Intel® Advisor Help

Advanced Modeling Options

When you select a Target System of Intel® Xeon Phi™ or Offload to Intel Xeon Phi coprocessor, additional modeling parameters appear below Runtime Modeling area under Intel Xeon Phi Advanced Modeling:

In some cases, you can restructure your code to enable more efficient vector operations. Loop vectorization allows hardware to process data independently in smaller units (usually 64-byte), such as operations on data arrays.

One way to enable more efficient vector operations is to modify a single loop to create a new outer loop where the two loops cover the same iteration space. A technique called strip-mining allows the innermost loop to use vector operations in small chunks.

Other ways to enable more efficient vector operations include examining outermost loops where threading parallelism might already be used, and consider vectorizing its innermost loops and/or callee functions.

Certain innermost loops may benefit from OpenMP 4 constructs. That is, under certain conditions you can use both an omp parallel for threading pragma and a omp simd (or similar) simd vectorization pragma (see the compiler vectorization report and descriptions at http://openmp.org).

The processor microarchitecture determines the type of vector instructions that will be supported and thus the size of data the hardware can process efficiently.

See Also