- Στα μέταλλα μια ζώνη είναι μερικά γεμάτη.
- Στους ημιαγωγούς η ζώνη σθένους είναι σχεδόν γεμάτη και η ζώνη αγωγιμότητας είναι σχεδόν άδεια.

Ενα ηλεκτρονία από εςωτερικό φλοιό μεταπηδά σε κάποια κενή θέση και ελευθερώνει ένα ηλεκτρόνιο από τον εξωτερικό φλοιό.

Επαφή p-n χωρίς τάση:

- Μέγιστο ηλεκτρικό πεδίο στο όριο μεταξύ των ζωνών p και n.

- καθαρή ζώνη πρόσμιξης.

- Electron
- Positive ion from removal of electron in n-type impurity
- Negative ion from filling in p-type vacancy
- Hole

- Electron
- Positive ion from removal of electron in n-type impurity
- Negative ion from filling in p-type vacancy
- Hole

Ανιχνευτής Si

DELPHI Vertex Detector

Διασπάσεις Β

Ανιχνευτής Pixel

chip pixel unit cell

solder bump

sensor

pixel

Η λειτουργία των σπινθηριστών στηρίζεται στην ιδιότητα ορισμένων υλικών φωτεινότητας (luminescence) όταν εκτεθούν σε κάποια μορφή ενέργειας (φως, θερμότητα, ραδιενέργεια) να απορροφηθούν και να επανεκπέμπουν την ενέργεια υπό μορφών ορατών φωτονίων.

- · Αν επανεκπομπή ενέργειας άμεσα (10⁻⁸ s) \rightarrow φθορισμός (fluorescence)
- Αν καθυστέρηση επανεκπομπής -> φωσφορισμός (phosphorescence)

Η χρονική εξέλιξη της διαδικασίας επανεκπομπής περιγράφεται από:

$$N = \frac{N_o}{T_d} e^{-t\pi/d}$$

N = αριθμός φωτονίων που εκπέμπονται σε χρόνο *†* N_o = ολικός αριθμός εκπεμπομένων φωτονίων τ_d = σταθερά αυτοδιέγερσης, αντιστοιχεί στο χρόνο που απαιτείται για την εκπομπή 1-e⁻¹ = 63% φωτονίων.

 Ακτινοβολία (εδώ, ακτίνες-γ) εναποθέτουν ενέργεια στο σπινθηριστή, προκαλούν μια περιοχή διέγερσης.

 Η αποδιέγερση δημιουργεί φωτόνια, τα οποία αφού κτυπούν τη φωτο-κάθοδο του ΦΠ δημιουργούν φωτο-ηλεκτρόνια.

 Τα φωτο-ηλεκτρόνια πολλαπλασιάζονται και δημιουργούν ένα παλμό ρεύματος στην άνοδο.

- Τα κατάλληλα υλικά σπινθηρισμού καλύπτουν τις παρακάτω απαιτήσεις:
- Υψηλή απόδοση μετατροπής της διεγείρουσας ενέργειας σε ακτινοβολία φθορισμού.
- Διαφάνεια στο ορατό φως.
- Εκπομπή του ορατού φωτός σε φασματική περιοχή που αντιστοιχεί στην περιοχή φασματικής απόκρισης του ΦΠ.
- Μικρή σταθερά αποδιέγερσης.
- Χρησιμοποιούνται 6 τύποι υλικά:
- Οργανικοί κρύσταλλοι
- Οργανικά υγρά
- Πλαστικά υλικά
- Ανόργανοι κρύσταλλοι
- Αέρια
- Γυαλιά

- Συνήθως είναι αλκαλικές ανώσεις με αλογόνα που περιέχουν μικρή πρόσμιξη ενεργοποιητού.
- NaI + $\pi \rho \delta \sigma \mu \xi \eta \Theta a \Lambda (\sigma U (TI), CsI (TI), CsF_2, CsI (Na), KI (TI), LiI (Eu)$
- Mn- Alkalikoi kpúotalloi: $B_{1_4} Ge_3 O_{12}$ (BGO), BaF_2 , ZnS(Ag), $CaWO_4$
- Χρόνος απόκρισης: Αργός ~ 500 ns
- Βασικό μειονέκτημα: **Υγροσκοπικότητα** πλην τογ CsI (TI)
- Φυσικές Ιδιότητες: Υψηλή πυκνότητα → Ακτίνες-γ, ενεργά ηλεκτρόνια (κατάλληλοι για ανίχνευση)
- BGO: αποκτά ιδιαίτερο ενδιαφέρον λόγω υψηλού Ζ και μεγαλύτερης απόδοσης για φωτοηλεκτρική μετατροπή των ακτίνων-γ. (3 με 5 φορές μεγαλύτερη απόδοση από NaI).
- BaF2: έχει μια ταχύτατη συνιστώσα φωτός στο υπεριώδες (UV) χρόνο αποδιένερσης ~ 500 ps έξοδος φωτός χαμηλή.

