5
D

Intel(R) Threading Building Blocks

Reference Manual

Document Number 315415-004US

World Wide Web: http://www.intel.com

[®
l n tel Intel(R) Threading Building Blocks

Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL(R) PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY
APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR
DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved"” or "undefined." Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The
information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling 1-800-548-4725, or by visiting Intel's Web Site.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor
family, not across different processor families. See http://www.intel.com/products/processor_number for details.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Atom, Centrino Atom Inside, Centrino Inside, Centrino logo, Core
Inside, FlashFile, i960, InstantlP, Intel, Intel logo, Intel386, Intel486, IntelDX2, IntelDX4, IntelSX2, Intel Atom, Intel Atom
Inside, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel
NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, Itanium, Itanium Inside,
MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium Inside, skoool, Sound Mark, The Journey Inside, Viiv Inside, vPro
Inside, VTune, Xeon, and Xeon Inside are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.
Copyright (C) 2005 - 2009, Intel Corporation. All rights reserved.

Revision History

Document Revision Description Revision
Number Number Date
315415- 1.17 Revise task_group::run_and_wait 2009-Sep-21
004 signatures. Reorder presentation of

task_group.h interfaces. Clarify exception
safety for concurrent_vector. Add
constructor of concurrent_hash_map that
preallocates buckets. Add scalable_msize.

315415- 1.16 Relax task ownership constraints. 2009-Jul-29
003

ii 315415-004US

http://www.intel.com/

Overview i n te l ’

Document Revision Description Revision
Number Number Date
315415- 1.15 Type atomic<T> allows T to be an 2009-Jun-25
002 enumeration type. Add appendices B and

C. Add zero_allocator. Change return
types for concurrent_vector methods
push_back, grow_by and grow_to_at_least.
Rename concurrent_vector method
compact as shrink_to_fit. Remove depth
methods from class task. Add methods
increment_ref_count and
decrement_ref_count to class task. Change
default partitioner from
simple_partitioner to auto_partitioner.
Add tbb_thread: :operator=. Add
parallel_invoke. Add task_group. Add
combinable, enumerable_thread_specific,
and flattened2d. Add thread_bound_filter.
Add parallel_for_each. Add
thbb_hash_compare and tbb_hasher.

1.14 Clarify semantics of concurrent_hash_map 2009-Mar-13
methods insert and erase.
1.13 Update copyright to 2009. Remove 2009-Feb-6

requirement to clear a pipeline before
destroying its filters. Add null_mutex and
null_rw_mutex.

1.12 Add task_scheduler_init::is_active(). 2008-Dec-5
Document new debugging macros and
deprecate old ones. Add
filter::serial_out_of order and
filter::finalize(). Describe automatic
reset of cancellation state by
task: :wait_for_all(). Clarify behavior of
concurrent_vector::clear(). Add
TBB_runtime_interface_version(). Add new
constructors to concurrent_queue.
Consistently use typename keyword for
template parameters.

Reference Manual Tl

intel)

Contents

Intel(R) Threading Building Blocks

L@ Y= VT PP 1
(1= o T=T = I Oo] o V=T o) £ To] o 1= 2
2.1 [N Lo) = 1 o [0 2
2.2 1= 2.0 T] oo)Y 2 3
2.2.1 (0] g o7 =T o) S TP 3
2.2.2 1Yo o 1= 4
2.2.3 CopyConstructible ... e 4
2.3 [0 [T o) A1 1= PP 4
2.3.1 (072 1= 4
2.3.2 Reserved ldentifier Prefixeso 4
2.4 V= T g TCTST o 1= Lo =T SN 5
2.4.1 Thh NaMESPACE ... i 5
2.4.2 tbb::internal Namespaceoveiiiiiii e 5
2.4.3 tbb::deprecated NamMeSPaCecoouiiiiiii i 5
2.4.4 L1 0] o = ox A o o | P 5
2.5 Thread SaletY et 5
2.6 Enabling Debugging FEatUIrescoiiiiii i eaaaea 6
2.6.1 TBB_USE_ASSERT MaCIO ... uuentitiieeieeeeaee et ae e eeeaeeaens 6
2.6.2 TBB_USE_THREADING_TOOLS MACIOuuuinuinneaeeieeaeaneeeeeaeeaeaaens 6
2.6.3 TBB_USE_PERFORMANCE_WARNINGS MaCIOcvvviuineineineineanennens 7
2.7 Version INFOrmMatioNo ettt et aanes 7
2.7.1 RV =T =] Lo T 1 = T o 1 7
2.7.2 TBB_VERSION Environment Variableccccoeiiiiiiiiiiiiii it 8
2.7.3 TBB_runtime_interface_version FUNCHIONc.oooiiiiiiiiiiiieieenns 8
2.8 TBB_DEPRECATED IMEBCIO - uueutitataat ettt et et et et et et et et et e e e e e e eaes 9
Y [o o] g 1 0 0 10
3.1 SPlittable CONCEPT ... ettt 10
3.1.1 £ 0] 11 SO = 1= 11
3.2 RANGE CONCEPT. ..t ettt ettt 11
3.2.1 blocked_range<Value> Template Classcccooiiiiiiiiiiiiiiiiaine. 13
B.2.0. 0 SIZE By Pt 15
3.2.1.2 blocked_range(Value begin, Value end, size_t grainsize=1
PP 15
3.2.1.3 blocked_range(blocked_range& range, split)............... 15
3.2.1.4 size_type Size() CONSL. ... 16
3.2.1.5 bool empty() CONSL ..connniiiiii i 16
3.2.1.6 size_type grainsize() CONSt.......ooiiiiiii i, 16
3.2.1.7 bool is_divisible() CONStccoiiiiiiiii e 16
3.2.1.8 const_iterator begin() const ... 17
3.2.1.9 const_iterator end() CONSt......coiiieiiiiiiiiiiiii i, 17
3.2.2 blocked_range2d Template ClasS......cccceiiiiiiiiiiiiiii i 17
3.2.2.1 (o) VR = Talo [T 1Y/ o1 19
3.2.2.2 COl range By P .ot 20

3.2.2.3 blocked_range2d<RowValue,ColValue=>(RowValue

row_begin, RowValue row_end, typename
row_range_type::size_type row_grainsize, ColValue

315415-004US

Overview

col_begin, ColVvalue col_end, typename

col_range_type::size_type col_grainsize) 20
3.2.2.4 blocked_range2d<RowValue,ColValue=>(RowValue

row_begin, RowValue row_end, ColValue col_begin,

ColValue col_end)coiiiiiiiii e 20
3.2.2.5 blocked_range2d<RowValue,ColValue> (
blocked_range2d& range, split)ccoovviiiiiiiiiiiiiiian.. 20
3.2.2.6 bool empty() CONSL ... 21
3.2.2.7 bool is_divisible() CONStccooiiiiiiii e 21
3.2.2.8 const row_range_type& rows() CONSt.......ccocevvieeineennnnn. 21
3.2.2.9 const col_range_type& cols() constooeiiiiiiiiiian.. 21
3.2.3 blocked_range3d Template ClasS.......cccvviiiiiiiiiiiii i 21
3.3 = U) T = 22
3.3.1 auUto_partitioner Class 23
3.3.1.1 auto_partitioner() ...ceeeiiiiii e 24
3.3.1.2 ~auto_partitioner()coeieeiii e 24
3.3.2 affinity_partitioner.o e 24
3.3.2.1 affinity_partitioner()......ccooeiieeiiii e 26
3.3.2.2 —affinity_partitioner()ccoooiiiiii e 26
3.3.3 simple_partitioner Classoiieiiiiii e 27
3.3.3.1 simple_partitioner() -..ooooeeiii e 27
3.3.3.2 ~simple_partitioner()ccoooiiiiiiiiii e 27
3.4 parallel_for Template FUNCHION i 27
3.5 parallel_reduce Template FUNCTION ... i 31
3.6 parallel_scan Template FUNCLIONcoiiiiiiii e 36
3.6.1 pre_scan_tag and final_scan_tag Classes........ccccvviiiiiiiiiiiiiinnnnns 41
3.6.1.1 boolis_final_scan()ccooeiiiiiii e 41
3.7 parallel_do Template FUNCLION ...t e eae e 42
3.7.1 parallel_do_feeder<Item= ClassSccoiiiiiiiiiiiii e 43
3.7.1.1 void add(const Item& item)ccooiiiiiiiiiiiiiiiiiiaan, 44
3.8 parallel_for_each Template FUNCLIONo 44
3.9 PIPEIINE ClaSS ..ot 44
3.9.1 PIPEIINE () e 46
3.9.2 i 011 01 1T o L= () 1 46
3.9.3 void add_filter(filter& f) ..o i 46
3.94 void run(size_t max_number_of_live_tokens)................ool. 46
3.9.5 VOIA ClEAIN() cnnniiiiii e e 47
3.9.6 LLLLE=T g O = 1 PP 47
3.9.6.1 filter(mode filter_mode)......ccooiiiiiiiiii e 48
3.9.6.2 ~fier() e 48
3.9.6.3 boolis_serial() CONSt ..o 48
3.9.6.4 boolis_ordered() CONSt......ccoeiiiiiiiiiiiiiiii i 48
3.9.6.5 virtual void* operator()(void * item)............coiiil. 49
3.9.6.6 virtual void finalize(void * item) ..., 49
3.9.7 thread_bound_filter Classcooeeiiiii e 49
3.9.7.1 thread_bound_filter(mode filter_mode)........................ 52
3.9.7.2 result_type try_process_item() . ..ccvieeiiiiiiiiiiiiiiieaen 52
3.9.7.3 result_type process_item()coiiiiiiiiiiiii e 52
3.10 parallel_sort Template FUNCHION ...t e e aneas 52
3.11 parallel_invoke Template FUNCLION ..o e 54
(7o) g1 7= 11 01T £ J P 56
4.1 Container RanNge CONCEPT i eeas 56
4.2 concurrent_hash_map Template Class........ccoiiiiiiiii it 57

Reference Manual

Vi

4.2.1

4.2.2

4.2.3

4.2.4

4.2.5

4.2.6

4.2.7

Intel(R) Threading Building Blocks

Whole Table Operations....... ..o 60
4.2.1.1 concurrent_hash_map(const allocator_type& a =
allocator_tyPe()) -eeoeeiieeii e 60
4.2.1.2 concurrent_hash_map(size_type n, const allocator_type&
a =allocator_type()).eeeeeiiii i 61
4.2.1.3 concurrent_hash_map(const concurrent_hash_map&
table, const allocator_type& a = allocator_type()) 61

4.2.1.4 template<typename Inputlterator>
concurrent_hash_map(Inputlterator first, Inputlterator

last, const allocator_type& a = allocator_type()) 61
4.2.1.5 ~concurrent_hash_map() ...coooieiiiiiiiiiiie 61
4.2.1.6 concurrent_hash_map& operator= (
concurrent_hash_map& source)........ccoooiieiiiiiiiiiian... 61
4.2.1.7 void swap(concurrent_hash_map& table) 62
4.2.1.8 VOId Clear() «ueee e 62
4.2.1.9 allocator_type get_allocator() const..........cccovviieeiinnnn.. 62
[07e] g To1 U] g = o Vo ol =T3S 62
4.2.2.1 (o0] 157 M= Lo o =TS o] 62
4.2.2.2 BCCESSON .uiiiii it 64
Concurrent OPerationscoiiiiii e 65
4.2.3.1 size_type count(const Key& key) conste... 66
4.2.3.2 bool find(const_accessor& result, const Key& key) const67
4.2.3.3 bool find(accessor& result, const Key& key)................ 67
4.2.3.4 bool insert(const_accessor& result, const Key& key)67
4.2.3.5 bool insert(accessor& result, const Key& key) 67
4.2.3.6 bool insert(const_accessor& result, const value_type&
VaAlUE) e 68
4.2.3.7 bool insert(accessor& result, const value_type& value).68
4.2.3.8 bool insert(const value_type& value)c.ccoeveeinennnn. 68
4.2.3.9 template<typename Inputlterator> void insert(
Inputlterator first, Inputlterator last)ccccenee. 68
4.2.3.10 bool erase(const Key& Key)coiiiiiiiiiiiiiiiiiiiiiienn. 69
4.2.3.11 bool erase(const_accessor& item_accessor)................ 69
4.2.3.12 bool erase(accessor& item_accessor).....ooeceeveieannnnnn.. 69
Parallel Iteration ..o e 69
4.2.4.1 const_range_type range(size_t grainsize=1) const 70
4.2.4.2 range_type range(size_t grainsize=1)........cccccieeiiinn.. 70
(0= T o 7= o1 | 1Y PP 70
4.2.5.1 size_type Size() CONSt...onueiiii e 70
4.2.5.2 bool empty() CONSt ...eiiiiiiiiiii e 70
4.2.5.3 size_type max_size() CONSt ..ot 70
LT = 0] T 70
4.2.6.1 iterator begin() ... e e 71
4.2.6.2 Qterator eNd() «oooueeei e 71
4.2.6.3 const_iterator begin() const ...t 71
4.2.6.4 const_iterator end() CONSt........coiiiiiiiiiiiiiiiia 71
4.2.6.5 std::pair<iterator, iterator> equal_range(const Key& key
) 71
4.2.6.6 std::pair<const_iterator, const_iterator> equal_range(
const Key& Key) CONSE; ..o 71
Global FUNCHIONS. ... 71

4.2.7.1 template<typename Key, typename T, typename
HashCompare, typename Al, typename A2> bool
operator==(const
concurrent_hash_map<Key,T,HashCompare,A1>& a,

315415-004US

Overview

4.3

4.4

4.5

Reference Manual

intel)

const concurrent_hash_map<Key,T,HashCompare,A2>&
D) s 72
4.2.7.2 template<typename Key, typename T, typename
HashCompare, typename Al, typename A2> bool
operator!=(const
concurrent_hash_map<Key,T,HashCompare,A1> &a,
const concurrent_hash_map<Key,T,HashCompare,A2>
1 o) T 72
4.2.7.3 template<typename Key, typename T, typename
HashCompare, typename A> void
swap(concurrent_hash_map<Key, T, HashCompare, A>
&a, concurrent_hash_map<Key, T, HashCompare, A> &b)72

4.2.8 tbb_hash_compare Class........oooiiii e 72
concurrent_queue Template ClassS.ccoeeiiiiiiiii i aanas 73
4.3.1 concurrent_queue(const Alloc& a = AlloC ())eeveereiiiiiiiiiinniinnn. 75
4.3.2 concurrent_queue(const concurrent_queueé& src, const Alloc& a =
Y | T T () 1 76
4.3.3 template<typename Inputlterator> concurrent_queue(Inputlterator
first, Inputlterator last, const Alloc& a = AloC())..eeeviiiiiiiiianiiaen.. 76
4.3.4 ~CONCUITENT_QUEUE() -« e ettt ettt et ettt et et et ee e eneeaas 76
4.3.5 void PUSh(CONSE T& SOUICE) .nnnnee it aee e 76
4.3.6 bool try_pop (T& destination)c.cceiiiiiiiii i eeieaeaas 76
4.3.7 VOIA ClEAN() o 76
4.3.8 size_type unsafe_sSize() CONSL..... ..ot 77
4.3.9 bool eMPLy() CONSE ...e e 77
4.3.10 Alloc get_allocator() CONSE ... 77
L Tt It R 1 (= = 1 0] 77
4.3.11.1 iterator unsafe_begin() ..o 78
4.3.11.2 iterator unsafe_end() ...oooiiiiiiiii e 78
4.3.11.3 const_iterator unsafe_begin() const ...l 78
4.3.11.4 const_iterator unsafe_end() const.........ccoooiiiiiiiiiien.. 78
concurrent_bounded_queue Template Classccoviiiiiiiiiieiiiiiiiiieiiiaeas 78
4.4.1 VOid PUSh(CONSE T& SOUICE) .ueunuiiiiii e e eee e 80
4.4.2 void pPoP(T& destination)ooieiiiii i 81
4.4.3 bool try_push(CONSt T& SOUICE) ..nuuiiniiiii e 81
4.4.4 bool try_pop(T& destination)........coiiiiiiiiiiiii e 81
4.4.5 Size_type SIZe() CONST .o e 81
4.4.6 bool eMpPty() CONSE ... e 81
4.4.7 size_type capacity() CONSE ... 82
4.4.8 void set_capacity(size_type capacity)ccooeiieiiiiiiiiiiiieaneen 82
(oo] 1o 8] g =T 0) =T X 10 82
4.5.1 Construction, Copy, and ASSIGNMENTtoiiiiiiiiiiiii e 87
4.5.1.1 concurrent_vector(const allocator_type& a =
allocator_type()) «eeeeeerii e 87
4.5.1.2 concurrent_vector(size_type n, const_reference t=T(),
const allocator_type& a = allocator_type());..ccceveeneannns 87

4.5.1.3 template<typename Inputlterator> concurrent_vector(
Inputlterator first, Inputlterator last, const

allocator_type& a = allocator_type()) -ccveveeeiiiieiiiinaann. 87
4.5.1.4 concurrent_vector(const concurrent_vector& src) 87
4.5.1.5 concurrent_vector& operator=(const concurrent_vector&
L] o T 88
45.1.6 template<typename M> concurrent_vector& operator=(
const concurrent_vector<T, M>& SIC)..cccvvveviinienannnnnnn. 88
Wil

l n tel Intel(R) Threading Building Blocks

4.5.1.7 void assign(size_type n, const_reference t) 88
4.5.1.8 template<class Inputlterator > void assign(Inputlterator

first, Inputlterator last)cooviiiiiiii e 88

4.5.2 Whole Vector Operationseiiiiiiii i 88

4.5.2.1 void reserve(Size_typPe N).ceiieiiiiii it 88

4.5.2.2 void shrink_to_fit()ccoiiii 89

4.5.2.3 void swap(concurrent_VvVector& X)ccoveeiiiiiiiniinennannnn. 89

4524 vOId Clear() «cocooe e 89

4.5.2.5 —~concurrent_VeCtOr() . uueeieii i 89

4.5.3 CoNCUrrent GroWth ... e 89
4.5.3.1 iterator grow_by(size_type delta, const_reference t=T())90

4.5.3.2 iterator grow_to_at least(size_type n).....cccceiiiiininnn... 90

4.5.3.3 iterator push_back(const_reference value) 90

4.5.4 A CCESS it 91

4.5.4.1 reference operator[](size_type index)......c.ccevieevnennnn. 91

4.5.4.2 const_refrence operator[](size_type index) const........ 91

4.5.4.3 reference at(size_type index)coooeviiiiiiiiiiiiieiieann.. 91

4.5.4.4 const_reference at(size_type index) const.................. 91

4.5.4.5 reference front()...coeeoeiiiiiiiiii e 91

4.5.4.6 const_reference front() const ..., 92

4.5.4.7 reference back() ...ovviieiiiii i 92

4.5.4.8 const_reference back() CONSt.......ccviiiiiiiiiiiiiiiiiene, 92

4.5.5 Parallel Iterationooooiiii i 92

4.5.5.1 range_type range(size_t grainsize=1)..........c.ccevinennnn. 92

4.5.5.2 const_range_type range(size_t grainsize=1) const 92

4.5.6 (=T o T- 171 1/ 92

4.5.6.1 size_type Size() CONSt...o.. i 92

4.5.6.2 bool empty() CONSt ...uiiiiiiiiiii e 93

4.5.6.3 size_type capacity() CONSt......ccoviiiiiiiiiiiiiieiie e 93

4.5.6.4 size_type max_sSize() CONStoiiiiiiiiii i 93

4.5.7 =T = Y 0 P 93

4.5.7.1 iterator Begin() . .eeeei e 93

4.5.7.2 const_iterator begin() constcoiiiiiiiiiiiii 93

4.5.7.3 Qterator end() oo 93

4.5.7.4 const_iterator end() CONSt........coiiiiiiiiiiiiiiiiiiiii e 94

4.5.7.5 reverse_iterator rbegin()cooiiiiiiiiii e 94

4.5.7.6 const_reverse_iterator rbegin() constooeiiinet.. 94

A4.5.7.7 terator reNd() «oueee oo e 94

4.5.7.8 const_reverse_iterator rend()ccooiiiiiiiiiiiiiiii 94

5 I a1 €=T= Vo B o To= 1] o] =T [S 95

5.1 combinable Template Class.......ooiiiiiiiiiiii i et aanas 95

5.1.1 CoOMbBINADIE() .o e 96

5.1.2 template<typename FInit> combinable(FInit finit) 96

5.1.3 combinable(const combinable& other); 96

51.4 ~COMDBINADIE() c e s 96

5.1.5 combinable& operator=(const combinable& other) 97

5.1.6 VOIA ClEAI() ettt et 97

5.1.7 LIR30 (o Yo = | () 1 97

5.1.8 T& local(bOOI& ©XISTS) oot e 97

5.1.9 template<typename FCombine>T combine(FCombine fcombine)....97

5.1.10 template<typename Func=> void combine_each(Func f) 98

5.2 enumerable_thread_specific Template Class.......c.cocviiiiiiiiiiiiiiiii i 98

521 Whole Container OperationS.........ooeeieeiiieii i eaeeas 101

5.2.1.1 enumerable_thread_specific() - ..ccoeviiiiiiiiiiiiias 102

Viii 315415-004US

[®
Overview l n tel
5.2.1.2 enumerable_thread_specific(const
enumerable_thread_specific &)ccoiiiiiiiiiiin. 102
5.2.1.3 enumerable_thread_specific(const &exemplar) 102
5.2.1.4 —enumerable_thread_specific()ccoviiiiiiiiiiiiia... 102
5.2.1.5 void clear() c.coeeieiiii i 102
5.2.2 Concurrent OPerationscoiiii e 102
5.2.2.1 reference local() ...oooeeeiiiiiiiii i 102
5.2.2.2 T& local(bool& eXiStS) ...uueiiiiiiiiii i 103
5.2.2.3 size_type Size() CONSE......iiiiii i 103
5.2.2.4 bool empty() CONSE ... 103
5.2.3 (67071 9101 1 11 5T [103
5.2.3.1 template<typename FCombine>T combine(FCombine
fcomMbINe) .. 103
5.2.3.2 template<typename Func> void combine_each(Func f) 104
524 Parallel 1terationoooeoiiii e 104
5.2.4.1 const_range_type range(size_t grainsize=1) const 104
5.2.4.2 range_type range(size_t grainsize=1)..........cccceiuennnn. 104
5.2.5 ST = 0] T 104
5.2.5.1 iterator begin()...ccviiii i 104
5.2.5.2 iterator €NA() «oouueeeii s 105
5.2.5.3 const_iterator begin() constccoiiiiiiiiiiiii 105
5.2.5.4 const_iterator end() CONSt.......cviiiiiiiiiiiiiiiieaieeaes 105
53 flattened2d Template Classo 105
5.3.1 Whole Container OperationS..........ooeeiiiiieiii it 108
5.3.1.1 flattened2d(const ContaiNer& C); ...eoeeviiriiieiienanennnn. 108
5.3.1.2 flattened2d(const Container& c, typename
Container::const_iterator first, typename
Container::const_iterator last)...........ccooioiiiiiiiii... 108
5.3.2 Concurrent OPEeratioNsiiiii i et 108
5.3.2.1 size_type size() CONSt.ot 108
5.3.3 ST = 0] T 108
5.3.3.1 iterator begin() .o oeeiie e 108
5.3.3.2 iterator €NA() «oouueeiii et 108
5.3.3.3 const_iterator begin() constcooiiiiiiiiiiii 109
5.3.3.4 const_iterator end() CONSt.......coiiiiiiiiiiiiiiiiiiiaas 109
5.3.4 ULty FUNCHIONS ..ot e eaaeeas 109
5.3.4.1 template <typename Container> flattened2d<Container>
flatten2d(const Container &c, const typename
Container::const_iterator b, const typename
Container::const_iterator €)c.ocovviiiiiiiinninnaeann.. 109
5.3.4.2 template <typename Container> flattened2d(const
CONtAINEE &C) . uiiie e 109
6 [Y/1= 0 aToT oY A | (o Tox 1 o o 110
6.1 WY [Y%= 1 {01 g @] g To =1 o | {0 110
6.2 tbb_allocator Template Classccoiiiiiiii e 111
6.3 scalable_allocator Template Classceoii i 111
6.3.1 C Interface to Scalable Allocator ..., 112
6.3.1.1 size_t scalable_msize(void* ptr)cccoivviiiiiiniinn.... 114
6.4 cache_aligned_allocator Template Classcccoviiiiiiiiiiiiii e 114
6.4.1 pointer allocate(size_type n, const void* hint=0) 116
6.4.2 void deallocate(pointer p, Size_type N) ...coviiiiiiiiiiiiiiiiiieaaaas 116
6.4.3 char* _Charalloc(Size_type SIiZ€) ..coiiiiiiiiiiii i 116
6.5 =] o T = 1|0 o> o] 116

Reference Manual

Intel(R) Threading Building Blocks

6.6 aligned_space Template Classc.ooiiiiiiiii e 118
6.6.1 AlIGNEA_SPACE() uueiiiiit it 118
6.6.2 ~aligNed_SPACE() +etuunittii e 118
6.6.3 L Iad < =T Lo 1 PP 119
6.6.4 N 5= o Lo () T 119
SYNCNIONI ZaAt 0N < ...t 120
7.1 MUBEX S e 120
7.1.1 Y U1 (=) Q0] g Tod =7 o | S 120
7.1.1.1 C++0x Compatibilitycoooiiiiii 121
7.1.2 IMUEEX ClASS ettt ne e 122
7.1.3 rEeCUrSIVE _MUEEX ClaSS .uuueiiiiiiiiii ittt et eciieeeeans 122
7.1.4 SPIN_MUEEX ClaSS . ettt ettt e e e aanaes 123
7.1.5 queuing_MUEEX ClassS .. .o 123
7.1.6 ReaderWriterMuteX CONCEPTL.....cviiiiiiii i e ee e 124
7.1.6.1 ReaderWriterMuteX() . ..ceeueeineeieaeae e 125
7.1.6.2 ~ReaderWriterMUutex() ..cceeeeeemiiiiiii i eeiee e 125
7.1.6.3 ReaderWriterMutex::scoped_locK().....cooveviiviiiiennnnn. 125
7.1.6.4 ReaderWriterMutex::scoped_lock(ReaderWriterMutex&
rw, bool write =true).......cccoviiiiiiii e 125
7.1.6.5 ReaderWriterMutex::~scoped_lock()ccoeviiiiiiiii.t. 126
7.1.6.6 void ReaderWriterMutex:: scoped_lock:: acquire(
ReaderWriterMutex& rw, bool write=true) 126
7.1.6.7 bool ReaderWriterMutex:: scoped_lock::try_acquire(
ReaderWriterMutex& rw, bool write=true) 126
7.1.6.8 void ReaderWriterMutex:: scoped_lock::release()........ 126
7.1.6.9 bool ReaderWriterMutex::
scoped_lock::upgrade_to_writer()......ccooeieeiiiiiaiiian... 126
7.1.6.10 bool ReaderWriterMutex::
scoped_lock::downgrade_to_reader()......cccccevievinennn.. 127
7.1.7 SPIN_IW_MUEEX Class ..ot 127
7.1.8 queuing_rw_muteX Class.coieiiiii i 127
7.1.9 NUIL_MUEEX ClaSS ...t 128
7.1.10 NUILrw_mUEeX ClassS...cciiiiii ittt et e aaaes 128
7.2 atomic Template Classo e 129
7.2.1 memory_semantics EnUmM...... ... e 132
7.2.2 value_type fetch_and_add(value_type addend)ccooeet 132
7.2.3 value_type fetch_and_increment() ..ot 132
7.2.4 value_type fetch_and_decrement()ccooiiiiiiiiiiiiiiiiiiiiiiaes 132
7.2.5 value_type compare_and_SWapPcviueeiuerie e aanens 132
7.2.6 value_type fetch_and_store(value_type new_value)................. 133
LI L0011 T 134
8.1 L T2 S o T U O - T 134
8.1.1 static tick_count tick_count::NOW() ...coviiiiiiiiiii s 135
8.1.2 tick_count::interval_t operator—(const tick_count& t1, const
TICK_COUNT& TO) oot 135
8.1.3 tick_count::interval_t Classcccvviiiiiiiiii i 135
8.1.3.1 interval () -ceeeiieiii i 136
8.1.3.2 interval_t(double sec)coooiiiiiiii 136
8.1.3.3 double seconds() CONSt......coiiiiiiiiii i iiiieiieaieeaaes 136
8.1.3.4 interval_t operator+=(const interval_t& i)................ 136
8.1.3.5 interval_t operator-=(const interval_t& i)................. 136

315415-004US

[®
Overview l n tel
8.1.3.6 interval_t operator+ (const interval_t& i, const
INterval_t& J) «oviii e 137
8.1.3.7 interval_t operator— (const interval_t& i, const interval_t&
T) e 137
9 JLIE= L1 G] 01U T 01 138
9.1 TASK _GrOUP ClasS. .t 138
9.1.1 =T o | o] U] o () T P 140
9.1.2 e ©= 1 (o | (o 18] o 1 () T PP 140
9.1.3 template<typename Func> void run(const Func& f) 140
9.1.4 template<typename Func> void run (task_handle<Func>& handle
) PP 140
9.1.5 template<typename Func> void run_and_wait(const Func& f) ... 140
9.1.6 template<typename Func> void run _and_wait(
task_handle<Func=& handle); ... 141
9.1.7 task_group_Status Wait().....oeeeueernieie e 141
9.1.8 bool is_canceliNng() . .eeeo e e 141
9.1.9 AVZ0] Lo o1 o [t = | () T 141
9.2 task_group_Status ENUM ...t 141
9.3 task_handle Template Class.co i 142
9.4 make_task Template FUNCHIONooiiiiiii e 142
9.5 structured_task_group ClasSt 142
9.6 is_current_task_group_canceling Function 144
10 TasK SCREAUIET ... e e et 145
10.1 Scheduling AlQOrithm 146
10.2 task_scheduler_init Classcciiiiiiiiii e eaaeeas 147
10.2.1 task_scheduler_init(int number_of_threads=automatic,
stack_size_type thread_stack _Size=0)cccoiiiiiiiiiiiiiiniain... 149
10.2.2 ~task_scheduler_init() . ..ooeeiiiii s 149
10.2.3 void initialize(int number_of_threads=automatic)..................... 149
10.2.4 vOId termMiNate() ... ucene et 150
10.2.5 intdefault_num_threads()coviiiiiiiiii e 150
10.2.6 bool is_active() CONSL. ... 150
10.2.7 Mixing With OpenMP.....o e e 150
10.3 tASK Class i e 151
10.3.1 task DeriVationot 154
10.3.1.1 Processing of execute() ..ooovviiiiiiiiiii i 154
10.3.2 task AHOCALION ...t e e 155
10.3.2.1 new(task::allocate_root(task_group_context& group)) T155
10.3.2.2 new(task::allocate_root()) T ..cooeeiieiiiiiiiieiieiieieenns 155
10.3.2.3 new(x.allocate_continuation()) T.......ccoeviiiiiiiiiieaainns 155
10.3.2.4 new(x.allocate child()) T .ceiviiiiiiiiiiiiiii e 156
10.3.2.5 new(x.task::allocate_additional_child_of(y))............ 156
10.3.3 Explicit task DeStruCtionoiiiiiiii i aaes 157
10.3.3.1 void destroy(task& Victim)c..ccoiiiiiiiiiiiiiiie 157
10.3.4 RecyCliNg TasKS. ..o s 158
10.3.4.1 void recycle_as_continuation()cooeevieiiiiieninanns 158
10.3.4.2 void recycle_as_safe_continuation()cccoooooii. 158
10.3.4.3 void recycle_as_child_of(task& new_parent)............. 159
10.3.4.4 void recycle _to_reexecute()ccoviiieiiiiiaiiiiiiiaaas 159
10.3.5 SYNCRroNIZationcooiiiiii e e e 159
10.3.5.1 void set_ref_count(intcount)ccooeiiiiiiiiiiinanns 160
10.3.5.2 void increment_ref_count();.....ccoviiiiiiiiiiiiiiiis 160
Reference Manual Xii

l n tel Intel(R) Threading Building Blocks

10.3.5.3 int decrement_ref_count(); -.cooiieeiiiiiiiii s 160

10.3.5.4 void wait_for_all() «..oeoeeeiii e 160

10.3.5.5 void spawn(task& T)ceeiieiiiniii e 161

10.3.5.6 void spawn (task_list& list)c.ooooiiiiiiiiiiiiins 162

10.3.5.7 void spawn_and_wait_for_all(task& t) 162

10.3.5.8 void spawn_and_wait_for_all(task_list& list)............. 162

10.3.5.9 static void spawn_root_and_wait(task& root)............ 163

10.3.5.10 static void spawn_root_and_wait(task_list& root_list) 163

10.3.6 1aSK CONTEXT ... ettt aaes 163
10.3.6.1 static task& Self() ...ovoeeiiniii e 163

10.3.6.2 task™ parent() CONSt.......ooiiiiiiii i 163

10.3.6.3 bool is_stolen_task() const........ccoiiiiiiiiiiiiiiiiiiea, 164

10.3.7 Cancellation. ...t 164
10.3.7.1 bool cancel_group_execution()cccvvviiiieiiiiniiinnnnn. 164

10.3.7.2 bool is_cancelled() conSt........coiiiiiiiiiiiiiiiiiiieeees 164

10.3.8 ANy et e 164
10.3.8.1 affinity _id ..o 165

10.3.8.2 virtual void note_affinity (affinity_id id).................... 165

10.3.8.3 void set_affinity(affinity_id id)ccooeiiiiiiiii, 165

10.3.8.4 affinity_id affinity() const...........oooiiiiiiis 165

10.3.9 task DebUQGQING - .uuiiiii ettt 165
10.3.9.1 state_type state() CONStccoviiiiiiiiii e 165

10.3.9.2 intref_count() CONSt ..o 167

10.4 emPLY_task Class . ..t 168
10.5 @Sk St Class. .. . i e 168
10.5.1 t@SK _HST() «eunnneei e s 169

10.5.2 —tASK _HIST() tounieiiiii ittt e, 169

10.5.3 bool empty() CONSt ...t 169

10.5.4 push_back(task& task)ooiiiiiii it 169

10.5.5 task& task pop_front()cveerie i 170

10.5.6 VOIA ClEAI() uueiii ettt 170

O I ST = 1] S o | o 18T o TR o 01 a1 (=) 170
10.6.1 task_group_context(kind_t relation_to_parent=bound)............. 171

10.6.2 ~task _group_CONTEXT() «oeuumeii et 171

10.6.3 bool cancel_group_exeCution()ccoeeuiiieiiiii i 171

10.6.4 bool is_group_execution_cancelled() const...............coooiiiiiia... 172

10.6.5 VOIA IrESET() tuutiiiiiie ittt et ettt et e e et e e aaaes 172

10.7 task_scheduler_ODSEIVEr ... e eees 172
10.7.1 task_scheduler_observer() .. oo 173

10.7.2 ~task_scheduler_observer() ... oot 173

10.7.3 void observe(bool state=true)ccoiiiiiiiiiiiiii i 173

10.7.4 bool is_observing() CONSL. ... 173

10.7.5 virtual void on_scheduler_entry(bool is_worker) 173

10.7.6 virtual void on_scheduler_exit(bool is_worker) ...t 174

10.8 Catalog of Recommended task Patternsccoooiiiiiiiiiiiiiiiii e 174
10.8.1 Blocking Style With K Children.........ccoiiiiiiiiiiiiiiic e 174

10.8.2 Continuation-Passing Style With k Children 175
10.8.2.1 Recycling Parent as Continuationc.cccvviinnana.. 175

10.8.2.2 Recycling Parentas a Childccoooiiiiiiiiiiiiiiians 176

10.8.3 Letting Main Thread Work While Child Tasks Run 177

11 [T =] o 1 o] o S PP 178
I O A o] o T =3 (o= o1 i [o 1 PP 178
11.2 captured_eXCePLION e 179

Xii 315415-004US

Overview

12

13
Appendix A

Appendix B
Appendix C

11.2.1 captured_exception(const char* name, const char* info) 180
11.3 movable_exception<ExceptionData=ccciiiiiiiiiiiiiiiii i 180
11.3.1 movable_exception(const ExceptionData& Src)cccvvveeennn... 181
11.3.2 ExceptionData& data() throw()cooeeiiiiiiiiiiiiiiieie e 181
11.3.3 const ExceptionData& data() const throw()ccovviiiiiiiiniann... 181
0 S 0§ 1 E= 1S | o 7= L PP 181
LI 52T L P 183
12,1 tbb_thread Class e 183
12.1.1 thb thread() - ccen e 184
12.1.2 template<typename F> tbb_thread(Ff)cooiiiiiiiiiiiiiines. 185
12.1.3 template<typename F, typename X=> tbb_thread(F f, X X)........... 185
12.1.4 template<typename F, typename X, typename Y= tbb_thread(F f, X
D R A7) T PP 185
12.1.5 tbb_thread& operator=(tbb_thread& X)cccooiiiiiiiiiiiiii.. 185
12.1.6 ~tbb _thread......ccciiiiiii e s 185
12.1.7 bool joinable() CONSt ... et 185
D220 R S T VoY o I o] [() P 186
12.1.9 vOId detacCh() ceuueene et 186
12.1.10 id get_id() CONSTL. ...ttt aas 186
12.1.11 native_handle_type native_handle()ccooiiiiiiiiiiiiiiiienen. 186
12.1.12 static unsigned hardware_concurrencCy() --c.oooeeeeaioanaiienaiaaaaannns. 186
12.2 thb thread:: i .o e 187
12.3 this_tbb_thread NameSPaCeouiiii e 187
12.3.1 tbb_thread::id get_id() - cccvieeriiei i 188
12.3.2 VOId YielA() e et s 188
12.3.3 void sleep(const tick_count::interval_t & i)ccovieiiiiiiiiinnnn.. 188
(R (=] =1 0 o] S 189
ComPatibility FEAtUIES ...ttt ettt ettt e et e e eaaneeenn 190
Al parallel_while Template Class.......c.cuiiiiiiii i e e s 190
A.l.l parallel_while<Body=().....cciiiiiiiiiiii e 191
A.l1.2 ~parallel_while<Body=() . ..cteitiiiiiii e 192
A.1.3 Template <typename Stream> void run(Stream& stream, const
BOAY& DOAY) e 192
A.l.4 void add(const value_type& item) ...t 192
A.2 Interface for constructing a pipeline filter..........oooiiiii i 192
A.2.1 filter::filter(bool is_serial)ccooeiiiiiiiii e 192
A.2.2 filter: serial ... 193
A.3 [DT=T018To [o 10T 1Y, = Tod o 1= S 193
A.4 tbb::deprecated::concurrent_queue<T,Alloc> Template Class 193
A5 Interface fOr CONCUIreNt_VECTOK ... i 195
A5.1 V7o TTo o011 o] o= Tod i () N 196
A.6 Depth interface for Class taskc.uoiiiiiiiii e 196
PPL CompPatibilityo e 197
L0 1TV o T Eo TS U PP 198
Cc.1 A4V T Lo S 1 T 198

Reference Manual Xiiii

Overview

1

Overview

TIP:

Reference Manual

Intel® Threading Building Blocks (Intel® TBB) is a library that supports scalable
parallel programming using standard I1SO C++ code. It does not require special
languages or compilers. It is designed to promote scalable data parallel programming.
Additionally, it fully supports nested parallelism, so you can build larger parallel
components from smaller parallel components. To use the library, you specify tasks,
not threads, and let the library map tasks onto threads in an efficient manner.

