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Introduction

Motivation

e The NSR model = N = (2, 2) supersymmetric non-linear
o-models in d=2 gives a very explicit description of strings
backgrounds with NSNS fluxes (including D-brane
configurations interpolating between A & B type (AS,
Staessens, Wijns '08, '09)).

e Deep connection with generalized Kahler & CY geometry
(Gualtieri ’03; ...); Ulf Lindstrom yesterday

e Doubled formalism «» make contact with results by Hull,
Hohm, Zwiebach, ...
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The NSR approach

e N < (1,1) very simple and rather uninteresting. For type Il
string theory one has to study N = (2,2) non-linear
o-models in d = 2.

e The full off-shell description (in N = (2, 2) superspace) is
known =- good understanding of local, classical geometry.
Elegant and natural generalization of Kahler geometry!

e Quantum calculations simplify considerably.
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The NSR approach: geometric data

Geometric data: target manifold (Gates, Hull, Rogek, '84)
e Target manifold M, local coordinates x2, ac {1,--- ,d}.
e Metric g(X,Y).
e Closed 3-form H, dH =0, locally H =dband b ~ b + dk .

Geometric data: worldsheet
o Worldsheet lightcone coordinates:
a*:7'~|—a, oT =T —o0.
e Grassman coordinates: 6T and 6~ ; derivatives:
D2 =-%to,, D*=-fo-, {DyD_}=0.
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The NSR approach: the action

e The N =(1,1) actionin N = (1, 1) superspace:
S—4 / 0?0 &0 (D, x*D_x" (ga + bav)
e The N = (1,1) action in ordinary space:

S = 2/0'20 ((9ab + bap) L x30-xP +
21 Gap V3V 4 20 gy y2 VP
+R(bcd¢a P29y +
2(F2 - ’r dec 77Z)-|r)gab( - ’r eflz)eT/)-qr))-

¢ Note:
ibc {bc} + 1 Hpc .
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Additional supersymmetries

Only possibility for extra susy transformations:

ox3 = e J2p(x) DyxXP + e J2p(x) D_xP

Closure of algebra < J, and J_ are complex structures!
So d =2n.
Note: generically no off-shell closure of the algebra!
Invariance of the action <
e Metric is hermitian: g(J+ X,J+Y) =g(X,Y).
e Introduce wi(X,Y)=—-g(X,J+Y)
dws (X, Y,Z) = FH(J+ X, J1rY,J+2)
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Solving the conditions (locally)

Can one solve:
e J, and J_ are complex structures!
e 9(J+X,J1Y) =g(X,Y).
o dwi(X,Y,Z) = FH(JsX,J1Y,Js2)

Outlook
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Off-shell closure

e All off-shell non-closing terms are proportional to [J;, J_]!
Note ker[Jy, J_] = ker(Jy — J_) @ ker(Jy + J-).
o Ty =ker(Jy —J)dker(Jy +J)@im[dy,J Jg~".
e im[J;,J_]g~" = semi-chiral N = (2,2) superfields.
(Warning: type-changing!)
o ker(Jy + J_) = twisted chiral N = (2, 2) superfields.
e ker(J; — J_) = chiral N = (2, 2) superfields.

(Lindstrém, Rocek, von Unge, Zabzine '05) (AS, Troost '96)
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N = (2,2) superspace

o Coordinates: o, o=, 6+, 6=, i, #~ (and corresponding
derivatives).

e Action:
S=4 [ d?cd?0d?V(X).
¢ )V can only be some function of the scalar superfields =
constraints needed!
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N = (2,2) superfields

e Simplest choice:
DiXxa = Jay(X)DiXP.
e But:
D?2=D2=-}o,, D?=D2=-Lo_
and all other (anti-)commutators zero.

¢ Integrability conditions = J, and J_ are commuting
complex structures!
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N = (2,2) superfields

e = they can be simultaneously diagonalized with
eigenvalues +i.
e = two cases:
1. They have the same eigenvalue < chiral superfields <
ker (Jy —J_). Wecallthem zand z: D,z = +i D, z,
D_z=+iD_z.
2. They have the opposite eigenvalue «+» twisted chiral
superfields < ker (J;. + J_). We call them w and w:

D.w=+iD.w, D_w= —iD_w. (Gates, Hull, Rotek, '84)
 Twisted chiral and chiral N = (2, 2) superfields have the
same number of components as N = (1, 1) superfields =
no new auxiliary dof’s are introduced.
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N = (2,2) superfields

e Only other possibility: chiral constraints = these N = (2, 2)
superfields have twice as many components compared to
N = (1,1), half auxiliary?

e Auxiliary fields < must come in complex pairs.

e These are semi-chiral superfields, im[J., J_]g~'. We call
them /, I, r and r. (Buscher, Lindstrom, Rocek, '88)

A

by1=iDyl, b_r=iD_r,
D_/and D, r are auxiliary.
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Note: other superfields possible

Besides semi-chiral, twisted chiral and chiral superfields other
matter superfields are possible. Complex and real linear and
twisted linear superfields exist as well: they are defined by
constraints quadratic in the superspace derivatives. They
provide a dual description to models in terms of chiral and
twisted chiral superfields.

