Some Aspects of $N=(2,2)$ Non-Linear σ-Models
 A short review

Alexander Sevrin

in collaboration with Wieland Staessens, Dimitri Terryn and Dan Thompson
arXiv:1111.0551 [hep-th] and forthcoming.

Vrije Universiteit Brussel
and
The International Solvay Institutes for Physics and Chemistry

September 212012 / Corfu

Motivation

- The NSR model $\equiv N=(2,2)$ supersymmetric non-linear σ-models in d=2 gives a very explicit description of strings backgrounds with NSNS fluxes (including D-brane configurations interpolating between A \& B type (AS, Staessens, Wijns '08, '09)).
- Deep connection with generalized Kähler \& CY geometry (Gualtieri ’03; ...); Ulf Lindström yesterday
- Doubled formalism \leftrightarrow make contact with results by Hull, Hohm, Zwiebach, ...

The NSR approach

- $N \leq(1,1)$ very simple and rather uninteresting. For type II string theory one has to study $N=(2,2)$ non-linear σ-models in $d=2$.
- The full off-shell description (in $N=(2,2)$ superspace) is known \Rightarrow good understanding of local, classical geometry. Elegant and natural generalization of Kähler geometry!
- Quantum calculations simplify considerably.

The NSR approach: geometric data

Geometric data: target manifold (Gates, Hull, Roček, '84)

- Target manifold \mathcal{M}, local coordinates $x^{a}, a \in\{1, \cdots, d\}$.
- Metric $g(X, Y)$.
- Closed 3-form $H, d H=0$, locally $H=d b$ and $b \simeq b+d k$.

Geometric data: worldsheet

- Worldsheet lightcone coordinates:

$$
\sigma^{\neq}=\tau+\sigma, \quad \sigma^{=}=\tau-\sigma
$$

- Grassman coordinates: θ^{+}and θ^{-}; derivatives:

$$
D_{+}^{2}=-\frac{i}{2} \partial_{\mp}, \quad D_{-}^{2}=-\frac{i}{2} \partial_{=}, \quad\left\{D_{+}, D_{-}\right\}=0 .
$$

The NSR approach: the action

- The $N=(1,1)$ action in $N=(1,1)$ superspace:

$$
\mathcal{S}=4 \int d^{2} \sigma d^{2} \theta\left(D_{+} x^{a} D_{-} x^{b}\left(g_{a b}+b_{a b}\right)\right)
$$

- The $N=(1,1)$ action in ordinary space:

$$
\begin{aligned}
\mathcal{S}= & 2 \int d^{2} \sigma\left(\left(g_{a b}+b_{a b}\right) \partial_{\neq} x^{a} \partial_{=} x^{b}+\right. \\
& 2 i g_{a b} \psi_{+}^{a} \nabla_{=}^{(+)} \psi_{+}^{b}+2 i g_{a b} \psi_{-}^{a} \nabla_{\neq}^{(-)} \psi_{-}^{b} \\
& +R_{a b c d}^{(-)} \psi_{-}^{a} \psi_{-}^{b} \psi_{+}^{c} \psi_{+}^{d}+ \\
& \left.2\left(F^{a}-i \Gamma_{(-) c d}^{a} \psi_{-}^{c} \psi_{+}^{d}\right) g_{a b}\left(F^{b}-i \Gamma_{(-) e f}^{b} \psi_{-}^{e} \psi_{+}^{f}\right)\right) .
\end{aligned}
$$

- Note:

$$
\Gamma_{ \pm b c}^{a} \equiv\left\{\begin{array}{c}
a \\
b c
\end{array}\right\} \pm \frac{1}{2} H^{a}{ }_{b c}
$$

Additional supersymmetries

- Only possibility for extra susy transformations:

$$
\delta x^{a}=\varepsilon^{+} J_{+b}^{a}(x) D_{+} x^{b}+\varepsilon^{-} J_{-b}^{a}(x) D_{-} x^{b}
$$

