Classical Electromagnetism:
An intermediate level course

Richard Fitzpatrick
Professor of Physics
The University of Texas at Austin
Contents

1 Introduction 7
 1.1 Intended audience ... 7
 1.2 Major sources ... 7
 1.3 Preface .. 8
 1.4 Outline of course .. 9
 1.5 Acknowledgements .. 10

2 Vectors 11
 2.1 Introduction .. 11
 2.2 Vector algebra .. 11
 2.3 Vector areas ... 14
 2.4 The scalar product ... 16
 2.5 The vector product .. 18
 2.6 Rotation .. 21
 2.7 The scalar triple product 24
 2.8 The vector triple product 25
 2.9 Vector calculus .. 26
 2.10 Line integrals ... 27
 2.11 Vector line integrals ... 30
 2.12 Surface integrals .. 31
 2.13 Vector surface integrals 33
 2.14 Volume integrals ... 34
 2.15 Gradient .. 35
 2.16 Divergence .. 40
 2.17 The Laplacian ... 44
 2.18 Curl ... 46
 2.19 Summary .. 50

3 Time-independent Maxwell equations 53
 3.1 Introduction ... 53
 3.2 Coulomb's law .. 53
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>The electric scalar potential</td>
<td>59</td>
</tr>
<tr>
<td>3.4</td>
<td>Gauss' law</td>
<td>62</td>
</tr>
<tr>
<td>3.5</td>
<td>Poisson's equation</td>
<td>68</td>
</tr>
<tr>
<td>3.6</td>
<td>Ampère's experiments</td>
<td>70</td>
</tr>
<tr>
<td>3.7</td>
<td>The Lorentz force</td>
<td>74</td>
</tr>
<tr>
<td>3.8</td>
<td>Ampère's law</td>
<td>78</td>
</tr>
<tr>
<td>3.9</td>
<td>Magnetic monopoles</td>
<td>79</td>
</tr>
<tr>
<td>3.10</td>
<td>Ampère's circuital law</td>
<td>82</td>
</tr>
<tr>
<td>3.11</td>
<td>Helmholtz's theorem</td>
<td>88</td>
</tr>
<tr>
<td>3.12</td>
<td>The magnetic vector potential</td>
<td>94</td>
</tr>
<tr>
<td>3.13</td>
<td>The Biot-Savart law</td>
<td>97</td>
</tr>
<tr>
<td>3.14</td>
<td>Electrostatics and magnetostatics</td>
<td>99</td>
</tr>
<tr>
<td>4</td>
<td>Time-dependent Maxwell’s equations</td>
<td>104</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>104</td>
</tr>
<tr>
<td>4.2</td>
<td>Faraday's law</td>
<td>104</td>
</tr>
<tr>
<td>4.3</td>
<td>Electric scalar potential?</td>
<td>108</td>
</tr>
<tr>
<td>4.4</td>
<td>Gauge transformations</td>
<td>110</td>
</tr>
<tr>
<td>4.5</td>
<td>The displacement current</td>
<td>113</td>
</tr>
<tr>
<td>4.6</td>
<td>Potential formulation</td>
<td>119</td>
</tr>
<tr>
<td>4.7</td>
<td>Electromagnetic waves</td>
<td>120</td>
</tr>
<tr>
<td>4.8</td>
<td>Green's functions</td>
<td>128</td>
</tr>
<tr>
<td>4.9</td>
<td>Retarded potentials</td>
<td>133</td>
</tr>
<tr>
<td>4.10</td>
<td>Advanced potentials?</td>
<td>140</td>
</tr>
<tr>
<td>4.11</td>
<td>Retarded fields</td>
<td>143</td>
</tr>
<tr>
<td>4.12</td>
<td>Summary</td>
<td>147</td>
</tr>
<tr>
<td>5</td>
<td>Electrostatics</td>
<td>150</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>150</td>
</tr>
<tr>
<td>5.2</td>
<td>Electrostatic energy</td>
<td>150</td>
</tr>
<tr>
<td>5.3</td>
<td>Ohm’s law</td>
<td>156</td>
</tr>
<tr>
<td>5.4</td>
<td>Conductors</td>
<td>157</td>
</tr>
<tr>
<td>5.5</td>
<td>Boundary conditions on the electric field</td>
<td>164</td>
</tr>
<tr>
<td>5.6</td>
<td>Capacitors</td>
<td>165</td>
</tr>
<tr>
<td>5.7</td>
<td>Poisson’s equation</td>
<td>170</td>
</tr>
</tbody>
</table>
9.1 Introduction ... 253
9.2 The Hertzian dipole .. 253
9.3 Electric dipole radiation ... 259
9.4 Thompson scattering ... 260
9.5 Rayleigh scattering ... 263
9.6 Propagation in a dielectric medium 266
9.7 Dielectric constant of a gaseous medium 267
9.8 Dielectric constant of a plasma 268
9.9 Faraday rotation .. 273
9.10 Propagation in a conductor 276
9.11 Dielectric constant of a collisional plasma 279
9.12 Reflection at a dielectric boundary 281
9.13 Wave-guides .. 292