Many of the library interfaces employ generic programming, in which interfaces are
defined by requirements on types and not specific types. The C++ Standard Template
Library (STL) is an example of generic programming. Generic programming enables
Intel® Threading Building Blocks to be flexible yet efficient. The generic interfaces
enable you to customize components to your specific needs.

The net result is that Intel® Threading Building Blocks enables you to specify
parallelism far more conveniently than using raw threads, and at the same time can
improve performance.

This document is a reference manual. It is organized for looking up details about
syntax and semantics. You should first read the Intel® Threading Building Blocks
Getting Started Guide and the Intel® Threading Building Blocks Tutorial to learn how
to use the library effectively.

Even experienced parallel programmers should read the Intel® Threading Building
Blocks Tutorial before using this reference guide because Intel® Threading Building
Blocks uses a surprising recursive model of parallelism and generic algorithms.

General Conventions

2.1

This section describes conventions used in this document.

Notation

Literal program text appears in Courier font. Algebraic placeholders are in
monospace italics. For example, the notation blocked_range<Type> indicates that
blocked_range is literal, but Type is a notational placeholder. Real program text

replaces Type with a real type, such as in blocked_range<int>.

Class members are summarized by informal class declarations that describe the class
as it seems to clients, not how it is actually implemented. For example, here is an

informal declaration of class Foo:
class Foo {

public:
int x(O;
int y;
~Foo(Q);
}:

The actual implementation might look like:

namespace internal {
class FooBase {
protected:
int xO;
}:

class Foo v3: protected FooBase {

private:
int internal_stuff;
public:
using FooBase: :X;
int y;

}

typedef internal::Foo_v3 Foo;

The example shows two cases where the actual implementation departs from the

informal declaration:

e Foo is actually a typedef to Foo_v3.

315415-004US

General Conventions i n te l ® >

2.2

2.2.1

e Method x() is inherited from a protected base class.
e The destructor is an implicit method generated by the compiler.

The informal declarations are intended to show you what you need to know to use the
class without the distraction of irrelevant clutter particular to the implementation.

Terminology

This section describes terminology specific to Intel® Threading Building Blocks (Intel®
TBB).

Concept

A concept is a set of requirements on a type. The requirements may be syntactic or
semantic. For example, the concept of “sortable” could be defined as a set of
requirements that enable an array to be sorted. A type T would be sortable if:

e X < y returns a boolean value, and represents a total order on items of type T.
e swap(x,y) swaps items x and y

You can write a sorting template function in C++ that sorts an array of any type that
is sortable.

Two approaches for defining concepts are valid expressions and pseudo-signatures?.
The 1SO C++ standard follows the valid expressions approach, which shows what the
usage pattern looks like for a concept. It has the drawback of relegating important
details to notational conventions. This document uses pseudo-signatures, because
they are concise, and can be cut-and-pasted for an initial implementation.

For example, Table 1 shows pseudo-signatures for a sortable type T:

Table 1: Pseudo-Signatures for Example Concept “sortable”

Pseudo-Signature Semantics
bool operator<(const T& X, const T& y) Compare x and y.
void swap(T& x, T& y) Swap x and y.

A real signature may differ from the pseudo-signature that it implements in ways
where implicit conversions would deal with the difference. For an example type U, the
real signature that implements operator< in Table 1 can be expressed as int
operator<(U x, U y), because C++ permits implicit conversion from int to bool,

! See Section 3.2.3 of Concepts for C++0x available at http://www.open-
std.org/jtcl/sc22/wg21/docs/papers/2005/n1758.pdf for further discussion of valid
expressions versus pseudo-signatures.

Reference Manual 3

and implicit conversion from U to (const U&). Similarly, the real signature bool
operator<(U& x, U& y) is acceptable because C++ permits implicit addition of a
const qualifier to a reference type.

2.2.2 Model

A type models a concept if it meets the requirements of the concept. For example,
type int models the sortable concept in Table 1 if there exists a function swap(x,y)
that swaps two int values x and y. The other requirement for sortable, specifically
X<y, is already met by the built-in operator< on type int.

2.2.3 CopyConstructible

The library sometimes requires that a type model the CopyConstructible concept,
which is defined by the ISO C++ standard. Table 2 shows the requirements for
CopyConstructible in pseudo-signature form.

Table 2: CopyConstructible Requirements

Pseudo-Signature Semantics
T(const T&) Construct copy of const T.
~T () Destructor.
T* operator&() Take address.
const T* operator&() const Take address of const T.

2.3 |dentifiers

This section describes the identifier conventions used by Intel® Threading Building
Blocks.

2.3.1 Case

The identifier convention in the library follows the style in the ISO C++ standard
library. Identifiers are written in underscore_style, and concepts in PascalCase.

2.3.2 Reserved Identifier Prefixes

The library reserves the prefix __ TBB for internal identifiers and macros that should
never be directly referenced by your code.

4 315415-004US

General Conventions : i n te l ® >

2.4

2.4.1

2.4.2

2.4.3

2.4.4

2.5

Namespaces

This section describes reserved namespaces used by Intel® Threading Building Blocks.

tbb Namespace

The library puts all public classes and functions into the namespace tbb.

tbb:internal Namespace

The library uses the namespace tbb: :internal for internal identifiers. Client code
should never directly reference the namespace tbb: : internal or the identifiers inside
it. Indirect reference via a public typedef provided by the header files is permitted.

An example of the distinction between direct and indirect use is type
concurrent_vector<T>::iterator. This type is a typedef for an internal class
internal::vector_iterator<Container,Value>. Your source code should use the
iterator typedef.

tbb::deprecated Namespace

The library uses the namespace tbb: :deprecated for deprecated identifiers that have
different default meanings in namespace tbb. Compiling with TBB_DEPRECATED=1
causes such identifiers to replace their counterpart in namespace tbb.

For example, tbb: :concurrent_queue underwent changes in Intel® TBB 2.2 that split
its functionality into tbb: :concurrent_queue and tbb: :concurrent_bounded_queue
and changed the name of some methods. For sake of legacy code, the old Intel® TBB
2.1 functionality is retained in tbb: :deprecated: :concurrent_queue, which is
injected into namespace tbb when compiled with TBB_DEPRECATED=1.

tbb::strict_ppl

The library uses the namespace tbb: :strict_ppl for identifiers that are put in
namespace Concurrency when tbb/compat/ppl.h is included.

Thread Safety

Unless otherwise stated, the thread safety rules for the library are as follows:

e Two threads can invoke a method or function concurrently on different objects, but
not the same object.

e It is unsafe for two threads to invoke concurrently methods or functions on the
same object.

Reference Manual 5

Descriptions of the classes note departures from this convention. For example, the
concurrent containers are more liberal. By their nature, they do permit some
concurrent operations on the same container object.

2.6 Enabling Debugging Features

Four macros control certain debugging features. In general, it is useful to compile with
these features on for development code, and off for production code, because the
features may decrease performance. Table 3 summarizes the macros and their default
values. A value of 1 enables the corresponding feature; a value of O disables the
feature.

Table 3: Debugging Macros

Macro Default Value Feature

TBB_USE_DEBUG Windows™* OS: Default value for all other
1 if _DEBUG is defined, | macros in this table.
O otherwise.

All other systems: 0.

TBB_USE ASSERT TBB_USE_DEBUG Enable internal assertion
checking. Can significantly slow
performance.

TBB _USE THREADING TOOLS Enable full support for Intel®

Parallel Studio and Intel®
Threading Tools.

TBB_USE_PERFORMANCE_ WARNINGS Enable warnings about
performance issues.

2.6.1 TBB_USE_ASSERT Macro

The macro TBB_USE_ASSERT controls whether error checking is enabled in the header
files. Define TBB_USE_ASSERT as 1 to enable error checking.

If an error is detected, the library prints an error message on stderr and calls the
standard C routine abort. To stop a program when internal error checking detects a
failure, place a breakpoint on tbb: :assertion_failure.

TIP: On Windows™* operating systems, debug builds implicitly set TBB_USE_ASSERT to 1 by
default

2.6.2 TBB_USE_THREADING_TOOLS Macro

The macro TBB_USE_THREADING_TOOLS controls support for Intel® Threading Tools:

6 315415-004US

®
General Conventions l n tel

2.6.3

2.7

2.7.1

¢ Intel® Parallel Inspector

e Intel® Parallel Amplifier

¢ Intel® Thread Profiler

e Intel® Thread Checker.

Define TBB_USE_THREADING_TOOLS as 1 to enable full support for these tools.

That is full support is enabled if error checking is enabled. Leave
TBB_USE_THREADING_TOOLS undefined or zero to enable top performance in release

builds, at the expense of turning off some support for tools.

TBB_USE_PERFORMANCE_WARNINGS Macro

The macro TBB_USE_PERFORMANCE_WARNINGS controls performance warnings. Define it
to be 1 to enable the warnings. Currently, the warnings affected are:

0 Some that report poor hash functions for concurrent_hash_map. Enabling the
warnings may impact performance.

o Misaligned 8-byte atomic stores on Intel® 1A-32 processors.

Version Information

Intel® TBB has macros, an environment variable, and a function that reveal version
and run-time information.

Version Macros

The header tbb/tbb_stddef.h defines macros related to versioning, as described in
Table 4. You should not redefine these macros.

Table 4: Version Macros

Reference Manual

Macro Description of Value

TBB_INTERFACE_VERSION Current interface version. The value is a
decimal numeral of the form xyyy where x is
the major version number and y is the
minor version number.

TBB_INTERFACE VERSION MAJOR TBB_INTERFACE_VERSION/1000; i.e., the
major version number.

TBB_COMPATIBLE INTERFACE VERSION | Oldest major interface version still
supported.

2.7.2

TBB_VERSION Environment Variable

Set the environment variable TBB_VERSION to 1 to cause the library to print
information on stderr. Each line is of the form “TBB: tag value”, where tag and value
are described in Table 5.

Table 5: Output from TBB_VERSION

CAUTION:

2.7.3

Tag Description of Value

VERSION TBB product version number.

INTERFACE VERSION | Value of macro TBB_ INTERFACE VERSION when library was
compiled.

BUILD ... Various information about the machine configuration on which
the library was built.

TBB USE ASSERT Setting of macro TBB USE ASSERT

DO_ITT NOTIFY 1 if library can enable instrumentation for Intel® Parallel

Studio and Intel® Threading Tools; 0 or undefined otherwise.

ITT yes if library has enabled instrumentation for Intel® Parallel
Studio and Intel® Threadng Tools, no otherwise. Typically yes
only if the program is running under control of Intel® Parallel
Studio or Intel® Threadng Tools.

ALLOCATOR Underlying allocator for tbb::tbb_allocator. Itis
scalable malloc if the Intel® TBB malloc library was
successfully loaded; malloc otherwise.

This output is implementation specific and may change at any time.

TBB_runtime_interface_version Function

Summary

Function that returns the interface version of the Intel® TBB library that was loaded
at runtime.

Syntax
extern “C” int TBB_runtime_interface_version();

Header
#include "tbb/tbb_stddef.h"

Description

The value returned by TBB_runtime_interface_version() may differ from the value
of TBB_INTERFACE_VERSION obtained at compile time. This can be used to identify
whether an application was compiled against a compatible version of the Intel® TBB
headers.

315415-004US

General Conventions i n te l ® >

CAUTION: In general, the run-time value TBB_runtime_interface_version() must be greater
than or equal to the compile-time value of TBB_INTERFACE_VERSION. Otherwise the
application may fail to resolve all symbols at run time.

28 TBB_DEPRECATED macro

The macro TBB_DEPRECATED controls deprecated features that would otherwise conflict
with non-deprecated use. Define it to be 1 to get deprecated Intel® TBB 2.1
interfaces. Appendix A describes deprecated features.

Reference Manual 9

Algorithms

CAUTION:

3.1

Most parallel algorithms provided by Intel® Threading Building Blocks (Intel® TBB)
are generic. They operate on all types that model the necessary concepts. Parallel
algorithms may be nested. For example, the body of a parallel_for can invoke
another parallel_for.

When the body of an outer parallel algorithm invokes another parallel algorithm, it
may cause the outer body to be re-entered for a different iteration of the outer
algorithm.

For example, if the outer body holds a global lock while calling an inner parallel
algorithm, the body will deadlock if the re-entrant invocation attempts to acquire the
same global lock. This ill-formed example is a special case of a general rule that code
should not hold a lock while calling code written by another author.

Splittable Concept

Summary

Requirements for a type whose instances can be split into two pieces.

Requirements

Table 6 lists the requirements for a splittable type X with instance x.

Table 6: Splittable Concept

10

Pseudo-Signature Semantics
X::X(X& x, Split) Split x into x and newly constructed object.
Description

A type is splittable if it has a splitting constructor that allows an instance to be split
into two pieces. The splitting constructor takes as arguments a reference to the
original object, and a dummy argument of type Split, which is defined by the library.
The dummy argument distinguishes the splitting constructor from a copy constructor.
After the constructor runs, x and the newly constructed object should represent the
two pieces of the original x. The library uses splitting constructors in three contexts:

e Partitioning a range into two subranges that can be processed concurrently.
e Forking a body (function object) into two bodies that can run concurrently.

The following model types provide examples.

315415-004US

Algorithms

3.1.1

3.2

Model Types

blocked_range (3.2.1) and blocked_range2d (3.2.2) represent splittable ranges. For
each of these, splitting partitions the range into two subranges. See the example in
Section 3.2.1.3 for the splitting constructor of blocked_range<Value>.

The bodies for parallel_reduce (3.5) and parallel_scan (3.6) must be splittable.
For each of these, splitting results in two bodies that can be run concurrently.

split Class

Summary

Type for dummy argument of a splitting constructor.

Syntax
class split;

Header
#include '"tbb/tbb_stddef.h"

Description

An argument of type split is used to distinguish a splitting constructor from a copy
constructor.

Members
namespace tbb {
class split {

¥

Range Concept

Summary

Requirements for type representing a recursively divisible set of values.

Requirements

Table 7 lists the requirements for a Range type R.

Table 7: Range Concept

Pseudo-Signature Semantics

R::R(const R&) Copy constructor.

Reference Manual 11

Pseudo-Signature Semantics
::~RQO Destructor.
bool R::empty() const True if range is empty.
bool R::is_divisible() const True if range can be partitioned into two
subranges.
R::RC R& r, split) Split r into two subranges.
Description

A Range can be recursively subdivided into two parts. It is recommended that the
division be into nearly equal parts, but it is not required. Splitting as evenly as
possible typically yields the best parallelism. Ideally, a range is recursively splittable
until the parts represent portions of work that are more efficient to execute serially
rather than split further. The amount of work represented by a Range typically
depends upon higher level context, hence a typical type that models a Range should
provide a way to control the degree of splitting. For example, the template class
blocked_range (3.2.1) has a grainsize parameter that specifies the biggest range
considered indivisible.

The constructor that implements splitting is called a splitting constructor. If the set of
values has a sense of direction, then by convention the splitting constructor should
construct the second part of the range, and update the argument to be the first half.
Following this convention causes the parallel_for (3.4), parallel_reduce (3.5),
and parallel_scan (3.6) algorithms, when running sequentially, to work across a
range in the increasing order typical of an ordinary sequential loop.

Example

The following code defines a type Trivial IntegerRange that models the Range
concept. It represents a half-open interval [lower,upper) that is divisible down to a
single integer.
struct TriviallntegerRange {
int lower;
int upper;
bool empty() const {return lower==upper;}
bool is_divisible() const {return upper>lower+1;}
TriviallntegerRange(TriviallntegerRange& r, split) {

int m = (r.lower+r._upper)/2;
lower = m;
upper = r.upper;

r.upper = m;
}:

Trivial IntegerRange is for demonstration and not very practical, because it lacks a
grainsize parameter. Use the library class blocked_range instead.

315415-004US

Algorithms

3.2.1

Model Types

Type blocked_range (3.2.1) models a one-dimensional range.
Type blocked_range2d (3.2.2) models a two-dimensional range.
Type blocked_range3d (3.2.3) models a three-dimensional range.

Concept Container Range (4.1) models a container as a range.

blocked_range<Value> Template Class

Summary

Template class for a recursively divisible half-open interval.

Syntax
template<typename Value> class blocked_range;

Header
#include "tbb/blocked_range.h"

Description

A blocked_range<Value> represents a half-open range [i,j) that can be recursively
split. The types of i and j must model the requirements in Table 8. Because the
requirements are pseudo-signatures, signatures that differ by implicit conversions are
allowed. For example, a blocked_range<int> is allowed, because the difference of
two int values can be implicitly converted to a size_t. Examples that model the Value
requirements are integral types, pointers, and STL random-access iterators whose
difference can be implicitly converted to a size_t.

A blocked_range models the Range concept (3.2).

Table 8: Value Concept for blocked_range

Reference Manual

Pseudo-Signature Semantics
Value: :Value(const Value&) Copy constructor.
Value::~Value() Destructor.
bool operator<(const Value& i, const Valueé& j) Value i precedes value

].

size_t operator-(const Value& i, const Value& j) Number of values in
range [1,]).

Value operator+(const Value& i1, size t k) kth value after i.

A blocked_range<Value> specifies a grainsize of type size_t. A blocked_range is
splittable into two subranges if the size of the range exceeds grain size. The ideal
grain size depends upon the context of the blocked_range<Value>, which is typically
as the range argument to the loop templates parallel_for, parallel_reduce, or

TIP:

14

parallel_scan. A too small grainsize may cause scheduling overhead within the loop
templates to swamp speedup gained from parallelism. A too large grainsize may
unnecessarily limit parallelism. For example, if the grain size is so large that the range
can be split only once, then the maximum possible parallelism is two.

Here is a suggested procedure for choosing grainsize:

1. Set the grainsize parameter to 10,000. This value is high enough to amortize
scheduler overhead sufficiently for practically all loop bodies, but may be
unnecessarily limit parallelism.

2. Run your algorithm on one processor.

Start halving the grainsize parameter and see how much the algorithm slows
down as the value decreases.

A slowdown of about 5-10% is a good setting for most purposes.

For a blocked_range [i,j) where j<i, not all methods have specified behavior.
However, enough methods do have specified behavior that parallel_for (3.4),
parallel_reduce (3.5), and parallel_scan (3.6) iterate over the same iteration space as
the serial loop for(Value index=i; index<j; ++index)... , even when j<i. If
TBB_USE_ASSERT (2.6.1) is nonzero, methods with unspecified behavior raise an
assertion failure.

Examples

A blocked_range<Value> typically appears as a range argument to a loop template.
See the examples for parallel_for (3.4), parallel_reduce (3.5), and
parallel_scan (3.6).

Members
namespace tbb {
template<typename Value>
class blocked _range {
public:
// types
typedef size t size type;
typedef Value const_iterator;

// constructors

blocked range(Value begin, Value end, size type
grainsize=1);

blocked range(blocked range& r, split);

// capacity
size_type size() const;

bool empty() const;

// access

315415-004US

Algorithms

size_type grainsize() const;
bool is_divisible() const;

// iterators
const_iterator begin() const;
const_iterator end() const;

}
3.2.1.1 size_type

Description

The type for measuring the size of a blocked_range. The type is always a size_t.
const_iterator

Description

The type of a value in the range. Despite its name, the type const_iterator is not
necessarily an STL iterator; it merely needs to meet the Value requirements in Table
8. However, it is convenient to call it const_iterator so that if it is a const_iterator,
then the blocked_range behaves like a read-only STL container.

3.21.2 blocked_range(Value begin, Value end, size_t grainsize=1)

Requirements

The parameter grainsize must be positive. The debug version of the library raises an
assertion failure if this requirement is not met.

Effects

Constructs a blocked_range representing the half-open interval [begin,end) with the
given grainsize.

Example

The statement “blocked_range<int> r(5, 14, 2);” constructs a range of int that
contains the values 5 through 13 inclusive, with a grainsize of 2. Afterwards,
r.begin()==5 and r.end()==14.

3213 blocked_range(blocked_range& range, split)

Requirements

is_divisible() is true.

Reference Manual 15

16

Effects

Partitions range into two subranges. The newly constructed blocked_range is
approximately the second half of the original range, and range is updated to be the

remainder. Each subrange has the same grainsize as the original range.

Example

Let i and j be integers that define a half-open interval [i,j) and let g specifiy a grain

size. The statement blocked_range<int> r(i,j,g) constructs a

blocked_range<int> that represents [i,J) with grain size g. Running the statement
blocked_range<int> s(r,split); subsequently causes r to represent [i, i +(J

—1)/2) and s to represent [i +(jJ —1)/2, j), both with grain size g.

3214 size_type size() const

Requirements
end()<begin() is false.

Effects

Determines size of range.

Returns
end()-begin()

3.215 bool empty() const

Effects

Determines if range is empty.

Returns
I(begin(<end())

3.2.16 size_type grainsize() const

Returns

Grain size of range.

3.2.1.7 bool is_divisible() const

Requirements
I(end()<begin())

315415-004US

Algorithms

3.2.2

Effects

Determines if range can be split into subranges.

Returns

True if size()>grainsize(); false otherwise.
3.2.18 const_iterator begin() const

Returns

Inclusive lower bound on range.
3.2.19 const_iterator end() const

Returns

Exclusive upper bound on range.

blocked_range2d Template Class

Summary

Template class that represents recursively divisible two-dimensional half-open
interval.

Syntax

template<typename RowValue, typename ColValue> class
blocked_range2d;

Header
#include "tbb/blocked_range2d.h"

Description

A blocked_range2d<RowValue, ColValue> represents a half-open two dimensional
range [io,jo)x[i1,j1). Each axis of the range has its own splitting threshold. The
RowValue and ColValue must meet the requirements in Table 8. A blocked_range is
splittable if either axis is splittable. A blocked_range models the Range concept (3.2).

Members
namespace tbb {
template<typename RowValue, typename ColValue=RowValue>
class blocked _range2d {
public:
// Types
typedef blocked_range<RowValue> row_range_type;

Reference Manual 17

18

};
}

Example

typedef blocked_range<ColValue> col_range_type;

// Constructors
blocked_range2d(
RowValue row_begin, RowValue row_end,
typename row_range_ type::size type row_grainsize,
ColValue col _begin, ColValue col_end,
typename col_range type::size type col _grainsize);
blocked_range2d(Rowvalue row_begin, RowValue row_end,
ColValue col_begin, ColValue col_end);
blocked _range2d(blocked range2d& r, split);

// Capacity
bool empty() const;

// Access

bool is _divisible() const;

const row_range_type& rows() const;
const col _range_ type& cols() const;

The code that follows shows a serial matrix multiply, and the corresponding parallel
matrix multiply that uses a blocked_range2d to specify the iteration space.

const size t L = 150;

const size t M = 225;

const size t N

300;

void SerialMatrixMultiply(float c[M][N], float a[M][L], float

b[L][N]

) {

for(size_t i=0; i<M; ++1) {

for(size_t j=0; j<N; ++j) {
float sum = O;
for(size_t k=0; k<L; ++k)
sum += a[i][k]*b[k1[i];
c[il[J] = sum;

#include 'tbb/parallel_for.h"
#include "tbb/blocked range2d.h"

315415-004US

Algorithms

using namespace tbb;

const size t L = 150;
const size t M = 225;
const size t N = 300;

class MatrixMultiplyBody2D {
float (Cmy_a)[L];
float (*my_b)[N];
float (*my_c)[N];
public:
void operator()(const blocked_range2d<size t>& r) const {

float (*a)[L] = my_a;
float (*b)[N] = my_b;
float (*c)[N] = my c;

for(size_t i=r.rows()-begin(); 1!'=r.rows()-end(); ++i){
for(size_t j=r.cols().begin(); j'=r.cols().end();

++)) {

float sum = O;

for(size_t k=0; k<L; ++k)
sum += a[i][k]*b[k1[i];

c[il[jJ] = sum;

}
s
by

MatrixMultiplyBody2D(float c[M][N], float a[M][L], float
bLLI1IN]) :
my_a(a), my_b(b), my_c(c)
O
};

void ParallelMatrixMultiply(float c[M][N], float a[M][L], float
bLL1INID{
parallel_for(blocked range2d<size t>(0, M, 16, 0, N, 32),
MatrixMultiplyBody2D(c,a,b));
}

The blocked_range2d enables the two outermost loops of the serial version to
become parallel loops. The parallel_for recursively splits the blocked_range2d until
the pieces are no larger than 16x32. It invokes

MatrixMultiplyBody2D: :operator() on each piece.

3.2.2.1 row_range_type

Description

A blocked_range<RowValue>. That is, the type of the row values.

Reference Manual 19

20

3222 col_range_type

Description

A blocked_range<ColValue>. That is, the type of the column values.

3223 blocked_range2d<RowValue,ColValue>(RowValue
row_begin, RowValue row_end, typename
row_range_type:size_type row_grainsize, ColValue col_begin,
ColValue col_end, typename col_range_type:size_type
col_grainsize)

Effects

Constructs a blocked_range2d representing a two dimensional space of values. The
space is the half-open Cartesian product [row_begin,row_end)x [col_begin,col_end),
with the given grain sizes for the rows and columns.

Example

The statement “blocked_range2d<char, int> r(’a”, ’z’+1, 3, 0, 10, 2);”
constructs a two-dimensional space that contains all value pairs of the form (i, j),
where i ranges from “a” to *z” with a grain size of 3, and j ranges from 0 to 9 with a
grain size of 2.

3224 blocked_range2d<RowValue,ColValue>(RowValue
row_begin, RowValue row_end, ColValue col_begin, ColValue
col_end)

Effects

Same as blocked_range2d(row_begin,row_end,1,col_begin,col_end,1).

3225 blocked_range2d<RowValue,ColValue> (blocked_range2d&
range, split)

Effects

Partitions range into two subranges. The newly constructed blocked_range2d is
approximately the second half of the original range, and range is updated to be the
remainder. Each subrange has the same grain size as the original range. The split is
either by rows or columns. The choice of which axis to split is intended to cause, after
repeated splitting, the subranges to approach the aspect ratio of the respective row
and column grain sizes. For example, if the row_grainsize is twice col_grainsize,
the subranges will tend towards having twice as many rows as columns.

315415-004US

Algorithms

3.2.3

3.2.26 bool empty() const

Effects

Determines if range is empty.

Returns
rows() -empty(Q | Icols() -empty()

3.2.2.7 bool is_divisible() const

Effects

Determines if range can be split into subranges.

Returns
rows().is_divisible(Q|]|]cols().is_divisible()

3.2.28 const row_range_type& rows() const

Returns

Range containing the rows of the value space.
3.2.29 const col_range_type& cols() const

Returns

Range containing the columns of the value space.

blocked_range3d Template Class

Summary

Template class that represents recursively divisible three-dimensional half-open
interval.

Syntax
template<typename PageValue, typename RowValue, typename
ColValue> class blocked range3d;

Header
#include "tbb/blocked range3d.h"

Description

A blocked_range3d<PageValue,RowValue,ColValue> is the three-dimensional
extension of blocked_range2d.

Reference Manual

21

3.3

22

Members
namespace tbb {

template<typename PageValue, typename RowValue=PageValue,

typename ColValue=RowValue>
class blocked _range2d {
public:
// Types

typedef blocked_range<ColValue> page range_type;
typedef blocked range<RowValue> row_range_ type;
typedef blocked_range<ColValue> col_range_type;

// Constructors

blocked_range3d(PageValue page begin, PageValue

page_end,

typename
page_grainsize,

Rowvalue

typename
row_grainsize,

ColValue

typename
col_grainsize);

page_range_type: :size_type

row_begin, RowValue row_end,
row_range_type: :size_type

col _begin, ColValue col _end,
col_range_type::size type

blocked_range3d(PageValue page begin, PageValue

page_end,
RowVvalue
ColVvalue

row_begin, RowValue row_end,
col_begin, ColValue col_end);

blocked _range3d(blocked range2d& r, split);

// Capacity
bool empty() const;

// Access

bool is _divisible() const;

const page_range_type& rows() const;
const row_range_type& rows() const;
const col_range_type& cols() const;

Partitioners

Summary

A partitioner specifies how a loop template should partition its work among threads.

315415-004US

Algorithms

intel)

Description

The default behavior of the loop templates parallel_for (3.4), parallel_reduce
(3.5), and parallel_scan (3.6) is to recursively split a range until it is no longer
divisible (3.2). An optional partitioner parameter enables other behaviors to be
specified, as shown in Table 9. The first column of the table shows how the formal
parameter is declared in the loop templates. An affinity_partitioner is passed by
non-const reference because it is updated to remember where loop iterations run.

Table 9: Partitioners

3.3.1

Partitioner Loop Behavior
const auto partitioners& Performs sufficient splitting to balance load, not
(default)’ necessarily splitting as finely as

Range: :is_divisible permits. When used with
classes such as blocked range, the selection of an
appropriate grainsize is less important, and often
acceptable performance can be achieved with the
default grain size of 1.

affinity partitioners Similar to auto_partitioner, but improves cache
affinity by its choice of mapping subranges to
worker threads. It can improve performance
significantly when a loop is re-executed over the
same data set, and the data set fits in cache.

const simple partitioners | Recursively splits a range until it is no longer
divisible. The Range: :is_divisible function is
wholly responsible for deciding when recursive
splitting halts. When used with classes such as
blocked range, the selection of an appropriate
grainsize is critical to enabling concurrency while
limiting overheads (see the discussion in Section
3.2.1).

auto_partitioner Class

Summary

Specify that a parallel loop should optimize its range subdivision based on work-
stealing events.

2 In Intel® TBB 2.1, simple_partitioner was the default. Intel® TBB 2.2
changed the default to auto_partitioner to simplify common usage of the
loop templates. To get the old default, compile with the preprocessor symbol
TBB_DEPRECATED=1.

Reference Manual 23

TIP:

3.3.2

24

Syntax
class auto_partitioner;

Header
#include 'tbb/partitioner._h"

Description
A loop template with an auto_partitioner attempts to minimize range splitting while

providing ample opportunities for work-stealing.

The range subdivision is initially limited to S subranges, where S is proportional to the
number of threads specified by the task_scheduler_init (10.2.1). Each of these
subranges is not divided further unless it is stolen by an idle thread. If stolen, it is
further subdivided to create additional subranges. Thus a loop template with an
auto_partitioner creates additional subranges only when necessary to balance load.

When using auto_partitioner and a blocked_range for a parallel loop, the body
may be passed a subrange larger than the blocked_range’s grainsize. Therefore do
not assume that the grainsize is an upper bound on the size of the subrange. Use a
simple_partitioner if an upper bound is required.

Members
namespace tbb {
class auto_partitioner {
public:
auto_partitioner();
~auto_partitioner();

}

3.3.1.1 auto_partitioner()

Construct an auto_partitioner.

3.3.1.2 ~auto_partitioner()

Destroy this auto_partitioner.

affinity_partitioner

Summary

Hint that loop iterations should be assigned to threads in a way that optimizes for
cache affinity.

315415-004US

Algorithms

TIP:

Syntax
class affinity partitioner;

Header
#include 'tbb/partitioner._h"

Description

An affinity_partitioner hints that execution of a loop template should assign
iterations to the same processors as another execution of the loop (or another loop)
with the same affinity_partitioner object.

Unlike the other partitioners, it is important that the same affinity_partitioner
object be passed to the loop templates to be optimized for affinity. The Tutorial
(Section 3.2.3 “Bandwidth and Cache Affinity”) discusses affinity effects in detail.

The affinity_partitioner generally improves performance only when:
e The computation does a few operations per data access.

e The data acted upon by the loop fits in cache.

e The loop, or a similar loop, is re-executed over the same data.

e There are more than two hardware threads available.

Members
namespace tbb {
class affinity partitioner {
public:
affinity partitioner();
~affinity_partitioner();

}

Example

The following example can benefit from cache affinity. The example simulates a one
dimensional additive automaton.

