< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Some Aspects of N = (2, 2) Non-Linear σ -Models A short review

Alexander Sevrin

in collaboration with Wieland Staessens, Dimitri Terryn and Dan Thompson

arXiv:1111.0551 [hep-th] and forthcoming.

Vrije Universiteit Brussel

and

The International Solvay Institutes for Physics and Chemistry

September 21 2012 / Corfu

Motivation

- The NSR model = N = (2,2) supersymmetric non-linear σ-models in d=2 gives a very explicit description of strings backgrounds with NSNS fluxes (including D-brane configurations interpolating between A & B type (AS, Staessens, Wijns '08, '09)).
- Deep connection with generalized Kähler & CY geometry (Gualtieri '03; ...); Ulf Lindström yesterday
- Doubled formalism ↔ make contact with results by Hull, Hohm, Zwiebach, ...

The NSR approach

- N ≤ (1, 1) very simple and rather uninteresting. For type II string theory one has to study N = (2, 2) non-linear σ-models in d = 2.
- The full off-shell description (in N = (2,2) superspace) is known ⇒ good understanding of local, classical geometry. Elegant and natural generalization of Kähler geometry!
- Quantum calculations simplify considerably.

The NSR approach: geometric data

Geometric data: target manifold (Gates, Hull, Roček, '84)

- Target manifold \mathcal{M} , local coordinates x^a , $a \in \{1, \cdots, d\}$.
- Metric g(X, Y).
- Closed 3-form H, dH = 0, locally H = db and $b \simeq b + dk$.

Geometric data: worldsheet

• Worldsheet lightcone coordinates:

$$\sigma^{\ddagger} = \tau + \sigma, \qquad \sigma^{=} = \tau - \sigma.$$

• Grassman coordinates: θ^+ and θ^- ; derivatives:

$$D_{+}^{2} = -\frac{i}{2} \partial_{\pm}, \qquad D_{-}^{2} = -\frac{i}{2} \partial_{-}, \qquad \{D_{+}, D_{-}\} = 0.$$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQ@

The NSR approach: the action

• The N = (1, 1) action in N = (1, 1) superspace:

$$\mathcal{S} = 4 \int d^2 \sigma \, d^2 \theta \, \left(D_+ x^a D_- x^b \left(g_{ab} + b_{ab} \right) \right)$$

• The N = (1, 1) action in ordinary space:

$$\begin{split} \mathcal{S} &= 2 \int d^2 \sigma \left((g_{ab} + b_{ab}) \partial_{\ddagger} x^a \partial_{=} x^b + \\ & 2i \, g_{ab} \, \psi^a_+ \nabla^{(+)}_= \psi^b_+ + 2i \, g_{ab} \, \psi^a_- \nabla^{(-)}_{\ddagger} \psi^b_- \\ & + R^{(-)}_{abcd} \psi^a_- \psi^b_- \psi^c_+ \psi^d_+ + \\ & 2(F^a - i\Gamma^a_{(-)cd} \psi^c_- \psi^d_+) g_{ab} (F^b - i\Gamma^b_{(-)ef} \psi^e_- \psi^f_+)). \end{split}$$

Note:

$$\Gamma^a_{\pm bc} \equiv \left\{ \begin{smallmatrix} a \\ bc \end{smallmatrix}
ight\} \pm rac{1}{2} H^a{}_{bc}$$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Additional supersymmetries

• Only possibility for extra susy transformations:

$$\delta x^{a} = \varepsilon^{+} J^{a}_{+b}(x) D_{+} x^{b} + \varepsilon^{-} J^{a}_{-b}(x) D_{-} x^{b}$$

- Closure of algebra ⇔ J₊ and J₋ are complex structures! So d = 2n.
- Note: generically no off-shell closure of the algebra!
- Invariance of the action ⇔
 - Metric is hermitian: $g(J_{\pm}X, J_{\pm}Y) = g(X, Y)$.

Introduce
$$\omega_{\pm}(X, Y) = -g(X, J_{\pm}Y)$$

 $d\omega_{\pm}(X, Y, Z) = \mp H(J_{\pm}X, J_{\pm}Y, J_{\pm}Z)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Solving the conditions (locally)

Can one solve:

- *J*₊ and *J*₋ are complex structures!
- $g(J_{\pm}X,J_{\pm}Y)=g(X,Y).$
- $d\omega_{\pm}(X,Y,Z) = \mp H(J_{\pm}X,J_{\pm}Y,J_{\pm}Z)$

A D F A 同 F A E F A E F A Q A

Off-shell closure

 All off-shell non-closing terms are proportional to [J₊, J_−]! Note ker[J₊, J_−] = ker(J₊ − J_−) ⊕ ker(J₊ + J_−).