10 Relativity and electromagnetism 298
10.1 Introduction ... 298
10.2 The relativity principle .. 298
10.3 The Lorentz transformation 300
10.4 Transformation of velocities 304
10.5 Tensors ... 307
10.6 The physical significance of tensors 313
10.7 Space-time ... 314
10.8 Proper time ... 319
10.9 4-velocity and 4-acceleration 321
10.10 The current density 4-vector 321
10.11 The potential 4-vector .. 323
10.12 Gauge invariance .. 324
10.13 Retarded potentials .. 325
10.14 Tensors and pseudo-tensors 327
10.15 The electromagnetic field tensor 331
10.16 The dual electromagnetic field tensor 334
10.17 Transformation of fields 337
10.18 Potential due to a moving charge 337
10.19 Fields due to a moving charge 339
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.20 Relativistic particle dynamics</td>
<td>341</td>
</tr>
<tr>
<td>10.21 The force on a moving charge</td>
<td>343</td>
</tr>
<tr>
<td>10.22 The electromagnetic energy tensor</td>
<td>345</td>
</tr>
<tr>
<td>10.23 Accelerated charges</td>
<td>348</td>
</tr>
<tr>
<td>10.24 The Larmor formula</td>
<td>353</td>
</tr>
<tr>
<td>10.25 Radiation losses</td>
<td>357</td>
</tr>
<tr>
<td>10.26 Angular distribution of radiation</td>
<td>359</td>
</tr>
<tr>
<td>10.27 Synchrotron radiation</td>
<td>360</td>
</tr>
</tbody>
</table>
1 Introduction

1.1 Intended audience

These lecture notes outline a single semester course intended for upper division undergraduates.

1.2 Major sources

The textbooks which I have consulted most frequently whilst developing course material are:

In addition, the section on vectors is largely based on my undergraduate lecture notes taken from a course given by Dr. Stephen Gull at the University of Cambridge.

1.3 Preface

The main topic of this course is Maxwell’s equations. These are a set of eight first-order partial differential equations which constitute a complete description of electric and magnetic phenomena. To be more exact, Maxwell’s equations constitute a complete description of the behaviour of electric and magnetic fields. Students entering this course should be quite familiar with the concepts of electric and magnetic fields. Nevertheless, few can answer the following important question: do electric and magnetic fields have a real physical existence, or are they merely theoretical constructs which we use to calculate the electric and magnetic forces exerted by charged particles on one another? As we shall see, the process of formulating an answer to this question enables us to come to a better understanding of the nature of electric and magnetic fields, and the reasons why it is necessary to use such concepts in order to fully describe electric and magnetic phenomena.