Ο πιο διαδεδομένος ανόργανος σπινθηριστής είναι το NaI(Tl).

Οι ενεργειακές ζώνες σε ένα κρύσταλλο με προσμείξεις

— BGO *____ NaI(TI) -___ CsI(TI), CsI(Na)

* Bismuth germinate Bi₄Ge₃O₁₂

γροποιημένα ευγενή αέρια: LAr, LXe, LKr

Βρίσκουμε 2 σταθερές αποδιέγερσης : από μερικά ns μέχρι 1 μs.

Απορρόφηση Φωτονίων

* YAP (Yttrium Aluminium Provskite YAlO₃) crystals

Scintillator composition	Density (g/cm³)	Index of refraction	Wavelength of max.Em. (nm)	Decay time Constant (µs)	Scinti Pulse height ¹⁾	Notes
NaI(TI)	3.67	1.9	410	0.25	100	2)
CsI	4.51	1.8	310	0.01	6	3)
CsI(Tl)	4.51	1.8	565	1.0	45	3)
CaF ₂ (Eu)	3.19	1.4	435	0.9	50	
BaF ₂	4.88	1,5	190/220 310	0,0006 0.63	5 15	
BEO	7.13	2.2	480	0.30	10	
CdW0₄	7.90	2.3	540	5.0	40	
РЬ₩О₄	8.28	2.1	440	0.020	0.1	
CeF ₃	6.16	1.7	300 340	0.005 0.020	5	
650	6.71	1.9	430	0.060	40	
LSO	7	1.8	420	0.040	75	
YAP	5.50	1.9	370	0.030	70	

1) Relative to NaI(TI) in %; 2) Hygroscopic; 3) Water soluble

Αυτοί οι κρύσταλλοι παράγουν φως light!

Κρύσταλλοι είναι τα υλικά για ηλεκτρομαγνητικά καλορίμετρα για να έχουμε ακρίβεια στις μετρήσεις

- Οι οργανικοί σπινθηριστές είναι αρωματικές ενώσεις υδατανθράκων που περιέχουν συνδεδεμένες δομές βενζοϊκών δακτυλίων.
- Βραχύτατος χρόνος αποδιέγερσης ~Χ.ns
- Το φως σπινθηρισμού στις ενώσεις αυτές προέρχεται από εκπομπές των ελευθέρων ηλεκτρονίων σθένους των μορίων.

Διπλός Δεσμός = 1 Σ + 1 Π δεσμός

Πολλές από τις ιδιότητες των οργανικών μορίων, πχ το βενζόλιο, οφείλονται στα μοριακά τροχιακά.

Αν έχουμε άτομα νε παράλληλες τις p ατομικές τροχιές μπορούμε να πάρουμε πολλούς δεσμούς τύπου Π προσθέτοντας ή αφαιρώντας τα.

Υπάρχουν 6 π ηλεκτρόνια στο βενζόλιο που γεμίζουν 3 Π δεσμούς στα μοριακά τροχιακά.

Επιπλέον συνδυάζοντας τις p τροχιές του άνθρακα δίνουν 3 antibonding molecular orbitals.

Ta π ηλεκτρόνια είναι η βάση του σπινθηρισμού. Είναι κβαντισμένα σε singlets S_{ij} και triplets T_{ij}

Ενεργειακά επίπεδα των π ηλεκτρονίων

Οι οργανικοί σπινθηριστές χρησιμοποιούν ένα διαλύτη

Photon Energy

Πλαστικοί Σπινθηριστές

- Οι σπινθηριστές με την πλέον ευρύτατη χρήση στην ΦΥΕ:
- Πολύ-βινυλο-τολουόλιον
- Πολύ-φαινυλο-βενζόλιο
- Πολύ-Στυρένιο

- Ιδιαίτερα ταχείς χρόνοι αποδιέγερσης: 2-5 ns
- Υψηλή απόδοση φωτός εξόδου με κατανομή:
 N(t) = N_of (t, g) th a, σχέση Bengston-Moszynski
- $f(\sigma, t)$ = gaussian με τυπική απόκλιση:

<u>Σπινθηριστής</u>	$\sigma(ns)$	<u>т (ns)</u>
NE102A	0.7	2.4
NE111	0.2	1.7

Εύχρηστοι, σε ποικίλα σχήματα και μορφές, παράγονται σε φύλλα (λεπτά υμένια), μέχρι τεράστια φύλλα, μεγάλα κομμάτια, κυλινδρικούς, κλπ. Ευαίσθητοι σε οργανικούς διαλύτες, οξέα, ιδρώτας, κλπ.