•
$$T_{\mathcal{M}} = \ker(J_+ - J_-) \oplus \ker(J_+ + J_-) \oplus \operatorname{im}[J_+, J_-]g^{-1}.$$

- im[J₊, J₋]g⁻¹ ⇒ semi-chiral N = (2, 2) superfields. (Warning: type-changing!)
- ker $(J_+ + J_-)$ \Rightarrow twisted chiral N = (2, 2) superfields.
- ker $(J_+ J_-) \Rightarrow$ chiral N = (2, 2) superfields.

(Lindström, Roček, von Unge, Zabzine '05) (AS, Troost '96)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

N = (2, 2) superspace

- Coordinates: σ[‡], σ⁼, θ⁺, θ⁻, θ⁺, θ⁻ (and corresponding derivatives).
- Action:

$$\mathcal{S} = 4 \int d^2 \sigma \, d^2 \theta \, d^2 \hat{\theta} \, \mathcal{V}(X).$$

• ${\cal V}$ can only be some function of the scalar superfields \Rightarrow constraints needed!

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

N = (2, 2) superfields

• Simplest choice:

$$\hat{D}_{\pm}X^a=J^a_{\pm b}(X)\,D_{\pm}X^b.$$

But:

$$\hat{D}^2_+ = D^2_+ = -rac{i}{2}\partial_{\pm}, \qquad \hat{D}^2_- = D^2_- = -rac{i}{2}\partial_{=}$$

and all other (anti-)commutators zero.

Integrability conditions ⇒ J₊ and J_− are commuting complex structures!

N = (2, 2) superfields

- \Rightarrow they can be simultaneously diagonalized with eigenvalues $\pm i$.
- \Rightarrow two cases:
 - 1. They have the same eigenvalue \leftrightarrow chiral superfields \leftrightarrow ker $(J_+ J_-)$. We call them *z* and \overline{z} : $\hat{D}_+ z = +i D_+ z$, $\hat{D}_- z = +i D_- z$.
 - They have the opposite eigenvalue ↔ twisted chiral superfields ↔ ker (J₊ + J₋). We call them w and w̄:
 D̂₊w = +i D₊w, D̂₋w = -i D₋w. (Gates, Hull, Roček, '84)
- Twisted chiral and chiral N = (2, 2) superfields have the same number of components as N = (1, 1) superfields ⇒ no new auxiliary dof's are introduced.

(日) (日) (日) (日) (日) (日) (日)

N = (2, 2) superfields

- Only other possibility: chiral constraints ⇒ these N = (2, 2) superfields have twice as many components compared to N = (1, 1), half auxiliary?
- Auxiliary fields ⇔ must come in complex pairs.
- These are semi-chiral superfields, im[J₊, J₋]g⁻¹. We call them *I*, *Ī*, *r* and *r̄*. (Buscher, Lindström, Roček, '88)

$$\hat{D}_+ I = i D_+ I, \quad \hat{D}_- r = i D_- r, \\ \hat{D}_- I \text{ and } \hat{D}_+ r \text{ are auxiliary.}$$

Note: other superfields possible

Besides semi-chiral, twisted chiral and chiral superfields other matter superfields are possible. Complex and real linear and twisted linear superfields exist as well: they are defined by constraints quadratic in the superspace derivatives. They provide a dual description to models in terms of chiral and twisted chiral superfields.

There are also gauge superfields, they are unconstrained real or complex superfields.

Action

The action is simply

$$S = 4 \int d^2 \sigma \, d^2 \theta \, d^2 \hat{\theta} \, V(X),$$

where V is an (arbitrary) real function of the semi-chiral, twisted chiral and chiral superfields.