#include "tbb/blocked_range.h"

#include "tbb/parallel_for.h"

#include 'tbb/partitioner._h"

using namespace tbb;

const int N = 1000000;
typedef unsigned char Cell;
Cell Array[2][N]:

int FlipFlop;

Reference Manual

26

struct TimeStepOverSubrange {
void operator()(const blocked range<int>& r) const {
int j = r.endQ);
const Cell* x = Array[FlipFlop];
Cell* y = Array[!'FlipFlop];
for(int i=r.beginQ); il=j; ++i)
y[i] = x[i]~x[i+1];

void DoAllTimeSteps(int m) {
affinity partitioner ap;
for(int k=0; k<m; ++k) {
parallel _for(blocked range<int>(0,N-1),
TimeStepOverSubrange(),
ap);
FlipFlop ™= 1;

}

For each time step, the old state of the automaton is read from Array[FlipFlop],
and the new state is written into Array[!FlipFlop]. Then FlipFlop flips to make the
new state become the old state. The aggregate size of both states is about 2 MByte,
which fits in most modern processors’ cache. Improvements ranging from 50%-200%
have been observed for this example on 8 core machines, compared with using an
auto_partitioner instead.

The affinity_partitioner must live between loop iterations. The example
accomplishes this by declaring it outside the loop that executes all iterations. An
alternative would be to declare the affinity partitioner at the file scope, which
works as long as DoAlITimeSteps itself is not invoked concurrently. The same

instance of affinity_partitioner should not be passed to two parallel algorithm
templates that are invoked concurrently. Use separate instances instead.

3.3.2.1 affinity_partitioner()

Construct an affinity_partitioner.

3322 ~affinity_partitioner()

Destroy this affinity_partitioner.

315415-004US

Algorithms

3.3.3

TIP:

3.4

intel)

simple_partitioner Class

Summary

Specify that a parallel loop should recursively split its range until it cannot be
subdivided further.

Syntax
class simple_partitioner;

Header
#include '"tbb/partitioner.h"

Description

A simple_partitioner specifies that a loop template should recursively divide its
range until for each subrange r, the condition !'r_is_divisible() holds. This is the
default behavior of the loop templates that take a range argument.

When using simple_partitioner and a blocked_range for a parallel loop, be careful
to specify an appropriate grainsize for the blocked_range. The default grainsize is 1,
which may make the subranges much too small for efficient execution.

Members
namespace tbb {
class simple_partitioner {
public:
simple_partitioner();
~simple_partitioner();

}

3.3.3.1 simple_partitioner()

Construct a simple_partitioner.

3.3.3.2 ~simple_partitioner()

Destroy this simple_partitioner.

parallel_for Template Function

Summary

Template function that performs parallel iteration over a range of values.

Reference Manual 27

28

Table 10:

Syntax
template<typename Index, typename Func>
Func parallel for(Index first, Index type last, const Funcé& f);

template<typename Index, typename Func>
Func parallel_for(Index first, Index type last,
Index step, const Funcé& F);

template<typename Range, typename Body>
void parallel_for(const Range& range, const Body& body,

[, partitioner]);

where the optional partitioner declares any of the partitioners as shown in column 1 of
Table 9.

Header
#include 'tbb/parallel_for.h"

Description
A parallel_for(first, last,step,T) represents parallel execution of the loop:
for(auto i=first; i<last; i+=step) F(i);

The index type must be an integral type. The loop must not wrap around. The step
value must be positive. If omitted, it is implicitly 1. There is no guarantee that the
iterations run in parallel. Deadlock may occur if a lesser iteration waits for a greater
iteration. The partitioning strategy is always auto_partitioner.

A parallel_for(range,body,partitioner) provides a more general form of parallel
iteration. It represents parallel execution of body over each value in range. The
optional partitioner specifies a partitioning strategy. Type Range must model the
Range concept (3.2). The body must model the requirements in Table 10.

Requirements for parallel_for Body

Pseudo-Signature Semantics
Body: :Body(const Bodyé&) Copy constructor.
Body: :~Body () Destructor.
void Body: :operator()(Range& range) const Apply body to range.

A parallel_for recursively splits the range into subranges to the point such that
is_divisible() is false for each subrange, and makes copies of the body for each of
these subranges. For each such body/subrange pair, it invokes Body: :operator().
The invocations are interleaved with the recursive splitting, in order to minimize space
overhead and efficiently use cache.

Some of the copies of the range and body may be destroyed after parallel_for
returns. This late destruction is not an issue in typical usage, but is something to be

315415-004US

Algorithms

aware of when looking at execution traces or writing range or body objects with
complex side effects.

When worker threads are available (10.2), parallel_for executes iterations is non-
deterministic order. Do not rely upon any particular execution order for correctness.
However, for efficiency, do expect parallel_for to tend towards operating on
consecutive runs of values.

When no worker threads are available, parallel_for executes iterations from left to
right in the following sense. Imagine drawing a binary tree that represents the
recursive splitting. Each non-leaf node represents splitting a subrange r by invoking
the splitting constructor Range(r,split()). The left child represents the updated
value of r. The right child represents the newly constructed object. Each leaf in the
tree represents an indivisible subrange. The method Body: :operator() is invoked on
each leaf subrange, from left to right.

Complexity

If the range and body take O(1) space, and the range splits into nearly equal pieces,
then the space complexity is O(P log(N)), where N is the size of the range and P is the
number of threads.

Example

This example defines a routine Paral lelAverage that sets output[i] to the average
of input[i-1], input[i], and input[i+1], for 1<i<n.

#include "tbb/parallel _for.h"

#include "tbb/blocked_range.h"

using namespace tbb;

struct Average {
const float* input;
float* output;
void operator()(const blocked_range<int>& range) const {
for(int i=range.begin(); i!=range.end(); ++i)
output[i] = (input[i-1]+input[i]+input[i+1])*(1/3.TF);

¥

// Note: Reads input[0..n] and writes output[l.._.n-1].
void ParallelAverage(float* output, const float* input, size t n

) {

Average avg;

avg.input = input;

avg.output = output;

parallel_for(blocked_range<int>(1, n), avg);

Reference Manual 29

30

Example

This example is more complex and requires familiarity with STL. It shows the power of

parallel_for beyond flat iteration spaces. The code performs a parallel merge of two

sorted sequences. It works for any sequence with a random-access iterator. The

algorithm (Akl 1987) works recursively as follows:

1. If the sequences are too short for effective use of parallelism, do a sequential
merge. Otherwise perform steps 2-6.

2. Swap the sequences if necessary, so that the first sequence [beginl,endl) is at
least as long as the second sequence [begin2,end2).

3. Set ml to the middle position in [beginl,endl). Call the item at that location key.

4. Set m2 to where key would fall in [begin2,end2).

5. Merge [beginl,m1l) and [begin2,m2) to create the first part of the merged
sequence.

6. Merge [m1,endl) and [m2,end2) to create the second part of the merged
sequence.

The Intel® Threading Building Blocks implementation of this algorithm uses the range
object to perform most of the steps. Predicate is_divisible performs the test in step
1, and step 2. The splitting constructor does steps 3-6. The body object does the
sequential merges.

#include 'tbb/parallel_for.h"

#include <algorithm>

using namespace tbb;

template<typename lterator>
struct ParallelMergeRange {
static size_t grainsize;
Iterator beginl, endl; // [beginl,endl) is 1st sequence to be
merged
Iterator begin2, end2; // [begin2,end2) is 2nd sequence to be
merged
Iterator out; // where to put merged sequence
bool empty() const {return (endl-beginl)+(end2-begin2)==0;}
bool is_divisible() const {
return std::min(endl-beginl, end2-begin2) > grainsize;
by
Paral lelMergeRange(ParallelMergeRange& r, split) {
if(r.endl-r.beginl < r.end2-r.begin2) {
std: :swap(r.beginl,r.begin2);
std: :swap(r.endl,r.end2);
}
Iterator ml r.beginl + (r.endl-r._.beginl)/2;
Iterator m2 = std::lower_bound(r.begin2, r.end2, *ml);
beginl = ml;

315415-004US

Algorithms

3.5

begin2 = m2;
endl = r.endl;
end2 = r.end2;

out = r.out + (ml-r.beginl) + (m2-r.begin2);
r.endl = mi;
r.end2 = m2;

by
ParallelMergeRange(lterator beginl , lterator endl ,
Iterator begin2_, Ilterator end2_,
Iterator out_) :
beginl(beginl), endl(endl),
begin2(begin2_), end2(end2_), out(out)
{

¥

template<typename lterator>
size_t ParallelMergeRange<lterator>::grainsize = 1000;

template<typename lterator>
struct ParallelMergeBody {
void operator()(ParallelMergeRange<lterator>& r) const {
std::merge(r.beginl, r.endl, r.begin2, r.end2, r.out);
}
}:

template<typename lterator>

void ParallelMerge(lterator beginl, lterator endl, lterator
begin2, lterator end2, lterator out) {

parallel _for(
Paral lelMergeRange<Ilterator>(beginl,endl,begin2,end2,out),
ParallelMergeBody<Ilterator>(),
simple_partitioner()

}

Because the algorithm moves many locations, it tends to be bandwidth limited.
Speedup varies, depending upon the system.

parallel_reduce Template Function

Summary

Computes reduction over a range.

Reference Manual 31

Table 11:

Syntax
template<typename Range, typename Value,
typename Func, typename Reduction>
Value parallel_reduce(const Range& range, const Value& identity,
const Func& func, const Reduction& reduction,

[, partitioner]);

template<typename Range, typename Body>
void parallel_reduce(const Range& range, const Body& body

[, partitioner]);

where the optional partitioner declares any of the partitioners as shown in column 1 of
Table 9.

Header
#include "tbb/parallel_reduce.h"

Description

The parallel_reduce template has two forms. The functional form is designed to be
easy to use in conjunction with lambda expressions. The imperative form is designed
to minimize copying of data.

The functional form parallel_reduce(range,identity,func,reduction) performs a
parallel reduction by applying func to subranges in range and reducing the results
using binary operator reduction. It returns the result of the reduction. Parameter func
and reduction can be lambda expressions. Table 11 summarizes the type
requirements on the types of identity, func, and reduction.

Requirements for Func and Reduction

Pseudo-Signature Semantics

Value ldentity; Right identity element for
Func: :operator().

Value Func::operator()(const Rangeé& range, Accumulate result for subrange,

const Value& x) starting with initial value x.

Value Reduction::operator()(const Value& X, | combine results x and vy.
const Value& y);

The imperative form parallel_reduce(range,body) performs parallel reduction of
body over each value in range. Type Range must model the Range concept (3.2). The
body must model the requirements in Table 12.

315415-004US

Algorithms

intel.

Table 12: Requirements for parallel_reduce Body

Pseudo-Signature Semantics

Body: :Body(Body&, split); Splitting constructor (3.1). Must
be able to run concurrently with
operator() and method join.

Body: :~Body () Destructor.

void Body: :operator()(const Range& range); Accumulate result for subrange.

void Body::join(Body& rhs); Join results. The result in rhs
should be merged into the
result of this.

A parallel_reduce recursively splits the range into subranges to the point such that
is_divisible() is false for each subrange. A parallel_reduce uses the splitting
constructor to make one or more copies of the body for each thread. It may copy a
body while the body’s operator() or method join runs concurrently. You are
responsible for ensuring the safety of such concurrency. In typical usage, the safety
requires no extra effort.

When worker threads are available (10.2.1), parallel_reduce invokes the splitting
constructor for the body. For each such split of the body, it invokes method join in
order to merge the results from the bodies. Define join to update this to represent
the accumulated result for this and rhs. The reduction operation should be associative,
but does not have to be commutative. For a noncommutative operation op,

“left. join(right)” should update left to be the result of left op right.

A body is split only if the range is split, but the converse is not necessarily so. Figure 1
diagrams a sample execution of parallel_reduce. The root represents the original
body b0 being applied to the half-open interval [0,20). The range is recursively split at
each level into two subranges. The grain size for the example is 5, which yields four
leaf ranges. The slash marks (/) denote where copies (b, and b,) of the body were
created by the body splitting constructor. Bodies by and b; each evaluate one leaf.
Body b, evaluates leaf [10,15) and [15,20), in that order. On the way back up the
tree, parallel_reduce invokes bg.join(b;) and bg.join(b,) to merge the results of the
leaves.

bo [0,20)
bo [0,10) b, [10,20)
bo [0,5) b, [5,10) b, [10,15) b, [15,20)

Figure 1: Example Execution of parallel_reduce Over blocked_range<int>(0,20,5)

Reference Manual

Figure 1 shows only one possible execution. Other valid executions include splitting b,
into b, and bz, or doing no splitting at all. With no splitting, by evaluates each leaf in

34

left to right order, with no calls to join. A given body always evaluates one or more
consecutive subranges in left to right order. For example, in Figure 1, body b, is
guaranteed to evaluate [10,15) before [15,20). You may rely on the consecutive left
to right property for a given instance of a body, but must not rely on a particular
choice of body splitting. parallel_reduce makes the choice of body splitting

nondeterministically.

When no worker threads are available, parallel_reduce executes sequentially from
left to right in the same sense as for parallel_for (3.4). Sequential execution never
invokes the splitting constructor or method join.

Complexity
If the range and body take O(1) space, and the range splits into nearly equal pieces,

then the space complexity is O(P log(N)), where N is the size of the range and P is the
number of threads.

Example (Imperative Form)

The following code sums the values in an array.
#include "tbb/parallel_reduce.h"
#include "tbb/blocked _range.h"

using namespace tbb;

struct Sum {

float value;

Sum() : value(0) {}

Sum(Sum& s, split) {value = 0;}

void operator()(const blocked_range<float*>& r) {
float temp = value;
for(float* a=r.begin(); al=r.end(); ++a) {

temp += *a;

by
value = temp;
by
void join(Sum& rhs) {value += rhs.value;}
}:
float ParallelSum(float array[], size_ t n) {
Sum total;
parallel_reduce(blocked range<float*>(array, array+n),

total);
return total.value;

}

The example generalizes to reduction for any associative operation op as follows:

315415-004US

intel)

e Replace occurrences of O with the identity element for op
e Replace occurrences of += with op= or its logical equivalent.
e Change the name Sum to something more appropriate for op.

The operation may be noncommutative. For example, op could be matrix
multiplication.

Example with Lambda Expressions

The following is analogous to the previous example, but written using lambda
expressions and the functional form of parallel_reduce.

#include "tbb/parallel_reduce.h"

#include "tbb/blocked_range.h"

using namespace tbb;

float ParallelSum(float array[], size_ t n) {
return parallel_reduce(
blocked range<float*>(array, array+n),
0.f,
[1(const blocked range<float*>& r, float init)->float {
for(float* a=r.begin(); al=r.end(); ++a)
init += *a;
return init;
}.
[1C float x, float y)->float {
return x+y;
by
)
}
STL generalized numeric operations and functions objects can be used to write the
example more compactly as follows:
#include <numeric>
#include <functional>
#include "tbb/parallel_reduce.h"
#include "tbb/blocked_range.h"

using namespace tbb;

float ParallelSum(float array[], size_ t n) {
return parallel_reduce(
blocked_range<float*>(array, array+n),
0.f,
[1(const blocked_range<float*>& r, float value)->float {
return std::accumulate(r.begin(),r.end(),value);

Reference Manual 35

3.6

36

}’
std: :plus<float>()

parallel_scan Template Function

Summary

Template function that computes parallel prefix.

Syntax
template<typename Range, typename Body>
void parallel_scan(const Range& range, Body& body);

template<typename Range, typename Body>

void parallel _scan(const Range& range, Body& body, const
auto_partitioneré&);

template<typename Range, typename Body>

void parallel _scan(const Range& range, Body& body, const
simple_partitioneré&);

Header
#include "tbb/parallel_scan.h"

Description

A parallel_scan(range,body) computes a parallel prefix, also known as parallel
scan. This computation is an advanced concept in parallel computing that is
sometimes useful in scenarios that appear to have inherently serial dependences.
A mathematical definition of the parallel prefix is as follows. Let @ be an associative
operation ® with left-identity element idg. The parallel prefix of @ over a sequence Xg,
X1, ...-Xn-1 IS @ Sequence Yo, Y1, Y2, ---Yn.1 Where:
e Yo = ide @ Xo
* YiTVYi1®X
For example, if ® is addition, the parallel prefix corresponds a running sum. A serial
implementation of parallel prefix is:
T temp = idg;
for(int i=1; i<=n; ++i) {

temp = temp & x[i];

y[i] = temp;

315415-004US

Algorithms

intel.

Parallel prefix performs this in parallel by reassociating the application of ® and using
two passes. It may invoke ® up to twice as many times as the serial prefix algorithm.
Given the right grain size and sufficient hardware threads, it can out perform the

serial prefix because even though it does more work, it can distribute the work across

more than one hardware thread.

TIP: Because parallel_scan needs two passes, systems with only two hardware threads
tend to exhibit small speedup. parallel_scan is best considered a glimpse of a
technique for future systems with more than two cores. It is nonetheless of interest
because it shows how a problem that appears inherently sequential can be

parallelized.

The template parallel_scan<Range,Body> implements parallel prefix generically. It

requires the signatures described in Table 13.

Table 13: parallel _scan Requirements

Pseudo-Signature

Semantics

void Body: :operator () (const Range& r,

pre scan tag)

Accumulate summary for range r.

void Body: :operator () (const Range& r,

final scan tag)

Compute scan result and
summary for range r.

Body: :Body (Body& b, split)

Split b so that this and b can
accumulate summaries separately.
Body *this is object a in the table
row below.

void Body::reverse join(Body& a)

Merge summary accumulated by a
into summary accumulated by
this, where this was created
earlier from a by a's splitting
constructor. Body *this is object
b in the table row above.

void Body::assign(Body& b)

Assign summary of b to this.

A summary contains enough information such that for two consecutive subranges r

and s:

e If r has no preceding subrange, the scan result for s can be computed from knowing

s and the summary for r.

e A summary of r concatenated with s can be computed from the summaries of r and

S.

For example, if computing a running sum of an array, the summary for a range r is
the sum of the array elements corresponding to r.

Figure 2 shows one way that parallel_scan might compute the running sum of an
array containing the integers 1-16. Time flows downwards in the diagram. Each color
denotes a separate Body object. Summaries are shown in brackets.

Reference Manual

37

38

1. The first two steps split the original blue body into the pink and yellow bodies.
Each body operates on a quarter of the input array in parallel. The last quarter is
processed later in step 5.

2. The blue body computes the final scan and summary for 1-4. The pink and yellow
bodies compute their summaries by prescanning 5-8 and 9-12 respectively.

3. The pink body computes its summary for 1-8 by performing a reverse_join with
the blue body.

4. The yellow body computes its summary for 1-12 by performing a reverse_join
with the pink body.

5. The blue, pink, and yellow bodies compute final scans and summaries for portions
of the array.

6. The yellow summary is assigned to the blue body. The pink and yellow bodies are
destroyed.

Note that two quarters of the array were not prescanned. The parallel_scan
template makes an effort to avoid prescanning where possible, to improve
performance when there are only a few or no extra worker threads. If no other
workers are available, parallel_scan processes the subranges without any pre_scans,
by processing the subranges from left to right using final scans. That's why final scans
must compute a summary as well as the final scan result. The summary might be
needed to process the next subrange if no worker thread has prescanned it yet.

315415-004US

Algorithms

input array 1234 5678 9 10 11 12

intel)

13 14 15 16
H_J N v J N v J - ~ J
original body
[0]
original body split
[0] [0]
split
[0]
v l v
final_scan pre_scan pre_scan
0136 [10] [26] [42]

N

reverse_join
[36]

final_scan

v
reverse_join
[78]

final_scan

final_scan

10 15 21 28 [36] 36 45 55 66 [78] 78 91 105 120 [136]

l

assign
[136]

Figure 2: Example Execution of parallel_scan

The following code demonstrates how the signatures could be implemented to use
parallel_scan to compute the same result as the earlier sequential example

involving ®.
using namespace tbb;

class Body {
T sum;
T* const y;
const T* const Xx;

Reference Manual

40

public:

Body(T y_[1], const T x_[]) : sum(ids), x(x), y(y) {}
T get_sum() const {return sum;}

template<typename Tag>
void operator()(const blocked_range<int>& r, Tag) {
T temp = sum;
for(int i=r.begin(); i<r.end(Q); ++i) {
temp = temp @ Xx[i];
if(Tag::is_final_scan())
y[i] = temp;
}
sum = temp;
by
Body(Body& b, split) : x(b.-x), y(b.y), sum(idg) {}
void reverse_ join(Body& a) { sum = a.sum @ sum;}
void assign(Body& b) {sum = b.sum;}
};

float DoParallelScan(T y[], const T x[], int n) {
Body body(y,Xx);
parallel_scan(blocked_range<int>(0,n), body);
return body.get sum(Q);

}

The definition of operator() demonstrates typical patterns when using
parallel_scan.

e A single template defines both versions. Doing so is not required, but usually saves
coding effort, because the two versions are usually similar. The library defines static
method is_final_scan() to enable differentiation between the versions.

e The prescan variant computes the @ reduction, but does not update y. The prescan
is used by parallel_scan to generate look-ahead partial reductions.

e The final scan variant computes the @ reduction and updates y.

The operation reverse_join is similar to the operation join used by
parallel_reduce, except that the arguments are reversed. That is, this is the right
argument of ®. Template function parallel_scan decides if and when to generate
parallel work. It is thus crucial that @ is associative and that the methods of Body
faithfully represent it. Operations such as floating-point addition that are somewhat
associative can be used, with the understanding that the results may be rounded
differently depending upon the association used by parallel_scan. The reassociation
may differ between runs even on the same machine. However, if there are no worker
threads available, execution associates identically to the serial form shown at the
beginning of this section.

315415-004US

(inteF)

If you change the example to use a simple_partitioner, be sure to provide a
grainsize. The code below shows the how to do this for a grainsize of 1000:
parallel_scan(blocked_range<int>(0,n,1000), total,
simple partitioner());

3.6.1 pre_scan_tag and final_scan_tag Classes

Summary
Types that distinguish the phases of parallel_scan..

Syntax
struct pre_scan_tag;
struct final_scan_tag;

Header
#include "tbb/parallel_scan.h"

Description

Types pre_scan_tag and final_scan_tag are dummy types used in conjunction with
parallel_scan. See the example in Section 3.6 for how they are used in the
signature of operator().

Members
namespace tbb {

struct pre_scan_tag {
static bool is_final_scan();

}:

struct final_scan_tag {
static bool is_final _scan();

};
}
3.6.1.1 bool is_final_scan()

Returns

True for a final_scan_tag, otherwise false.

Reference Manual 41

3.7

Table 14:

parallel_do Template Function

Summary

Template function that processes work items in parallel.

Syntax
template<typename Inputlterator, typename Body>

void parallel _do(Inputlterator first, Inputlterator last, Body
body);

Header
#include 'tbb/parallel_do.h"

Description

A parallel_do(first, last,body) applies a function object body over the half-open
interval [First,last). Items may be processed in parallel. Additional work items can
be added by body if it has a second argument of type parallel_do_feeder (3.7.1).
The function terminates when body(x) returns for all items x that were in the input
sequence or added to it by method parallel_do_feeder::add (3.7.1.1).

The requirements for input iterators are specified in Section 24.1 of the I1SO C++
standard. Table 14 shows the requirements on type Body.

parallel_do Requirements for Body B and its Argument Type T
Pseudo-Signature Semantics
B::zoperator()(Process item. Template
cv-qualifiers T& item, parallel_do may concurrently

invoke operator() for the same

parallel_do_feeder<T>& feeder this but different item.

) const The signature with feeder permits
OR additional work items to be

B: :operator()(cv-qualifiers T& item) added.

const

T(const T&) Copy a work item.

~T::TQO Destroy a work item.

CAUTION:

TIP:

42

For example, a unary function object, as defined in Section 20.3 of the C++ standard,
models the requirements for B.

Defining both the one-argument and two-argument forms of operator() is not
permitted.

The parallelism in parallel_do is not scalable if all of the items come from an input
stream that does not have random access. To achieve scaling, do one of the following:

315415-004US

Algorithms

3.7.1

e Use random access iterators to specify the input stream.

e Design your algorithm such that the body often adds more than one piece of work.
e Use parallel_for instead.

To achieve speedup, the grainsize of B: operator() needs to be on the order of at

least ~10,000 instructions. Otherwise, the internal overheads of parallel_do swamp
the useful work.

Example

The following code sketches a body with the two-argument form of operator().
struct MyBody {
void operator(QQ(item_t item,
parallel _do feeder<item t>& feeder) {
for each new piece of work implied by item do {
item_t new_item = initializer;
feeder .add(new_item);

parallel_do_feeder<Item> class

Summary

Inlet into which additional work items for a parallel_do can be fed.

Syntax
template<typename ltem>
class parallel _do feeder;

Header
#include "tbb/parallel_do.h"

Description
A parallel_do_feeder enables the body of a parallel_do to add more work items.

Only class parallel_do (3.7) can create or destroy a parallel_do_feeder. The only
operation other code can perform on a parallel_do_feeder is to invoke method
parallel_do_feeder::add.

Members
namespace tbb {
template<typename Item>
struct parallel_do feeder {
void add(const Item& item);

Reference Manual 43

3.8

3.9

44

}
3.7.1.1 void add(const Item& item)

Requirements

Must be called from a call to body.operator() created by parallel_do. Otherwise,
the termination semantics of method operator () are undefined.

Effects

Adds item to collection of work items to be processed.

parallel_for_each Template Function

Summary

Parallel variant of std: : for_each.

Syntax

template<typename Inputlterator, typename Func>

void parallel_for_each (Inputlterator first, Inputlterator last,
Func f);

Header
#include 'tbb/parallel_for_each.h"

Description

A parallel_for_each(first, last,) applies f to the result of dereferencing every
iterator in the range [First,last), possibly in parallel. It is provided for PPL
compatibility and equivalent to parallel_do(first, last,) without "feeder"
functionality.

pipeline Class

Summary

Class that performs pipelined execution.

Syntax
class pipeline;

315415-004US

Algorithms

TIP:

CAUTION:

Reference Manual

Header
#include "tbb/pipeline._h"

Description

A pipeline represents pipelined application of a series of filters to a stream of items.
Each filter operates in a particular mode: parallel, serial in order, or serial out of order
(MacDonald 2004). See class Filter (3.9.6) for details.

A pipeline contains one or more filters, denoted here as f;, where i denotes the
position of the filter in the pipeline. The pipeline starts with filter f,, followed by f,, 5,
etc. The following steps describe how to use class pipeline.

1. Derive classes f; from filter. The constructor for f; specifies its mode as a
parameter to the constructor for base class filter (3.9.6.1).

2. Override virtual method filter: :operator() to perform the filter’s action on the
item, and return a pointer to the item to be processed by the next filter. The first
filter f; generates the stream. It should return NULL if there are no more items in
the stream. The return value for the last filter is ignored.

3. Create an instance of class pipeline.

4. Create instances of the filters f; and add them to the pipeline, in order from first
to last. An instance of a filter can be added at most once to a pipeline. A filter
should never be a member of more than one pipeline at a time.

5. Call method pipeline::run. The parameter max_number_of_live_tokens puts an
upper bound on the number of stages that will be run concurrently. Higher values
may increase concurrency at the expense of more memory consumption from
having more items in flight. See the Tutorial, in the section on class pipeline, for
more about effective use of max_number_of_live_tokens.

Given sufficient processors and tokens, the throughput of the pipeline is limited to the
throughput of the slowest serial filter.

If there is other work to do while the pipeline is running, the call to method
pipeline: :run can be replaced by a pair of calls pipeline::start_run and
pipeline: :finish_run, and the calling thread can do other work between the calls.
The example in Section 3.9.7 has an example.

If there are no worker threads, the pipeline does not process any items until the call
to pipeline::finish_run.

Members
namespace tbb {
class pipeline {
public:
pipeline();

3.9.1

3.9.2

3.9.3

3.94

46

~pipeline();?

void add_filter(filter& f);

void run(size_t max_number_of live_tokens);
void clear();

pipeline()
Effects

Constructs pipeline with no filters.

~pipeline()
Effects

Removes all filters from the pipeline and destroys the pipeline

void add_filter(filter& f)

Effects

Appends filter f to sequence of filters in the pipeline. The filter f must not already be in
a pipeline.

void run(size_t max_number_of_live_tokens)

Effects

Runs the pipeline until the first filter returns NULL and each subsequent filter has
processed all items from its predecessor. The number of items processed in parallel
depends upon the structure of the pipeline and number of available threads. At most
max_number_of_live_tokens are in flight at any given time.

A pipeline can be run multiple times. It is safe to add stages between runs. Concurrent
invocations of run on the same instance of pipeline are prohibited.

® Though the current implementation declares the destructor virtual, do not
rely on this detail. The virtual nature is deprecated and may disappear in
future versions of Intel® TBB.

315415-004US

Algorithms

3.9.5

3.9.6

TIP:

CAUTION:

void clear()

Effects

Removes all filters from the pipeline.

filter Class

Summary

Abstract base class that represents a filter in a pipeline.

Syntax
class filter;

Header
#include "tbb/pipeline.h"

Description
A Filter represents a filter in a pipeline (3.9). There are three modes of filters:
A parallel filter can process multiple items in parallel and in no particular order.

A serial_out_of_order filter processes items one at a time, and in no particular
order.

A serial_in_order filter processes items one at a time. All serial_in_order filters
in a pipeline process items in the same order.

The mode of filter is specified by an argument to the constructor. Parallel filters are
preferred when practical because they permit parallel speedup. If a filter must be
serial, the out of order variant is preferred when practical because it puts less
contraints on processing order.

Class filter should only be used in conjunction with class pipeline (3.9).

Use a serial_in_order input filter if there are any subsequent serial_in_order
stages that should process items in their input order.

Intel® TBB 2.0 and prior treated parallel input stages as serial. Later versions of
Intel® TBB can execute a parallel input stage in parallel, so if you specify such a
stage, ensure that its operator() is thread safe.

Members
namespace tbb {
class filter {
public:
enum mode {
parallel = implementation-defined,

Reference Manual 47

NOTE:

48

serial_in_order = implementation-defined,
serial_out of order = implementation-defined

}:

bool is_serial() const;

bool is_ordered() const;

virtual void* operator()(void* item) = O;

virtual void finalize(void* item) {}

virtual ~filter();

protected:
filter(mode);

}:
}

Example

See the example filters My InputFilter, MyTransformFi lter, and MyOutputFilter in
the Tutorial (doc/Tutorial .pdf).

3.9.6.1 filter(mode filter_mode)

Effects

Constructs a filter of the specified mode.

Intel® TBB 2.1 and prior had a similar constructor with a bool argument is_serial.
That constructor exists but is deprecated (Section A.2.1).

3.96.2 ~filter()

Effects

Destroys the filter. If the filter is in a pipeline, it is automatically removed from that
pipeline.

3963 bool is_serial() const

Returns

False if filter mode is parallel; true otherwise.

3964 bool is_ordered() const

Returns

True if filter mode is serial_in_order, false otherwise.

315415-004US

Algorithms

3.9.7

intel)

3.96.5 virtual void* operator()(void * item)

Description

The derived filter should override this method to process an item and return a pointer
to an item to be processed by the next filter. The item parameter is NULL for the

first filter in the pipeline.

Returns

The first filter in a pipeline should return NULL if there are no more items to process.
The result of the last filter in a pipeline is ignored.

3.96.6 virtual void finalize(void * item)

Description

A pipeline can be cancelled by user demand or because of an exception. When a
pipeline is cancelled, there may be items returned by a filter’'s operator() that have
not yet been processed by the next filter. When a pipeline is cancelled, the next filter
invokes finalize() on each item instead of operator(). In contrast to operator(),
method finalize() does not return an item for further processing. A derived filter
should override Finalize() to perform proper cleanup for an item. A pipeline will not
invoke any further methods on the item.

Effects

The default definition has no effect.

thread_bound_filter Class

Summary

Abstract base class that represents a filter in a pipeline that a thread must service
explicitly.

Syntax
class thread bound_ filter;

Header
#include "tbb/pipeline.h"

Description

A thread_bound_filter is a special kind of filter (3.9.6) that is explicitly serviced
by a particular thread. It is useful when a filter must be executed by a particular
thread.

Reference Manual 49

CAUTION: Use thread_bound_filter only if you need a filter to be executed on a particular
thread. The thread that services a thread_bound_filter must not be the thread that
calls pipeline::run().

Members
namespace tbb {
class thread bound_filter: public filter {

protected:
thread_bound_filter(mode filter_mode);
public:
enum result _type {
success,

item_not_available,
end_of _stream
}:
result_type try process_item();
result_type process_item(Q);
}:
}

Example

The example below shows a pipeline with two filters where the second filter is a
thread_bound_filter serviced by the main thread.

#include <iostream>

#include "tbb/pipeline.h"

#include '"tbb/tbb_thread.h"

#include "tbb/task scheduler_init.h"

using namespace tbb;
char InputString[] = "abcdefg\n";

class InputFilter: public filter {
char* my ptr;
public:
void* operator()(void*) {
it (*my_ptr)
return my_ptr++;
else
return NULL;
by
InputFilter(:
filter(serial_in_order), my ptr(InputString)
{

50 315415-004US

Algorithms

¥

class OutputFilter: public thread bound filter {
public:
void* operator()(void* item) {
std: :cout << *(char*)item;
return NULL;

}
OutputFilter() : thread bound filter(serial_in_order) {}

¥

void RunPipeline(pipeline* p) {
p->run(8);
}

int main() {
// Construct the pipeline
InputFilter T;
OutputFilter g;
pipeline p;
p.add_filter(f);
p-add_filter(g);

// Another thread initiates execution of the pipeline
tbb_thread t(RunPipeline,é&p);

// Process the thread bound filter with the current thread.
while (g-process_item()!=thread _bound filter::end _of stream)
continue;

// Wait for pipeline to finish on the other thread.

t.joinQ);
return O;

>
The main thread does the following after constructing the pipeline:

1. Start the pipeline on another thread.
2. Service the thread_bound_filter until it reaches end_of_stream.

3. Wait for the other thread to finish.

The pipeline is run on a separate thread because the main thread is responsible for

servicing the thread_bound_filter g. The roles of the two threads can be reversed.

single thread cannot do both roles.

Reference Manual

A

51

3.9.7.1 thread_bound_filter(mode filter_mode)

Effects

Constructs a filter of the specified mode. Section 3.9.6 describes the modes.
39.7.2 result_type try_process_item()

Effects

If an item is available and it can be processed without exceeding the token limit,
process the item with filter::operator().

Returns

Table 15: Return Values From try_process_item

Return Value Description

success Applied filter: :operator() to one item.

item_not_available . . . o
No item is currently available to process, or the token limit

(3.9.4) would be exceeded.

end_of_stream No more items will ever arrive at this filter.
39.73 result_type process_item()
Effects

Like try_process_item, but waits until it can process an item or the end of the
stream is reached.

Returns

Either success or end_of_stream. See Table 15 for details.

CAUTION: The current implementation spin waits until it can process an item or reaches the end
of the stream.

3.10 parallel_sort Template Function

Summary

Sort a sequence.

Syntax
template<typename RandomAccesslterator>

52 315415-004US

Algorithms l n tel
void parallel_sort(RandomAccesslterator begin,
RandomAccesslterator end);
template<typename RandomAccesslterator, typename Compare>
void parallel_sort(RandomAccesslterator begin,
RandomAccesslterator end,

const Compare& comp);

Header
#include "tbb/parallel_sort.h"
Description
Performs an unstable sort of sequence [beginl, endl). An unstable sort might not
preserve the relative ordering of elements with equal keys. The sort is deterministic;
sorting the same sequence will produce the same result each time. The requirements
on the iterator and sequence are the same as for std: :sort. Specifically,
RandomAccesslterator must be a random access iterator, and its value type T must
model the requirements in Table 16.