- Closure of algebra $\Leftrightarrow J_{+}$and J_{-}are complex structures! So $d=2 n$.
- Note: generically no off-shell closure of the algebra!
- Invariance of the action \Leftrightarrow
- Metric is hermitian: $g\left(J_{ \pm} X, J_{ \pm} Y\right)=g(X, Y)$.
- Introduce $\omega_{ \pm}(X, Y)=-g\left(X, J_{ \pm} Y\right)$

$$
d \omega_{ \pm}(X, Y, Z)=\mp H\left(J_{ \pm} X, J_{ \pm} Y, J_{ \pm} Z\right)
$$

Solving the conditions (locally)

Can one solve:

- J_{+}and J_{-}are complex structures!
- $g\left(J_{ \pm} X, J_{ \pm} Y\right)=g(X, Y)$.
- $d \omega_{ \pm}(X, Y, Z)=\mp H\left(J_{ \pm} X, J_{ \pm} Y, J_{ \pm} Z\right)$

Off-shell closure

- All off-shell non-closing terms are proportional to $\left[J_{+}, J_{-}\right]$! Note $\operatorname{ker}\left[J_{+}, J_{-}\right]=\operatorname{ker}\left(J_{+}-J_{-}\right) \oplus \operatorname{ker}\left(J_{+}+J_{-}\right)$.
- $T_{\mathcal{M}}=\operatorname{ker}\left(J_{+}-J_{-}\right) \oplus \operatorname{ker}\left(J_{+}+J_{-}\right) \oplus \operatorname{im}\left[J_{+}, J_{-}\right] g^{-1}$.
- im $\left[J_{+}, J_{-}\right] g^{-1} \Rightarrow$ semi-chiral $N=(2,2)$ superfields.
(Warning: type-changing!)
- $\operatorname{ker}\left(J_{+}+J_{-}\right) \Rightarrow$ twisted chiral $N=(2,2)$ superfields.
- $\operatorname{ker}\left(J_{+}-J_{-}\right) \Rightarrow$ chiral $N=(2,2)$ superfields.
(Lindström, Roček, von Unge, Zabzine '05) (AS, Troost '96)

$N=(2,2)$ superspace

- Coordinates: $\sigma^{\ddagger}, \sigma^{=}, \theta^{+}, \theta^{-}, \hat{\theta}^{+}, \hat{\theta}^{-}$(and corresponding derivatives).
- Action:

$$
\mathcal{S}=4 \int d^{2} \sigma d^{2} \theta d^{2} \hat{\theta} \mathcal{V}(X)
$$

- \mathcal{V} can only be some function of the scalar superfields \Rightarrow constraints needed!

$N=(2,2)$ superfields

- Simplest choice:

$$
\hat{D}_{ \pm} X^{a}=J_{ \pm b}^{a}(X) D_{ \pm} X^{b}
$$

- But:

$$
\hat{D}_{+}^{2}=D_{+}^{2}=-\frac{i}{2} \partial_{\#}, \quad \hat{D}_{-}^{2}=D_{-}^{2}=-\frac{i}{2} \partial_{=}
$$ and all other (anti-)commutators zero.

- Integrability conditions $\Rightarrow J_{+}$and J_{-}are commuting complex structures!

$N=(2,2)$ superfields

- \Rightarrow they can be simultaneously diagonalized with eigenvalues $\pm i$.
- \Rightarrow two cases:

1. They have the same eigenvalue \leftrightarrow chiral superfields \leftrightarrow $\operatorname{ker}\left(J_{+}-J_{-}\right)$. We call them z and $\bar{z}: \hat{D}_{+} z=+i D_{+} z$, $\hat{D}_{-} z=+i D_{-} z$.
2. They have the opposite eigenvalue \leftrightarrow twisted chiral superfields $\leftrightarrow \operatorname{ker}\left(J_{+}+J_{-}\right)$. We call them w and \bar{w} : $\hat{D}_{+} w=+i D_{+} w, \hat{D}_{-} w=-i D_{-} w$. (Gates, Hull, Roček, '84)

- Twisted chiral and chiral $N=(2,2)$ superfields have the same number of components as $N=(1,1)$ superfields \Rightarrow no new auxiliary dof's are introduced.