At any given point in space, an electric or magnetic field possesses two properties, a magnitude and a direction. In general, these properties vary (continuously) from point to point. It is conventional to represent such a field in terms of its components measured with respect to some conveniently chosen set of Cartesian axes (i.e., the conventional x-, y-, and z-axes). Of course, the orientation of these axes is arbitrary. In other words, different observers may well choose different coordinate axes to describe the same field. Consequently, electric and magnetic fields may have different components according to different observers. We can see that any description of electric and magnetic fields is going to depend on
two separate things. Firstly, the nature of the fields themselves, and, secondly, our arbitrary choice of the coordinate axes with respect to which we measure these fields. Likewise, Maxwell’s equations—the equations which describe the behaviour of electric and magnetic fields—depend on two separate things. Firstly, the fundamental laws of physics which govern the behaviour of electric and magnetic fields, and, secondly, our arbitrary choice of coordinate axes. It would be helpful if we could easily distinguish those elements of Maxwell’s equations which depend on physics from those which only depend on coordinates. In fact, we can achieve this by using what mathematicians call vector field theory. This theory enables us to write Maxwell’s equations in a manner which is completely independent of our choice of coordinate axes. As an added bonus, Maxwell’s equations look a lot simpler when written in a coordinate-free manner. In fact, instead of eight first-order partial differential equations, we only require four such equations within the context of vector field theory.

1.4 Outline of course

This course is organized as follows. Section 2 consists of a brief review of those elements of vector field theory which are relevant to Maxwell’s equations. In Sect. 3, we derive the time-independent version of Maxwell’s equations. In Sect. 4, we generalize to the full time-dependent set of Maxwell equations. Section 5 discusses the application of Maxwell’s equations to electrostatics. In Sect. 6, we incorporate dielectric and magnetic media into Maxwell’s equations. Section 7 investigates the application of Maxwell’s equations to magnetic induction. In Sect. 8, we examine how Maxwell’s equations conserve electromagnetic energy and momentum. In Sect. 9, we employ Maxwell’s equations to investigate electromagnetic waves. We conclude, in Sect. 10, with a discussion of the relativistic formulation of Maxwell’s equations.
1.5 Acknowledgements

My thanks to Prof. Wang-Jung Yoon [Chonnam National University, Republic of Korea (South)] for pointing out many typographical errors appearing in earlier editions of this work.
2 VECTORS

2 Vectors

2.1 Introduction

In this section, we shall give a brief outline of those aspects of vector algebra, vector calculus, and vector field theory which are needed to derive and understand Maxwell’s equations.

This section is largely based on my undergraduate lecture notes from a course given by Dr. Stephen Gull at the University of Cambridge.

2.2 Vector algebra

In applied mathematics, physical quantities are (predominately) represented by two distinct classes of objects. Some quantities, denoted scalars, are represented by real numbers. Others, denoted vectors, are represented by directed line elements in space: e.g., \overrightarrow{PQ} (see Fig. 1). Note that line elements (and, therefore, vectors) are movable, and do not carry intrinsic position information. In fact, vectors just possess a magnitude and a direction, whereas scalars possess a magnitude but no direction. By convention, vector quantities are denoted by bold-faced characters (e.g., \mathbf{a}) in typeset documents, and by underlined characters (e.g., \mathbf{a}) in long-hand. Vectors can be added together, but the same units must be used, just like in scalar addition. Vector addition can be represented using a parallelogram: $\overrightarrow{PR} = \overrightarrow{PQ} + \overrightarrow{QR}$ (see Fig. 2). Suppose that $\mathbf{a} \equiv \overrightarrow{PQ} \equiv \overrightarrow{SR}$,
b \equiv \vec{QR} \equiv \vec{PS}$, and $c \equiv \vec{PR}$. It is clear from Fig. 2 that vector addition is commutative: \(i.e., \mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a} \). It can also be shown that the associative law holds: \(i.e., \mathbf{a} + (\mathbf{b} + \mathbf{c}) = (\mathbf{a} + \mathbf{b}) + \mathbf{c} \).

There are two approaches to vector analysis. The geometric approach is based on line elements in space. The coordinate approach assumes that space is defined by Cartesian coordinates, and uses these to characterize vectors. In physics, we generally adopt the second approach, because it is far more convenient.

