\beta$

Large $0v\beta\beta$ with small m_v

Schechter-Valle "theorem"

Arcadi Santamaria

Schechter-Valle "theorem"

Extremely suppresed (4 loops)

Arcadi Santamaria

Schechter-Valle "theorem"

Arcadi Santamaria

Large $0v\beta\beta$ with small m_v

Introduction

- New Physics Contributions to 0νββ
 Effective Lagrangian Approach
- An example of LR-type model
- An example of RR-type model
- 6 Conclusions

Vertices contributing to $0\nu\beta\beta$

Operators with quarks widely considered: K. Babu & C.N. Leung; K. Choi, K.S. Jeong & W.Y. Song; J. Engel & P. Vogel; A. de Gouvea & J. Jenkins

Vertices contributing to $0\nu\beta\beta$

Classification of possible $0v\beta\beta$ contributions

Operators with quarks widely considered: K. Babu & C.N. Leung; K. Choi, K.S. Jeong & W.Y. Song; J. Engel & P. Vogel; A. de Gouvea & J. Jenkins

Arcadi Santamaria

Effective Lagrangian Approach

Assumptions:

- The SM is a low-energy approximation of a more complete theory
- The only light particles ($m \lesssim 250 \, {\rm GeV}$) are those of the SM (excluding v_R)

then

$$\begin{aligned} \mathscr{L} &= \mathscr{L}_{\mathrm{SM}} + \sum_{n=5}^{\infty} \sum_{i} \left(\frac{C_{i}^{(n)}}{\Lambda^{n-4}} \mathscr{O}_{i}^{(n)} + \mathrm{h.c.} \right). \\ \mathscr{L}_{\mathrm{SM}} &= i \overline{\ell} \, D \!\!\!/ \ell + i \overline{e_{R}} \, D \!\!\!/ e_{R} - (\overline{\ell} \, Y_{e} e_{L} \phi + \mathrm{h.c.}) + \cdots \end{aligned}$$

 $\mathcal{O}_i^{(n)}$ are dim-*n* gauge invariant operators built with the SM fields $\mathcal{O}_i^{(n)}$ effects suppressed by $1/\Lambda^n$, being Λ the scale of new physics.

Operators Contributing to $0v2\beta$

The Operators

W

 ν_L

W

$$\mathscr{O}^{(7)} = \left(\phi^{\dagger} \mathcal{D}_{\mu} \tilde{\phi}\right) \left(\phi^{\dagger} \overline{\mathbf{e}_{\mathsf{R}}} \gamma^{\mu} \tilde{\ell}\right) \qquad \mathsf{LR}$$

$$\mathscr{O}^{(9)} = \overline{e_{R}} e_{R}^{c} \left(\phi^{\dagger} D_{\mu} \tilde{\phi} \right) \left(\phi^{\dagger} D^{\mu} \tilde{\phi} \right) \qquad \mathsf{RR}$$

Arcadi Santamaria

Large $0v\beta\beta$ with small m_v

Physical content

LL

$$\mathscr{O}^{(5)} = \left(\overline{\tilde{\ell}_{\alpha}}\phi\right)\left(\tilde{\phi}^{\dagger}\ell_{\beta}\right) = -v^{2}\overline{v_{\alpha L}^{c}}v_{\beta L} + \dots$$

Arcadi Santamaria

Physical content

(5) (~

$$\mathscr{O}^{(5)} = \left(\overline{\tilde{\ell}_{\alpha}}\phi\right)\left(\tilde{\phi}^{\dagger}\ell_{\beta}\right) = -v^{2}\overline{v_{\alpha L}^{c}}v_{\beta L} + \dots$$

LR

LL

$$\mathscr{O}^{(7)} = \left(\phi^{\dagger} D_{\mu} \tilde{\phi}\right) \left(\phi^{\dagger} \overline{e_{\alpha R}} \gamma^{\mu} \tilde{\ell}_{\beta}\right) = i \frac{g v^{3}}{\sqrt{2}} W_{\mu}^{-} \overline{e_{\alpha R}} \gamma^{\mu} v_{\beta L}^{c} + \dots$$

Arcadi Santamaria

Large $0v\beta\beta$ with small m_v

Physical content

 $\mathscr{O}^{(5)} = \left(\overline{\widetilde{\ell}_{lpha}}\phi
ight)\left(\widetilde{\phi}^{\dagger}\ell_{eta}
ight) = - v^2\,\overline{v^{\mathrm{c}}_{lpha\mathrm{L}}}v_{eta\mathrm{L}}\!+\!\ldots$

LR

LL

$$\mathscr{O}^{(7)} = \left(\phi^{\dagger} D_{\mu} \tilde{\phi}\right) \left(\phi^{\dagger} \overline{e_{\alpha \mathrm{R}}} \gamma^{\mu} \tilde{\ell}_{\beta}\right) = i \frac{g v^{3}}{\sqrt{2}} W_{\mu}^{-} \overline{e_{\alpha \mathrm{R}}} \gamma^{\mu} v_{\beta \mathrm{L}}^{\mathrm{c}} + \dots$$