$N=(2,2)$ superfields

- Only other possibility: chiral constraints \Rightarrow these $N=(2,2)$ superfields have twice as many components compared to $N=(1,1)$, half auxiliary?
- Auxiliary fields \Leftrightarrow must come in complex pairs.
- These are semi-chiral superfields, im[$\left.J_{+}, J_{-}\right] g^{-1}$. We call them I, \bar{l}, r and \bar{r}. (Buscher, Lindström, Roček, '88)

$$
\begin{aligned}
& \hat{D}_{+} I=i D_{+} I, \quad \hat{D}_{-} r=i D_{-} r \\
& \hat{D}_{-} l \text { and } \hat{D}_{+} r \text { are auxiliary. }
\end{aligned}
$$

Note: other superfields possible

Besides semi-chiral, twisted chiral and chiral superfields other matter superfields are possible. Complex and real linear and twisted linear superfields exist as well: they are defined by constraints quadratic in the superspace derivatives. They provide a dual description to models in terms of chiral and twisted chiral superfields.

There are also gauge superfields, they are unconstrained real or complex superfields.

Action

- The action is simply

$$
\mathcal{S}=4 \int d^{2} \sigma d^{2} \theta d^{2} \hat{\theta} V(X)
$$

where V is an (arbitrary) real function of the semi-chiral, twisted chiral and chiral superfields.

- Integrating over $\hat{\theta}^{+}$and $\hat{\theta}^{-}$and eliminating the auxiliary fields yields explicit expressions for J_{+}, J_{-}, g and b. Generically they are non-linear expressions of derivatives of the generalized Kähler potential. Elegant expressions available.

Uniqueness

- $I \rightarrow I^{\prime}(I, w, z), r \rightarrow r^{\prime}(r, \bar{w}, z), w \rightarrow w^{\prime}(w), z \rightarrow z^{\prime}(z)$.
- The potential is determined modulo a generalized Kähler transformation

$$
V \rightarrow V+F(I, w, z)+\bar{F}(\bar{I}, \bar{w}, \bar{z})+G(r, \bar{w}, z)+\bar{G}(\bar{r}, w, \bar{z}) .
$$

- Semi-chiral \leftrightarrow Legendre transformations:

$$
\hat{V}(\hat{l}, \bar{l}, \hat{r}, \overline{\hat{r}})=V(I, \bar{l}, r, \bar{r})-F(I, \hat{l})-\bar{F}(\bar{I}, \bar{l})+G(r, \hat{r})+\bar{G}(\bar{r}, \overline{\hat{r}})
$$

- The local "mirror" transformation is

$$
V(I, \bar{l}, r, \bar{r}, w, \bar{w}, z, \bar{z}) \rightarrow-V(I, \bar{l}, \bar{r}, r, z, \bar{z}, w, \bar{w})
$$

UV properties

One-loop β-function: necessary condition for $N=(2,2)$ superconformal invariance @ quantum level. Counterterm: (Grisaru, Massar, AS, Troost, '99)

$$
\mathcal{S}_{1-\text { loop }} \propto \frac{1}{\varepsilon} \int d^{2} \sigma d^{2} \theta d^{2} \hat{\theta} \ln \frac{\operatorname{det}\left(N_{+}\right)}{\operatorname{det}\left(N_{-}\right)}
$$

with

$$
N_{+}=\left(\begin{array}{ccc}
V_{\bar{l}} & V_{l r} & V_{l \bar{w}} \\
V_{\overline{\bar{l}}} & V_{\bar{r} r} & V_{\overline{\bar{r}}} \\
V_{w \bar{l}} & V_{w r} & V_{w \bar{w}}
\end{array}\right), \quad N_{-}=\left(\begin{array}{ccc}
V_{\bar{l}} & V_{l \bar{r}} & V_{l \bar{z}} \\
V_{r \bar{l}} & V_{r \bar{r}} & V_{r \bar{z}} \\
V_{z \bar{l}} & V_{z \bar{r}} & V_{z \bar{z}}
\end{array}\right) .
$$

and vanishes \Leftrightarrow

$$
\frac{\operatorname{det}\left(N_{+}\right)}{\operatorname{det}\left(N_{-}\right)}= \pm\left|f_{+}(I, w, z)\right|^{2}\left|f_{-}(r, \bar{w}, z)\right|^{2}
$$