There are also gauge superfields, they are unconstrained real
or complex superfields.
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Action

e The action is simply
S =4 [ d?0d?0d?h V(X),
where V is an (arbitrary) real function of the semi-chiral,
twisted chiral and chiral superfields.

e Integrating over 4+ and 6~ and eliminating the auxiliary
fields yields explicit expressions for J,, J_, g and b.
Generically they are non-linear expressions of derivatives
of the generalized Kahler potential. Elegant expressions
available.
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Uniqueness

I—=TI(lbw,z),r—=r(r,w,z),w = w'(w),z— Z(z2).
The potential is determined modulo a generalized Kahler
transformation

Vo V+F(w,z)+F(,w,2)+ G(r,w,z) + G(F, w, 2).
Semi-chiral «<» Legendre transformations:

A A - - -

V(/77a ?’ ?) = V(/’7) rv ?) - F(I77) - F(/’7) + G(rv ?) + G(?v ;)
The local “mirror” transformation is
V(LLrFw,w, z,2)— V(LT rzz w w).
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UV properties
One-loop S-function: necessary condition for N = (2,2)
superconformal invariance @ quantum level. Counterterm:
(Grisaru, Massar, AS, Troost, '99)

1 [ o2 20 o278 1 G€t (ns)
Si-toop o L[ P docdin 00
with
Vi Vir Vg Vi Vi V3
Ne=| Vyg Vo Vag |, No=| Vg7 Vi Viz |.
VW7 Vwr VWV_I/ Vz7 Vz? VzZ

and vanishes <

det (N+)
det (N,)

= :t’f-‘r(/v W7Z)’2’f—(r7 V_V,Z)’2

Generalized CY < Ze: EH = constant . E. g. (Hull, Lindstrém,
53 _

Rocek, von Unge, Zabzine '12)
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Examples

Simple example: SU(2) x U(1) = S3 x S'.
e Parameterization: _ ‘
g— e ( cos ¢ e’i"; smwefiz > ,
—siny e Y2 cosy e~ '¥
and
©1, w2, p € Rmod2r and ¢ € [0,7/2]
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Type (1,1): 1 twisted chiral + 1 chiral
Superfields: (Rocek, Schoutens, AS '91)

w = cosy e Pien z=siny e rtiez
Generalized Kahler potential:
Vyzz = [# LIn(1 + q) — § (Inww)?
or
Vizo=—[7% Din(1+q)+ } (Inz2)?
and
Vd,?g% — Vw;ﬁo =—In (ZZ) In (WV_V)

Note: has in fact N = (4, 4) susy, can be lifted to projective
superspace (see U. Lindstrém yesterday):

dct
VO(fC g fC’CT



Introduction

FromN = (1,1)to N = (2, 2)

Type (0,0): 1 semi-chiral
Superfields: (Troost, AS '96)

Generalized Kahler potential:

Vizo=Intinl — [T %0 (1 4 q)
or

and

Virz (I 7,7, 7) = 3(Inr')
with

- 3(n7)° =

Vool lr =r=1F=7=1) —InlIn/' —InTInT
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« Both descriptions are T-dual, dualize along the S’ of
S x S8,

 Note: type-changing occurs: aty = 5: J_ = —J,; at
1/} =0:J_= +J_|_ .
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T-duality and doubled formalism

Intimate relation relation between N = (2,2) o-models and
generalized CY-geometry. Hohm-Hull-Zwiebach: doubled
formalism suggests an intricate generalized geometrical
structure.

T-duality in N = (2, 2) superspace:

e Chiral +> twisted chiral (Gates, Hull, Rocek, '84)

Viw+w, ) V(z+2,---)
e Chiral + twisted chiral ++ semi-chiral (Grisaru, Massar, AS,
Troost, '98)
Vz+zw+w,i(z-=Z-w+Ww), )<
V(II+1Lr+ri(l—1—r+7),---)

Doubled formalism: include both original and dual fields +
“chirality constraint” in doubled space.
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Simple example

¢ The potentials,

V=1(z+2)°
and
V=t (w+ )
are T-dual.
¢ In the doubled space with coordinates z, z, w and w, the
constraint,

wH+w=2z+2
holds, i.e. a kind of coisotropic brane is singled out,
eliminating the “overdoubled” coordinates.
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e The Hull constraints (dX « *dX) follow:
Di(w+w)=Di(z+2)= Di(w— W) =+Ds(z—2).

Notation
e Introduce D4 = b:t + i Dy, Hj):t = b:t —iDy .
{D-i-?@-f-}:a:f:’ {D—ﬂ]ﬁ)—}:a: )
all other (anti-)commutators vanish.
e Chiralfield zzD,z=D_z=0 (alsoD,z =D_Zz = 0).
o Twisted chiral field w: Dyw =D_w = 0 (also
D,w=D_w=0).
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e Implies a theory of chiral bosons
Di(w+w)=Dy(z4+2)=Dy(z—w)=D_(z—w)=0.
But also,

Dy(z—w)=D_(z—w) =0,
implying,

0Lz — 0=(z—w)=0.
So a kind of “chiral” semi- chlral multiplet.
e Extend PST to N = (2,2) superspace: subtle but feasible.

e Study the doubled formulation (classical & quantum).

To be continued...
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