Table 16: Requirements on Value Type T of RandomAccesslterator for parallel_sort

Pseudo-Signature Semantics
void swap(T& x, T& y) Swap x and y.
bool Compare::operator()(const T& X, True if x comes before y;
const T& y) false otherwise.

Reference Manual

A call parallel_sort(i,j,comp) sorts the sequence [i,]J) using the second
argument comp to determine relative orderings. If comp(x,y) returns true then x
appears before y in the sorted sequence.

A call parallel_sort(i,j) is equivalent to parallel_sort(i,j,std::less<T>).

Complexity

parallel_sort is comparison sort with an average time complexity of O(N log (N)),
where N is the number of elements in the sequence. When worker threads are
available (10.2.1), parallel_sort creates subtasks that may be executed
concurrently, leading to improved execution times.

Example

The following example shows two sorts. The sort of array a uses the default
comparison, which sorts in ascending order. The sort of array b sorts in descending
order by using std: :greater<float> for comparison.

#include "tbb/parallel_sort._h"

#include <math.h>

using namespace tbb;

const int N = 100000;
float a[N];
float b[N];

void SortExample() {
forC int i = 0; 1 < N; i++) {
a[i] = sin((double)i);
b[i] = cos((double)i);
}
parallel_sort(a, a + N);
parallel_sort(b, b + N, std::greater<float>());

3.11 parallel_invoke Template Function

Summary

Template function that evaluates several functions in parallel.

Syntax4
template<typename FuncO, typename Funcl>
void parallel_invoke(const FuncO& fO, const Funcl& f1);

template<typename FuncO, typename Funcl, typename Func2>

void parallel_invoke(const FuncO& f0, const Funcl& fl, const
Func2& f2);

template<typename FuncO, typename Funcl .. typename Func9>

void parallel_invoke(const FuncO& fO, const Funcl& f1 .. const
Func9é& 9);

Header
#include "tbb/parallel_invoke._h"

Description

The expression parallel_invoke(fy, T;...fy) evaluates (), F1(),..F« possibly in
parallel. There can be from 2 to 10 arguments. Each argument must have a type for

4 When support for C++0x rvalue references become prevalent, the formal
parameters may change to rvalue references instead of values.

54 315415-004US

(inteD)

which operator() is defined. Typically the arguments are either function objects or
pointers to functions. Return values are ignored.

Example

The following example evaluates f(), g(), and h() in parallel. Notice how g and h are
function objects that can hold local state.
#include "tbb/parallel_invoke.h"

using namespace tbb;

void TQ);
extern void bar(int);

class MyFunctor {

int arg;
public:

MyFunctor(int a) : arg(a) {}

void operator()() const {bar(arg);}
}:

void RunFunctionsInParallel() {
MyFunctor g(2);
MyFunctor h(3);
tbb: :parallel _invoke(f, g, h);
by

Example with Lambda Expressions

Here is the previous example rewritten with C++0x lambda expressions, which
generate function objects.
#include "tbb/parallel_invoke._h"

using namespace tbb;

void fQ);
extern void bar(int);

void RunFunctionsInParallel() {

tbb: :parallel_invoke(f, [1{bar(2);}, [1{bar(3);});
}

Reference Manual 55

Containers

4.1

Table 17:

The container classes permit multiple threads to simultaneously invoke certain
methods on the same container.

Like STL, Intel® Threading Building Blocks (Intel® TBB) containers are templated
with respect to an allocator argument. Each container uses its al locator to allocate
memory for user-visible items. A container may use a different allocator for strictly
internal structures.

Container Range Concept

Summary
View set of items in a container as a recursively divisible range.

Requirements
A Container Range is a Range (3.2) with the further requirements listed in Table 17.

Requirements on a Container Range R (In Addition to Table 7)
Pseudo-Signature Semantics

R::value_type Item type

R::reference Item reference type

R::const_reference Item const reference type

R: :difference_type Type for difference of two

iterators

R::iterator Iterator type for range

R::ziterator R::begin() First item in range

R::iterator R::end() One past last item in range

R::size_type R::grainsize() const Grain size

56

Model Types

Classes concurrent_hash_map (4.2.4) and concurrent_vector (4.5.5) both have
member types range_type and const_range_type that model a Container Range.

Use the range types in conjunction with parallel_for (3.4), parallel_reduce (3.5),
and parallel_scan (3.6) to iterate over items in a container.

315415-004US

Containers

4.2

Table 18:

intel)

concurrent_hash_map Template Class

Summary

Template class for associative container with concurrent access.

Syntax
template<typename Key, typename T,
typename HashCompare=tbb_ hash_compare<Key>,
typename A=tbb_allocator<std::pair<Key, T> > >
class concurrent_hash _map;

Header
#include '“tbb/concurrent_hash_map.h"

Description

A concurrent_hash_map maps keys to values in a way that permits multiple threads
to concurrently access values. The keys are unordered. There is at most one element
in a concurrent_hash_map for each key. The key may have other elements in flight
but not in the map as described in Section 4.2.3. The interface resembles typical STL
associative containers, but with some differences critical to supporting concurrent
access. It meets the Container Requirements of the 1ISO C++ standard.

Types Key and T must model the CopyConstructible concept (2.2.3).

Type HashCompare specifies how keys are hashed and compared for equality. It must
model the HashCompare concept in Table 18.

HashCompare Concept

Pseudo-Signature Semantics

HashCompare: :HashCompare(const HashCompareé&) Copy constructor.

HashCompare: :~HashCompare () Destructor.

bool HashCompare::equal(const Key& j, True if keys are equal.
const Key& k) const

size_t HashCompare::-hash(const Key& k) const Hashcode for key.

CAUTION:

CAUTION:

As for most hash tables, if two keys are equal, they must hash to the same hash code.
That is for a given HashCompare h and any two keys j and k, the following assertion
must hold: “Yh.equal (J,k) || h-hash(§)==h_.hash(k)”. The importance of this
property is the reason that concurrent_hash_map makes key equality and hashing
function travel together in a single object instead of being separate objects.

Good performance depends on having good pseudo-randomness in the low-order bits
of the hash code, particularly six lowermost bits.

Reference Manual 57

58

Example

When keys are pointers, simply casting the pointer to a hash code may cause poor
performance because the low-order bits of the hash code will be always zero if the
pointer points to a type with alignment restrictions. A way to remove this bias is to
divide the casted pointer by the size of the type, as shown by the underlined blue text
below.
size_t MyHashCompare::hash(Key* key) const {

return reinterpret_cast<size t>(key)/sizeof(Key);

}

Members
namespace tbb {
template<typename Key, typename T, typename HashCompare,
typename Alloc=tbb_allocator<std: :pair<Key,T> > >
class concurrent_hash map {
public:
// types
typedef Key key type;
typedef T mapped_type;
typedef std::pair<const Key,T> value_ type;
typedef size_t size type;
typedef ptrdiff_t difference_type;
typedef value_ type* pointer;
typedef const value_ type* const_pointer;
typedef value type& reference;
typedef Alloc allocator_type;

// whole-table operations
concurrent_hash_map(
const allocator_type& a=allocator_type());
concurrent_hash_map(
size_type n,
const allocator_type &a = allocator_type());
concurrent_hash_map(
const concurrent_hash_map&,
const allocator_type& a=allocator_type());
template<typename Inputlterator>
concurrent_hash_map(
Inputlterator first, Inputlterator last,
const allocator_type& a = allocator_type())
~concurrent_hash_map();
concurrent_hash_map operator=(const concurrent_hash_map&

void clear();

315415-004US

Containers

const;

value);

Reference Manual

allocator_type get_allocator() const;

// concurrent access
class const_accessor;
class accessor;

// concurrent operations on a table
bool find(const _accessor& result, const Key& key)

bool find(accessoré& result, const Key& key);

bool insert(const_accessoré& result, const Key& key);
bool insert(accessoré& result, const Key& key);

bool insert(const_accessoré& result, const value_ type&

bool insert(accessoré& result, const value_typeé& value);
bool insert(const value_ type& value);

template<typename 1> void insert(I first, 1 last);

bool erase(const Key& key);

bool erase(const_accessoré& item_accessor);

bool erase(accessor& item_accessor);

// parallel iteration

typedef implementation defined range_type;

typedef implementation defined const _range type;
range_type range(size_t grainsize=1);
const_range_type range(size_t grainsize=1) const;

// Capacity

size_type size() const;
bool empty() const;
size_type max_size() const;

// lterators

typedef implementation defined iterator;

typedef implementation defined const_iterator;

iterator begin();

iterator end();

const_iterator begin() const;

const_iterator end() const;

std: :pair<iterator, iterator> equal_range(const Key& key

std: :pair<const_iterator, const_iterator>
equal_range(const Key& key) const;

59

template<typename Key, typename T, typename HashCompare,
typename Al, typename A2>
bool operator==(
const concurrent_hash_map<Key,T,HashCompare,Al> &a,
const concurrent_hash_map<Key, T,HashCompare,A2> &b);

template<typename Key, typename T, typename HashCompare,
typename Al, typename A2>
bool operator!=(const
concurrent_hash_map<Key,T,HashCompare,Al> &a,
const concurrent_hash_map<Key, T,HashCompare,A2> &b);

template<typename Key, typename T, typename HashCompare,
typename A>
void swap(concurrent_hash_map<Key, T,HashCompare,A>& a,
concurrent_hash_map<Key, T,HashCompare,A>& b)

}

Exception Safey

The following functions must not throw exceptions:

e The hash function

e The destructors for types Key and T.

The following hold true:

o If an exception happens during an insert operation, the operation has no effect.

o If an exception happens during an assignment operation, the container may be in a
state where only some of the items were assigned, and methods size() and
empty() may return invalid answers.

4.2.1 Whole Table Operations

These operations affect an entire table. Do not concurrently invoke them on the same

table.

4211 concurrent_hash_map(const allocator_type& a =
allocator_type())

Effects

Constructs empty table.

60 315415-004US

Containers

NOTE:

421.2 concurrent_hash_map(size_type n, const allocator_type& a
= allocator_type())

Effects

Construct empty table with preallocated buckets for at least n items.

In general, thread contention for buckets is inversely related to the number of
buckets. If memory consumption is not an issue and P threads will be accessing the
concurrent_hash_map, set n>4P.

4213 concurrent_hash_map(const concurrent_hash_map& table,
const allocator_type& a = allocator_type())

Effects

Copies a table. The table being copied may have const operations running on it
concurrently.

4214 template<typename Inputlterator> concurrent_hash_map(
Inputlterator first, Inputiterator last, const allocator_type& a =
allocator_type())

Effects

Constructs table containing copies of elements in the iterator half-open interval
[First,last).

4215 ~concurrent_hash_map()

Effects

Invokes clear (). This method is not safe to execute concurrently with other methods
on the same concurrent_hash_map.

4216 concurrent_hash_map& operator= (
concurrent_hash_map& source)

Effects

If source and destination (this) table are distinct, clears the destination table and
copies all key-value pairs from the source table to the destination table. Otherwise,
does nothing.

Returns

Reference to the destination table.

Reference Manual 61

4.2.2

62

Table 19:

421.7 void swap(concurrent_hash_map& table)
Effects

Swaps contents and allocators of this and table.

42.1.8 void clear()

Effects
Erases all key-value pairs from the table.

If TBB_USE_PERFORMANCE_WARNINGS is nonzero, issues a performance warning if
the randomness of the hashing is poor enough to significantly impact performance.

4219 allocator_type get_allocator() const

Returns

Copy of allocator used to construct table.

Concurrent Access

Member classes const_accessor and accessor are called accessors. Accessors allow
multiple threads to concurrently access pairs in a shared concurrent_hash_map. An
accessor acts as a smart pointer to a pair in a concurrent_hash_map. It holds an
implicit lock on a pair until the instance is destroyed or method release is called on
the accessor.

Classes const_accessor and accessor differ in the kind of access that they permit.

Differences Between const_accessor and accessor

Class value_type Implied Lock on pair

const_accessor const std::pair<const Key,T> Reader lock — permits
shared access with other
readers.

accessor std: :pair<const Key,T> Writer lock — permits
exclusive access by a
thread. Blocks access by
other threads.

Accessors cannot be assigned or copy-constructed, because allowing such would
greatly complicate the locking semantics.

4.2.2.1 const_accessor

Summary

Provides read-only access to a pair in a concurrent_hash_map.

315415-004US

Containers

422.1.1

Syntax

template<typename Key, typename T, typename HashCompare, typename
A>

class concurrent_hash_map<Key, T,HashCompare,A>::const_accessor;

Header
#include '“tbb/concurrent_hash_map.h"

Description

A const_accessor permits read-only access to a key-value pair in a
concurrent_hash_map.

Members
namespace tbb {

template<typename Key, typename T, typename HashCompare,
typename A>

class
concurrent_hash_map<Key, T,HashCompare,A>: :const_accessor {
public:
// types
typedef const std::pair<const Key,T> value_type;

// construction and destruction
const_accessor();
~const_accessor();

// inspection

bool empty() const;

const value_type& operator*() const;
const value_type* operator->() const;

// early release
void release();

}
bool empty() const

Returns

True if instance points to nothing; false if instance points to a key-value pair.

Reference Manual 63

42212 void release()

Effects

If tempty(), releases the implied lock on the pair, and sets instance to point to
nothing. Otherwise does nothing.

42213 const value_type& operator*() const

Effects

Raises assertion failure if empty() and TBB_USE_ASSERT (2.6.1) is defined as
nonzero.

Returns

Const reference to key-value pair.
42214 const value_type* operator->() const

Returns
&operator*()

42.2.1.5 const_accessor()

Effects

Constructs const_accessor that points to nothing.

42216 ~const_accessor

Effects

If pointing to key-value pair, releases the implied lock on the pair.
4222 accessor

Summary

Class that provides read and write access to a pair in a concurrent_hash_map.

Syntax

template<typename Key, typename T, typename HashCompare,
typename Alloc>

class concurrent_hash_map<Key, T,HashCompare,A>: :accessor;

Header
#include "tbb/concurrent_hash_map.h"

64 315415-004US

Containers

42221

42222

4.23

TIP:

Description

An accessor permits read and write access to a key-value pair in a
concurrent_hash_map. It is derived from a const_accessor, and thus can be
implicitly cast to a const_accessor.

Members
namespace tbb {

template<typename Key, typename T, typename HashCompare,
typename Alloc>

class concurrent_hash_map<Key,T,HashCompare,Alloc>: accessor:

concurrent_hash_map<Key, T,HashCompare,Alloc>::const_accessor {
public:
typedef std::pair<const Key,T> value_type;
value_type& operator*() const;
value_type* operator->() const;

}
value_type& operator*() const

Effects
Raises assertion failure if empty() and TBB_USE_ASSERT (2.6.1) is defined as nonzero.

Returns

Reference to key-value pair.
value_type* operator->() const

Returns
&operator*()

Concurrent Operations

The operations count, find, insert, and erase are the only operations that may be
concurrently invoked on the same concurrent_hash_map. These operations search the
table for a key-value pair that matches a given key. The find and insert methods
each have two variants. One takes a const_accessor argument and provides read-only
access to the desired key-value pair. The other takes an accessor argument and
provides write access.

If the nonconst variant succeeds in finding the key, the consequent write access
blocks any other thread from accessing the key until the accessor object is destroyed.
Where possible, use the const variant to improve concurrency.

Reference Manual 65

CAUTION:

TIP:

66

Each map operation in this section returns true if the operation succeeds, false
otherwise.

Though there can be at most one occurrence of a given key in the map, there may be
other key-value pairs in flight with the same key. These arise from the semantics of
the insert and erase methods. The insert methods can create and destroy a
temporary key-value pair that is not inserted into a map. The erase methods remove
a key-value pair from the map before destroying it, thus permitting another thread to
construct a similar key before the old one is destroyed.

To guarantee that only one instance of a resource exists simultaneously for a given
key, use the following technique:

e To construct the resource: Obtain an accessor to the key in the map before
constructing the resource.

e To destroy the resource: Obtain an accessor to the key, destroy the resource, and
then erase the key using the accessor.

Below is a sketch of how this can be done.

extern tbb::concurrent_hash_map<Key,Resource,HashCompare> Map;

void ConstructResource(Key key) {
accessor acc;
if(Map.insert(acc,key)) {
// Current thread inserted key and has exclusive access.
...construct the resource here...

}

// Implicit destruction of acc releases lock

}

void DestroyResource(Key key) {
accessor acc;
if(Map.find(acc,key)) {
// Current thread found key and has exclusive access.
...destroy the resource here...
// Erase key using accessor.
Map.erase(acc);

}
4.23.1 size_type count(const Key& key) const

Returns

1 if map contains key; O otherwise.

315415-004US

Containers (l n te|>

423.2 bool find(const_accessor& result, const Key& key) const

Effects

Searches table for pair with given key. If key is found, sets result to provide read-only
access to the matching pair.

Returns

True if key was found; false if key was not found.
4233 bool find(accessor& result, const Key& key)

Effects

Searches table for pair with given key. If key is found, sets result to provide write
access to the matching pair

Returns

True if key was found; false if key was not found.
4234 bool insert(const_accessor& result, const Key& key)

Effects

Searches table for pair with given key. If not present, inserts new pair(key,T()) into
the table. Sets result to provide read-only access to the matching pair.

Returns

True if new pair was inserted; false if key was already in the map.
4235 bool insert(accessor& result, const Key& key)

Effects

Searches table for pair with given key. If not present, inserts new pair(key,T()) into
the table. Sets result to provide write access to the matching pair.

Returns

True if new pair was inserted; false if key was already in the map.

Reference Manual 67

CAUTION:

68

4236 bool insert(const_accessor& result, const value_type&
value)

Effects
Searches table for pair with given key. If not present, inserts new pair copy-

constructed from value into the table. Sets result to provide read-only access to the
matching pair.

Returns

True if new pair was inserted; false if key was already in the map.
4237 bool insert(accessor& result, const value_type& value)

Effects

Searches table for pair with given key. If not present, inserts new pair copy-
constructed from value into the table. Sets result to provide write access to the
matching pair.

Returns

True if new pair was inserted; false if key was already in the map.
4238 bool insert(const value_type& value)

Effects

Searches table for pair with given key. If not present, inserts new pair copy-
constructed from value into the table.

Returns

True if new pair was inserted; false if key was already in the map.

4239 template<typename Inputlterator> void insert(
Inputlterator first, Inputiterator last)

Effects

For each pair p in the half-open interval [first,last), does insert(p). The order of
the insertions, or whether they are done concurrently, is unspecified.

The current implementation processes the insertions in order. Future implementations

may do the insertions concurrently. If duplicate keys exist in [first,last), be careful to
not depend on their insertion order.

315415-004US

Containers

4.24

intel)

423.10 bool erase(const Key& key)

Effects

Searches table for pair with given key. Removes the matching pair if it exists. If there
is an accessor pointing to the pair, the pair is nonetheless removed from the table but
its destruction is deferred until all accessors stop pointing to it.

Returns

True if pair was removed by the call; false if key was not found in the map.

42311 bool erase(const_accessor& item_accessor)

Requirements
item_accessor.empty()==false

Effects

Removes pair referenced by item_accessor. Concurrent insertion of the same key
creates a new pair in the table.

Returns

True if pair was removed by this thread; false if pair was removed by another thread.

42312 bool erase(accessor& item_accessor)

Requirements
item_accessor.empty()==Ffalse
Effects

Removes pair referenced by item_accessor. Concurrent insertion of the same key
creates a new pair in the table.

Returns

True if pair was removed by this thread; false if pair was removed by another thread.

Parallel Iteration

Types const_range_type and range_type model the Container Range concept (4.1).
The types differ only in that the bounds for a const_range_type are of type
const_iterator, whereas the bounds for a range_type are of type iterator.

Reference Manual 60

4241 const_range_type range(size_t grainsize=1) const

Effects

Constructs a const_range_type representing all keys in the table. The parameter
grainsize is in units of hash table buckets. Each bucket typically has on average
about one key-value pair.

Returns

const_range_type object for the table.
4242 range_type range(size_t grainsize=1)
Returns

range_type object for the table.

4.2.5 Capacity

4251 size_type size() const

Returns

Number of key-value pairs in the table.

NOTE: This method takes constant time, but is slower than for most STL containers.
425.2 bool empty() const
Returns
size()==0.

NOTE: This method takes constant time, but is slower than for most STL containers.
4253 size_type max_size() const
Returns

Inclusive upper bound on number of key-value pairs that the table can hold.

4.2.6 Iterators

Template class concurrent_hash_map supports forward iterators; that is, iterators
that can advance only forwards across a table. Reverse iterators are not supported.
Modification of a table invalidates any existing iterators that point into the table.

70 315415-004US

Containers

4.2.7

4.26.1 iterator begin()

Returns

iterator pointing to beginning of key-value sequence.

426.2 iterator end()

Returns

iterator pointing to end of key-value sequence.
426.3 const_iterator begin() const

Returns

const_iterator with pointing to beginning of key-value sequence.
4264 const_iterator end() const

Returns

const_iterator pointing to end of key-value sequence.
4265 std::pair<iterator, iterator> equal_range(const Key& key);

Returns

Pair of iterators (i,j) such that the half-open range [i,j) contains all pairs in the map
(and only such pairs) with keys equal to key. Because the map has no duplicate keys,
the half-open range is either empty or contains a single pair.

4266 std::pair<const_iterator, const_iterator> equal_range(const
Key& key) const;

Description

See 4.2.6.5.

Global Functions

These functions in namespace tbb improve the STL compatibility of
concurrent_hash_map.

Reference Manual 71

4.2.8

72

4271 template<typename Key, typename T, typename
HashCompare, typename A1, typename A2> bool operator==(
const concurrent_hash_map<Key,T,HashCompare,A1>& a, const
concurrent_hash_map<Key, T,HashCompare,A2>& b);

Returns

True if a and b contain equal sets of keys and for each pair (k,v;)ea and pair ,v,)eb,
the expression bool (vi==V,) is true.

427.2 template<typename Key, typename T, typename
HashCompare, typename A1, typename A2> bool
operator!=(const
concurrent_hash_map<Key, T, HashCompare,A1> &a, const
concurrent_hash_map<Key, T,HashCompare,A2> &b);

Returns

1(a==b)

4273 template<typename Key, typename T, typename
HashCompare, typename A> void
swap(concurrent_hash_map<Key, T, HashCompare, A> &a,
concurrent_hash_map<Key, T, HashCompare, A> &b)

Effects

a.swap(b)

tbb_hash_compare Class

Summary

Default HashCompare for concurrent_hash_map.

Syntax
template<typename Key> struct tbb_hash_compare;

Header
#include 'tbb/concurrent_hash_map.h"

Description

A tbb_hash_compare<Key> is the default for the HashCompare argument of template
class concurrent_hash_map. The built-in definition relies on operator== and
tbb_hasher as shown in the Members description. For your own types, you can define
a template specialization of tbb_hash_compare or define an overload of tbb_hasher.

315415-004US

intel)

There are built-in definitions of tbb_hasher for the following Key types:
e Types that are convertible to a size_t by static_cast<T>

e Pointer types

e std::basic_string

e std::pair<Kl,K2> where K1 and K2 are hashed using tbb_hasher.

You may add overloads of tbb_hash_compare for your own types.

Members
namespace tbb {
template<typename Key>
struct tbb_hash_compare {
static size_t hash(const Key& a) {
return tbb_hasher(a);
s
static bool equal(const Key& a, const Key& b) {
return a==b;
by
33

template<typename T>
size_t tbb _hasher(const T&);

template<typename T>
size_t tbb_hasher(T*);

template<typename T, typename Traits, typename Alloc>
size_t tbb_hasher(const std::basic_string<T, Traits,Alloc>&);

template<typename T1l, typename T2>
size_t tbb _hasher(const std::pair<Tl,T2>&);

4.3 concurrent_queue Template Class

Summary

Template class for queue with concurrent operations.
Syntax

template<typename T, typename Alloc=cache_aligned_allocator<T> >
class concurrent_gueue;

Reference Manual 73

74

Table 20:

Header
#include 'tbb/concurrent_queue.h"

Description

A concurrent_queue is a first-in first-out data structure that permits multiple threads
to concurrently push and pop items. Its capacity is unbounded®, subject to memory
limitations on the target machine.

The interface is similar to STL std: :queue except where it must differ to make
concurrent modification safe.

Differences Between STL queue and Intel® Threading Building Blocks
concurrent_queue

Feature STL std: :queue concurrent_queue
Access to front and Methods front and back Not present. They would be
back unsafe while concurrent

operations are in progress.
size_type unsigned integral type signed integral type
unsafe_size() Returns number of items in Returns number of items in
queue queue. May return incorrect

value if any push or try_pop
operations are concurrently in

flight.
Copy and pop item bool b=!q.empty(); bool b = g.try_pop ()
unless queue q is if(b) {
empty.

x=q-Ffront();
q-popQ);

Members
namespace tbb {
template<typename T,
typename Alloc=cache_aligned_allocator<T> >
class concurrent_queue {
public:
// types

°In Intel® TBB 2.1, a concurrent_queue could be bounded. Intel® TBB 2.2
moves this functionality to concurrent_bounded_queue. Compile with
TBB_DEPRECATED=1 to restore the old functionality, or (recommended) use
concurrent_bounded_queue instead.

315415-004US

Containers

4.3.1

typedef T value_type;

typedef T& reference;

typedef const T& const_reference;
typedef std::ptrdiff_t size type;
typedef std::ptrdiff_t difference_type;
typedef Alloc allocator_type;

explicit concurrent _queue(const Alloc& a = Alloc ());

concurrent_queue(const concurrent_queueé& src,
const Alloc& a = Alloc());
template<typename Inputlterator>

concurrent_queue(lInputlterator first, Inputlterator last,

const Alloc& a = Alloc());
~concurrent_queue();

void push(const T& source);
bool try pop®(T& destination);
void clear() ;

size_type unsafe_size() const;
bool empty() const;
Alloc get_allocator() const;

typedef implementation-defined iterator;
typedef implementation-defined const_iterator;

// iterators (these are slow and intended only for debugging)
iterator unsafe_begin();

iterator unsafe _end();

const_iterator unsafe begin() const;
const_iterator unsafe _end() const;

concurrent_queue(const Alloc& a = Alloc ())

Effects

Constructs empty queue.

6 Called pop_if _present in Intel® TBB 2.1. Compile with TBB_DEPRECATED=1

to use the old name.

Reference Manual

e

43.2 concurrent_queue(const concurrent_queue& src, const
Alloc& a = Alloc())

Effects

Constructs a copy of src.

43.3 template<typename Inputlterator> concurrent_queue(
!1.[\1| ut(l)t()arator first, Inputlterator last, const Alloc& a =
oC

Effects

Constructs a queue containing copies of elements in the iterator half-open interval
[first,last).

434 ~concurrent_queue()
Effects
Destroys all items in the queue.
43.5 void push(const T& source)
Effects
Pushes a copy of source onto back of the queue.
4.3.6 bool try_pop (T& destination)

Effects

If value is available, pops it from the queue, assigns it to destination, and destroys the
original value. Otherwise does nothing.

Returns

True if value was popped; false otherwise.

4.3.7 void clear()

Effects

Clears the queue. Afterwards size()==0.

76 315415-004US

Containers

4.3.8

439

43.10

43.11

CAUTION:

intel)

size_type unsafe_size() const

Returns

Number of items in the queue. If there are concurrent modifications in flight, the value
might not reflect the actual number of items in the queue.

bool empty() const

Returns

true if queue has no items; false otherwise.

Alloc get_allocator() const

Returns

Copy of allocator used to construct the queue.

Iterators

A concurrent_queue provides limited iterator support that is intended solely to allow
programmers to inspect a queue during debugging. It provides iterator and
const_iterator types. Both follow the usual STL conventions for forward iterators. The
iteration order is from least recently pushed to most recently pushed. Modifying a
concurrent_queue invalidates any iterators that reference it.

The iterators are relatively slow. They should be used only for debugging.

Example

The following program builds a queue with the integers 0..9, and then dumps the
queue to standard output. Its overall effectisto print0 1 2 3 4 56 7 8 9.
#include "tbb/concurrent_queue.h"

#include <iostream>

using namespace std;
using namespace tbb;

int main() {
concurrent_queue<int> queue;
for(int i=0; i<10; ++i)
queue.push(i);
typedef concurrent_queue<int>::iterator iter;
for(iter i(queue.unsafe begin()); i!=queue.unsafe end(); ++i)

Reference Manual 7

4.4

78

cout << *i << ;
cout << endl;
return O;

+
43111 iterator unsafe_begin()

Returns

iterator pointing to beginning of the queue.

43.11.2 iterator unsafe_end()

Returns

iterator pointing to end of the queue.
43113 const_iterator unsafe_begin() const

Returns

const_iterator with pointing to beginning of the queue.
43114 const_iterator unsafe_end() const

Returns

const_iterator pointing to end of the queue.

concurrent_bounded_queue Template Class

Summary

Template class for bounded dual queue with concurrent operations.

Syntax
template<typename T, class Alloc=cache_aligned_allocator<T> >
class concurrent_bounded_queue;

Header
#include "tbb/concurrent_queue.h"

315415-004US

Containers |n/|IED

Description

A concurrent_bounded_queue is similar to a concurrent_queue, but with the following
differences:

e Adds the ability to specify a capacity. The default capacity makes the queue
practically unbounded.

e Changes the push operation so that it waits until it can complete without exceeding
the capacity.

e Adds a waiting pop operation that waits until it can pop an item.
e Changes the size_type to a signed type.

e Changes the size() operation to return the number of push operations minus the
number of pop operations. For example, if there are 3 pop operations waiting on an
empty queue, size() returns -3.

Members

To aid comparison, the parts that differ from concurrent_gueue are in bold and
annotated.
namespace tbb {
template<typename T, typename
Alloc=cache_aligned_allocator<T> >
class concurrent_bounded_queue {
public:
// types
typedef T value_ type;
typedef T& reference;
typedef const T& const _reference;
typedef Alloc allocator_type;
/I size_type is signed type
typedef std::ptrdiff_t size type;
typedef std::ptrdiff_t difference_type;

explicit concurrent_bounded queue(const allocator_typeé& a
= allocator_type());

concurrent_bounded_queue(const concurrent_bounded_queue&
src, const allocator_type& a = allocator_type());

template<typename Inputlterator>

concurrent_bounded_queue(Inputlterator begin,
Inputlterator end, const allocator_type& a = allocator_type());

~concurrent_bounded_queue();

[/ waits until it can push without exceeding capacity.
void push(const T& source);

[/ waits if *this is empty

void pop(T& destination);

Reference Manual 79

/I skips push if it would exceed capacity.

bool try push’(const T& source);
bool try pop®(T& destination);
void clear() ;

I/ safe to call during concurrent modification, can return negative size.
size_type size() const;

bool empty() const;

size_type capacity() const;

void set capacity(size type capacity);
allocator_type get_allocator() const;

typedef implementation-defined iterator;
typedef implementation-defined const_iterator;

// iterators (these are slow an intended only for
debugging)

iterator unsafe begin();

iterator unsafe _end();

const_iterator unsafe begin() const;

const_iterator unsafe _end() const;

}

Because concurrent_bounded_queue is similar to concurrent_queue, the following
subsections described only methods that differ.

4.4.1 void push(const T& source)

Effects

Waits until size()<capacity, and then pushes a copy of source onto back of the queue.

” Method try_push was called push_if_not_full in Intel® TBB 2.1.

8 Method try_pop was called pop_if_present in Intel® TBB 2.1.

80 315415-004US

Containers | nte |))

44.2 void pop(T& destination)

Effects

Waits until a value becomes available and pops it from the queue. Assigns it to
destination. Destroys the original value.

44.3 bool try_push(const T& source)

Effects

If size()<capacity, pushes a copy of source onto back of the queue.

Returns

True if a copy was pushed; false otherwise.

444 bool try_pop(T& destination)

Effects

If a value is available, pops it from the queue, assigns it to destination, and destroys
the original value. Otherwise does nothing.

Returns
True if a value was popped; false otherwise.
445 size_type size() const

Returns

Number of pushes minus number of pops. The result is negative if there are pop
operations waiting for corresponding pushes. The result can exceed capacity() if the
queue is full and there are push operations waiting for corresponding pops.

4.4.6 bool empty() const

Returns
size()<=0

Reference Manual 81

44.7 size_type capacity() const

Returns

Maximum number of values that the queue can hold.

448 void set_capacity(size_type capacity)

Effects

Sets the maximum number of values that the queue can hold.

45 concurrent_vector

Summary

Template class for vector that can be concurrently grown and accessed.

Syntax
template<typename T, class Alloc=cache_aligned_allocator<T> >
class concurrent_vector;

Header
#include ""tbb/concurrent_vector.h"

Description

A concurrent_vector is a container with the following features:

¢ Random access by index. The index of the first element is zero.

o Multiple threads can grow the container and append new elements concurrently.
e Growing the container does not invalidate existing iterators or indices.

A concurrent_vector meets all requirements for a Container and a Reversible
Container as specified in the 1ISO C++ standard. It does not meet the Sequence
requirements due to absence of methods insert() and erase().

Members
namespace tbb {

template<typename T, typename
Alloc=cache_aligned_allocator<T> >

class concurrent_vector {
public:

82 315415-004US

Containers |n/|IED

typedef size_t size type;

typedef allocator-A-rebound-for-T° allocator_type;
typedef T value_ type;

typedef ptrdiff_t difference_type;

typedef T& reference;

typedef const T& const reference;

typedef T* pointer;

typedef const T *const_pointer;

typedef implementation-defined iterator;

typedef implementation-defined const_iterator;
typedef implementation-defined reverse_iterator;
typedef implementation-defined const_reverse_iterator;

// Parallel ranges

typedef implementation-defined range_ type;
typedef implementation-defined const_range_ type;
range_type range(size_t grainsize);
const_range_type range(size_t grainsize) const;

// Constructors
explicit concurrent vector(const allocator_type& a =
allocator_type(Q));
concurrent_vector(const concurrent_vector& x);
template<typename M>
concurrent_vector(const concurrent _vector<T, M>& X

explicit concurrent_vector(size_type n,

const T& t=T(Q),

const allocator_type& a = allocator_type());
template<typename Inputlterator>

concurrent_vector(Inputlterator first, Inputlterator
last,

const allocator_type& a=allocator_type());

// Assignment
concurrent_vectoré& operator=(const concurrent_vector& X

template<class M>

9 This rebinding follows practice established by both the Microsoft and GNU
implementations of std: :vector.

Reference Manual 83

concurrent_vector& operator=(const

concurrent_vector<T, M>& X);

void assign(size type n, const T& t);
template<class Inputlterator >
void assign(Inputlterator first, Inputlterator last

// Concurrent growth operations?®

iterator grow _by(size type delta);

iterator grow_by(size type delta, const T& t);
iterator grow_to at least(size type n);
iterator push_back(const T& item);

// ltems access

reference operator[](size_type index);
const_reference operator[](size type index) const;
reference at(size_type index);

const_reference at(size type index) const;
reference front();

const_reference front() const;

reference back();

const_reference back() const;

// Storage

bool empty() const;

size_type capacity() const;

size_type max_size() const;

size_type size() const;
allocator_type get_allocator() const;

// Non-concurrent operations on whole container
void reserve(size_type n);

void compact();

void swap(concurrent_vector& vector);

void clear();

~concurrent_vector();

// lterators
iterator begin();

% The return types of the growth methods are different in Intel® TBB 2.2
than in prior versions. See footnotes in the descriptions of the individual
methods for details.