Generalized CY $\Leftrightarrow \frac{\operatorname{det}\left(N_{+}\right)}{\operatorname{det}\left(N_{-}\right)}=$constant . E. g. (Hull, Lindström, Roček, von Unge, Zabzine '12)

Examples

Simple example: $S U(2) \times U(1)=S^{3} \times S^{1}$.

- Parameterization:

$$
g=e^{i \rho}\left(\begin{array}{cc}
\cos \psi e^{i \varphi_{1}} & \sin \psi e^{i \varphi_{2}} \\
-\sin \psi e^{-i \varphi_{2}} & \cos \psi e^{-i \varphi_{1}}
\end{array}\right),
$$

and

$$
\varphi_{1}, \varphi_{2}, \rho \in \mathbb{R} \bmod 2 \pi \text { and } \psi \in[0, \pi / 2]
$$

Type (1, 1): 1 twisted chiral +1 chiral

Superfields: (Roček, Schoutens, AS '91)

$$
w=\cos \psi e^{-\rho-i \varphi_{1}}, \quad z=\sin \psi e^{-\rho+i \varphi_{2}}
$$

Generalized Kähler potential:

$$
V_{\psi \neq \frac{\pi}{2}}=\int^{\frac{\overline{\bar{x}}}{w}} \frac{d q}{q} \ln (1+q)-\frac{1}{2}(\ln w \bar{w})^{2}
$$

or

$$
V_{\psi \neq 0}=-\int^{\frac{w \overline{\bar{z}}}{z \bar{z}}} \frac{d q}{q} \ln (1+q)+\frac{1}{2}(\ln z \bar{z})^{2}
$$

and

$$
V_{\psi \neq \frac{\pi}{2}}-V_{\psi \neq 0}=-\ln (z \bar{z}) \ln (w \bar{w})
$$

Note: has in fact $N=(4,4)$ susy, can be lifted to projective superspace (see U. Lindström yesterday):

$$
V \propto \int_{\mathcal{C}} \frac{d \zeta^{+}}{\zeta^{+}} \int_{\mathcal{C}^{\prime}} \frac{d \zeta^{-}}{\zeta^{-}} \ln \Upsilon
$$

Type (0,0): 1 semi-chiral

Superfields: (Troost, AS '96)

$$
I=w, r=\frac{\bar{w}}{z}
$$

Generalized Kähler potential:

$$
V_{\psi \neq 0}=\ln \frac{l}{\bar{r}} \ln \frac{\bar{l}}{r}-\int^{r \bar{r}} \frac{d q}{q} \ln (1+q)
$$

or

$$
V_{\psi \neq \frac{\pi}{2}}=-\ln \frac{1}{r} \ln \frac{\bar{l}}{\bar{r}}+\int^{r \bar{r}} \frac{d q}{q} \ln (1+q)
$$

and

$$
\begin{gathered}
V_{\psi \neq \frac{\pi}{2}}\left(I^{\prime}, \bar{l}^{\prime}, r^{\prime}, \bar{r}^{\prime}\right)-\frac{1}{2}\left(\ln r^{\prime}\right)^{2}-\frac{1}{2}\left(\ln \bar{r}^{\prime}\right)^{2}= \\
V_{\psi \neq 0}\left(I, \bar{l}, r=r^{\prime-1}, \bar{r}=\bar{r}^{\prime-1}\right)-\ln / \ln I^{\prime}-\ln \bar{l} \ln \bar{l}^{\prime}
\end{gathered}
$$

with

$$
I^{\prime}=\frac{\overline{1}}{r}, \quad r^{\prime}=\frac{1}{r}
$$

- Both descriptions are T-dual, dualize along the S^{1} of $S^{1} \times S^{3}$.
- Note: type-changing occurs: at $\psi=\frac{\pi}{2}: J_{-}=-J_{+}$; at $\psi=0: J_{-}=+J_{+}$.