• Integrating over $\hat{\theta}^+$ and $\hat{\theta}^-$ and eliminating the auxiliary fields yields explicit expressions for J_+ , J_- , g and b. Generically they are non-linear expressions of derivatives of the generalized Kähler potential. Elegant expressions available.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Uniqueness

- $l \rightarrow l'(l, w, z), r \rightarrow r'(r, \overline{w}, z), w \rightarrow w'(w), z \rightarrow z'(z)$.
- The potential is determined modulo a generalized Kähler transformation

 $V \rightarrow V + F(l, w, z) + \overline{F}(\overline{l}, \overline{w}, \overline{z}) + G(r, \overline{w}, z) + \overline{G}(\overline{r}, w, \overline{z}).$

- Semi-chiral \leftrightarrow Legendre transformations: $\hat{V}(\hat{l}, \hat{\bar{l}}, \hat{r}, \hat{\bar{r}}) = V(l, \bar{l}, r, \bar{r}) - F(l, \hat{l}) - \bar{F}(\bar{l}, \hat{\bar{l}}) + G(r, \hat{r}) + \bar{G}(\bar{r}, \bar{\bar{r}})$
- The local "mirror" transformation is

$$V(I,\overline{I},r,\overline{r},w,\overline{w},z,\overline{z}) \rightarrow -V(I,\overline{I},\overline{r},r,z,\overline{z},w,\overline{w}).$$

UV properties

One-loop β -function: necessary condition for N = (2, 2) superconformal invariance @ quantum level. Counterterm: (Grisaru, Massar, AS, Troost, '99)

$$S_{1-\text{loop}} \propto \frac{1}{\varepsilon} \int d^2 \sigma \, d^2 \theta \, d^2 \hat{\theta} \, \ln \, \frac{\det(N_+)}{\det(N_-)}$$

with

$$N_{+} = \begin{pmatrix} V_{l\bar{l}} & V_{lr} & V_{l\bar{w}} \\ V_{\bar{r}\bar{l}} & V_{\bar{r}r} & V_{\bar{r}\bar{w}} \\ V_{w\bar{l}} & V_{wr} & V_{w\bar{w}} \end{pmatrix}, \quad N_{-} = \begin{pmatrix} V_{l\bar{l}} & V_{l\bar{r}} & V_{l\bar{z}} \\ V_{r\bar{l}} & V_{r\bar{r}} & V_{r\bar{z}} \\ V_{z\bar{l}} & V_{z\bar{r}} & V_{z\bar{z}} \end{pmatrix}$$

and vanishes \Leftrightarrow

$$\frac{\det(N_{+})}{\det(N_{-})} = \pm |f_{+}(I, w, z)|^{2} |f_{-}(r, \bar{w}, z)|^{2}$$

Generalized CY $\Leftrightarrow \frac{\det(N_+)}{\det(N_-)} = \text{constant} \cdot \text{E. g. (Hull, Lindström,}$ Roček, von Unge, Zabzine '12)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Examples

Simple example: $SU(2) \times U(1) = S^3 \times S^1$.

• Parameterization:

$$g=e^{i
ho}\left(egin{array}{cc} \cos\psi\,e^{iarphi_1}&\sin\psi\,e^{iarphi_2}\ -\sin\psi\,e^{-iarphi_2}&\cos\psi\,e^{-iarphi_1}\end{array}
ight),$$

and

$$\varphi_1, \varphi_2, \rho \in \mathbb{R} \mod 2\pi \text{ and } \psi \in [0, \pi/2]$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Type (1, 1): 1 twisted chiral + 1 chiral Superfields: (Roček, Schoutens, AS '91)

$$w = \cos \psi e^{-\rho - i \varphi_1}, \qquad z = \sin \psi e^{-\rho + i \varphi_2}$$

Generalized Kähler potential:

$$V_{\psi
eq rac{\pi}{2}} = \int^{rac{z ilde{z}}{w ilde{w}}} rac{dq}{q} \ln \left(1+q
ight) - rac{1}{2} \left(\ln w ar{w}
ight)^2$$

or

$$V_{\psi
eq 0} = -\int^{rac{war w}{zar z}} rac{dq}{q} \ln{(1+q)} + rac{1}{2}\,(\ln{zar z})^2$$

and

$$V_{\psi \neq rac{\pi}{2}} - V_{\psi \neq 0} = -\ln(z\overline{z})\ln(w\overline{w})$$

Note: has in fact N = (4, 4) susy, can be lifted to projective superspace (see U. Lindström yesterday):

$$V \propto \int_{\mathcal{C}} rac{d\zeta^+}{\zeta^+} \int_{\mathcal{C}'} rac{d\zeta^-}{\zeta^-} \ln \Upsilon$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Type (0,0): 1 semi-chiral Superfields: (Troost, AS '96)

$$l = w, r = \frac{\bar{w}}{z}$$

Generalized Kähler potential:

$$V_{\psi
eq 0} = \ln rac{l}{ar{r}} \, \ln rac{ar{l}}{ar{r}} \, - \int^{rar{r}} rac{dq}{q} \, \ln ig(1+q)$$