RR

$$\mathscr{O}^{(9)} = \overline{e_{\alpha R}} e_{\beta R}^{c} \left(\phi^{\dagger} D \, \tilde{\phi} \right)^{2} = - \frac{g^{2} v^{4}}{2} W_{\mu}^{-} W^{-\mu} \overline{e_{\alpha R}} e_{\beta R}^{c} + \dots$$

Arcadi Santamaria

Large $0v\beta\beta$ with small m_v

Amplitude estimates for $0v2\beta$

Amplitudes ($v = \langle \phi \rangle \sim 174 \,\text{GeV}, \ \rho_{\text{eff}} \sim 100 \,\text{MeV}$)

Arcadi Santamaria

Large $0v\beta\beta$ with small m_v

The relevant $0\nu\beta\beta$ scales

From present $0\nu\beta\beta$ experiments (HM,IGEX) $T_{1/2} > 1.9 \times 10^{25}$ years

$$\left| \mathscr{A}_{0 \nu \beta \beta} \left| \mathscr{A}_{0 \nu \beta \beta} \right| \lesssim 5 imes 10^{-9}$$

(EXO has improved it recently in about a factor of 2)

LL
$$\Lambda > 10^{11} |C_{ee}^{(5)}| \text{ TeV}$$

LR $\Lambda > 106 |C_{ee}^{(7)}|^{1/3} \text{ TeV}$

RR
$$\Lambda > 2.7 |C_{ee}^{(9)}|^{1/5} \text{ TeV}$$

Contribution to v masses

Neutrino masses ($v = \langle \phi \rangle \sim 174 \,\text{GeV}$)

11/25

The scales

Assuming that the dominant contribution to v masses comes from these operators we can relate $\mathscr{A}_{0\nu\beta\beta}$ with $(m_{\nu})_{ee}$ • LL

 $\mathcal{A}_{0\nu\beta\beta}\propto (m_v)_{ee}$

LR

$$\mathscr{A}_{0\nu\beta\beta} \propto (m_{\nu})_{ee} (4\pi)^2 \frac{v^2}{\Lambda^2} \frac{\rho_{\rm eff}}{m_e}$$

RR

$$\mathscr{A}_{0\nu\beta\beta} \propto (m_{\nu})_{ee} \left((4\pi)^2 \frac{\nu^2}{\Lambda^2} \frac{p_{\rm eff}}{m_e} \right)^2$$

If we require the new contributions dominate the standard ones we should require for LR and RR

$$\Lambda < 4\pi v \sqrt{rac{
ho_{
m eff}}{m_e}} \sim 30\,{
m TeV}$$

The new physics scale should be low, perhaps accessible!

Arcadi Santamaria

Large $0v\beta\beta$ with small m_v

Renormalizable Completions

The $O^{(5)}$, $O^{(7)}$, $O^{(9)}$ obtained from renormalizable interactions by adding a variety of new particles $(\Phi_{I}^{(Y)}, \Psi_{I}^{(Y)}, X_{I}^{(Y)})$

Many possibilities for LR and RR (Classified arXiv:1204.5986), for instance

• LR: {
$$\Psi_{1/2}^{(1/2)}, \Phi_1^{(1)}$$
}; { $\Psi_0^{(0)}, \Phi_0^{(1)}$ },...
• RR: { $\Phi_0^{(2)}, \Phi_1^{(1)}$ }; { $\Psi_1^{(0)}, \Phi_1^{(1)}$ },...

To forbid $\mathcal{O}^{(5)}$ at tree level: need chiral LN and/or discrete symmetries

Arcadi Santamaria

Introduction

2 New Physics Contributions to $0\nu\beta\beta$

An example of LR-type model

An example of RR-type model

Conclusions

An example of LR-type model

Spectrum of new particles

	L _{La}	L _{Ra}	χ	ϕ'
<i>SU</i> (2) _L	<u>1</u> 2	<u>1</u> 2	1	$\frac{1}{2}$
<i>U</i> (1) _{<i>Y</i>}	$-\frac{1}{2}$	$-\frac{1}{2}$	1	<u>1</u> 2
<i>Z</i> ₂	—			

Lagrangian

$$\mathscr{L}_{\mathrm{H}}^{L} = \overline{L_{a}}(i\not\!\!D - M_{a})L_{a} + \{y_{ab}^{e}\overline{L_{aL}}\phi'e_{bR} + y_{ab}^{v}\overline{\widetilde{L}_{aL}}\chi\ell_{bL} + \mathrm{h.c.}\}$$

L_a → cannot give see-saw types I-III
 No χℓ_Lℓ_L coupling → No see-saw II

Arcadi Santamaria

Large $0v\beta\beta$ with small m_v

Corfu Summer School, September 12, 2012

14/25

The LR operator in $0v\beta\beta$

The LR Operator

$$\frac{C_{ab}^{(7)}}{\Lambda^3} = -i\frac{\mu y_{ca}^{e*}y_{cb}^{v*}}{m_{\chi}^2 M_c^2}$$

Arcadi Santamaria

Large $0v\beta\beta$ with small m_v

The neutrino mass

m_a and loops not enough suppression, small couplings needed.