In the coordinate approach, a vector is denoted as the row matrix of its components along each of the Cartesian axes (the x-, y-, and z-axes, say):

\[
\mathbf{a} \equiv (a_x, a_y, a_z).
\]

Here, a_x is the x-coordinate of the “head” of the vector minus the x-coordinate of its “tail.” If $\mathbf{a} \equiv (a_x, a_y, a_z)$ and $\mathbf{b} \equiv (b_x, b_y, b_z)$ then vector addition is defined

\[
\mathbf{a} + \mathbf{b} \equiv (a_x + b_x, a_y + b_y, a_z + b_z).
\]

If \mathbf{a} is a vector and n is a scalar then the product of a scalar and a vector is defined

\[
n \mathbf{a} \equiv (n a_x, n a_y, n a_z).
\]

It is clear that vector algebra is distributive with respect to scalar multiplication: \(i.e., n (\mathbf{a} + \mathbf{b}) = n \mathbf{a} + n \mathbf{b} \).
Unit vectors can be defined in the x, y, and z-directions as $\mathbf{e}_x \equiv (1,0,0)$, $\mathbf{e}_y \equiv (0,1,0)$, and $\mathbf{e}_z \equiv (0,0,1)$. Any vector can be written in terms of these unit vectors:

$$\mathbf{a} = a_x \mathbf{e}_x + a_y \mathbf{e}_y + a_z \mathbf{e}_z. \quad (2.4)$$

In mathematical terminology, three vectors used in this manner form a \textit{basis} of the vector space. If the three vectors are mutually perpendicular then they are termed \textit{orthogonal basis vectors}. However, any set of three non-coplanar vectors can be used as basis vectors.

Examples of vectors in physics are displacements from an origin,

$$\mathbf{r} = (x, y, z), \quad (2.5)$$

and velocities,

$$\mathbf{v} = \frac{d\mathbf{r}}{dt} = \lim_{\delta t \to 0} \frac{\mathbf{r}(t + \delta t) - \mathbf{r}(t)}{\delta t}. \quad (2.6)$$

Suppose that we transform to a new orthogonal basis, the x'-, y'-, and z'-axes, which are related to the x, y, and z-axes via a rotation through an angle θ around the z-axis (see Fig. 3). In the new basis, the coordinates of the general displacement \mathbf{r} from the origin are (x', y', z'). These coordinates are related to the previous coordinates via the transformation:

$$x' = x \cos \theta + y \sin \theta, \quad (2.7)$$

$$y' = -x \sin \theta + y \cos \theta, \quad (2.8)$$

$$z' = z. \quad (2.9)$$
We do not need to change our notation for the displacement in the new basis. It is still denoted \(\mathbf{r} \). The reason for this is that the magnitude and direction of \(\mathbf{r} \) are independent of the choice of basis vectors. The coordinates of \(\mathbf{r} \) do depend on the choice of basis vectors. However, they must depend in a very specific manner [i.e., Eqs. (2.7)–(2.9)] which preserves the magnitude and direction of \(\mathbf{r} \).

Since any vector can be represented as a displacement from an origin (this is just a special case of a directed line element), it follows that the components of a general vector \(\mathbf{a} \) must transform in an analogous manner to Eqs. (2.7)–(2.9). Thus,

\[
\begin{align*}
\alpha_x' &= \alpha_x \cos \theta + \alpha_y \sin \theta, \\
\alpha_y' &= -\alpha_x \sin \theta + \alpha_y \cos \theta, \\
\alpha_z' &= \alpha_z,
\end{align*}
\]

with similar transformation rules for rotation about the \(y \)- and \(z \)-axes. In the coordinate approach, Eqs. (2.10)–(2.12) constitute the definition of a vector. The three quantities \((\alpha_x, \alpha_y, \alpha_z)\) are the components of a vector provided that they transform under rotation like Eqs. (2.10)–(2.12). Conversely, \((\alpha_x, \alpha_y, \alpha_z)\) cannot be the components of a vector if they do not transform like Eqs. (2.10)–(2.12). Scalar quantities are invariant under transformation. Thus, the individual components of a vector \((\alpha_x, \text{say})\) are real numbers, but they are not scalars. Displacement vectors, and all vectors derived from displacements, automatically satisfy Eqs. (2.10)–(2.12). There are, however, other physical quantities which have both magnitude and direction, but which are not obviously related to displacements. We need to check carefully to see whether these quantities are vectors.