315415-004US

Containers

iterator end();

const_iterator begin() const;
const_iterator end() const;
reverse_iterator rbegin();
reverse_iterator rend();
const_reverse_iterator rbegin() const;
const_reverse_iterator rend() const;

// C++0x extensions

const_iterator cbegin() const;
const_iterator cend() const;
const_reverse_iterator crbegin() const;
const_reverse_iterator crend() const;

};

// Template functions
template<typename T, class Al, class A2>
bool operator==(const concurrent_vector<T, Al>& a,
const concurrent_vector<T, A2>& b);

template<typename T, class Al, class A2>
bool operator!=(const concurrent_vector<T, Al>& a,
const concurrent_vector<T, A2>& b);

template<typename T, class Al, class A2>
bool operator<(const concurrent_vector<T, Al>& a,
const concurrent_vector<T, A2>& b);

template<typename T, class Al, class A2>
bool operator>(const concurrent_vector<T, Al>& a,
const concurrent_vector<T, A2>& b);

template<typename T, class Al, class A2>
bool operator<=(const concurrent _vector<T, Al1>& a,
const concurrent_vector<T, A2>& b);

template<typename T, class Al, class A2>
bool operator>=(const concurrent vector<T, Al>& a,
const concurrent_vector<T, A2>& b);

template<typename T, class A>
void swap(concurrent_vector<T, A>& a, concurrent_vector<T,

A>& b);

}

Reference Manual

86

Exception Safety

Concurrent growing is fundamentally incompatible with ideal exception safety.!
Nonetheless, concurrent_vector offers a practical level of exception safety.

Element type T must meet the following requirements:
e Its destructor must not throw an exception.

o If its default constructor can throw an exception, its destructor must be non-virtual
and work correctly on zero-filled memory.

Otherwise the program’s behavior is undefined.

Growth (4.5.3) and vector assignment (4.5.1) append a sequence of elements to a
vector. If an exception occurs, the impact on the vector depends upon the cause of
the exception:

o |If the exception is thrown by the constructor of an element, then all subsequent
elements in the appended sequence will be zero-filled.

e Otherwise, the exception was thrown by the vector's allocator. The vector becomes
broken. Each element in the appended sequence will be in one of three states:

o0 constructed
o zero-filled
o unallocated in memory
Once a vector becomes broken, care must be taken when accessing it:

e Accessing an unallocated element with method at causes an exception
std: :range_error. Any other way of accessing an unallocated element has
undefined behavior.

e The values of capacity() and size() may be less than expected.

e Access to a broken vector via back()has undefined behavior.

However, the following guarantees hold for broken or unbroken vectors:

e Let k be an index of an unallocated element. Then size()<capacity()=<k.
o Growth operations never cause size() or capacity() to decrease.

If a concurrent growth operation successfully completes, the appended sequence
remains valid and accessible even if a subsequent growth operations fails.

1 For example, consider P threads each appending N elements. To be
perfectly exception safe, these operations would have to be serialized,
because each operation has to know that the previous operation succeeded
before allocating more indices.

315415-004US

Containers (l n te|>

Fragmentation

Unlike a std: :vector, a concurrent_vector never moves existing elements when it
grows. The container allocates a series of contiguous arrays. The first reservation,
growth, or assignment operation determines the size of the first array. Using a small
number of elements as initial size incurs fragmentation across cache lines that may
increase element access time. The method shrink_to_fit()merges several smaller

arrays into a single contiguous array, which may improve access time.

4.5.1 Construction, Copy, and Assignment
Safety

These operations must not be invoked concurrently on the same vector.

4511 concurrent_vector(const allocator_type& a =
allocator_type())

Effects

Constructs empty vector using optionally specified allocator instance.

45.1.2 concurrent_vector(size_type n, const_reference t=T(),
const allocator_type& a = allocator_type());

Effects

Constructs vector of n copies of t, using optionally specified allocator instance. If t is
not specified, each element is default constructed instead of copied.

4513 template<typename Inputlterator> concurrent_vector(
Inputlterator first, Inputiterator last, const allocator_type& a =
allocator_type())

Effects

Constructs vector that is copy of the sequence [first, last), making only N calls to
the copy constructor of T, where N is the distance between first and last.

4514 concurrent_vector(const concurrent_vector& src)

Effects

Constructs copy of src.

Reference Manual 87

4515 concurrent_vector& operator=(const concurrent_vector&
src)

Effects

Assigns contents of src to *this.

Returns

Reference to left hand side.

4516 template<typename M>
concurrent_vector& operator=(const concurrent_vector<T,
M>& src)

Assign contents of src to *this.

Returns
Reference to left hand side.
451.7 void assign(size_type n, const_reference t)

Assign n copies of t.

4518 template<class Inputlterator >
void assign(Inputlterator first, Inputlterator last)

Assign copies of sequence [First,last), making only N calls to the copy constructor
of T, where N is the distance between first and last.

45.2 Whole Vector Operations

Safety

Concurrent invocation of these operations on the same instance is not safe.
45.2.1 void reserve(size_type n)

Effects

Reserves space for at least n elements.

Throws

std: :length_error if n>max_size(). It can also throw an exception if the allocator
throws an exception.

88 315415-004US

Containers

TIP:

453

Safety

If an exception is thrown, the instance remains in a valid state.

452.2 void shrink_to_fit()2

Effects

Compacts the internal representation to reduce fragmentation.

4523 void swap(concurrent_vector& x)

Swap contents of two vectors. Takes O(1) time.

4524 void clear()

Effects

Erases all elements. Afterwards, size()==0. Does not free internal arrays.*®

To free internal arrays, call shrink_to_fit() after clear().
4525 ~concurrent_vector()

Effects

Erases all elements and destroys the vector.

Concurrent Growth

Safety

The methods described in this section may be invoked concurrently on the same
vector.

12 Method shrink_to_fit was called compact() in Intel® TBB 2.1. It was
renamed to match the C++0x std: :vector::shrink_to fit().

13 The original release of Intel® TBB 2.1 and its “update 1” freed the arrays.
The change in “update 2” reverts back to the behavior of Intel® TBB 2.0. The
motivation for not freeing the arrays is to behave similarly to

std: :vector::clear().

Reference Manual 89

TIP:

90

453.1 iterator grow_by(size_type delta, const_reference t=T()
)14
Effects

Appends a sequence comprising delta copies of t to the end of the vector. If t is not
specified, the new elements are default constructed.

Returns

Iterator pointing to beginning of appended sequence.
4532 iterator grow_to_at_least(size_type n)15

Effects

Appends minimal sequence of elements such that vector.size()>=n. The new
elements are default constructed. Blocks until all elements in range [0..n) are
allocated (but not necessarily constructed if they are under construction by a different
thread).

If a thread must know whether construction of an element has completed, consider
the following technique. Instantiate the concurrent_vector using a zero_allocator
(6.5). Define the constructor T() such that when it completes, it sets a field of T to
non-zero. A thread can check whether an item in the concurrent_vector is
constructed by checking whether the field is non-zero.

Returns

Iterator that points to beginning of appended sequence, or pointer to (*this)[n] if no
elements were appended.

4533 iterator push_back(const_reference value)16

Effects

Appends copy of value to the end of the vector.

Returns
Iterator that points to the copy.

4 Return type was size_type in Intel® TBB 2.1.
> Return type was void in Intel® TBB 2.1.

¢ Return type was size_type in Intel® TBB 2.1.

315415-004US

Containers | nte | >

454 Access
Safety

The methods described in this section may be concurrently invoked on the same
vector as methods for concurrent growth (4.5.3). However, the returned reference
may be to an element that is being concurrently constructed.

4541 reference operator([](size_type index)

Returns

Reference to element with the specified index.
4542 const_refrence operator[](size_type index) const

Returns

Const reference to element with the specified index.
4543 reference at(size_type index)

Returns

Reference to element at specified index.

Throws

std: :out_of_range if index > size().
4544 const_reference at(size_type index) const

Returns

Const reference to element at specified index.

Throws

std: :out_of_range if index > size() or index is for broken portion of vector.
4545 reference front()

Returns
(*this)[0]

Reference Manual 91

455

456

92

4546 const_reference front() const

Returns
(*this)[0]

4547 reference back()

Returns
this)[size()-1]

4548 const_reference back() const
Returns

this)[size()-1]

Parallel Iteration

Types const_range_type and range_type model the Container Range concept (4.1).
The types differ only in that the bounds for a const_range_type are of type
const_iterator, whereas the bounds for a range_type are of type iterator.

4551 range_type range(size_t grainsize=1)

Returns

Range over entire concurrent_vector that permits read-write access.
4552 const_range_type range(size_t grainsize=1) const
Returns

Range over entire concurrent_vector that permits read-only access.
Capacity

456.1 size_type size() const

Returns

Number of elements in the vector. The result may include elements that are allocated
but still under construction by concurrent calls to any of the growth methods (4.5.3).

315415-004US

Containers

NOTE:

4.5.7

456.2 bool empty() const
Returns

size()==

456.3 size_type capacity() const
Returns

Maximum size to which vector can grow without having to allocate more memory.

Unlike an STL vector, a concurrent_vector does not move existing elements if it
allocates more memory.

4564 size_type max_size() const

Returns

Highest possible size of the vector could reach.

Iterators

Template class concurrent_vector<T> supports random access iterators as defined in
Section 24.1.4 of the 1SO C++ Standard. Unlike a std: :vector, the iterators are not
raw pointers. A concurrent_vector<T> meets the reversible container requirements
in Table 66 of the ISO C++ Standard.

45.7.1 iterator begin()

Returns

iterator pointing to beginning of the vector.
4572 const_iterator begin() const

Returns

const_iterator pointing to beginning of the vector.

45723 iterator end()

Returns

iterator pointing to end of the vector.

Reference Manual 93

94

4574 const_iterator end() const

Returns

const_iterator pointing to end of the vector.

4575 reverse_iterator rbegin()

Returns

reverse iterator pointing to beginning of reversed vector.
4576 const_reverse_iterator rbegin() const

Returns

const_reverse_iterator pointing to beginning of reversed vector.

45.7.7 iterator rend()

Returns

const_reverse_iterator pointing to end of reversed vector.
4578 const_reverse_iterator rend()

Returns

const_reverse_iterator pointing to end of reversed vector.

315415-004US

Thread Local Storage i n te l g)

5

Thread Local Storage

5.1

Intel® Threading Building Blocks (Intel® TBB) provides two template classes for
thread local storage. Both provide a thread-local element per thread. Both lazily
create the elements on demand. They differ in their intended use models:

combinable provides thread-local storage for holding per-thread subcomputations that
will later be reduced to a single result. It is PPL compatible.
enumerable_thread_specific provides thread-local storage that acts like a STL
container with one element per thread. The container permits iterating over the
elements using the usual STL iteration idioms.

This chapter also describes template class flatten2d, which assists a common idiom
where an enumerable_thread_specific represents a container partitioner across
threads.

combinable Template Class

Summary

Template class for holding thread-local values during a parallel computation that will
be merged into to final.

Syntax
template<typename T> class combinable<T>;

Header
#include "tbb/combinable.h"

Description

A combinable<T> provides each thread with its own local instance of type T.

Members
namespace tbb {
template <typename T>
class combinable {
public:
combinable();

template <typename FInit>
combinable(FInit finit);}

Reference Manual 95

5.1.1

5.1.2

NOTE:

5.1.3

5.14

96

combinable(const combinable& other);
~combinable();

combinable& operator=(const combinable& other);
void clear();

T& local(Q);
T& local(bool & exists);

template<typename FCombine> T combine(FCombine fcombine);
template<typename Func> void combine_each(Func f);

combinable()

Effects

Constructs combinable such that any thread-local instances of T will be created using
default construction.

template<typename FInit> combinable(FInit finit)

Effects

Constructs combinable such that any thread-local element will be created by copying
the result of finit().

The expression finit() must be safe to evaluate concurrently by multiple threads. It is
evaluated each time a thread-local element is created.

combinable(const combinable& other);
Effects

Construct a copy of other, so that it has copies of each element in other with the
same thread mapping.

~combinable()
Effects

Destroy all thread-local elements in *this.

315415-004US

Thread Local Storage i n te l ® >

5.1.5 combinable& operator=(const combinable& other)

Effects
Set *this to be a copy of other.

5.1.6 void clear()
Effects

Remove all elements from *this.

517 T&local()
Effects

If thread-local element does not exist, create it.

Returns

Reference to thread-local element.

518 T&local(bool& exists)
Effects

Similar to local (), except that exists is set to true if an element was already
present for the current thread; false otherwise.

Returns

Reference to thread-local element.

519 template<typename FCombine>T combine(FCombine
fcombine)

Requires

Parameter fcombine should be an associative binary functor with the signature T(T,T)
or T(const T&,const T&).

Effects

Computes reduction over all elements using binary functor fcombine. If there are no
elements, creates the result using the same rules as for creating a thread-local
element.

Reference Manual 97

5.1.10

5.2

98

Returns

Result of the reduction.

template<typename Func> void combine_each(Func f)

Requires

Parameter f should be a unary functor with the signature void(T) or void(const
T&).

Effects

Evaluates f(x) for each instance x of T in *this.

enumerable_thread_specific Template Class

Summary

Template class for thread local storage.

Syntax

enum ets_key usage type {
ets no_native_ tls keys,
ets tls key per_instance

¥

template <typename T,

typename Allocator=cache aligned_allocator<T>,

ets key usage type ETS key type=ets no_native tls keys>
class enumerable_thread_specific;

Header
#include 'tbb/enumerable_thread_specific.h"

Description

An enumerable_thread_specific provides thread local storage (TLS) for elements of
type T. An enumerable_thread_specific acts as a container by providing iterators and
ranges across all of the thread-local elements.

The thread-local elements are created lazily. A freshly constructed
enumerable_thread_specific has no elements. When a thread requests access to a
enumerable_thread_specific, it creates an element corresponding to that thread.
The number of elements is equal to the number of distinct threads that have accessed

315415-004US

Thread Local Storage : i n te l &>

CAUTION:

the enumerable_thread_specific and not the number of threads in use by the
application. Clearing a enumerable_thread_specific removes all of its elements.

The ETS_key_usage_type parameter can be used to select between an
implementation that consumes no native TLS keys and a specialization that offers
higher performance but consumes 1 native TLS key per enumerable_thread_specific
instance. If no ETS_key_usage_type parameter is provided, ets_no_native_tls_keys
is used by default.

The number of native TLS keys is limited and can be fairly small, for example 64 or
128. Therefore it is recommended to restrict the use of the

ets_tls_key per_instance specialization to only the most performance critical
cases.

Example

The following code shows a simple example usage of enumerable_thread_specific.
The number of calls to null_parallel_for_body: :operator() and total number of
iterations executed are counted by each thread that participates in the parallel_for,
and these counts are printed at the end of main.

#include <cstdio>
#include <utility>

#include "tbb/task scheduler_init.h"
#include "tbb/enumerable_thread specific.h"
#include "tbb/parallel _for.h"

#include "tbb/blocked_range.h"

using namespace tbb;

typedef enumerable_ thread_specific< std::pair<int,int> >
CounterType;

CounterType MyCounters (std::make_pair(0,0));

struct Body {
void operator()(const tbb::blocked range<int> &r) const {
CounterType: :reference my_counter = MyCounters.local();
++my_counter.first;
for (int i = r.begin(Q); i !'= r.end(); ++i)
++my_counter.second;

}:

int main() {

Reference Manual 99

parallel_for(blocked_range<int>(0, 100000000), Body());

for (CounterType::const_iterator i = MyCounters.begin();
i = MyCounters.end();

++1i)
{
printf(""Thread stats:\n"");
printf("" calls to operator(): %d", i->First);
printf("® total # of iterations executed: %d\n\n",
i->second);
by

}

Example with Lambda Expressions

Class enumerable_thread_specific has a method combine(f) that does reduction
using binary functor ¥, which can be written using a lambda expression. For example,
the previous example can be extended to sum the thread-local values by adding the
following lines to the end of function main:
std: :pair<int,int> sum =
MyCounters.combine([](std: :pair<int,int> X,
std: tpair<int,int> y) {
return std::make pair(x.first+y.first,
X.second+y.second) ;
s
printf(""Total calls to operator() = %d, "
"total iterations = %d\n", sum.first, sum.second);

Members
namespace tbb {
template <typename T,
typename Allocator=cache_aligned_allocator<T>,
ets key usage type ETS key type=ets single key >
class enumerable_thread_specific {
public:
// Basic types
typedef Allocator allocator_type;
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
typedef T* pointer;
typedef implementation-dependent size type;
typedef implementation-dependent difference_ type;

// lterator types
typedef implementation-dependent iterator;

100 315415-004US

Thread Local Storage

intel)

typedef implementation-dependent const_iterator;

// Parallel range types
typedef implementation-dependent range_ type;
typedef implementation-dependent const_range_type;

// Whole container operations
enumerable_thread _specific();
enumerable_thread_specific(

const enumerable_thread_specific &ets
)
enumerable_thread_specific(const T & exemplar);
~enumerable_thread_specific();
void clear();

// Concurrent operations
reference local();

reference local(boolé& existis);
size_type size() const;

bool empty() const;

// Combining
template<typename FCombine> T combine(FCombine fcombine);
template<typename Func> void combine_each(Func f);

// Parallel iteration
range_type range(size_t grainsize=1);
const_range_type range(size_t grainsize=1) const;

// lterators

iterator begin();

iterator end();
const_iterator begin() const;
const_iterator end() const;

5.2.1 Whole Container Operations

Safety

These operations must not be invoked concurrently on the same instance of
enumerable_thread_specific.

Reference Manual

101

NOTE:

5.2.2

102

5211 enumerable_thread_specific()

Effects

Constructs an enumerable_thread_specific where each local copy will be default
constructed.

521.2 enumerable_thread_specific(const
enumerable_thread_specific &e)

Effects

Copy construct an enumerable_thread_specific. The values are copy constructed
from the values in e and have same thread correspondence.

5213 enumerable_thread_specific(const &exemplar)

Effects

Constructs an enumerable_thread_specific where each local copy will be copy
constructed from exemplar.

5214 ~enumerable_thread_specific()

Effects

Destroys all elements in *this. Destroys any native TLS keys that were created for
this instance.

5.2.1.5 void clear()

Effects

Destroys all elements in *this. Destroys and then recreates any native TLS keys used
in the implementation.

In the current implementation, there is no performance advantage of using clear
instead of destroying and reconstructing an enumerable_thread_specific.

Concurrent Operations

52.2.1 reference local()

Returns

A reference to the element of *this that corresponds to the current thread.

315415-004US

Thread Local Storage ‘ i n te|®:

5.2.3

Effects

If there is no current element corresponding to the current thread, then constructs a
new element. A new element is copy-constructed if an exemplar was provided to the
constructor for *this, otherwise a new element is default constructed.

5222 T& local(bool& exists)
Effects

Similar to local (), except that exists is set to true if an element was already
present for the current thread; false otherwise.

Returns

Reference to thread-local element.
5223 size_type size() const

Returns

The number of elements in *this. The value is equal to the number of distinct threads
that have called local() after *this was constructed or most recently cleared.

5224 bool empty() const

Returns

size()==0.

Combining

The methods in this section iterate across the entire container.

5231 template<typename FCombine>T combine(FCombine
fcombine)

Requires

Parameter fcombine should be an associative binary functor with the signature T(T,T)
or T(const T&,const T&).

Effects
Computes reduction over all elements using binary functor fcombine. If there are no

elements, creates the result using the same rules as for creating a thread-local
element.

Returns

Reference Manual 103

5.24

5.2.5

104

Result of the reduction.
5232 template<typename Func> void combine_each(Func f)

Requires

Parameter f should be a unary functor with the signature void(T) or void(const T&).

Effects

Evaluates f(x) for each instance x of T in *this.

Parallel Iteration
Types const_range_type and range_type model the Container Range concept (4.1).

The types differ only in that the bounds for a const_range_type are of type
const_iterator, whereas the bounds for a range_type are of type iterator.

5241 const_range_type range(size_t grainsize=1) const

Returns

A const_range_type representing all elements in *this. The parameter grainsize is
in units of elements.

524.2 range_type range(size_t grainsize=1)

Returns

A range_type representing all elements in *this. The parameter grainsize isin
units of elements.

Iterators

Template class enumerable_thread_specific supports random access iterators,
which enable iteration over the set of all elements in the container.

5251 iterator begin()

Returns

iterator pointing to beginning of the set of elements.

315415-004US

Thread Local Storage i n te l ®)

5.3

5252 iterator end()

Returns

iterator pointing to end of the set of elements.
5253 const_iterator begin() const

Returns

const_iterator pointing to beginning of the set of elements.
5254 const_iterator end() const

Returns

const_iterator pointing to the end of the set of elements.

flattened2d Template Class

Summary

Adaptor that provides a flattened view of a container of containers.

Syntax
template<typename Container>
class flattened?2;

template <typename Container>
flattened2d<Container> flatten2d(const Container &c);

template <typename Container>
flattened2d<Container> flatten2d(
const Container &c,
const typename Container::const_iterator b,
const typename Container::const_iterator e);

Header
#include "tbb/enumerable_thread_specific.h"

Description

A flattened2d provides a flattened view of a container of containers. Iterating from
begin() to end()visits all of the elements in the inner containers. This can be useful
when traversing a enumerable_thread_specific whose elements are containers.

The utility function flatten2d creates a flattened2d object from a container.

Reference Manual 105

Example

The following code shows a simple example usage of flatten2d and flattened2d. Each
thread collects the values of i that are evenly divisible by K in a thread-local vector.

In main, the results are printed by using a Flattened2d to simplify the traversal of all
of the elements in all of the local vectors.

#include <iostream>
#include <utility>
#include <vector>

#include "tbb/task scheduler_init.h"
#include "tbb/enumerable_thread_ specific.h"
#include 'tbb/parallel_for.h"

#include "tbb/blocked_range.h"

using namespace tbb;

// A VecType has a separate std::vector<int> per thread
typedef enumerable_thread_specific< std::vector<int> > VecType;
VecType MyVectors;

int K = 1000000;

struct Func {
void operator()(const blocked range<int>& r) const {
VecType::reference v = MyVectors.local();
for (int i=r.begin(); il=r.end(); ++i)
if(1%==0)
Vv.push_back(i);

¥

int main() {
parallel_for(blocked range<int>(0, 100000000),

Func(Q));

flattened2d<VecType> flat_view = flatten2d(MyVectors);
for(flattened2d<VecType>::const_iterator
i = flat_view.begin(Q); i != flat_view.end(); ++i)
cout << *i << endl;
return O;

106 315415-004US

Thread Local Storage

Members
namespace tbb {

template<typename Container>
class flattened2d {

public:

// Basic types

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

typedef
typedef

implementation-dependent
implementation-dependent
implementation-dependent
implementation-dependent
implementation-dependent
implementation-dependent
implementation-dependent
implementation-dependent

implementation-dependent
implementation-dependent

size_type;
difference_type;
allocator_type;
value_type;
reference;
const_reference;
pointer;
const_pointer;

iterator;
const_iterator;

flattened2d(const Container& c);

flattened2d(const Containeré& c,
typename Container::const_iterator first,

typename Container::

iterator begin();

iterator end();
const_iterator begin() const;
const_iterator end() const;

size_type size() const;

};

template <typename Container>
flattened2d<Container> flatten2d(const Container &c);

template <typename Container>
flattened2d<Container> flatten2d(
const Container &c,
const typename Container::const_iterator first,
const typename Container::const_iterator last);

Reference Manual

const_iterator last);

107

5.3.1

5.3.2

53.3

108

Whole Container Operations
Safety

These operations must not be invoked concurrently on the same flattened2d.
5.3.1.1 flattened2d(const Container& c);

Effects

Constructs a flattened2d representing the sequence of elements in the inner
containers contained by outer container c.

53.1.2 flattened2d(const Container& c, typename
Container:const_iterator first, typename
Container:const_iterator last)

Effects

Constructs a flattened2d representing the sequence of elements in the inner
containers in the half-open intervale [First, last) of Container c.

Concurrent Operations
Safety

These operations may be invoked concurrently on the same flattened2d.
5.3.2.1 size_type size() const

Returns

The sum of the sizes of the inner containers that are viewable in the flattened2d.

[terators

Template class flattened2d supports foward iterators only.
5.3.3.1 iterator begin()

Returns

iterator pointing to beginning of the set of local copies.

533.2 iterator end()

Returns

iterator pointing to end of the set of local copies.

315415-004US

Thread Local Storage i n te l ® >

534

Reference Manual

5333 const_iterator begin() const

Returns

const_iterator pointing to beginning of the set of local copies.
5334 const_iterator end() const

Returns

const_iterator pointing to the end of the set of local copies.

Utility Functions

5.34.1 template <typename Container> flattened2d<Container>
flatten2d(const Container &c, const typename
Container:const_iterator b, const typename
Container::const_iterator e)

Returns

Constructs and returns a flattened2d that provides iterators that traverse the
elements in the containers within the half-open range [b, e) of Container c.

534.2 template <typename Container> flattened2d(const
Container &c)

Returns

Constructs and returns a flattened2d that provides iterators that traverse the
elements in all of the containers within Container c.

109

Memory Allocation

6.1

110

Table 21.:

This section describes classes related to memory allocation.

Allocator Concept

The allocator concept for allocators in Intel® Threading Building Blocks is similar to
the "Allocator requirements” in Table 32 of the ISO C++ Standard, but with further
guarantees required by the ISO C++ Standard (Section 20.1.5 paragraph 4) for use
with ISO C++ containers. Table 21 summarizes the allocator concept. Here, A and B

represent instances of the allocator class.

Allocator Concept

Pseudo-Signature

Semantics

typedef T* A::pointer

Pointer to T.

typedef const T* A::const_pointer

Pointer to const T.

typedef T& A::reference

Reference to T.

typedef const T& A::const reference

Reference to const T.

typedef T A::value_type

Type of value to be
allocated.

typedef size_t A::size_type

Type for representing
number of values.

typedef ptrdiff_t A::difference_type

Type for representing pointer
difference.

template<typename U> struct rebind {
typedef A<U> A::other;
}:

Rebind to a different type U

AQ throw(Q)

Default constructor.

A(const A&) throw()

Copy constructor.

template<typename U> A(const A&)

Rebinding constructor.

~A(Q) throw()

Destructor.

T* A::address(T& X) const

Take address.

const T* A::const_address(const T& X)

const

Take const address.

T* A::allocate(size_type n, const void*

hint=0)

Allocate space for n values.

void A::deallocate(T* p, size t n)

Deallocate n values.

size_type A::max_size() const throw()

Maximum plausible

315415-004US

Memory Allocation i n te l ® >

6.2

TIP:

6.3

Pseudo-Signature Semantics
argument to method
allocate.

void A::construct(T* p, const T& value) new(p) T(value)
void A::destroy(T* p) p->T::~TQ
bool operator==(const A&, const B&) Return true.
bool operator!=(const A&, const B&) Return false.

Model Types

Template classes tbb_al locactor (6.2), scalable_allocator (6.3), and
cached_aligned_allocator (6.4), and zero_allocator (6.5) model the Allocator
concept.

tbb_allocator Template Class

Summary

Template class for scalable memory allocation if available; possibly non-scalable
otherwise.

Syntax
template<typename T> class tbb_allocator

Header
#include "tbb/tbb_allocator.h"

Description

A tbb_allocator allocates and frees memory via the Intel® TBB malloc library if it is
available, otherwise it reverts to using malloc and free.

Set the environment variable TBB_VERSION to 1 to find out if the Intel® TBB malloc
library is being used. Details are in Section 2.7.2.

scalable_allocator Template Class

Summary

Template class for scalable memory allocation.

Reference Manual 111

CAUTION:

6.3.1

112

Syntax
template<typename T> class scalable_allocator;

Header
#include 'tbb/scalable_allocator.h"

Description

A scalable_allocator allocates and frees memory in a way that scales with the
number of processors. A scalable_allocator models the allocator requirements
described in Table 21. Using a scalable_allocator in place of std: :allocator may
improve program performance. Memory allocated by a scalable_allocator should
be freed by a scalable_allocator, not by a std::allocator.

The scalable_allocator requires that the tbb malloc library be available. If the library is
missing, calls to the scalable allocator fail. In contrast, tbb_allocator falls back on
malloc and free if the tbbmalloc library is missing.

Members
See Allocator concept (6.1).

Acknowledgement

The scalable memory allocator incorporates McRT technology developed by Intel’s PSL
CTG team.

C Interface to Scalable Allocator

Summary

Low level interface for scalable memory allocation.

Syntax
extern "C" {
// Scalable analogs of C memory allocator
void* scalable _malloc(size_t size);
void scalable free(void* ptr);
void* scalable _calloc(size_t nobj, size t size);
void* scalable_realloc(void* ptr, size t size);

// Analog of _msize/malloc_size/malloc_usable_size.
size_t scalable _msize(void* ptr);

// Scalable analog of posix_memalign

int scalable_posix_memalign(void** memptr,
size_t alignment, size t size);

315415-004US

Memory Allocation

// Aligned allocation
void* scalable_aligned_malloc(size_t size,
size_t alignment);
void scalable_aligned_free(void* ptr);

void* scalable_aligned_realloc(void* ptr, size t size,
size_t alignment);

}

Header

#include "tbb/scalable_allocator.h"

Description

These functions provide a C level interface to the scalable allocator. Each routine
scalable_x behaves analogously to library function x. The routines form the two
families shown in Table 22. Storage allocated by a scalable_x function in one family
must be freed or resized by a scalable_x function in the same family, not by a C

standard library function. Likewise storage allocated by a C standard library function
should not be freed or resized by a scalable_x function.

Table 22: C Interface to Scalable Allocator

Family Allocation Routine Deallocation Routine Analogous
Library
scalable malloc
labl 11 C standard
1 SRS mRet scalable free library
scalable realloc -
scalable posix memalign POSIX**7
scalable_aligned malloc
Microsoft*
2 scalable aligned free scalable aligned free | C run-time
library
scalable _aligned realloc

17 See "The Open Group* Base Specifications Issue 6", IEEE* Std 1003.1,

2004 Edition for the definition of posix_memalign.

Reference Manual

113

6.4

114

6.3.1.1 size_t scalable_msize(void* ptr)

Returns

The usable size of the memory block pointed to by ptr if it was allocated by the
scalable allocator. Returns zero if ptr does not point to such a block.

cache_aligned_allocator Template Class

Summary

Template class for allocating memory in way that avoids false sharing.

Syntax
template<typename T> class cache_aligned_allocator;

Header
#include '"tbb/cache_aligned_allocator._h"

Description

A cache_aligned_allocator allocates memory on cache line boundaries, in order to
avoid false sharing. False sharing is when logically distinct items occupy the same
cache line, which can hurt performance if multiple threads attempt to access the
different items simultaneously. Even though the items are logically separate, the
processor hardware may have to transfer the cache line between the processors as if
they were sharing a location. The net result can be much more memory traffic than if
the logically distinct items were on different cache lines.

A cache_aligned_allocator models the allocator requirements described in Table
21. It can be used to replace a std: :allocator. Used judiciously,
cache_aligned_allocator can improve performance by reducing false sharing.

However, it is sometimes an inappropriate replacement, because the benefit of
allocating on a cache line comes at the price that cache_aligned_allocator implicitly

adds pad memory. The padding is typically 128 bytes. Hence allocating many small
objects with cache_aligned_allocator may increase memory usage.

Members
namespace tbb {

template<typename T>
class cache_aligned_allocator {
public:
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;

315415-004US

Memory Allocation

throw();

typedef const T& const_reference;
typedef T value_ type;
typedef size_t size type;
typedef ptrdiff_t difference_type;
template<typename U> struct rebind {
typedef cache aligned_allocator<U> other;

};

#if _WING4

char* _Charalloc(size_type size);

#endif /* _WIN64 */

cache_aligned_allocator() throw();
cache_aligned_allocator(const cache_aligned allocator&)

template<typename U>
cache_aligned_allocator(const

cache_aligned_allocator<U>&) throw(Q);

Reference Manual

~cache_aligned_allocator();

pointer address(reference x) const;
const_pointer address(const _reference x) const;

pointer allocate(size type n, const void* hint=0);
void deallocate(pointer p, size_type);
size_type max_size() const throw();

void construct(pointer p, const T& value);
void destroy(pointer p);

}:

template<>

class cache_aligned_allocator<void> {

public:
typedef void* pointer;
typedef const void* const_pointer;
typedef void value_ type;
template<typename U> struct rebind {

typedef cache aligned_allocator<U> other;

}:

}:

template<typename T, typename U>
bool operator==(const cache_aligned_allocator<T>&,

const cache_aligned_allocator<U>&);

115

6.4.1

6.4.2

6.4.3

NOTE:

6.5

116

template<typename T, typename U>
bool operator!=(const cache_aligned_allocator<T>&,
const cache _aligned _allocator<U>&);

}

For sake of brevity, the following subsections describe only those methods that differ
significantly from the corresponding methods of std: zal locator.

pointer allocate(size_type n, const void* hint=0)

Effects

Allocates size bytes of memory on a cache-line boundary. The allocation may include
extra hidden padding.

Returns

Pointer to the allocated memory.

void deallocate(pointer p, size_type n)

Requirements

Pointer p must be result of method allocate(n). The memory must not have been
already deallocated.

Effects

Deallocates memory pointed to by p. The deallocation also deallocates any extra
hidden padding.

char* _Charalloc(size_type size)

This method is provided only on 64-bit Windows* OS platforms. It is a hon-1SO
method that exists for backwards compatibility with versions of Window's containers
that seem to require it. Please do not use it directly.

zero_allocator

Summary

Template class for allocator that returns zeroed memory.

315415-004US

Memory Allocation i n te l ® >

Syntax
template <typename T,

template<typename U> class Alloc = tbb_allocator>
class zero_allocator: public Alloc<T>;

Header
#include "tbb/tbb_allocator.h"

Description

A zero_allocator allocates zeroed memory. A zero_allocator<T,A> can be
instantiated for any class A that models the Allocator concept. The default for A is
tbb_allocator. A zero_allocator forwards allocation requests to A and zeros the
allocation before returning it.

Members
namespace tbb {

template <typename T, template<typename U> class Alloc =
tbb_allocator>

class zero_allocator : public Alloc<T> {
public:
typedef Alloc<T> base_allocator_type;
typedef typename base allocator_ type::value_type
value_type;
typedef typename base allocator_type::pointer pointer;
typedef typename base allocator_type::const _pointer
const_pointer;
typedef typename base allocator_type::reference
reference;
typedef typename base allocator_type::const_reference
const_reference;
typedef typename base allocator_type::size type
size_type;
typedef typename base allocator_ type::difference_type
difference_type;
template<typename U> struct rebind {
typedef zero_allocator<U, Alloc> other;

}:

zero_allocator() throw(Q) { }

zero_allocator(const zero_allocator &a) throw();
template<typename U>

zero_allocator(const zero_allocator<U> &a) throw();

pointer allocate(const size type n, const void* hint=0);

Reference Manual 117

6.6 aligned_space Template Class

Summary

Uninitialized memory space for an array of a given type.

Syntax
template<typename T, size_t N> class aligned_space;

Header
#include "tbb/aligned_space.h"

Description

An aligned_space occupies enough memory and is sufficiently aligned to hold an
array T[N]. The client is responsible for initializing or destroying the objects. An
aligned_space is typically used as a local variable or field in scenarios where a block
of fixed-length uninitialized memory is needed.

Members
namespace tbb {
template<typename T, size_t N>
class aligned_space {
public:
aligned_space();
~aligned_space();
T* begin();
T end();

6.6.1 aligned_space()

Effects

None. Does not invoke constructors.
6.6.2 ~aligned_space()

Effects

None. Does not invoke destructors.