Outlook

T-duality and doubled formalism
Intimate relation relation between $N=(2,2) \sigma$-models and generalized CY-geometry. Hohm-Hull-Zwiebach: doubled formalism suggests an intricate generalized geometrical structure.

T-duality in $N=(2,2)$ superspace:

- Chiral \leftrightarrow twisted chiral (Gates, Hull, Roček, '84)

$$
V(w+\bar{w}, \cdots) \leftrightarrow \hat{V}(z+\bar{z}, \cdots)
$$

- Chiral + twisted chiral \leftrightarrow semi-chiral (Grisaru, Massar, AS, Troost, '98)

$$
\begin{gathered}
V(z+\bar{z}, w+\bar{w}, i(z-\bar{z}-w+\bar{w}), \cdots) \leftrightarrow \\
\hat{V}(I+\bar{I}, r+\bar{r}, i(I-\bar{I}-r+\bar{r}), \cdots)
\end{gathered}
$$

Doubled formalism: include both original and dual fields + "chirality constraint" in doubled space.

Outlook

Simple example

- The potentials,

$$
V=\frac{1}{2}(z+\bar{z})^{2}
$$

and

$$
\hat{V}=-\frac{1}{2}(w+\bar{w})^{2}
$$

are T-dual.

- In the doubled space with coordinates z, \bar{z}, w and \bar{w}, the constraint,

$$
w+\bar{w}=z+\bar{z}
$$

holds, i.e. a kind of coisotropic brane is singled out, eliminating the "overdoubled" coordinates.

Outlook

- The Hull constraints $\left(d X \propto{ }^{\star} d \tilde{X}\right)$ follow:

$$
\hat{D}_{ \pm}(w+\bar{w})=\hat{D}_{ \pm}(z+\bar{z}) \Rightarrow D_{ \pm}(w-\bar{w})= \pm D_{ \pm}(z-\bar{z}) .
$$

Notation

- Introduce $\mathbb{D}_{ \pm}=\hat{D}_{ \pm}+i D_{ \pm}, \overline{\mathbb{D}}_{ \pm}=\hat{D}_{ \pm}-i D_{ \pm}$.
$\left\{\mathbb{D}_{+}, \overline{\mathbb{D}}_{+}\right\}=\partial_{\neq}, \quad\left\{\mathbb{D}_{-}, \overline{\mathbb{D}}_{-}\right\}=\partial_{=}$,
all other (anti-)commutators vanish.
- Chiral field $z: \overline{\mathbb{D}}_{+} z=\overline{\mathbb{D}}_{-} z=0\left(\right.$ also $\left.\mathbb{D}_{+} \bar{z}=\mathbb{D}_{-} \bar{z}=0\right)$.
- Twisted chiral field $w: \overline{\mathbb{D}}_{+} w=\mathbb{D}_{-} w=0$ (also $\left.\mathbb{D}_{+} \overline{\boldsymbol{w}}=\overline{\mathbb{D}}_{-} \overline{\boldsymbol{w}}=0\right)$.

Outlook

- Implies a theory of chiral bosons

$$
\mathbb{D}_{ \pm}(w+\bar{w})=\mathbb{D}_{ \pm}(z+\bar{z}) \Rightarrow \mathbb{D}_{+}(z-w)=\mathbb{D}_{-}(z-\bar{w})=0 .
$$

But also,

$$
\overline{\mathbb{D}}_{+}(z-w)=\overline{\mathbb{D}}_{-}(z-\bar{w})=0
$$

implying,

$$
\partial_{\neq}(z-w)=\partial_{=}(z-\bar{w})=0 .
$$

So a kind of "chiral" semi-chiral multiplet.

- Extend PST to $N=(2,2)$ superspace: subtle but feasible.
- Study the doubled formulation (classical \& quantum).

To be continued...