Arcadi Santamaria

Large $0v\beta\beta$ with small m_v

Relevant Phenomenology

- Large $0\nu\beta\beta$ (enough to be seen) and small m_{ν} favor small couplings and relatively light new particles.
- L_a , χ and ϕ' can be descovered at LHC if light enough ($\lesssim 800 \, {\rm GeV}$)
- LFV is always small at tree level (new scalars do no couple to SM lepton pairs and mixings *L_a*-SM fermions are small)
- LFV at one loop provide some constraints but can be easily satisfied

Introduction

- 2 New Physics Contributions to $0\nu\beta\beta$
- An example of LR-type model
- An example of RR-type model

Conclusions

An example of RR-type model

Spectrum of new particles								
		χ	к	σ				
	$SU(2)_L$	$\frac{1}{2}$	0	0				
	<i>U</i> (1) _{<i>Y</i>}	1	2	0				
	<i>Z</i> ₂		+					

Lagrangian

$$\mathscr{L} = g_{\alpha\beta} \,\overline{e_{\alpha R}}^{c} e_{\beta R} \,\kappa - \mu_{\kappa} \,\kappa \mathrm{Tr} \left\{ \chi^{\dagger} \chi^{\dagger} \right\} - \lambda_{6} \,\sigma \,\phi^{\dagger} \chi \,\tilde{\phi} + \cdots$$

No new fermions → No see-saw I-III

• No $\chi \ell_L \ell_L$ coupling \implies No see-saw II

Arcadi Santamaria

The RR operator in $0v\beta\beta$

$$rac{C^{(9)}_{ab}}{\Lambda^5}=-irac{4(\lambda_6\langle\sigma
angle)^2\mu_\kappa}{m_\kappa^2M_\chi^6}g^*_{ab}$$

Arcadi Santamaria

Large $0v\beta\beta$ with small m_v

The neutrino mass

$$(m_{\nu})_{lphaeta} = rac{\mu_{\kappa}v_{\chi}^2}{2(2\pi)^4 v_{\phi}^4} m_{lpha}g_{lphaeta}^* m_{eta} I_{
u}$$

Arcadi Santamaria

Large $0v\beta\beta$ with small m_v

LFV in the RR model

 $\ell_a^- \rightarrow \ell_b^+ \ell_c^- \ell_d^-$: limits on g_{ab}

Strong constraints • BR $(\mu^- \to e^+ e^- e^-) < 1.0 \times 10^{-12}$ $|g_{\mu e}g^*_{ee}| < 2.3 \times 10^{-5} (m_{\kappa/TeV})^2$

• BR $(\tau^- \to e^+ \mu^- \mu^-) < 1.7 \times 10^{-8}$

 $|g_{ au e} g^*_{\mu\mu}| < 0.007 \, (m_\kappa/{
m TeV})^2$

Arcadi Santamaria

Large $0v\beta\beta$ with small m_v

Constraints on the doubly-charged scalars

If scalar masses too large:

- $0v\beta\beta$ too small
- Too small v masses

If scalar masses too small:

- Too large v masses
- Problems with LFV
- Problems with LEP, LHC (not included in plot)

Arcadi Santamaria

Constraints on the v mass matrix

- Large 0vββ: relatively large g_{ee} and small scalar masses
- *m_{ee}* highly suppressed by the factor *m_e²*
- $m_{e\mu}$ also suppressed because the $\mu
 ightarrow 3e$ bound on $g_{e\mu}$

v mass matrix highly constrained

$$|m_{v}| = \begin{pmatrix} <10^{-4} & <10^{-4} & \sim 0.01 \\ <10^{-4} & \sim 0.01 & \sim 0.01 \\ \sim 0.01 & \sim 0.01 & \sim 0.01 \end{pmatrix} eV$$

- Only NH allowed
 Predicction for m_{light} = m₁
- Prediction for $\sin^2 \theta_{13}$

2012: $\sin^2 \theta_{13} \sim 0.02 - 0.026$

1 Introduction

- 2 New Physics Contributions to $0\nu\beta\beta$
- An example of LR-type model
- An example of RR-type model

6 Conclusions

Conclusions

- We have used effective field theory language to classify new physics contributions to 0vββ involving operators without quarks
- For the lowest order operators, charged lepton chiralities, operator dimension and the order at which m_v should appear are linked
 - $e_L e_L 0v2\beta$ appears at dim 5: m_v tree-level
 - $e_L e_R 0 v 2\beta$ appears at dim 7: m_v one loop
 - $e_R e_R 0v2\beta$ appears at dim 9: m_v two loops
- Large $0v2\beta \implies m_v$ small (supressed by loops) possible
- Models complicated and tighly constrained but could give a rich phenomenology in LFV processes and LHC (especially if a doubly charged scalar is discovered!)

Thank you

Thanks for your attention

Arcadi Santamaria

Large $0v\beta\beta$ with small m_v

BACKUP SLIDES