118 315415-004US

Memory Allocation

5
D

663 T*begin()

Returns

Pointer to beginning of storage.

664 T*end()

Returns
begin(Q+N

Reference Manual 119

Synchronization

/7.1

7.1.1

The library supports mutual exclusion and atomic operations.

Mutexes

Mutexes provide MUTual EXclusion of threads from sections of code.

In general, strive for designs that minimize the use of explicit locking, because it can
lead to serial bottlenecks. If explicitly locking is necessary, try to spread it out so that
multiple threads usually do not contend to lock the same mutex.

Mutex Concept

The mutexes and locks here have relatively spartan interfaces that are designed for
high performance. The interfaces enforce the scoped locking pattern, which is widely
used in C++ libraries because:

1. Does not require the programmer to remember to release the lock

2. Releases the lock if an exception is thrown out of the mutual exclusion region
protected by the lock

There are two parts to the pattern: a mutex object, for which construction of a lock
object acquires a lock on the mutex and destruction of the lock object releases the
lock. Here's an example:

{
// Construction of myLock acquires lock on myMutex
M: :scoped_lock myLock(myMutex);
... actions to be performed while holding the lock ...
// Destruction of myLock releases lock on myMutex
by

If the actions throw an exception, the lock is automatically released as the block is
exited.

Table 23 shows the requirements for the Mutex concept for a mutex type M

Table 23: Mutex Concept

120

Pseudo-Signature Semantics
MO Construct unlocked mutex.
~MQO Destroy unlocked mutex.
typename M::scoped_lock Corresponding scoped-lock type.
M: :scoped_lock() Construct lock without acquiring

315415-004US

Synchronization

intel)

Pseudo-Signature

Semantics

mutex.

M: :scoped_lock(M&)

Construct lock and acquire lock on

mutex.

M: :~scoped_lock()

Release lock (if acquired).

M: :scoped_lock: :acquire(M&)

Acquire lock on mutex.

bool M::scoped_lock::try_acquire(M&)

Try to acquire lock on mutex. Return
true if lock acquired, false otherwise.

M: :scoped_lock: :release()

Release lock.

static const bool M::is_rw_mutex

True if mutex is reader-writer mutex;

false otherwise.

static const bool
M::is_recursive_mutex

True if mutex is recursive mutex; false

otherwise.

static const bool M::is_fair_mutex

True if mutex is fair; false otherwise.

Table 24 summarizes the classes that model the Mutex concept.

Table 24: Mutexes that Model the Mutex Concept

Scalable Fair Reentrant Long Size
Wait
mutex oS os No Blocks >3
dependent dependent words
recursive_mutex oS 0s Yes Blocks >3
dependent dependent words
spin_mutex No No No Yields 1 byte
queuing_mutex v v No Yields 1 word
spin_rw_mutex No No No Yields 1 word
queuing_rw_mutex v v No Yields 1 word
null_mutex - Yes Yes - empty
null_rw_mutex - Yes Yes - empty

See the Tutorial, Section 6.1.1, for a discussion of the mutex properties and the

rationale for null mutexes.

7.1.1.1 C++0x Compatibility

Classes mutex, recursive_mutex, spin_mutex, and spin_rw_mutex support the
C++0x methods described in Table 25.

Table 25: C++0x Methods Available for Some Mutexes.

Pseudo-Signature

Semantics

void M::lock() Acquire lock.

bool M::try lock()

Try to acquire lock on mutex. Return true if lock

Reference Manual

acquired, false otherwise.

void M::unlock(Q) Release lock.

Class spin_rw_mutex also has methods read_lock() and try_read_lock() for
corresponding operations that acquire reader locks.

7.1.2 mutex Class

Summary

Class that models Mutex Concept using underlying OS locks.

Syntax

class mutex;

Header
#include "tbb/mutex.h"

Description

A mutex models the Mutex Concept (7.1.1). It is a wrapper around OS calls that
provide mutual exclusion. The advantages of using mutex instead of the OS calls are:

e Portable across all operating systems supported by Intel® Threading Building
Blocks.

o Releases the lock if an exception is thrown from the protected region of code.

Members
See Mutex Concept (7.1.1).

7.1.3 recursive_mutex Class

Summary

Class that models Mutex Concept using underlying OS locks and permits recursive
acquisition.

Syntax
class recursive_mutex;

Header
#include "tbb/recursive _mutex.h"

122 315415-004US

(inteF)

Description

A recursive_mutex is similar to a mutex (7.1.2), except that a thread may acquire
multiple locks on it. The thread must release all locks on a recursive_mutex before
any other thread can acquire a lock on it.

Members
See Mutex Concept (7.1.1).

7.1.4 spin_mutex Class

Summary

Class that models Mutex Concept using a spin lock.

Syntax
class spin_mutex;

Header
#include "tbb/spin_mutex.h"

Description

A spin_mutex models the Mutex Concept (7.1.1). A spin_mutex is not scalable, fair,
or recursive. It is ideal when the lock is lightly contended and is held for only a few
machine instructions. If a thread has to wait to acquire a spin_mutex, it busy waits,
which can degrade system performance if the wait is long. However, if the wait is
typically short, a spin_mutex significantly improve performance compared to other
mutexes.

Members
See Mutex Concept (7.1.1).

7.1.5 queuing_mutex Class

Summary

Class that models Mutex Concept that is fair and scalable.

Syntax

class queuing mutex;

Header
#include "tbb/queuing_mutex.h"

Reference Manual 123

7.1.6

Description

A queuing_mutex models the Mutex Concept (7.1.1). A queuing_mutex is scalable, in
the sense that if a thread has to wait to acquire the mutex, it spins on its own local
cache line. A queuing_mutex is fair. Threads acquire a lock on a mutex in the order
that they request it. A queuing_mutex is not recursive.

The current implementation does busy-waiting, so using a queuing_mutex may
degrade system performance if the wait is long.

Members
See Mutex Concept (7.1.1).

ReaderWriterMutex Concept

The ReaderWriterMutex concept extends the Mutex Concept to include the notion of
reader-writer locks. It introduces a boolean parameter write that specifies whether a
writer lock (write =true) or reader lock (write =false) is being requested. Multiple
reader locks can be held simultaneously on a ReaderWriterMutex if it does not have a
writer lock on it. A writer lock on a ReaderWriterMutex excludes all other threads from
holding a lock on the mutex at the same time.

Table 26 shows the requirements for a ReaderWriterMutex RW. They form a superset of
the Mutex Concept (7.1.1).

Table 26: ReaderWriterMutex Concept

124

Pseudo-Signature Semantics

RWO Construct unlocked mutex.

~RWQ) Destroy unlocked mutex.

typename RW::scoped_lock Corresponding scoped-lock
type.

RW: :scoped_lock() Construct lock without
acquiring mutex.

RW: :scoped_lock(RW&, bool write=true) Construct lock and acquire
lock on mutex.

RW: :~scoped_lock() Release lock (if acquired).

RW: :scoped_lock: :acquire(RW&, Acquire lock on mutex.

bool write=true)

bool RW::scoped_lock::try_acquire(RW&, Try to acquire lock on mutex.

bool write=true) Return true if lock acquired,
false otherwise.

RW: :scoped_lock: :release() Release lock.

bool RW::scoped_lock: :upgrade_to_writer() Change reader lock to writer
lock.

315415-004US

Synchronization

Pseudo-Signature Semantics
bool Change writer lock to reader
RW: :scoped_lock: :downgrade_to_reader() lock.
static const bool RW::is_rw _mutex = true True.
static const bool RW::is_recursive_mutex True if mutex is reader-writer

mutex; false otherwise. For all
current reader-writer mutexes,
false.

static const bool RW::is_fair_mutex True if mutex is fair; false
otherwise.

Reference Manu

The following subsections explain the semantics of the ReaderWriterMutex concept in
detail.

Model Types

spin_rw_mutex (7.1.7) and queuing_rw_mutex (7.1.8) model the ReaderWriterMutex
concept.

7.16.1 ReaderWriterMutex()

Effects

Constructs unlocked ReaderWriterMutex.
7.16.2 ~ReaderWriterMutex()

Effects

Destroys unlocked ReaderWriterMutex. The effect of destroying a locked
ReaderWriterMutex is undefined.

7.163 ReaderWriterMutex::scoped_lock()

Effects

Constructs a scoped_lock object that does not hold a lock on any mutex.

7164 ReaderWriterMutex::scoped_lock(ReaderWriterMutex& rw,
bool write =true)

Effects

Constructs a scoped_lock object that acquires a lock on mutex rw. The lock is a
writer lock if write is true; a reader lock otherwise.

al 125

126

7.16.5 ReaderWriterMutex::~scoped_lock()

Effects

If the object holds a lock on a ReaderWriterMutex, releases the lock.

7.1.66 void ReaderWriterMutex:: scoped_lock:: acquire(
ReaderWriterMutex& rw, bool write=true)

Effects

Acquires a lock on mutex rw. The lock is a writer lock if write is true; a reader lock
otherwise.

7.16.7 bool ReaderWriterMutex:: scoped_lock::try_acquire(
ReaderWriterMutex& rw, bool write=true)

Effects

Attempts to acquire a lock on mutex rw. The lock is a writer lock if write is true; a
reader lock otherwise.

Returns

true if the lock is acquired, false otherwise.
7.168 void ReaderWriterMutex:: scoped_lock::release()

Effects

Releases lock. The effect is undefined if no lock is held.
7.1.69 bool ReaderWriterMutex:: scoped_lock::.upgrade_to_writer()

Effects

Changes reader lock to a writer lock. The effect is undefined if the object does not
already hold a reader lock.

Returns

false if lock was released in favor of another upgrade request and then reacquired;
true otherwise.

315415-004US

Synchronization

NOTE:

7.1.7

718

intel)

7.16.10 bool ReaderWriterMutex::
scoped_lock:downgrade_to_reader()

Effects

Changes writer lock to a reader lock. The effect is undefined if the object does not
already hold a writer lock.

Returns

false if lock was released and reacquired; true otherwise.

Intel's current implementations for spin_rw_mutex and queuing_rw_mutex always
return true. Different implementations might sometimes return false.

spin_rw_mutex Class

Summary

Class that models ReaderWriterMutex Concept that is unfair and not scalable.

Syntax

class spin_rw_mutex;

Header
#include "tbb/spin_rw_mutex.h"

Description

A spin_rw_mutex models the ReaderWriterMutex Concept (7.1.6). A spin_rw_mutex is
not scalable, fair, or recursive. It is ideal when the lock is lightly contended and is held
for only a few machine instructions. If a thread has to wait to acquire a
spin_rw_mutex, it busy waits, which can degrade system performance if the wait is
long. However, if the wait is typically short, a spin_rw_mutex significantly improve
performance compared to other mutexes..

Members
See ReaderWriterMutex concept (7.1.6).

queuing_rw_mutex Class

Summary

Class that models ReaderWriterMutex Concept that is fair and scalable.

Reference Manual 127

Syntax

class queuing_rw_mutex;

Header
#include "tbb/queuing_rw_mutex.h"

Description

A queuing_rw_mutex models the ReaderWriterMutex Concept (7.1.6). A
queuing_rw_mutex is scalable, in the sense that if a thread has to wait to acquire the
mutex, it spins on its own local cache line. A queuing_rw_mutex is fair. Threads
acquire a lock on a queuing_rw_mutex in the order that they request it. A
queuing_rw_mutex is not recursive.

Members
See ReaderWriterMutex concept (7.1.6).

7.1.9 null_mutex Class

Summary

Class that models Mutex Concept buts does nothing.

Syntax

class null_mutex;

Header
#include "tbb/null_mutex.h"

Description

A null_mutex models the Mutex Concept (7.1.1) syntactically, but does nothing. It is
useful for instantiating a template that expects a Mutex, but no mutual exclusion is
actually needed for that instance.

Members
See Mutex Concept (7.1.1).

7.1.10 null_rw_mutex Class

Summary

Class that models ReaderWriterMutex Concept but does nothing.

128 315415-004US

Synchronization

7.2

Reference Manual

Syntax

class null_rw mutex;

Header
#include "tbb/null_rw_mutex.h"

Description

A null_rw_mutex models the ReaderWriterMutex Concept (7.1.6) syntactically, but
does nothing. It is useful for instantiating a template that expects a
ReaderWriterMutex, but no mutual exclusion is actually needed for that instance..

Members
See ReaderWriterMutex concept (7.1.6).

atomic Template Class

Summary

Template class for atomic operations.

Syntax
template<typename T> atomic;

Header
#include "tbb/atomic.h"

Description

An atomic<T> supports atomic read, write, fetch-and-add, fetch-and-store, and
compare-and-swap. Type T may be an integral type, enumeration type, or a pointer
type. When T is a pointer type, arithmetic operations are interpreted as pointer
arithmetic. For example, if x has type atomic<float*> and a float occupies four
bytes, then ++x advances x by four bytes. Arithmetic on atomic<T> is not allowed if T
is an enumeration type, void*, or bool.

Some of the methods have template method variants that permit more selective
memory fencing. On 1A-32 and Intel® 64 architecture processors, they have the same
effect as the non-templated variants. On 1A-64 architecture (Itanium®) processors,
they may improve performance by allowing the memory subsystem more latitude on
the orders of reads and write. Using them may improve performance. Table 27 shows
the fencing for the non-template form.

Table 27: Operation Order Implied by Non-Template Methods

CAUTION:

130

Kind Description Default For

acquire Operations after the atomic operation never read
move over it.

release Operations before the atomic operation write
never move over it.

sequentially Operations on either side never move over it fetch and_store,
consistent and furthermore, the sequentially consistent fetch and_add,

atomic operations have a global order.
compare and swap

The copy constructor for class atomic<T> is not atomic. To atomically copy an
atomic<T>, default-construct the copy first and assign to it. Below is an example that
shows the difference.

atomic<T> y(x); // Not atomic
atomic<T> z;
Z=X; // Atomic assignment

The copy constructor is not atomic because it is compiler generated. Introducing any
non-trivial constructors might remove an important property of atomic<T>:
namespace scope instances are zero-initialized before hamespace scope dynamic
initializers run. This property can be essential for code executing early during program
startup.

To create an atomic<T> with a specific value, default-construct it first, and afterwards
assign a value to it.

Members
namespace tbb {
enum memory_semantics {
acquire,
release

}:

struct atomic<T> {
typedef T value_ type;

template<memory_semantics M>
value_type compare_and_swap(value_type new_value,

value_type comparand);

value_type compare_and_swap(value_type new_value,
value_type comparand);

template<memory_semantics M>

315415-004US

Synchronization :i n ter)

value_type fetch_and_store(value_type new_value);
value_type fetch_and_store(value_type new_value);
operator value_type() const;

value_type operator=(value_type new_value);
atomic<T>& operator=(const atomic<T>& value);

// The following members exist only if T is an integral
// or pointer type.

template<memory_semantics M>
value_type fetch_and_add(value_type addend);

value_type fetch_and_add(value_type addend);

template<memory_semantics M>
value_type fetch_and_increment();

value_type fetch_and_increment();

template<memory_semantics M>
value_type fetch_and_decrement();

value_type fetch_and_decrement();

value_type operator+=(value_type);

value_type operator-=(value_type);

value_type operator++();

value_type operator++(int);

value_type operator--);

value_type operator--(int);

}:

by
So that an atomic<T*> can be used like a pointer to T, the specialization atomic<T*>
also defines:

T* operator->() const;

Reference Manual 131

7.2.1 memory_semantics Enum

Description

Defines values used to select the template variants that permit more selective control
over visibility of operations (see Table 27).

7.2.2 value_type fetch_and_add(value_type addend)

Effects

Let x be the value of *this. Atomically updates x = x + addend.

Returns

Original value of x.

7.2.3 value_type fetch_and_increment()

Effects

Let x be the value of *this. Atomically updates x = x + 1.

Returns

Original value of x.

724 value_type fetch_and_decrement()

Effects

Let x be the value of *this. Atomically updates x = x — 1.

Returns

Original value of x.

7.25 value_type compare_and_swap

value_type compare_and_swap(value_type new_value, value_type
comparand)

Effects

Let x be the value of *this. Atomically compares x with comparand, and if they are
equal, sets x=new_value.

132 315415-004US

®

Synchronization ‘ i n tel

Returns

Original value of x.

7.2.6 value_type fetch_and_store(value_type new_value)

Effects

Let x be the value of *this. Atomically exchanges old value of x with new_value.

Returns

Original value of x.

Reference Manual 133

8

Timing

8.1

134

Parallel programming is about speeding up wall clock time, which is the real time that
it takes a program to run. Unfortunately, some of the obvious wall clock timing
routines provided by operating systems do not always work reliably across threads,
because the hardware thread clocks are not synchronized. The library provides
support for timing across threads. The routines are wrappers around operating
services that we have verified as safe to use across threads.

tick_count Class

Summary

Class for computing wall-clock times.

Syntax
class tick count;

Header
#include "tbb/tick count._h"

Description

A tick_count is an absolute timestamp. Two tick_count objects may be subtracted
to compute a relative time tick_count::interval_t, which can be converted to
seconds.

Example
using namespace tbb;

void Foo() {
tick_count t0O = tick count::now();
...action being timed...
tick _count t1 = tick count::now();
printF(""time for action = %g seconds\n", (tl-t0).seconds());

}

Members
namespace tbb {

class tick count {
public:

315415-004US

Timing

8.1.1

8.1.2

8.1.3

class interval_t;
static tick count now();

¥

tick _count::interval_t operator-(const tick counté& ti1,
const tick_count& t0);
} // tbb

static tick_count tick_count:now()

Returns

Current wall clock timestamp.

tick_count:interval_t operator—(const tick_count& t1,
const tick_count& t0)

Returns

Relative time that t1 occurred after tO.

tick_count:interval_t Class

Summary

Class for relative wall-clock time.

Syntax
class tick count::interval_t;

Header
#include "tbb/tick count._h"

Description

A tick_count: :interval_t represents relative wall clock duration.

Members
namespace tbb {

class tick count::interval_t {

public:
interval_t();
explicit interval_t(double sec);
double seconds() const;

Reference Manual

136

interval_t operator+=(const interval_t&

interval_t operator-=(const interval _t& i
}:
tick_count::interval_t operator+(

const tick count::interval t& i,

const tick count::interval t& j);
tick_count::interval_t operator-(

const tick count::interval t& i,

const tick count::interval t& j);

} // namespace tbb

8.1.3.1 interval_t()

Effects

Constructs interval_t representing zero time duration.

8.1.3.2 interval_t(double sec)
Effects

Constructs interval_t representing specified number of seconds.
8.1.33 double seconds() const

Returns

Time interval measured in seconds.
8.1.34 interval_t operator+=(const interval_t& i)

Effects

*this = *this + i

Returns

Reference to *this.

8.135 interval_t operator—=(const interval_t&i)

Effects
*this = *this - i

Returns

Reference to *this.

315415-004US

(intels)

8.1.36 interval_t operator+ (const interval_t& i, const interval_t&
i)
Returns

Interval_t representing sum of intervals i and j.

8.1.3.7 interval_t operator- (const interval_t& i, const interval_t&
i)
Returns

Interval_t representing difference of intervals i and j.

Reference Manual 137

9 Task Groups

This chapter covers the high-level interface to the task scheduler. Chapter 10 covers
the low-level interface. The high-level interface lets you easily create groups of
potentially parallel tasks from functors or lambda expressions. The low-level interface
permits more detailed control, such as control over exception propogation and affinity.

Summary

High-level interface for running functions in parallel.

Syntax

template<typename Func> task handle;

template<typename Func> task handle<Func> make_ task(const Funcé&
LIDH

enum task _group_status;

class task_group;

class structured_task group;

bool is_current_task _group canceling();

Header
#include "tbb/task group.h"

Requirements

Functor arguments for various methods in this chapter should meet the requirements
in Table 28.

Table 28: Requirements on functor arguments

Pseudo-Signature Semantics
Func: :Func (const Funcé&) Copy constructor.
Func::~Func () Destructor.
void Func::operator()() const; Evaluate functor.

9.1 task_group Class

Description

A task_group represents concurrent execution of a group of tasks. Tasks may be
dynamically added to the group as it is executing.

138 315415-004US

Task Groups inter)

Example with Lambda Expressions
#include 'tbb/task group.h"

using namespace tbb;

int Fib(int n) {

if(n<2) {
return n;
} else {
int x, y;

task_group g;

g-run([&]{x=Fib(n-1);}); // spawn atask
g-run([&1{y=Fib(n-2);3}); /I spawn another task
g-waitQ; /1 wait for both tasks to complete
return x+y;

}

CAUTION: Creating a large number of tasks for a single task_group is not scalable, because task
creation becomes a serial bottleneck. If creating more than a small nhumber of
concurrent tasks, consider using parallel_for (3.4) or parallel_invoke (3.11)
instead, or structure the spawning as a recursive tree.

Members
namespace tbb {
class task group {
public:
task_group();
~task _groupQ);

template<typename Func>
void run(const Func& T);

template<typename Func>
void run(task_handle<Func>& handle);

template<typename Func>
void run_and_wait(const Func& f);

template<typename Func>
void run_and wait(task handle<Func>& handle);

task _group_status wait();

bool is_canceling();
void cancel();

Reference Manual 139

9.1.1

9.1.2

9.1.3

9.14

9.1.5

NOTE:

140

task_group()

Constructs an empty task group.

~task_group()

Requires

Method wait must be called before destroying a task_group, otherwise the
destructor throws an exception.

template<typename Func> void run(const Func& f)

Effects

Spawn a task that computes f() and return immediately.

template<typename Func> void run (
task_handle<Func>& handle);

Effects

Spawn a task that computes handle() and return immediately.

template<typename Func> void run_and_wait(const
Func& f

Effects

Equivalent to {run(f); wait();}, but guarantees that f runs on the current thread.

Template method run_and_wait is intended to be more efficient than separate calls to
run and wait.

315415-004US

Task Groups | n te|>

9.1.6 template<typename Func> void run _and_wait(
task_handle<Func>& handle);

Effects

Equivalent to {run(handle); wait();}, but guarantees that handle() runs on the
current thread.

NOTE: Template method run_and_wait is intended to be more efficient than separate calls to
run and wait.

9.1.7 task_group_status wait()

Effects

Wait for all tasks in the group to complete or be cancelled.

9.1.8 bool is_canceling()

Returns

True if this task group is cancelling its tasks.

9.1.9 void cancel()

Effects

Cancel all tasks in this task_group.

9.2 task_group_status Enum

A task_group_status represents the status of a task_group.

Members
namespace tbb {
enum task_group_status {
not_complete, // Notcancelled and not all tasks in group have completed.
complete, /I Not cancelled and all tasks in group have completed
canceled Il Task group received cancellation request

};

Reference Manual 141

9.3 task_handle Template Class

Summary

Template function for creating a task_handle from a function or functor.

Description

Class task_handle is used primarily in conjunction with class
structured_task_group. For sake of uniformity, class task_group also accepts
task_handle arguments.

Members

template<typename Func>

class task handle {

public:
task_handle(const Func& f);
void operator()() const;

94 make_task Template Function

Summary

Template function for creating a task_handle from a function or functor.

Syntax
template<typename Func>
task _handle<Func> make_ task(const Func& f);

Returns
task_handle<Func>(f)

95 structured_task_group Class

Description
A structured_task_group is like a task_group, but has only a subset of the
functionality. It may permit performance optimizations in the future. The restrictions

are:

0 Methods run and run_and_wait take only task_handle arguments, not
general functors.

142 315415-004US

Task Groups (l n te|>

0 Methods run and run_and_wait do not copy their task_handle arguments.
The caller must not destroy those arguments until after wait or run_and_wait
returns.

0 Methods run, run_and_wait, cancel, and wait should be called only by the
thread that created the structured_task_group.

o Method wait (or run_and_wait) should be called only once on a given instance
of structured_task_group.

Example

The function fork_join below evaluates f1() and f2(), in parallel if resources
permit.
#include "tbb/task group.h"

using namespace tbb;
template<typename Funcl, typename Func2>
void fork join(const Funcl& f1, const Func2& 2) {

structured_task group group;

task_handle<Funcl> h1(f1);
group.run(hl); /1 spawn a task

task_handle<Func2> h2(f2);

group.run(h2); // spawn another task
group.wait(); /1 wait for both tasks to complete
/I now safe to destroy hl and h2

s

Members

namespace tbb {
class structured_task group {
public:
structured_task group(Q);
~structured_task group(Q);

template<typename Func>
void run(task_handle<Func>& handle);

template<typename Func>
void run_and wait(task handle<Func>& handle);

task_group_status wait(Q);
bool is_canceling();

Reference Manual 143

9.6

144

void cancel();
};
by

is_current_task_group_canceling Function

Returns

True if innermost task group executing on this thread is cancelling its tasks.

315415-004US

Task Scheduler

10 Task Scheduler

Intel Threading Building Blocks (Intel® TBB) provides a task scheduler, which is the
engine that drives the algorithm templates (Section 3) and task groups (Section 9).
You may also call it directly. Using tasks is often simpler and more efficient than using
threads, because the task scheduler takes care of a lot of details.

The tasks are quanta of computation. The scheduler maps these onto physical
threads. The mapping is non-preemptive. Each thread has a method execute(). Once
a thread starts running execute(), the task is bound to that thread until execute()
returns. During that time, the thread services other tasks only when it waits on child
tasks, at which time it may run the child tasks, or if there are no pending child tasks,

service tasks created by other threads.

The task scheduler is intended for parallelizing computationally intensive work.
Because task objects are not scheduled preemptively, they should not make calls that
might block for long periods, because meanwhile that thread is precluded from
servicing other tasks.

CAUTION: There is no guarantee that potentially parallel tasks actually execute in parallel,
because the scheduler adjusts actual parallelism to fit available worker threads. For
example, given a single worker thread, the scheduler creates no actual parallelism.
For example, it is generally unsafe to use tasks in a producer consumer relationship,
because there is no guarantee that the consumer runs at all while the producer is

running.

Potential parallelism is typically generated by a split/join pattern. Two basic patterns
of split/join are supported. The most efficient is continuation-passing form, in which
the programmer constructs an explicit “continuation” task. The parent task splits child
tasks and specifies a continuation task to be executed when the children complete.
The continuation inherits the parent’s ancestor. The parent task then exits; i.e., it
does not block on its children. The children subsequently run, and after they (or their
continuations) finish, the continuation task starts running. Figure 3 shows the steps.
The running tasks at each step are shaded.

A
1

Reference Manual

—

A
0

continuation

child

—

A
1
1
1

continuation

A
1

continuation

145

Figure 3: Continuation-passing Style

Explicit continuation passing is efficient, because it decouples the thread’s stack from
the tasks. However, it is more difficult to program. A second pattern is "blocking
style™, which uses implicit continuations. It is sometimes less efficient in performance,
but more convenient to program. In this pattern, the parent task blocks until its
children complete, as shown in Figure 4.

4 A A 4

| !] '
]]

A 4 :

(chita) ~ [child) (chita) [chila]

Figure 4: Blocking Style

10.1

146

The convenience comes with a price. Because the parent blocks, its thread’s stack
cannot be popped yet. The thread must be careful about what work it takes on,
because continually stealing and blocking could cause the stack to grow without
bound. To solve this problem, the scheduler constrains a blocked thread such that it
never executes a task that is less deep than its deepest blocked task. This constraint
may impact performance because it limits available parallelism, and tends to cause
threads to select smaller (deeper) subtrees than they would otherwise choose.

Scheduling Algorithm

The scheduler employs a technique known as work stealing. Each thread keeps a
"ready pool" of tasks that are ready to run. The ready pool is structured as a deque of
task objects. A thread chooses its next task according to the first rule below that

applies:

The task returned by task: :execute() that the thread invoked previously.
The task whose lastly completed child was completed by this thread.

A task popped from the end of the deque.

A task with affinity for the thread.

a s wndPe

A task popped from in the beginning of another randomly chosen thread’s deque.
When a thread spawns a task, it pushes it onto the end of its own deque. Hence rule

(3) above gets the task most recently spawned by the thread, whereas rule (5) gets
the least recently spawned task of another thread.

Work stealing tends to strike a good balance between locality of reference, space
efficiency, and parallelism. The work-stealing algorithm in the task scheduler is similar
to that used by Cilk (Blumofe 1995). The notion of work-stealing dates back to the
1980s (Kumar 1987). The thread affinity support is more recent (Acar 2000).

315415-004US

Task Scheduler

10.2

TIP:

task_scheduler_init Class

Summary

Class that explicity represents thread's interest in task scheduling services.

Syntax
class task scheduler_init;

Header
#include 'tbb/task scheduler_init_h"

Description

Using task_scheduler_init is optional in Intel® TBB 2.2. By default, Intel® TBB 2.2
automatically creates a task scheduler the first time that a thread uses task
scheduling services and destroys it when the last such thread exits.

An instance of task_scheduler_init can be used to control the following aspects of
the task scheduler:

o When the task scheduler is constructed and destroyed.
e The number of threads used by the task scheduler.
e The stack size for worker threads.

To override the automatic defaults for task scheduling, a task_scheduler_init must
become active before the first use of task scheduling services.

A task _scheduler_init is either "active" or "inactive".

The default constructor for a task_scheduler_init activates it, and the destructor
deactivates it. To defer activation, pass the value task_scheduler_init: :deferred
to the constructor. Such a task_scheduler_init may be activated later by calling
method initialize. Destruction of an active task_scheduler_init implicitly
deactivates it. To deactivate it earlier, call method terminate.

An optional parameter to the constructor and method initialize allow you to specify
the number of threads to be used for task execution. This parameter is useful for
scaling studies during development, but should not be set for production use.

The reason for not specifying the number of threads in production code is that in a
large software project, there is no way for various components to know how many
threads would be optimal for other threads. Hardware threads are a shared global
resource. It is best to leave the decision of how many threads to use to the task
scheduler.

To minimize time overhead, it is best to rely upon automatic creation of the task
scheduler, or create a single task_scheduler_init object whose activation spans all
uses of the library's task scheduler. A task_scheduler_init is not assignable or
copy-constructible.

Reference Manual 147

Example

// Sketch of one way to do a scaling study
#include <iostream>

#include "tbb/task scheduler_init"

int main() {
int n = task scheduler_init::default_num_threads();
for(int p=1; p<=n; ++p) {
// Construct task scheduler with p threads
task_scheduler_init init(p);
tick _count tO = tick count::now();
. execute parallel algorithm using task or
template algorithm here...
tick _count tl1 = tick count::now();
double t = (tl1-t0).seconds();
cout << "time = " << t << " with " << p << "threads\n";
// Implicitly destroy task scheduler.

}

return O;
¥
Members

namespace tbb {
typedef unsigned-integral-type stack size type;

class task _scheduler_init {
public:
static const int automatic = implementation-defined;
static const int deferred = implementation-defined;
task_scheduler_init(int number_of threads=automatic,
stack _size type thread stack size=0

~task _scheduler_init();
void initialize(int number_of threads=automatic);

void terminate();
static int default num_threads();

}:
} // namespace tbb

148 315415-004US

Task Scheduler

10.2.1

Table 29:

task_scheduler_init(int number_of_threads=automatic,
stack_size_type thread_stack_size=0)

Requirements

The value number_of_threads shall be one of the values in Table 29.

Effects

If number_of_threads==task_scheduler_init: :deferred, nothing happens, and the
task_scheduler_init remains inactive. Otherwise, the task_scheduler_init is
activated as follows. If the thread has no other active task_scheduler_init objects,
the thread allocates internal thread-specific resources required for scheduling task
objects. If there were no threads with active task_scheduler_init objects yet, then
internal worker threads are created as described in Table 29. These workers sleep
until needed by the task scheduler.

The optional parameter thread_stack_size specifies the stack size of each worker
thread. A value of O specifies use of a default stack size.

Values for number_of threads
number_of_threads Semantics
task_scheduler_init::automatic Let library determine number_of_threads
based on hardware configuration.
task_scheduler_init: :deferred Defer activation actions.
positive integer If no worker threads exist yet, create

number_of_threads-1 worker threads. If
worker threads exist, do not change the
number of worker threads.

10.2.2

10.2.3

~task_scheduler_init()

Effects

If the task_scheduler_init is inactive, nothing happens. Otherwise, the

task _scheduler_init is deactivated as follows. If the thread has no other active
task_scheduler_init objects, the thread deallocates internal thread-specific
resources required for scheduling task objects. If no existing thread has any active
task_scheduler_init objects, then the internal worker threads are terminated.

void initialize(int number_of_threads=automatic)

Requirements

The task_scheduler_init shall be inactive.

Reference Manual 149

10.24

10.2.5

10.2.6

10.2.7

150

Effects

Similar to constructor (10.2.1).

void terminate()

Requirements

The task_scheduler_init shall be active.

Effects

Deactivates the task_scheduler_init without destroying it. The description of the
destructor (10.2.2) specifies what deactivation entails.

int default_num_threads()

Returns

One more than the number of worker threads that task_scheduler_init creates by
default.

bool is_active() const

Returns

True if *this is active as described in Section 10.2; false otherwise.

Mixing with OpenMP

Mixing OpenMP with Intel® Threading Building Blocks is supported. Performance may
be less than a pure OpenMP or pure Intel® Threading Building Blocks solution if the
two forms of parallelism are nested.

An OpenMP parallel region that plans to use the task scheduler should create a
task_scheduler_init inside the parallel region, because the parallel region may
create new threads unknown to Intel® Threading Building Blocks. Each of these new
OpenMP threads, like native threads, must create a task_scheduler_init object
before using Intel® Threading Building Blocks algorithms. The following example
demonstrates how to do this.
void OpenMP_Calls_TBB(int n) {
#pragma omp parallel
{

task_scheduler_init init;
#pragma omp for

for(int 1=0; i<n; ++i) {

.-.-can use class task or

315415-004US

Task Scheduler

10.3

Table 30:

Intel® Threading Building Blocks algorithms here

task Class

Summary

Base class for tasks.

Syntax
class task;

Header
#include "tbb/task.h"

Description

Class task is the base class for tasks. You are expected to derive classes from task,
and at least override the virtual method task* task: :execute().

Each instance of task has associated attributes, that while not directly visible, must
be understood to fully grasp how task objects are used. The attributes are described
in Table 30."®

Task Attributes?®

Attribute Description

parent Either null, or a pointer to another task whose refcount field will
be decremented after the present task completes. Typically, the
parent is the task that allocated the present task, or a task
allocated as the continuation of that parent.

refcount The number of Tasks that have this is their parent. Increments
and decrement of refcount are always atomic.

TIP:

Always allocate memory for task objects using special overloaded new operators
(10.3.2) provided by the library, otherwise the results are undefined. Destruction of a
task is normally implicit. The copy constructor and assignment operators for task are

'8 The depth attribute in Intel® TBB 2.1 no longer exists (A.6).

9 The ownership attribute and restrictions in Intel® TBB 2.1 no longer exist.

Reference Manual 151

152

not accessible. This prevents accidental copying of a task, which would be ill-defined
and corrupt internal data structures.

Notation

Some member descriptions illustrate effects by diagrams such as Figure 5.

this

parent

—

Figure 5: Example Effect Diagram

this

null

result

Conventions in these diagrams are as follows:

parent

0

The big arrow denotes the transition from the old state to the new state.

Each task's state is shown as a box divided into parent and refcount sub-boxes.

Gray denotes state that is ignored. Sometimes ignored state is simply left blank..

Black denotes state that is read.

Blue denotes state that is written.