Photon Detectors

Κύριοι τύποι photon detectors:

- gas-based
- vacuum-based
- solid-state
- hybrid

Φωτοηλεκτρικό Φαινόμενο

Διαδικασία 3-βημάτων:

- · Τα απορροφούμενα γ μεταφέρουν ενέργεια στα ηλεκτρόνια (e) του υλικού.
- Ενεργειακά ε διαχέονται στο υλικό χάνοντας μέρος της ενέργειάς τους.
- e φτάνουν στην επιφάνεια με αρκετή ενέργεια ώστε να ξεφύγουν
- ⇒ Η ιδανική φωτοκάθοδος (PC) πρέπει να απορροφά όλα τα γ και να εκπέμπει όλα τα παραγόμενα e.

Quantum Efficiency

ΚΒΑΝΤΙΚΗ ΑΠΟΔΟΣΗ (quantum efficiency) σε μήκος κύματος Λ, που είναι ο αριθμός των φωτοηλεκτρονίων που εκπέμπονται από την φωτοκάθοδο με την πρόσπτωση ενός γ:

Quantum Efficiency

Bialkali: SbKCs, SbRbCs Multialkali: SbNa₂KCs (alkali metals have low work function)

Φωτοπολλαπλασιαστής (PMT) Anode Photo Cathode Dynodes PHOTOELI Photon-to-Electron Converting Photo-Cathode NCIDENT LIGHT

Dynodes με δευτερεύουσα εκπομπή ηλεκτρονίων

Tuπική ενίσχυση $\approx 10^6$. Transient time spread $\approx 200 \ ps$

 $G = f(g\delta)^n$ f = i κανότητα συλλογής ηλεκτρ. από δυνόδους g = συντελ. μεταφοράς ηλεκτρ. δύνοδο-δύνοδο

0=PHOTOCATHODE

1 to 9-DYNODES

60-

Ο συντελεστής δ αυξάνεται με την αύξηση του δυναμικού V_d ανάμεσα στις δυνόδους: $\delta = k V_d$ Ολικό δυναμικό: $V_b = nV_d = \frac{n}{k} G^{1/n}$

Φωτοπολλαπλασιαστής (PMT)

Δευτερεύουσα εκπομπή: σχεδόν το ίδιο με το φωτοηλεκτρικό φαινόμενο. Ένα ηλεκτρόνιο προσκρούει -> μεταφέρεται ενέργεια στα ηλεκτρόνια του υλικού της δευτερεύουσας εκπομπής έτσι ώστε ενας αριθμός από αυτά να ξεφεύγει. Μονωτές και ημιαγωγοί χρησιμοποιούνται γι' αυτό το σκοπό.

Υλικά που χρησιμοποιούνται είναι: Ag/Mg, Cu/Be kai Cs/Sb.

Επίσης χρησιμοποιούνται

ηλεκτραρνητικά υλικά GaP. Χρόνος πτήσης ηλεκτρονίων από φωτοκάθοδο μέχρι 1^η δύνοδο ανεξάρτητος του σημείου παραγωγής. Η

Gain fluctuations of PMT's

- Mainly determined by the fluctuations of the number $m(\delta)$ of secondary e's emitted from the dynodes;
- Poisson distribution:
- $P_{\delta}(m) = \frac{\delta^{m}e^{-m}}{m!}$ $\frac{\sigma_m}{\delta} = \frac{\sqrt{\delta}}{\delta} = \frac{1}{\sqrt{\delta}}$
- Standard deviation: •

100

80

Pulse height

 \Rightarrow fluctuations dominated by 1st dynode gain;

- Απαιτήσεις: Σταθερότητα τάσης μεταξύ δυνόδων.
 Αποφυγή ή απόσβεση διακυμάνσεων τάσης.
- Ελάχιστο μαγνητικό πεδίο αποκλίνει τα ηλεκτρόνια από την τροχιά του μηδενίζεται το Thin window
 ^{Mu metal Shield}
 ^{Iron protective Shield}

Micro Channel Plate (MCP)

Hybrid Photo Diodes

Water Cherenkov

Water Cherenkov

Γεγονός μ' ένα μιόνιο που σταματά
 Superkamiokande

$$v_{\mu} + N \rightarrow \mu^{-} + X$$

 $\downarrow e^{-} + \overline{v_{e\mu}} + v$

- $E_{v_{\mu}}$ = 481 MeV
- E_{μ}^{r} = 394 MeV

 $E_e = 52 \text{ MeV}$

Water Cherenkov

Projection Move View Hits

T=107.1

Γεγονός μ' ένα μιόνιο που σταματά • SNO - Sudbury Neutrino Observatory

$$v_{\mu} + N \rightarrow \mu^{-} + X$$

 $e^{-} + \overline{v_{e\mu}} + v$

Δύο εικόνες που τραβήχτηκαν rojection Move με διαφορά

Δt = 0.9 μs