 $V_{\psi
eq rac{\pi}{2}} = -\ln rac{l}{r} \ln rac{1}{ar{r}} + \int^{rar{r}} rac{dq}{q} \ln \left(1+q
ight)$

or

and

$$V_{\psi \neq \frac{\pi}{2}}(l', \bar{l}', r', \bar{r}') - \frac{1}{2} (\ln r')^2 - \frac{1}{2} (\ln \bar{r}')^2 = V_{\psi \neq 0}(l, \bar{l}, r = r'^{-1}, \bar{r} = \bar{r}'^{-1}) - \ln l \ln l' - \ln \bar{l} \ln \bar{l}'$$

with

$$l'=\frac{\overline{l}}{r}, \qquad r'=\frac{1}{r}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- Both descriptions are T-dual, dualize along the S^1 of $S^1 \times S^3.$
- Note: type-changing occurs: at $\psi = \frac{\pi}{2}$: $J_{-} = -J_{+}$; at $\psi = 0$: $J_{-} = +J_{+}$.

Outlook

T-duality and doubled formalism

Intimate relation relation between $N = (2, 2) \sigma$ -models and generalized CY-geometry. Hohm-Hull-Zwiebach: doubled formalism suggests an intricate generalized geometrical structure.

T-duality in N = (2, 2) superspace:

• Chiral ↔ twisted chiral (Gates, Hull, Roček, '84)

$$V(w+\bar{w},\cdots)\leftrightarrow \hat{V}(z+\bar{z},\cdots)$$

 Chiral + twisted chiral ↔ semi-chiral (Grisaru, Massar, AS, Troost, '98)

$$V(z + \bar{z}, w + \bar{w}, i(z - \bar{z} - w + \bar{w}), \cdots) \leftrightarrow \hat{V}(l + \bar{l}, r + \bar{r}, i(l - \bar{l} - r + \bar{r}), \cdots)$$

Doubled formalism: include both original and dual fields + "chirality constraint" in doubled space.

Outlook

Simple example

• The potentials,

$$V=\frac{1}{2}\left(z+\bar{z}\right)^2$$

and

$$\hat{V} = -rac{1}{2} \left(w + ar{w}
ight)^2$$

are T-dual.

• In the doubled space with coordinates *z*, *z*, *w* and *w*, the constraint,

$$W + \bar{W} = Z + \bar{Z}$$

holds, *i.e.* a kind of coisotropic brane is singled out, eliminating the "overdoubled" coordinates.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Outlook

• The Hull constraints ($dX \propto {}^* d\tilde{X}$) follow:

 $\hat{D}_{\pm}(w+\bar{w}) = \hat{D}_{\pm}(z+\bar{z}) \Rightarrow D_{\pm}(w-\bar{w}) = \pm D_{\pm}(z-\bar{z}) \; .$

Notation

- Introduce $\mathbb{D}_{\pm} = \hat{D}_{\pm} + i D_{\pm}$, $\overline{\mathbb{D}}_{\pm} = \hat{D}_{\pm} i D_{\pm}$. $\{\mathbb{D}_{+}, \overline{\mathbb{D}}_{+}\} = \partial_{\pm}$, $\{\mathbb{D}_{-}, \overline{\mathbb{D}}_{-}\} = \partial_{=}$, all other (anti-)commutators vanish.
- Chiral field z: $\overline{\mathbb{D}}_+ z = \overline{\mathbb{D}}_- z = 0$ (also $\mathbb{D}_+ \overline{z} = \mathbb{D}_- \overline{z} = 0$).
- Twisted chiral field $w: \overline{\mathbb{D}}_+ w = \mathbb{D}_- w = 0$ (also $\mathbb{D}_+ \overline{w} = \overline{\mathbb{D}}_- \overline{w} = 0$).

Outlook

Implies a theory of chiral bosons

 $\mathbb{D}_{\pm}(w+\bar{w}) = \mathbb{D}_{\pm}(z+\bar{z}) \Rightarrow \mathbb{D}_{+}(z-w) = \mathbb{D}_{-}(z-\bar{w}) = 0$. But also,

$$ar{\mathbb{D}}_+(z-w)=ar{\mathbb{D}}_-(z-ar{w})=0$$
,

implying,

$$\partial_{\ddagger}(z-w) = \partial_{=}(z-\bar{w}) = 0$$
.

So a kind of "chiral" semi-chiral multiplet.

- Extend PST to N = (2, 2) superspace: subtle but feasible.
- Study the doubled formulation (classical & quantum).

To be continued...