Members

In the description below, types proxyl...proxy5 are internal types. Methods returning
such types should only be used in conjunction with the special overloaded new
operators, as described in Section (10.3.2).

namespace tbb {

class task {
protected:
task();

public:
virtual ~task(Q) {}

virtual task* execute() = O;

// task allocation and destruction

static proxyl allocate _root();
static proxy2 allocate _root(task group context&);

proxy3 allocate_continuation();
proxy4 allocate_child();

proxy5 allocate_additional_child_of(task&);

// Explicit task destruction

void destroy(task& victim);

315415-004US

Task Scheduler inter)

// Recycling

void recycle _as continuation();

void recycle_as child _of(task& new_parent);
void recycle to reexecute();

// Synchronization

void set_ref _count(int count);

void increment_ref _count();

int decrement_ref _count();

void wait_for_all();

void spawn(task& child);

void spawn(task_list& list);

void spawn_and_wait_for_all(task& child);
void spawn_and_wait_for_all(task list& list);
static void spawn_root_and wait(task& root);
static void spawn_root_and wait(task list& root);

// task context

static task& self();

task* parent() const;

bool is_stolen_task() const;

// Cancellation
bool cancel _group_execution();
bool is_cancelled() const;

// Affinity

typedef implementation-defined-unsigned-type affinity_id;
virtual void note_affinity(affinity _id id);

void set_affinity(affinity_id id);

affinity_id affinity() const;

// task debugging
enum state type {
executing,
reexecute,

ready,
allocated,
freed
}:
int ref_count() const;
state type state() const;
}:
} // namespace tbb

Reference Manual 153

void *operator new(size_t bytes, const proxylé&
void operator delete(void* task, const proxylé&
void *operator new(size_t bytes, const proxy2&
void operator delete(void* task, const proxy2&
void *operator new(size_t bytes, const proxy3&
void operator delete(void* task, const proxy3&
void *operator new(size_t bytes, proxy4& p);
void operator delete(void* task, proxy4& p);
void *operator new(size_t bytes, proxy5& p);
void operator delete(void* task, proxy5& p);

v N\
i owr owa

T T T T T T

10.3.1 task Derivation

Class task is an abstract base class. You must override method task: :execute.
Method execute should perform the necessary actions for running the task, and then
return the next task to execute, or NULL if the scheduler should choose the next task
to execute. Typically, if non-NULL, the returned task is one of the children of this.
Unless one of the recycle/reschedule methods described in Section (10.3.4) is called
while method execute() is running, the this object will be implicitly destroyed after
method execute returns.

Override the virtual destructor if necessary to release resources allocated by the
constructor.

Override note_affinity to improve cache reuse across tasks, as described in Section
10.3.8.

10.3.1.1 Processing of execute()

When the scheduler decides that a thread should begin executing a task, it performs
the following steps:

1. Invokes execute() and waits for it to return.
2. If the task has not been marked by a method recycle_x*:

a. Calls the task's destructor.

b. If the task's parent is not null, then atomically decrements parent->refcount,
and if becomes zero, puts the parent into the ready pool.

c. Frees the memory of the task for reuse.
3. If the task has been marked for recycling:

a. If marked by recycle_to_reexecute, puts the task back into the ready pool.

b. Otherwise it was marked by recycle_as_child or
recycle_as_continuation.

154 315415-004US

Task Scheduler

10.3.2

TIP:

task Allocation

Always allocate memory for task objects using one of the special overloaded new
operators. The allocation methods do not construct the task. Instead, they return a
proxy object that can be used as an argument to an overloaded version of operator
new provided by the library.

In general, the allocation methods must be called before any of the tasks allocated are
spawned. The exception to this rule is al locate_additional_child_of(t), which can
be called even if task t is already running. The proxy types are defined by the
implementation. The only guarantee is that the phrase “new(proxy) T(...)"allocates
and constructs a task of type T. Because these methods are used idiomatically, the
headings in the subsection show the idiom, not the declaration. The argument this is
typically implicit, but shown explicitly in the headings to distinguish instance methods
from static methods.

Allocating tasks larger than 216 bytes might be significantly slower than allocating
smaller tasks. In general, task objects should be small lightweight entities.

10.3.2.1 new(task:allocate_root(task_group_context& group)) T

Allocate a task of type T with the specified cancellation group. Figure 6 summarizes
the state transition.

result

—> ul
0

Figure 6: Effect of task::allocate_root()

Use method spawn_root_and_wait (10.3.5.9) to execute the task.

10.3.2.2 new(task:allocate_root()) T

Like new(task: :allocate_root(task_group_context&)) except that cancellation
group is the current innermost cancellation group.

10.3.2.3 new(X.allocate_continuation()) T

Allocates and constructs a task of type T, and transfers the parent from x to the new
task. No reference counts change. Figure 7 summarizes the state transition.

Reference Manual 155

X X result

parent :> null parent
0

Figure 7: Effect of allocate_continuation()

103.24 new(x.allocate_child()) T

Effects

Allocates a task with this as its parent. Figure 8 summarizes the state transition.

X X

— .

Figure 8: Effect of allocate child()

If using explicit continuation passing, then the continuation, not the parent, should call
the allocation method, so that parent is set correctly.

If the number of tasks is not a small fixed number, consider building a task_list
(10.5) of the children first, and spawning them with a single call to task: :spawn
(10.3.5.5). If a task must spawn some children before all are constructed, it should
use task::allocate_additional_child_of(*this) instead, because that method
atomically increments refcount, so that the additional child is properly accounted.
However, if doing so, the task must protect against premature zeroing of refcount by

using a blocking-style task pattern.
10.3.2.5 new(x.task:allocate_additional_child_of(v))

Effects

Allocates a task as a child of another task y. The result becomes a child of y, not x.
Task y may be already running or have other children running. Figure 9 summarizes
the state transition.

156 315415-004US

Task Scheduler

intel.

refcount \—> refcount+1

A

result

Figure 9: Effect of allocate_additional_child_of(parent)

1033

Because parent may already have running children, the increment of parent.refcount
is thread safe (unlike the other allocation methods, where the increment is not thread
safe). When adding a child to a parent with other children running, it is up to the
programmer to ensure that the parent’s refcount does not prematurely reach 0 and
trigger execution of the parent before the child is added.

Explicit task Destruction

Usually, a task is automatically destroyed by the scheduler after its method execute
returns. But sometimes task objects are used idiomatically (e.g. for reference
counting) without ever running execute. Such tasks should be disposed with method
destroy.

10.3.3.1 void destroy(task& victim)

Requirements

The reference count of victim should be 0. This requirement is checked in the debug
version of the library.

Effects

Calls destructor and deallocates memory for victim. If this has non-null parent,
atomically decrements parent->refcount. The parent is not put into the ready pool if
parent->refcount becomes zero. Figure 10 summarizes the state transition.

The implicit argument this is used internally, but not visibly affected. A task is
allowed to destroy itself; e.g., “this->destroy(*this)” is permitted unless the task
has been spawned but has not yet completed method execute.

Reference Manual 157

parent parent

refcount refcount-1
this K this
/
,/ (can be null) :>
/
victim .’ 4‘
,I
[J
0 refcount adjustment skipped if if parent is null

Figure 10: Effect of destroy(victim)

10.34 Recycling Tasks

It is often more efficient to recycle a task object rather than reallocate one from
scratch. Often the parent can become the continuation, or one of the children.

10.3.4.1 void recycle_as_continuation()

Requirements
Must be called while method execute() is running.

The refcount for the recycled task should be set to n, where n is the number of
children of the continuation task.

NOTE: The caller must guarantee that the task’s refcount does not become zero until after
the method execute() returns. If this is not possible, use the method
recycle_as_safe_continuation() instead, and set refcount to n+1.

Effects

Causes this to not be destroyed when method execute() returns.
10.34.2 void recycle_as_safe_continuation()

Requirements
Must be called while method execute() is running.

The refcount for the recycled task should be set to n+1, where n is the number of
children of the continuation task. The additional +1 represents the task to be recycled.

Effects

Causes this to not be destroyed when method execute() returns.

158 315415-004US

Task Scheduler

1035

intel)

This method avoids race conditions that can arise from using the method
recycle_as_continuation. The race occurs when:

The method execute() recycles this as a continuation.
The continuation creates children.

All the children finish before method execute() completes, so the continuation
executes before the scheduler is done running this, which corrupts the scheduler.

Method recycle_as_safe_continuation avoids this race because the additional +1 in
the refcount prevents the continuation from executing until the task completes.

10.34.3 void recycle_as_child_of(task& new_parent)

Requirements

Must be called while method execute() is running.

Effects

Causes this to become a child of new_parent, and not be destroyed when method
execute() returns.

10344 void recycle _to_reexecute()

Requirements

Only valid to call while method execute() is running. When method execute()
returns, it must return a pointer to another task.

Effects

Causes this to be automatically spawned after execute() returns.

Synchronization

Spawning a task task either causes the calling thread to invoke task.execute(), or
causes task to be put into the ready pool. Any thread participating in task scheduling
may then acquire the task and invoke task.execute(). Section 10.1 describes the
structure of the ready pool.

The calls that spawn come in two forms:
e Spawn a single task.
o Spawn multiple task objects specified by a task_list and clear task_list.

The calls distinguish between spawning root tasks and child tasks. A root task is one
that was created using method allocate_root.

Reference Manual 159

Important

A task should not spawn any child until it has called method set_ref_count to
indicate both the number of children and whether it intends to use one of the
"wait_for_all" methods.

10.3.5.1 void set_ref_count(int count)

Requirements

count>0.%° If the intent is to subsequently spawn n children and wait, then count
should be n+1. Otherwise count should be n.

Effects

Sets the refcount attribute to count.
10.3.5.2 void increment_ref_count();

Effects

Atomically increments refcount attribute.
10.3.5.3 int decrement_ref_count();

Effects
Atomically decrements refcount attribute.
Returns

New value of refcount attribute.

NOTE: Explicit use of increment_ref_count and decrement_ref_count is typically necessary
only when a task has more than one immediate successor task. Section 10.5 of the
Tutorial ("General Acyclic Graphs of Tasks™) explains more.

10354 void wait_for_all()

Requirements

refcount=n+1, where n is the number of children who are still running.

29 Intel® TBB 2.1 had the stronger requirement count=0.

160 315415-004US

Task Scheduler

TIP:

intel)

Effects

Executes tasks in ready pool until refcount is 1. Afterwards sets refcount to 0. Figure
11 summarizes the state transitions.

Also, wait_for_all(Qautomatically resets the cancellation state of the
task_group_context implicitly associated with the task (10.6), when all of the
following conditions hold:

e The task was allocated without specifying a context.
e The calling thread is a user-created thread, not an Intel® TBB worker thread.

e It is the outermost call to wait_for_all() by the thread.

Under such conditions there is no way to know afterwards if the task_group_context
was cancelled. Use an explicit task_group_context if you need to know.

this this
— > -
Pd /v
n = previously spawned
children who are still running
Figure 11: Effect of wait_for_all
10.3.5.5 void spawn(task& t)

Requirements

this->refcount>0

Effects

Puts task t into the ready pool and immediately returns. Task t does not have to be a
child of this. A task may spawn itself.

The parent must call set_ref_count before spawning any child tasks, because once
the child tasks are going, their completion will cause refcount to be decremented
asynchronously. The debug version of the library detects when a required call to
set_ref_count is not made, or is made too late.

Reference Manual 161

10.3.5.6 void spawn (task_list& list)

Requirements
this->refcount>0

Effects

Equivalent to executing spawn on each task in list and clearing list, but more
efficient. If list is empty, there is no effect.

10.3.5.7 void spawn_and_wait_for_all(task& t)

Requirements

Any other children of this must already be spawned. The task t must have a non-
null attribute parent. There must be a chain of parent links from t to the calling task.
Typically, this chain contains a single link. That is, t is typically a child of this.

Effects

Similar to {spawn(task); wait_for_all();}, but often more efficient. Furthermore,
it guarantees that task is executed by the current thread. This constraint can
sometimes simplify synchronization. Figure 12 illustrates the state transitions.

this this
refcount :> 0
/7 Y
rd - - - t
) . o’
previously spawned children
who have not completed. 0
Figure 12: Effect of spawn_and_wait_for_all
10.3.5.8 void spawn_and_wait_for_all(task_list& list)

Effects

Similar to {spawn(list) ; wait_for_all();}, but often more efficient.

162 315415-004US

Task Scheduler

10.3.6

intel)

10.3.5.9 static void spawn_root_and_wait(task& root)

Requirements

The memory for task root was allocated by task::allocate_root().

Effects

Sets parent attribute of root to an undefined value and execute root as described in
Section 10.3.1.1. Destroys root afterwards unless root was recycled.

10.3.5.10 static void spawn_root_and_wait(task_list& root_list)

Requirements

Each task object t in root_list must meet the requirements in Section 10.3.5.9.

Effects

For each task object t in root_list, performs spawn_root_and_wait(t), possibly in
parallel. Section 10.3.5.9 describes the actions of spawn_root_and_wait(t).

task Context

These methods expose relationships between task objects, and between task objects
and the underlying physical threads.

10.36.1 static task& self()

Returns

Reference to innermost task that calling thread is running. A task is considered
“running” if its methods execute(), note_affinity(), or destructor are running. If
the calling thread is a user-created thread that is not running any task, self()
returns a reference to an implicit dummy task associated with the thread.

10.3.6.2 task* parent() const

Returns

Value of the attribute parent. The result is an undefined value if the task was allocated
by allocate_root and is currently running under control of spawn_root_and_wait.

Reference Manual 163

10.3.6.3 bool is_stolen_task() const

Requirements

The attribute parent is not null and this.execute() is running. The calling task must
not have been allocated with allocate_root.

Returns

true if task is running on a thread different than the thread that spawned it.

10.3.7 Cancellation

A task is a quantum of work that is cancelled or executes to completion. A cancelled
task skips its method execute() if that method has not yet started. Otherwise
cancellation has no direct effect on the task. A task can poll task::is_cancelled() to
see if cancellation was requested after it started running.

Tasks are cancelled in groups as explained in Section 10.6.
10.3.7.1 bool cancel_group_execution()

Effects

Requests cancellation of all tasks in its group and its subordinate groups.

Returns

False if the task’s group already received a cancellation request; true otherwise.
10.3.7.2 bool is_cancelled() const

Returns

True if task’s group has received a cancellation request; false otherwise.

10.3.8 Affinity

These methods enable optimizing for cache affinity. They enable you to hint that a
later task should run on the same thread as another task that was executed earlier.
To do this:

1. In the earlier task, override note_affinity(id) with a definition that records id.

2. Before spawning the later task, run set_affinity(id) using the id recorded in
step 1,

The id is a hint and may be ignored by the scheduler.

164 315415-004US

Task Scheduler

10.3.9

CAUTION:

10.3.8.1 affinity_id

The type task: :affinity_id is an implementation-defined unsigned integral type. A
value of 0 indicates no affinity. Other values represent affinity to a particular thread.

Do not assume anything about non-zero values. The mapping of non-zero values to

threads is internal to the Intel® TBB implementation.

10.3.8.2 virtual void note_affinity (affinity_id id)

The task scheduler invokes note_affinity before invoking execute() when:

e The task has no affinity, but will execute on a thread different than the one that
spawned it.

e The task has affinity, but will execute on a thread different than the one specified
by the affinity.

You can override this method to record the id, so that it can be used as the argument
to set_affinity(id) for a later task.

Effects

The default definition has no effect.
10.3.8.3 void set_affinity(affinity_id id)

Effects

Sets affinity of this task to id. The id should be either O or obtained from
note_affinity.

10.3.84 affinity_id affinity() const

Returns
Affinity of this task as set by set_affinity.

task Debugging

Methods in this subsection are useful for debugging. They may change in future
implementations.

10.3.9.1 state_type state() const

This method is intended for debugging only. Its behavior or performance may change
in future implementations. The definition of task: :state_type may change in future
implementations. This information is being provided because it can be useful for
diagnosing problems during debugging.

Returns

Reference Manual 165

Current state of the task. Table 31 describes valid states. Any other value is the result
of memory corruption, such as using a task whose memory has been deallocated.

Table 31: Values Returned by task::state()

Value Description
allocated Task is freshly allocated or recycled.
ready Task is in ready pool, or is in process of being transferred to/from
there.

executing Task is running, and will be destroyed after method execute() returns.

freed Task is on internal free list, or is in process of being transferred
to/from there.

reexecute Task is running, and will be respawned after method execute()
returns.

Figure 13 summarizes possible state transitions for a task.

166 315415-004US

Task Scheduler l n te l ,

storage from heap

allocate_ ..

allocated

~
-
o/
r-sl
5 return from
o " t.execute()
~ ot reexecute
2 I
- o
% 2
@
© I
% t_recycle_to_reexecute
o
"

executing

t.recycle_as...

return from t.execute()

allocate_...(b)

storage returned to heap
Figure 13: Typical task::state() Transitions
10.3.9.2 int ref_count() const

CAUTION: This method is intended for debugging only. Its behavior or performance may change
in future implementations.

Returns

The value of the attribute refcount.

Reference Manual 167

104 empty_task Class

Summary

Subclass of task that represents doing nothing.

Syntax
class empty_ task;

Header
#include ""tbb/task.h"

Description

An empty_task is a task that does nothing. It is useful as a continuation of a parent
task when the continuation should do nothing except wait for its children to complete.

Members
namespace tbb {
class empty_task: public task {
/*override*/ task* execute() {return NULL;}

}:

10.5 task_list Class

Summary

List of task objects.

Syntax
class task_list;

Header
#include "tbb/task.h"

Description
A task_list is a list of references to task objects. The purpose of task_list is to

allow a task to create a list of child tasks and spawn them all at once via the method
task: :spawn(task_list&), as described in 10.3.5.6.

168 315415-004US

(intelﬁ)

A task can belong to at most one task_list at a time, and on that task_list at
most once. A task that has been spawned, but not started running, must not belong
to a task_list. A task_list cannot be copy-constructed or assigned.

Members
namespace tbb {
class task list {
public:
task_list(Q);
~task _list();
bool empty() const;
void push_back(task& task);
task& pop_front();
void clear();

105.1 task_list()

Effects

Constructs an empty list.

1052 ~task_list()

Effects

Destroys the list. Does not destroy the task objects.

10.5.3 bool empty() const

Returns

True if list is empty; false otherwise.

1054 push_back(task& task)

Effects

Inserts a reference to task at back of the list.

Reference Manual 169

1055

10.5.6

10.6

170

task& task pop_front()

Effects

Removes a task reference from front of list.

Returns

The reference that was removed.

void clear()

Effects

Removes all task references from the list. Does not destroy the task objects.

task_group_context

Summary

A cancellable group of tasks.

Syntax
class task _group_ context;

Header
#include “tbb/task.h”

Description

A task_group_context represents a group of tasks that can be cancelled together.
The task_group_context objects form a forest of trees. Each tree’s root is a
task_group_context constructed as isolated.

A task_group_context is cancelled explicitly by request, or implicitly when an
exception is thrown out of a task. Cancelling a task_group_context causes the entire
subtree rooted at it to be cancelled.

Each user thread that creates a task_scheduler_init (10.2) implicitly has an
isolated task_group_context that acts as the root of its initial tree. This context is
associated with the dummy task returned by task: :self() when the user thread is
not running any task (10.3.6.1).

Members

namespace tbb {
class task _group_context {

315415-004US

Task Scheduler

10.6.1

10.6.2

106.3

intel)

public:
enum kind_t {
isolated = implementation-defined,
bound = implementation-defined
};
task _group_context(kind_t relation_to parent = bound);
~task _group_context();
void reset();
bool cancel _group_execution();
bool is_group_execution_cancelled() const;

task_group_context(kind_t relation_to_parent=bound)

Effects

Constructs an empty task_group_context. If relation_to_parent is bound, the
task_group_context becomes a child of the current innermost task_group_context
and becomes the new innermost task_group_context. If relation_to_parent is
isolated, it has no parent task_group_context.

~task_group_context()

Effects

Destroys an empty task_group_context. It is a programmer error if there are still
extant tasks in the group.

bool cancel_group_execution()

Effects

Requests that tasks in group be cancelled.

Returns

False if group is already cancelled; true otherwise. If concurrently called by multiple
threads, exactly one call returns true and the rest return false.

Reference Manual 171

106.4

10.6.5

CAUTION:

10.7

172

bool is_group_execution_cancelled() const

Returns

True if group has received cancellation.

void reset|()

Effects

Reinitializes this to uncancelled state.

This method is only safe to call once all tasks associated with the group's subordinate
groups have completed. This method must not be invoked concurrently by multiple
threads.

task_scheduler_observer

Summary

Class that represents thread's interest in task scheduling services.

Syntax
class task scheduler_observer;

Header
#include "tbb/task scheduler_observer._h"

Description

A task_scheduler_observer permits clients to observe when a thread starts or stops
participating in task scheduling. You typically derive your own observer class from
task_scheduler_observer, and override virtual methods on_scheduler_entry or
on_scheduler_exit.

Members
namespace tbb {
class task_scheduler_observer {
public:
task_scheduler_observer();
virtual ~task scheduler_observer();
void observe(bool state=true);
bool is_observing() const;
virtual void on_scheduler_entry(bool is_worker) {}

315415-004US

(inteF)

virtual void on_scheduler_exit(bool is worker } {}

10.7.1 task_scheduler_observer()
Effects

Constructs instance with observing disabled.

10.7.2 ~task_scheduler_observer()
Effects

Disables observing. Waits for extant invocations of on_scheduler_entry or
on_scheduler_exit to complete.

10.7.3 void observe(bool state=true)
Effects

Enables observing if state is true; disables observing if state is false.

10.7.4 bool is_observing() const

Returns

True if observing is enabled; false otherwise.

10.7.5 virtual void on_scheduler_entry(bool is_worker)

Description

The task scheduler invokes this method when a thread starts participating in task
scheduling. If the instance of task_scheduler_observer is created after threads
started participating, then this method is invoked once for each such thread, before it
executes the first task it steals afterwards.

The flag is_worker is true if the thread was created by the task scheduler; false
otherwise.

NOTE: If a thread creates a task_scheduler_observer before spawning a task, it is

guaranteed that the thread that executes the task will have invoked
on_scheduler_entry before executing the task.

Reference Manual 173

10.7.6

CAUTION:

10.8

10.8.1

174

Effects

The default behavior does nothing.

virtual void on_scheduler_exit(bool is_worker)

Description

The task scheduler invokes this method when a thread stops participating in task
scheduling.

Sometimes on_scheduler_exit is invoked for a thread but not on_scheduler_entry.
This situation can arise if a thread never steals a task.

Effects

The default behavior does nothing.

Catalog of Recommended task Patterns

This section catalogues recommended task patterns. In each pattern, class T is
assumed to derive from class task. Subtasks are labeled t;, t,, ... tx. The
subscripts indicate the order in which the subtasks execute if no parallelism is
available. If parallelism is available, the subtask execution order is non-deterministic,
except that t; is guaranteed to be executed by the spawning thread.

Recursive task patterns are recommended for efficient scalable parallelism, because
they allow the task scheduler to unfold potential parallelism to match available
parallelism. A recursive task pattern begins by creating a root task t, and running it as
follows.

T& to = *new(allocate_root()) T(-..);

task: :spawn_root_and wait(*ty);

The root task’s method execute() recursively creates more tasks as described in
subsequent subsections.

Blocking Style With k Children

The following shows the recommended style for a recursive task of type T where each
level spawns k children.
task* T::execute() {

if(not recursing any further) {

} else {
set_ref _count(k+l);
task& tx = *new(allocate child(Q)) T(--.); spawn(ty);

315415-004US

Task Scheduler

10.8.2

task& ty.;= *new(allocate _child(Q)) T(...); spawn(tx.1);

task& t; = *new(allocate _child(Q)) T(--.);
spawn_and_wait _for_all(ty));

by

return NULL;

}

Child construction and spawning may be reordered if convenient, as long as a task is
constructed before it is spawned.

The key points of the pattern are:
e The call to set_ref_count uses k+1 as its argument. The extra 1 is critical.
e Each task is allocated by allocate_child.

e The call spawn_and_wait_for_all combines spawning and waiting. A more uniform
but slightly less efficient alternative is to spawn all tasks with spawn and wait by
calling wait_for_all.

Continuation-Passing Style With k Children

There are two recommended styles. They differ in whether it is more convenient to
recycle the parent as the continuation or as a child. The decision should be based
upon whether the continuation or child acts more like the parent.

Optionally, as shown in the following examples, the code can return a pointer to one
of the children instead of spawning it. Doing so causes the child to execute
immediately after the parent returns. This option often improves efficiency because it
skips pointless overhead of putting the task into the task pool and taking it back out.

10.8.2.1 Recycling Parent as Continuation

This style is useful when the continuation needs to inherit much of the state of the
parent and the child does not need the state. The continuation must have the same
type as the parent.
task* T::execute() {

if(not recursing any further) {

return NULL;
} else {
set_ref_count(k);
recycle_as continuation();
task& ty = *new(allocate child(Q)) T(--.); spawn(ty);
task& ty.; = *new(allocate_child()) T(...); spawn(t..1);

// Return pointer to first child instead of spawning it,
// to remove unnecessary overhead.
task& t; = *new(allocate_child(Q)) T(--.);

Reference Manual 175

176

return &t;;

by
The key points of the pattern are:

e The call to set_ref_count uses k as its argument. There is no extra +1 as there is
in blocking style discussed in Section 10.8.1.

e Each child task is allocated by allocate_child.

e The continuation is recycled from the parent, and hence gets the parent's state
without doing copy operations.

10.8.2.2 Recycling Parent as a Child

This style is useful when the child inherits much of its state from a parent and the
continuation does not need the state of the parent. The child must have the same type
as the parent. In the example, C is the type of the continuation, and must derive from
class task. If C does nothing except wait for all children to complete, then C can be
the class empty_task (10.4).
task* T::execute() {

if(not recursing any further) {

return NULL;
} else {
set_ref _count(k);
// Construct continuation
C& c = allocate_continuation();
// Recycle self as first child
task& tx = *new(c.allocate child(Q)) T(...); spawn(ty);
task& ty; = *new(c.allocate_child()) T(...); spawn(ty,);

task& t, = *new(c.allocate _child(Q)) T(...); spawn(ty);
// task t; is our recycled self.
recycle _as child _of(c);

update fields of *this to subproblem to be solved by t;
return this;

>
The key points of the pattern are:

e The call to set_ref_count uses k as its argument. There is no extra 1 as there is in
blocking style discussed in Section 10.8.1.

e Each child task except for t; is allocated by c.allocate_child. It is critical to use
c.allocate_child, and not (*this).allocate_child; otherwise the task graph
will be wrong.

315415-004US

Task Scheduler

10.8.3

e Task t; is recycled from the parent, and hence gets the parent's state without
performing copy operations. Do not forget to update the state to represent a child
subproblem; otherwise infinite recursion will occur.

Letting Main Thread Work While Child Tasks Run

Sometimes it is desirable to have the main thread continue execution while child tasks
are running. The following pattern does this by using a dummy empty_task (10.4).

task* dummy = new(task::allocate root()) empty_ task;
dummy->set_ref _count(k+1);

task& ty = *new(dummy->allocate child()) T; dummy->spawn(ty);
task& ty_;= *new(dummy->allocate child()) T; dummy->spawn(ty_1);

task& t; = *new(dummy->allocate child()) T; dummy->spawn(t,);
-..do any other work. ..
dummy->wait _for_all();
dummy->destroy (*dummy) ;

The key points of the pattern are:
e The dummy task is a placeholder and never runs.
e The call to set_ref_count uses k+1 as its argument.

e The dummy task must be explicitly destroyed.

Reference Manual 177

11 Exceptions

Intel® Threading Building Blocks (Intel® TBB) propagates exceptions along logical
paths in a tree of tasks. Because these paths cross between thread stacks, support for
moving an exception between stacks is necessary.

When an exception is thrown out of a task, it is caught inside the Intel® TBB run-time
and handled as follows:

1. If the cancellation group for the task has already been cancelled, the exception is
ignored.

2. Otherwise the exception is captured as follows:
a. |Ifitis a tbb_exception X, it is captured by x.move()

b. Ifitis a std::exception X, it is captured as a
captured_exception(typeid(x).-name(),x-what()).

c. Otherwise it is captured as a captured exception with implementation-
specified value for name() and what().

3. The captured exception is rethrown from the root of the cancellation group after
all tasks in the group have completed or have been successfully cancelled.

11.1 tbb_exception

Summary

Exception that can be moved to another thread.

Syntax
class tbb_exception;

Header
#include "tbb/tbb_exception.h"

Description

In a parallel environment, exceptions sometimes have to be propagated across
threads. Class tbb_exception subclasses std::exception to add support for such

propagation.

Members
namespace tbb {

178 315415-004US

Exceptions

11.2

intel)

class tbb_exception: public std::exception {
virtual tbb_exception* move() = O;
virtual void destroy() throw() = O;
virtual void throw self() = 0;
virtual const char* name() throw() =
virtual const char* what() throw()

I
o O

}

Derived classes should define the abstract virtual methods as follows:

o move() should create a pointer to a copy of the exception that can outlive the
original. It may move the contents of the original.

e destroy() should destroy a copy created by move().
e throw_self() should throw *this.
e name() typically returns the RTTI name of the originally intercepted exception.

¢ what() returns a null-terminated string describing the exception.

captured_exception

Summary

Class used by Intel® TBB to propagate an exception that is not a tbb_exception.

Syntax
class captured_exception;

Header
#include "tbb/tbb_exception.h"

Description

When a task throws an exception and the exception is not a tbhb_exception, Intel®
TBB converts the exception to a captured_exception before propagating it.
Conversion is necessary so that the exception can be propagated across threads.

Members
namespace tbb {
class captured_exception: public tbb_exception {

captured_exception(const captured_exception& src);
captured_exception(const char* name, const char* info);
~captured_exception() throw();
captured_exception& operator=(const captured_exception&);
captured_exception* move() throw();

Reference Manual 179

11.2.1

11.3

180

void destroy() throw();

void throw_self();

const char* name() const throw();
const char* what() const throw();

}

Only the additions that captured_exception makes to thb_exception are described
here. Section 11.1 describes the rest of the interface.

captured_exception(const char* name, const char* info)

Effects

Constructs a captured_exception with the specified name and info.

movable_exception<ExceptionData>

Summary

Subclass of tbb_exception interface that supports propagating copy-constructible
data.

Syntax
template<typename ExceptionData> class movable_exception;

Header
#include "tbb/tbb_exception.h"

Description

This template provides a convenient way to implement a subclass of tbb_exception
that propagates arbitrary copy-constructible data.

Members
namespace tbb {
template<typename ExceptionData>
class movable_exception: public tbb_exception {
public:
movable_exception(const ExceptionData& src);
movable_exception(const movable_exception& src)throw();
~movable_exception() throw();

movable_exception& operator=(const movable_exception&
src);

315415-004US

Exceptions

11.3.1

11.3.2

11.3.3

114

ExceptionData& data() throw();

const ExceptionData& data() const throw();
movable_exception* move() throw();

void destroy() throw(Q);

void throw_self();

const char* name() const throw();

const char* what() const throw();

}

Only the additions that movable_exception makes to tbb_exception are described
here. Section 11.1 describes the rest of the interface.

movable_exception(const ExceptionData& src)

Effects

Construct movable_exception containing copy of src.

ExceptionData& data() throw()

Returns

Reference to contained data.

const ExceptionData& data() const throw()

Returns

Const reference to contained data.

missing_wait

Summary

Exception thrown by task_group and structured_task_group when call to wait() is
missing.

Syntax

class missing wait;

Reference Manual 181

Header
#include 'tbb/task group.h"

Description

If an instance of task_group or structured_task_group is destroyed before method
wait() is invoked, the instance throws the exception missing_wait.

Members
namespace tbb {
class missing wait: public std::exception {
public:
const char* what() const throw();

¥

182 315415-004US

Threads

12

Threads

Table 32:

Intel® Threading Building Blocks (Intel® TBB) provides a wrapper around the
platform’s native threads, based upon proposal N2497 for C++ 200x. Using this
wrapper has two benefits:

¢ It makes threaded code portable across platforms.

e |t eases later migration to 1SO C++ 200x threads.

The significant departures from N2497 are shown in Table 32.

Differences Between N2497 and Intel® TBB Thread Class

N2497 TBB
std: :thread tbb::tbb_thread
std: :this_thread tbb::tbb_this_thread
std::this_thread::sleep (system_time tbb::tbb_this_thread::sleep(tick_count
); tinterval_t)
rvalue reference parameters Parameter changed to plain value, or

function removed, as appropriate.

constructor for std: :thread takes constructor for tbb::tbb_thread takes
arbitrary number of arguments. 0-3 arguments.

CAUTION:

12.1

Reference Manual

The name changes prevent identifier collisions when using directives are employed.
The other changes are for compatibility with the current C++ standard or Intel® TBB.
For example, constructors that have an arbitrary number of arguments require the
variadic template features of C++ 200x.

Threads are heavy weight on most systems, and running too many threads on a

system can seriously degrade performance. Consider using a task based solution
instead if practical.

tbb_thread Class

Summary

Represents a thread of execution.

Syntax
class tbb_thread;

12.1.1

184

Header
#include "tbb/tbb_thread.h"

Description

Class tbb_thread provides a platform independent interface to native threads. An
instance represents a thread. A platform-specific thread handle can be obtained via
method native_handle().

Members
namespace tbb {
class tbb_thread {
public:
#if _WIN32] | _WIN64
typedef HANDLE native handle_type;
#else
typedef pthread_t native handle_ type;
#endif // _WIN32||_WIN64

class 1d;

tbb_thread();

template <typename F> explicit tbb_thread(F f);

template <typename F, typename X> tbb_thread(F f, X X);

template <typename F, typename X, typename Y>
tbb_thread (F F, X X, Y y);

tbb_thread& operator=(tbb_thread& x);

~tbb_thread();

bool joinable() const;

void join();

void detach();

id get_i1d() const;
native_handle_type native_handle();

static unsigned hardware_concurrency();

tbb_thread()

Effects

Constructs tbb_thread that does not represent a thread of execution, with
get_idQQ==i1d(Q).

315415-004US

®

(intel

12.1.2 template<typename F> tbb_thread(F f)

Effects

Construct tbb_thread that evaluates f()

12.1.3 template<typename F, typename X> tbb_thread(F f, X x)

Effects

Constructs tbb_thread that evaluates f(x).

12.1.4 template<typename F, typename X, typename Y>
tbb thread{le XX Yy)

Effects

Constructs tbb_thread that evaluates f(x,y).

12.1.5 tbb_thread& operator=(tbb_thread& x)

Effects

If Joinable(), calls detach(). Then assigns the state of x to *this and sets x to
default constructed state.

CAUTION: Assignment moves the state instead of copying it.

12.1.6 ~tbb_thread

Effects

if(joinable()) detach().

12.1.7 bool joinable() const

Returns
get_idQ!=idQ

Reference Manual 185

12.1.8 void join()

Requirements

joinable()==true
Effects

Wait for thread to complete. Afterwards, joinable()==false.

12.1.9 void detach()

Requirements

joinable()==true
Effects

Sets *this to default constructed state and returns without blocking. The thread
represented by *this continues execution.

12.1.10 id get_id() const

Returns

id of the thread, or a default-constructed id if *this does not represent a thread.

12.1.11 native_handle_type native_handle()

Returns

Native thread handle. The handle is a HANDLE on Windows* operating systems and a
pthread_t on Linux* and Mac OS* X operating systems. For these systems,
native_handle() returns O if joinable()==False.

12.1.12 static unsigned hardware_concurrency()

Returns

The number of hardware threads. For example, 4 on a system with a single Intel®
Core™2 Quad processor.

186 315415-004US

intel)

12.2 tbb_thread: id

Summary

Unique identifier for a thread.

Syntax
class tbb_thread::id;

Header
#include "tbb/tbb_ thread.h"

Description

A tbb_thread: :id is an identifier value for a thread that remains unique over the
thread’s lifetime. A special value tbb_thread::id() represents no thread of execution.
The instances are totally ordered.

Members
namespace tbb {
class tbb_thread::id {
public:
1dQ;
};
template<typename charT, typename traits>
std: :basic_ostream<charT, traits>&
operator<< (std::basic_ostream<charT, traits> &out,
tbb_thread::id id)

bool operator==(tbb_thread::id x, tbb_thread::id y);
bool operator!=(tbb_thread::id x, tbb_thread::id
bool operator<(tbb_thread::id x, tbb_thread::id
bool operator<=(tbb_thread::id x, tbb thread::id y);
bool operator>(tbb_thread::id x, tbb_thread::id
bool operator>=(tbb_thread::id x, tbb_thread::i

} // namespace tbb

12.3 this_tbb_thread Namespace

Description

Namespace this_tbb_thread contains global functions related to threading.

Members

Reference Manual 187

12.3.1

12.3.2

1233

188

namepace tbb {
namespace this_tbb thread {
tbb_thread::id get _id(Q);
void yield(Q);
void sleep(const tick count::interval_t);

tbb_thread:id get_id()

Returns

Id of the current thread.

void yield()
Effects

Offers to suspend current thread so that another thread may run.

void sleep(const tick_count:interval_t &)

Effects
Current thread blocks for at least time interval i.

Example
using namespace tbb;

void Foo() {
// Sleep 30 seconds

this_tbb thread::sleep(tick count::interval t(30));

315415-004US

References

13

References

Reference Manual

Umut A. Acar, Guy E. Blelloch, Robert D. Blumofe, The Data Locality of Work Stealing.
ACM Symposium on Parallel Algorithms and Architectures (2000):1-12.

Robert D.Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: An Efficient Multithreaded Runtime System.
Proceedings of the 5th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (July 1995):207-216.

H. Hinnant, L. Crowl, Beman Dawes, A. Wllliams, J. Garland, Multi-threading Library
for Standard C++ (Revision 1), ISO/IEC JTC1 SC22 WG21 N2497.

Steve MacDonald, Duane Szafron, and Jonathan Schaeffer. Rethinking the Pipeline as
Object-Oriented States with Transformations. 9th International Workshop on High-
Level Parallel Programming Models and Supportive Environments (April 2004):12-21.

V. Kumar and V. N. Rao, "Parallel Depth First Search. Part Il. Analysis", International
Journal of Parallel Programming (December 1987): 501-519.

ISO/IEC 14882, Programming Languages — C++

Ping An, Alin Jula, Silvius Rus, Steven Saunders, Tim Smith, Gabriel Tanase, Nathan
Thomas, Nancy Amato, Lawrence Rauchwerger. STAPL: An Adaptive, Generic Parallel
C++ Library. Workshop on Language and Compilers for Parallel Computing (LCPC
2001), Cumberland Falls, Kentucky Aug 2001. Lecture Notes in Computer Science
2624 (2003): 193-208.

S. G. Akl and N. Santoro, "Optimal Parallel Merging and Sorting Without Memory
Conflicts", IEEE Transactions on Computers, Vol. C-36 No. 11, Nov. 1987.

Appendix A Compatibility Features

A1

TIP:

This appendix describes features of Intel Threading Building Blocks (Intel® TBB) that
remain for compatibility with previous versions. These features are deprecated and
may disappear in future versions of Intel® TBB. Some of these features are available
only if the preprocessor symbol TBB_DEPRECATED is non-zero.

parallel_while Template Class

Summary

Template class that processes work items.
This class is deprecated. Use parallel_do (3.7) instead.

Syntax
template<typename Body>
class parallel_while;

Header
#include "tbb/parallel_while.h"

Description

A parallel_while<Body> performs parallel iteration over items. The processing to be
performed on each item is defined by a function object of type Body. The items are
specified in two ways:

e A stream of items.
e Additional items that are added while the stream is being processed.

Table 33 shows the requirements on the stream and body.

Table 33: parallel_while Requirements for Stream S and Body B

190

Pseudo-Signature Semantics

bool S::pop_if _present(B::argument_type& Get next stream item.

item) parallel_while does not
concurrently invoke the method
on the same this.

B::operator()(B::argument_typeé& item) Process item. parallel_while
const may concurrently invoke the
operator for the same this but

315415-004US

References

TIP:

A.1.1

Reference Manual

intel)

Pseudo-Signature Semantics

different item.

B: :argument_type() Default constructor.

B: argument_type(const B::argument_type& Copy constructor.

)

~B: -argument_type() Destructor.

For example, a unary function object, as defined in Section 20.3 of the C++ standard,
models the requirements for B. A concurrent_queue (4.3) models the requirements

for S.

To achieve speedup, the grainsize of B: :operator() needs to be on the order of at
least —~10,000 instructions. Otherwise, the internal overheads of parallel_while
swamp the useful work. The parallelism in parallel_while is not scalable if all the
items come from the input stream. To achieve scaling, design your algorithm such
that method add often adds more than one piece of work.

Members
namespace tbb {
template<typename Body>
class parallel_while {
public:
parallel_while(Q);
~parallel_while();

typedef typename Body::argument_type value_ type;

template<typename Stream>
void run(Stream& stream, const Body& body);

void add(const value_ type& item);

parallel_while<Body>()

Effects

Constructs a parallel_while that is not yet running.

191

A.1.2

A.1.3

A1.4

A.2

A2.1

192

~parallel_while<Body>()

Effects

Destroys a parallel_while.

Template <typename Stream> void run(Stream& stream,
const Body& body)

Effects

Applies body to each item in stream and any other items that are added by method
add. Terminates when both of the following conditions become true:

e stream.pop_if_present returned false.

e body(x) returned for all items x generated from the stream or method add.

void add(const value_type& item)

Requirements

Must be called from a call to body.operator() created by parallel_while.
Otherwise, the termination semantics of method run are undefined.

Effects

Adds item to collection of items to be processed.

Interface for constructing a pipeline filter

The interface for constructing a filter evolved over several releases of Intel® TBB. The
two following subsections describe obsolete aspects of the interface.

filter:filter(bool is_serial)

Effects

Constructs a serial in order filter if is_serial is true, or a parallel filter if is_serial is
false. This deprecated constructor is superseded by the constructor filter(
filter::mode) described in Section 3.9.6.1.

315415-004US

References

A2.2

A.3

TIP:

Table 34:

intel)

filter::serial

The filter mode value filter::serial is now named Filter::serial_in_order.
The new name distinguishes it more clearly from the mode
filter::serial_out_of order.

Debugging Macros

The names of the debugging macros have changed as shown in Table 34. If you define
the old macros, Intel® TBB sets each undefined new macro in a way that duplicates
the behavior the old macro settings.

The old TBB_DO_ASSERT enabled assertions, full support for Intel® Threading Tools,
and performance warnings. These three distinct capabilities are now controlled by
three separate macros as described in Section 2.6.

To enable all three capabilities with a single macro, define TBB_USE_DEBUG to be 1. If
you had code under “#if TBB_DO_ASSERT” that should be conditionally included only
when assertions are enabled, use “#if TBB_USE_ASSERT” instead.

Deprecated Macros

Deprecated Macro New Macro

TBB_USE_DEBUG or TBB_USE_ASSERT,

TBB DO ASSERT -
- = depending on context.

TBB DO THREADING TOOLS TBB USE THREADING TOOLS

A4

tbb::deprecated::concurrent_queue<T,Alloc>
Template Class

Summary

Template class for queue with concurrent operations. This is the concurrent_queue
supported in Intel® TBB 2.1 and prior. New code should use the Intel® TBB 2.2
unbounded concurrent_queue or concurrent_bounded_queue.

Syntax

template<typename T, typename Alloc=cache_aligned_allocator<T> >
class concurrent_gueue;

Header
#include 'tbb/concurrent_queue.h"

Reference Manual 193

Description

A tbb: :deprecated: :concurrent_queue is a bounded first-in first-out data structure
that permits multiple threads to concurrently push and pop items. The default bounds
are large enough to make the queue practically unbounded, subject to memory
limitations on the target machine.

NOTE: Compile with TBB_DEPRECATED=1 to inject tbb: :deprecated: :concurrent_queue
into namespace tbb. Consider eventually migrating to the new queue classes.
e Use the new tbb::concurrent_queue if you need only the non-blocking operations
(push and try_pop) for modifying the queue.
e Otherwise use the new tbb: :concurrent_bounded_queue. It supports both blocking
operations (push and try_pop) and non-blocking operations.
In both cases, use the new method names in Table 35.
Table 35: Method Name Changes for Concurrent Queues
Method in Equivalent method in
tbb::deprecated::concurrent_queue tbb::concurrent_queue or
tbb::concurrent_bounded_queue
pop_if_present try_pop
push_if_not_full try_push
(not available in tbb: :concurrent_queue)
begin unsafe_begin
end unsafe_end
Members
namespace tbb {
namespace deprecated {
template<typename T,
typename Alloc=cache_aligned_allocator<T> >
class concurrent_queue {
public:
// types
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
typedef std::ptrdiff_t size type;
typedef std::ptrdiff_t difference_type;
concurrent_queue(const Alloc& a = Alloc());
concurrent_queue(const concurrent_queueé& src,
const Alloc& a = Alloc());
template<typename Inputlterator>
concurrent_queue(lInputlterator first, Inputlterator last,
194 315415-004US

References

A5

intel)

const Alloc& a = Alloc());
~concurrent_queue();

void push(const T& source);

bool push_if _not_full(const T& source);
void pop(T& destination);

bool pop_ if present(T& destination);
void clear(Q) ;

size_type size() const;

bool empty() const;

size_t capacity() const;

void set _capacity(size_type capacity);
Alloc get_allocator() const;

typedef implementation-defined iterator;
typedef implementation-defined const_iterator;

// iterators (these are slow and intended only for
debugging)
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;
}:
by
#iT TBB_DEPRECATED
using deprecated: :concurrent_queue;
#else
using strict_ppl::concurrent_queue;
#endif

}

Interface for concurrent_vector

The return type of methods grow_by and grow_to_at_least changed in Intel® TBB
2.2. Compile with the preprocessor symbol TBB_DEPRECATED set to nonzero to get the
old methods.

Table 36: Change in Return Types

Method Deprecated New
Return Type Return Type
grow_by (4.5.3.1) size_type iterator

Reference Manual 195

grow_to_at_least (4.5.3.2) | void iterator

push_back (4.5.3.3) size_type iterator

A.5.1 void compact()

Effects

Same as shrink_to_fit() (4.5.2.2).

A6 Depth interface for class task

Intel® TBB 2.2 eliminates the notion of task depth that was present in prior versions
of Intel® TBB. The members of class task that related to depth have been retained
under TBB_DEPRECATED, but do nothing.

Deprecated Members of class task
namespace tbb {
class task {

#i1f TBB_DEPRECATED

// task depth

typedef implementation-defined-signed-integral-type
depth_type;

depth_type depth() const {return 0;}

void set _depth(depth_type new_depth) {}

void add_to_depth(int delta){}
#endif

}:

196 315415-004US

References l n te l '

Appendix B PPL Compatibility

Intel Threading Building Blocks (Intel® TBB) 2.2 introduces features based on joint
discussions between the Microsoft Corporation and Intel Corporation. The features

establish some degree of compatibility between Intel® TBB and Microsoft Parallel
Patterns Library (PPL) development software.

Table 37 lists the features. Each feature appears in namespace tbb. Each feature can
be injected into namespace Concurrency by including the file "tbb/compat/ppl.h"

Table 37: PPL Compatibility Features

Section Feature
3.4 parallel for(first,last,step, f)
3.8 parallel for each
3.11 parallel invoke
Error! task handle
Referenc
e source
not
found.
Error! task group status
Referenc
€ source
not
found.
9.1.1 task group
9.5 structured task group
9.6 is current task group cancelling
11.4 missing wait

For parallel_for, only the signature that takes (first, last, step, f) is injected
into namespace Concurrency.

CAUTION: Because of different environments and evolving specifications, the behavior of the
features can differ between the Intel® TBB and PPL implementations.

Reference Manual 197

Appendix C Known Issues

This section explains known issues with using Intel® Threading Building Blocks
(Intel® TBB).

C.1 Windows* OS

Some Intel® TBB header files necessarily include the header file <windows.h>, which
by default defines the macros min and max, and consequently breaks the 1SO C++
header files <limits> and <algorithm>. Defining the preprocessor symbol NOMINMAX
causes <windows.h> to not define the offending macros. Thus programs using Intel®
TBB and either of the aforementioned 1SO C++ headers should be compiled with
/DNOMINMAX as a compiler argument.

198 315415-004US

	 Legal Information
	Revision History
	Contents
	1 Overview
	2 General Conventions
	2.1 Notation
	2.2 Terminology
	2.2.1 Concept
	2.2.2 Model
	2.2.3 CopyConstructible

	2.3 Identifiers
	2.3.1 Case
	2.3.2 Reserved Identifier Prefixes

	2.4 Namespaces
	2.4.1 tbb Namespace
	2.4.2 tbb::internal Namespace
	2.4.3 tbb::deprecated Namespace
	2.4.4 tbb::strict_ppl

	2.5 Thread Safety
	2.6 Enabling Debugging Features
	2.6.1 TBB_USE_ASSERT Macro
	2.6.2 TBB_USE_THREADING_TOOLS Macro
	2.6.3 TBB_USE_PERFORMANCE_WARNINGS Macro

	2.7 Version Information
	2.7.1 Version Macros
	2.7.2 TBB_VERSION Environment Variable
	2.7.3 TBB_runtime_interface_version Function

	2.8 TBB_DEPRECATED macro

	3 Algorithms
	3.1 Splittable Concept
	3.1.1 split Class

	3.2 Range Concept
	3.2.1 blocked_range<Value> Template Class
	3.2.1.1 size_type
	3.2.1.2 blocked_range(Value begin, Value end, size_t grainsize=1)
	3.2.1.3 blocked_range(blocked_range& range, split)
	3.2.1.4 size_type size() const
	3.2.1.5 bool empty() const
	3.2.1.6 size_type grainsize() const
	3.2.1.7 bool is_divisible() const
	3.2.1.8 const_iterator begin() const
	3.2.1.9 const_iterator end() const

	3.2.2 blocked_range2d Template Class
	3.2.2.1 row_range_type
	3.2.2.2 col_range_type
	3.2.2.3 blocked_range2d<RowValue,ColValue>(RowValue row_begin, RowValue row_end, typename row_range_type::size_type row_grainsize, ColValue col_begin, ColValue col_end, typename col_range_type::size_type col_grainsize)
	3.2.2.4 blocked_range2d<RowValue,ColValue>(RowValue row_begin, RowValue row_end, ColValue col_begin, ColValue col_end)
	3.2.2.5 blocked_range2d<RowValue,ColValue> (blocked_range2d& range, split)
	3.2.2.6 bool empty() const
	3.2.2.7 bool is_divisible() const
	3.2.2.8 const row_range_type& rows() const
	3.2.2.9 const col_range_type& cols() const

	3.2.3 blocked_range3d Template Class

	3.3 Partitioners
	3.3.1 auto_partitioner Class
	3.3.1.1 auto_partitioner()
	3.3.1.2 ~auto_partitioner()

	3.3.2 affinity_partitioner
	3.3.2.1 affinity_partitioner()
	3.3.2.2 ~affinity_partitioner()

	3.3.3 simple_partitioner Class
	3.3.3.1 simple_partitioner()
	3.3.3.2 ~simple_partitioner()

	3.4 parallel_for Template Function
	3.5 parallel_reduce Template Function
	3.6 parallel_scan Template Function
	3.6.1 pre_scan_tag and final_scan_tag Classes
	3.6.1.1 bool is_final_scan()

	3.7 parallel_do Template Function
	3.7.1 parallel_do_feeder<Item> class
	3.7.1.1 void add(const Item& item)

	3.8 parallel_for_each Template Function
	3.9 pipeline Class
	3.9.1 pipeline()
	3.9.2 ~pipeline()
	3.9.3 void add_filter(filter& f)
	3.9.4 void run(size_t max_number_of_live_tokens)
	3.9.5 void clear()
	3.9.6 filter Class
	3.9.6.1 filter(mode filter_mode)
	3.9.6.2 ~filter()
	3.9.6.3 bool is_serial() const
	3.9.6.4 bool is_ordered() const
	3.9.6.5 virtual void* operator()(void * item)
	3.9.6.6 virtual void finalize(void * item)

	3.9.7 thread_bound_filter Class
	3.9.7.1 thread_bound_filter(mode filter_mode)
	3.9.7.2 result_type try_process_item()
	3.9.7.3 result_type process_item()

	3.10 parallel_sort Template Function
	3.11 parallel_invoke Template Function

	4 Containers
	4.1 Container Range Concept
	4.2 concurrent_hash_map Template Class
	4.2.1 Whole Table Operations
	4.2.1.1 concurrent_hash_map(const allocator_type& a = allocator_type())
	4.2.1.2 concurrent_hash_map(size_type n, const allocator_type& a = allocator_type())
	4.2.1.3 concurrent_hash_map(const concurrent_hash_map& table, const allocator_type& a = allocator_type())
	4.2.1.4 template<typename InputIterator> concurrent_hash_map(InputIterator first, InputIterator last, const allocator_type& a = allocator_type())
	4.2.1.5 ~concurrent_hash_map()
	4.2.1.6 concurrent_hash_map& operator= (concurrent_hash_map& source)
	4.2.1.7 void swap(concurrent_hash_map& table)
	4.2.1.8 void clear()
	4.2.1.9 allocator_type get_allocator() const

	4.2.2 Concurrent Access
	4.2.2.1 const_accessor
	4.2.2.1.1 bool empty() const
	4.2.2.1.2 void release()
	4.2.2.1.3 const value_type& operator*() const
	4.2.2.1.4 const value_type* operator->() const
	4.2.2.1.5 const_accessor()
	4.2.2.1.6 ~const_accessor

	4.2.2.2 accessor
	4.2.2.2.1 value_type& operator*() const
	4.2.2.2.2 value_type* operator->() const

	4.2.3 Concurrent Operations
	4.2.3.1 size_type count(const Key& key) const
	4.2.3.2 bool find(const_accessor& result, const Key& key) const
	4.2.3.3 bool find(accessor& result, const Key& key)
	4.2.3.4 bool insert(const_accessor& result, const Key& key)
	4.2.3.5 bool insert(accessor& result, const Key& key)
	4.2.3.6 bool insert(const_accessor& result, const value_type& value)
	4.2.3.7 bool insert(accessor& result, const value_type& value)
	4.2.3.8 bool insert(const value_type& value)
	4.2.3.9 template<typename InputIterator> void insert(InputIterator first, InputIterator last)
	bool erase(const Key& key)
	4.2.3.11 bool erase(const_accessor& item_accessor)
	4.2.3.12 bool erase(accessor& item_accessor)

	4.2.4 Parallel Iteration
	4.2.4.1 const_range_type range(size_t grainsize=1) const
	4.2.4.2 range_type range(size_t grainsize=1)

	4.2.5 Capacity
	4.2.5.1 size_type size() const
	4.2.5.2 bool empty() const
	4.2.5.3 size_type max_size() const

	4.2.6 Iterators
	4.2.6.1 iterator begin()
	4.2.6.2 iterator end()
	4.2.6.3 const_iterator begin() const
	4.2.6.4 const_iterator end() const
	4.2.6.5 std::pair<iterator, iterator> equal_range(const Key& key);
	4.2.6.6 std::pair<const_iterator, const_iterator> equal_range(const Key& key) const;

	4.2.7 Global Functions
	4.2.7.1 template<typename Key, typename T, typename HashCompare, typename A1, typename A2> bool operator==(const concurrent_hash_map<Key,T,HashCompare,A1>& a, const concurrent_hash_map<Key,T,HashCompare,A2>& b);
	4.2.7.2 template<typename Key, typename T, typename HashCompare, typename A1, typename A2> bool operator!=(const concurrent_hash_map<Key,T,HashCompare,A1> &a, const concurrent_hash_map<Key,T,HashCompare,A2> &b);
	4.2.7.3 template<typename Key, typename T, typename HashCompare, typename A> void swap(concurrent_hash_map<Key, T, HashCompare, A> &a, concurrent_hash_map<Key, T, HashCompare, A> &b)

	4.2.8 tbb_hash_compare Class

	4.3 concurrent_queue Template Class
	4.3.1 concurrent_queue(const Alloc& a = Alloc ())
	4.3.2 concurrent_queue(const concurrent_queue& src, const Alloc& a = Alloc())
	4.3.3 template<typename InputIterator> concurrent_queue(InputIterator first, InputIterator last, const Alloc& a = Alloc())
	4.3.4 ~concurrent_queue()
	4.3.5 void push(const T& source)
	4.3.6 bool try_pop (T& destination)
	4.3.7 void clear()
	4.3.8 size_type unsafe_size() const
	4.3.9 bool empty() const
	4.3.10 Alloc get_allocator() const
	4.3.11 Iterators
	4.3.11.1 iterator unsafe_begin()
	4.3.11.2 iterator unsafe_end()
	4.3.11.3 const_iterator unsafe_begin() const
	4.3.11.4 const_iterator unsafe_end() const

	4.4 concurrent_bounded_queue Template Class
	4.4.1 void push(const T& source)
	4.4.2 void pop(T& destination)
	4.4.3 bool try_push(const T& source)
	4.4.4 bool try_pop(T& destination)
	4.4.5 size_type size() const
	4.4.6 bool empty() const
	4.4.7 size_type capacity() const
	4.4.8 void set_capacity(size_type capacity)

	4.5 concurrent_vector
	4.5.1 Construction, Copy, and Assignment
	4.5.1.1 concurrent_vector(const allocator_type& a = allocator_type())
	4.5.1.2 concurrent_vector(size_type n, const_reference t=T(), const allocator_type& a = allocator_type());
	4.5.1.3 template<typename InputIterator> concurrent_vector(InputIterator first, InputIterator last, const allocator_type& a = allocator_type())
	4.5.1.4 concurrent_vector(const concurrent_vector& src)
	4.5.1.5 concurrent_vector& operator=(const concurrent_vector& src)
	4.5.1.6 template<typename M> concurrent_vector& operator=(const concurrent_vector<T, M>& src)
	4.5.1.7 void assign(size_type n, const_reference t)
	4.5.1.8 template<class InputIterator > void assign(InputIterator first, InputIterator last)

	4.5.2 Whole Vector Operations
	4.5.2.1 void reserve(size_type n)
	4.5.2.2 void shrink_to_fit()
	4.5.2.3 void swap(concurrent_vector& x)
	4.5.2.4 void clear()
	4.5.2.5 ~concurrent_vector()

	4.5.3 Concurrent Growth
	4.5.3.1 iterator grow_by(size_type delta, const_reference t=T())
	4.5.3.2 iterator grow_to_at_least(size_type n)
	4.5.3.3 iterator push_back(const_reference value)

	4.5.4 Access
	4.5.4.1 reference operator[](size_type index)
	4.5.4.2 const_refrence operator[](size_type index) const
	4.5.4.3 reference at(size_type index)
	4.5.4.4 const_reference at(size_type index) const
	4.5.4.5 reference front()
	4.5.4.6 const_reference front() const
	4.5.4.7 reference back()
	4.5.4.8 const_reference back() const

	4.5.5 Parallel Iteration
	4.5.5.1 range_type range(size_t grainsize=1)
	4.5.5.2 const_range_type range(size_t grainsize=1) const

	4.5.6 Capacity
	4.5.6.1 size_type size() const
	4.5.6.2 bool empty() const
	4.5.6.3 size_type capacity() const
	4.5.6.4 size_type max_size() const

	4.5.7 Iterators
	4.5.7.1 iterator begin()
	4.5.7.2 const_iterator begin() const
	4.5.7.3 iterator end()
	4.5.7.4 const_iterator end() const
	4.5.7.5 reverse_iterator rbegin()
	4.5.7.6 const_reverse_iterator rbegin() const
	4.5.7.7 iterator rend()
	4.5.7.8 const_reverse_iterator rend()

	5 Thread Local Storage
	5.1 combinable Template Class
	5.1.1 combinable()
	5.1.2 template<typename FInit> combinable(FInit finit)
	5.1.3 combinable(const combinable& other);
	5.1.4 ~combinable()
	5.1.5 combinable& operator=(const combinable& other)
	5.1.6 void clear()
	5.1.7 T& local()
	5.1.8 T& local(bool& exists)
	5.1.9 template<typename FCombine>T combine(FCombine fcombine)
	5.1.10 template<typename Func> void combine_each(Func f)

	5.2 enumerable_thread_specific Template Class
	5.2.1 Whole Container Operations
	5.2.1.1 enumerable_thread_specific()
	5.2.1.2 enumerable_thread_specific(const enumerable_thread_specific &e)
	5.2.1.3 enumerable_thread_specific(const &exemplar)
	5.2.1.4 ~enumerable_thread_specific()
	5.2.1.5 void clear()

	5.2.2 Concurrent Operations
	5.2.2.1 reference local()
	5.2.2.2 T& local(bool& exists)
	5.2.2.3 size_type size() const
	5.2.2.4 bool empty() const

	5.2.3 Combining
	5.2.3.1 template<typename FCombine>T combine(FCombine fcombine)
	5.2.3.2 template<typename Func> void combine_each(Func f)

	5.2.4 Parallel Iteration
	5.2.4.1 const_range_type range(size_t grainsize=1) const
	5.2.4.2 range_type range(size_t grainsize=1)

	5.2.5 Iterators
	5.2.5.1 iterator begin()
	5.2.5.2 iterator end()
	5.2.5.3 const_iterator begin() const
	5.2.5.4 const_iterator end() const

	5.3 flattened2d Template Class
	5.3.1 Whole Container Operations
	5.3.1.1 flattened2d(const Container& c);
	5.3.1.2 flattened2d(const Container& c, typename Container::const_iterator first, typename Container::const_iterator last)

	5.3.2 Concurrent Operations
	5.3.2.1 size_type size() const

	5.3.3 Iterators
	5.3.3.1 iterator begin()
	5.3.3.2 iterator end()
	5.3.3.3 const_iterator begin() const
	5.3.3.4 const_iterator end() const

	5.3.4 Utility Functions
	5.3.4.1 template <typename Container> flattened2d<Container> flatten2d(const Container &c, const typename Container::const_iterator b, const typename Container::const_iterator e)
	5.3.4.2 template <typename Container> flattened2d(const Container &c)

	6 Memory Allocation
	6.1 Allocator Concept
	6.2 tbb_allocator Template Class
	6.3 scalable_allocator Template Class
	6.3.1 C Interface to Scalable Allocator
	6.3.1.1 size_t scalable_msize(void* ptr)

	6.4 cache_aligned_allocator Template Class
	6.4.1 pointer allocate(size_type n, const void* hint=0)
	6.4.2 void deallocate(pointer p, size_type n)
	6.4.3 char* _Charalloc(size_type size)

	6.5 zero_allocator
	6.6 aligned_space Template Class
	6.6.1 aligned_space()
	6.6.2 ~aligned_space()
	6.6.3 T* begin()
	6.6.4 T* end()

	7 Synchronization
	7.1 Mutexes
	7.1.1 Mutex Concept
	7.1.1.1 C++0x Compatibility

	7.1.2 mutex Class
	7.1.3 recursive_mutex Class
	7.1.4 spin_mutex Class
	7.1.5 queuing_mutex Class
	7.1.6 ReaderWriterMutex Concept
	7.1.6.1 ReaderWriterMutex()
	7.1.6.2 ~ReaderWriterMutex()
	7.1.6.3 ReaderWriterMutex::scoped_lock()
	7.1.6.4 ReaderWriterMutex::scoped_lock(ReaderWriterMutex& rw, bool write =true)
	7.1.6.5 ReaderWriterMutex::~scoped_lock()
	7.1.6.6 void ReaderWriterMutex:: scoped_lock:: acquire(ReaderWriterMutex& rw, bool write=true)
	7.1.6.7 bool ReaderWriterMutex:: scoped_lock::try_acquire(ReaderWriterMutex& rw, bool write=true)
	7.1.6.8 void ReaderWriterMutex:: scoped_lock::release()
	7.1.6.9 bool ReaderWriterMutex:: scoped_lock::upgrade_to_writer()
	7.1.6.10 bool ReaderWriterMutex:: scoped_lock::downgrade_to_reader()

	7.1.7 spin_rw_mutex Class
	7.1.8 queuing_rw_mutex Class
	7.1.9 null_mutex Class
	7.1.10 null_rw_mutex Class

	7.2 atomic Template Class
	7.2.1 memory_semantics Enum
	7.2.2 value_type fetch_and_add(value_type addend)
	7.2.3 value_type fetch_and_increment()
	7.2.4 value_type fetch_and_decrement()
	7.2.5 value_type compare_and_swap
	7.2.6 value_type fetch_and_store(value_type new_value)

	8 Timing
	8.1 tick_count Class
	8.1.1 static tick_count tick_count::now()
	8.1.2 tick_count::interval_t operator((const tick_count& t1, const tick_count& t0)
	8.1.3 tick_count::interval_t Class
	8.1.3.1 interval_t()
	8.1.3.2 interval_t(double sec)
	8.1.3.3 double seconds() const
	8.1.3.4 interval_t operator+=(const interval_t& i)
	8.1.3.5 interval_t operator(=(const interval_t& i)
	8.1.3.6 interval_t operator+ (const interval_t& i, const interval_t& j)
	8.1.3.7 interval_t operator((const interval_t& i, const interval_t& j)

	9 Task Groups
	9.1 task_group Class
	9.1.1 task_group()
	9.1.2 ~task_group()
	9.1.3 template<typename Func> void run(const Func& f)
	9.1.4 template<typename Func> void run (task_handle<Func>& handle);
	9.1.5 template<typename Func> void run_and_wait(const Func& f)
	9.1.6 template<typename Func> void run _and_wait(task_handle<Func>& handle);
	9.1.7 task_group_status wait()
	9.1.8 bool is_canceling()
	9.1.9 void cancel()

	9.2 task_group_status Enum
	9.3 task_handle Template Class
	9.4 make_task Template Function
	9.5 structured_task_group Class
	9.6 is_current_task_group_canceling Function

	10 Task Scheduler
	10.1 Scheduling Algorithm
	10.2 task_scheduler_init Class
	10.2.1 task_scheduler_init(int number_of_threads=automatic, stack_size_type thread_stack_size=0)
	10.2.2 ~task_scheduler_init()
	10.2.3 void initialize(int number_of_threads=automatic)
	10.2.4 void terminate()
	10.2.5 int default_num_threads()
	10.2.6 bool is_active() const
	10.2.7 Mixing with OpenMP

	10.3 task Class
	10.3.1 task Derivation
	10.3.1.1 Processing of execute()

	10.3.2 task Allocation
	10.3.2.1 new(task::allocate_root(task_group_context& group)) T
	10.3.2.2 new(task::allocate_root()) T
	10.3.2.3 new(x.allocate_continuation()) T
	10.3.2.4 new(x.allocate_child()) T
	10.3.2.5 new(x.task::allocate_additional_child_of(y))

	10.3.3 Explicit task Destruction
	10.3.3.1 void destroy(task& victim)

	10.3.4 Recycling Tasks
	10.3.4.1 void recycle_as_continuation()
	10.3.4.2 void recycle_as_safe_continuation()
	10.3.4.3 void recycle_as_child_of(task& new_parent)
	10.3.4.4 void recycle _to_reexecute()

	10.3.5 Synchronization
	10.3.5.1 void set_ref_count(int count)
	10.3.5.2 void increment_ref_count();
	10.3.5.3 int decrement_ref_count();
	10.3.5.4 void wait_for_all()
	10.3.5.5 void spawn(task& t)
	10.3.5.6 void spawn (task_list& list)
	10.3.5.7 void spawn_and_wait_for_all(task& t)
	10.3.5.8 void spawn_and_wait_for_all(task_list& list)
	10.3.5.9 static void spawn_root_and_wait(task& root)
	10.3.5.10 static void spawn_root_and_wait(task_list& root_list)

	10.3.6 task Context
	10.3.6.1 static task& self()
	10.3.6.2 task* parent() const
	10.3.6.3 bool is_stolen_task() const

	10.3.7 Cancellation
	10.3.7.1 bool cancel_group_execution()
	10.3.7.2 bool is_cancelled() const

	10.3.8 Affinity
	10.3.8.1 affinity_id
	10.3.8.2 virtual void note_affinity (affinity_id id)
	10.3.8.3 void set_affinity(affinity_id id)
	10.3.8.4 affinity_id affinity() const

	10.3.9 task Debugging
	10.3.9.1 state_type state() const
	10.3.9.2 int ref_count() const

	10.4 empty_task Class
	10.5 task_list Class
	10.5.1 task_list()
	10.5.2 ~task_list()
	10.5.3 bool empty() const
	10.5.4 push_back(task& task)
	10.5.5 task& task pop_front()
	10.5.6 void clear()

	10.6 task_group_context
	10.6.1 task_group_context(kind_t relation_to_parent=bound)
	10.6.2 ~task_group_context()
	10.6.3 bool cancel_group_execution()
	10.6.4 bool is_group_execution_cancelled() const
	10.6.5 void reset()

	10.7 task_scheduler_observer
	10.7.1 task_scheduler_observer()
	10.7.2 ~task_scheduler_observer()
	10.7.3 void observe(bool state=true)
	10.7.4 bool is_observing() const
	10.7.5 virtual void on_scheduler_entry(bool is_worker)
	10.7.6 virtual void on_scheduler_exit(bool is_worker)

	10.8 Catalog of Recommended task Patterns
	10.8.1 Blocking Style With k Children
	10.8.2 Continuation-Passing Style With k Children
	10.8.2.1 Recycling Parent as Continuation
	10.8.2.2 Recycling Parent as a Child

	10.8.3 Letting Main Thread Work While Child Tasks Run

	11 Exceptions
	11.1 tbb_exception
	11.2 captured_exception
	11.2.1 captured_exception(const char* name, const char* info)

	11.3 movable_exception<ExceptionData>
	11.3.1 movable_exception(const ExceptionData& src)
	11.3.2 ExceptionData& data() throw()
	11.3.3 const ExceptionData& data() const throw()

	11.4 missing_wait

	12 Threads
	12.1 tbb_thread Class
	12.1.1 tbb_thread()
	12.1.2 template<typename F> tbb_thread(F f)
	12.1.3 template<typename F, typename X> tbb_thread(F f, X x)
	12.1.4 template<typename F, typename X, typename Y> tbb_thread(F f, X x, Y y)
	12.1.5 tbb_thread& operator=(tbb_thread& x)
	12.1.6 ~tbb_thread
	12.1.7 bool joinable() const
	12.1.8 void join()
	12.1.9 void detach()
	12.1.10 id get_id() const
	12.1.11 native_handle_type native_handle()
	12.1.12 static unsigned hardware_concurrency()

	12.2 tbb_thread:: id
	12.3 this_tbb_thread Namespace
	12.3.1 tbb_thread::id get_id()
	12.3.2 void yield()
	12.3.3 void sleep(const tick_count::interval_t & i)

	13 References
	Appendix A Compatibility Features
	A.1 parallel_while Template Class
	A.2 Interface for constructing a pipeline filter
	A.3 Debugging Macros
	A.4 tbb::deprecated::concurrent_queue<T,Alloc> Template Class
	A.5 Interface for concurrent_vector
	A.6 Depth interface for class task

	Appendix B PPL Compatibility
	Appendix C Known Issues
	C.1 Windows* OS