2.3 Vector areas

Suppose that we have planar surface of scalar area \(S \). We can define a vector area \(\mathbf{S} \) whose magnitude is \(S \), and whose direction is perpendicular to the plane, in the sense determined by the right-hand grip rule on the rim (see Fig. 4). This quantity clearly possesses both magnitude and direction. But is it a true vector? We know that if the normal to the surface makes an angle \(\alpha_x \) with the \(x \)-axis then
the area seen looking along the x-direction is $S \cos \alpha_x$. This is the x-component of S. Similarly, if the normal makes an angle α_y with the y-axis then the area seen looking along the y-direction is $S \cos \alpha_y$. This is the y-component of S. If we limit ourselves to a surface whose normal is perpendicular to the z-direction then $\alpha_x = \pi/2 - \alpha_y = \alpha$. It follows that $S = S (\cos \alpha, \sin \alpha, 0)$. If we rotate the basis about the z-axis by θ degrees, which is equivalent to rotating the normal to the surface about the z-axis by $-\theta$ degrees, then

$$S_{x'} = S \cos (\alpha - \theta) = S \cos \alpha \cos \theta + S \sin \alpha \sin \theta = S_x \cos \theta + S_y \sin \theta, \quad (2.13)$$

which is the correct transformation rule for the x-component of a vector. The other components transform correctly as well. This proves that a vector area is a true vector.

According to the vector addition theorem, the projected area of two plane surfaces, joined together at a line, looking along the x-direction (say) is the x-component of the resultant of the vector areas of the two surfaces. Likewise, for many joined-up plane areas, the projected area in the x-direction, which is the same as the projected area of the rim in the x-direction, is the x-component of the resultant of all the vector areas:

$$S = \sum_i S_i. \quad (2.14)$$

If we approach a limit, by letting the number of plane facets increase, and their areas reduce, then we obtain a continuous surface denoted by the resultant vector
area:

\[S = \sum_i \delta S_i. \quad (2.15) \]

It is clear that the projected area of the rim in the x-direction is just \(S_x \). Note that the rim of the surface determines the vector area rather than the nature of the surface. So, two different surfaces sharing the same rim both possess the same vector area.

In conclusion, a loop (not all in one plane) has a vector area \(S \) which is the resultant of the vector areas of any surface ending on the loop. The components of \(S \) are the projected areas of the loop in the directions of the basis vectors. As a corollary, a closed surface has \(S = 0 \), since it does not possess a rim.

2.4 The scalar product

A scalar quantity is invariant under all possible rotational transformations. The individual components of a vector are not scalars because they change under transformation. Can we form a scalar out of some combination of the components of one, or more, vectors? Suppose that we were to define the “ampersand” product,

\[\mathbf{a} \& \mathbf{b} = a_x b_y + a_y b_z + a_z b_x = \text{scalar number}, \quad (2.16) \]

for general vectors \(\mathbf{a} \) and \(\mathbf{b} \). Is \(\mathbf{a} \& \mathbf{b} \) invariant under transformation, as must be the case if it is a scalar number? Let us consider an example. Suppose that \(\mathbf{a} = (1, 0, 0) \) and \(\mathbf{b} = (0, 1, 0) \). It is easily seen that \(\mathbf{a} \& \mathbf{b} = 1 \). Let us now rotate the basis through 45° about the z-axis. In the new basis, \(\mathbf{a} = (1/\sqrt{2}, -1/\sqrt{2}, 0) \) and \(\mathbf{b} = (1/\sqrt{2}, 1/\sqrt{2}, 0) \), giving \(\mathbf{a} \& \mathbf{b} = 1/2 \). Clearly, \(\mathbf{a} \& \mathbf{b} \) is not invariant under rotational transformation, so the above definition is a bad one.

Consider, now, the dot product or scalar product:

\[\mathbf{a} \cdot \mathbf{b} = a_x b_x + a_y b_y + a_z b_z = \text{scalar number}. \quad (2.17) \]

Let us rotate the basis though \(\theta \) degrees about the z-axis. According to Eqs. (2.10)–(2.12), in the new basis \(\mathbf{a} \cdot \mathbf{b} \) takes the form

\[\mathbf{a} \cdot \mathbf{b} = (a_x \cos \theta + a_y \sin \theta)(b_x \cos \theta + b_y \sin \theta) \]
$$+(-a_x \sin \theta + a_y \cos \theta)(-b_x \sin \theta + b_y \cos \theta) + a_z b_z \quad (2.18)$$

$$= a_x b_x + a_y b_y + a_z b_z.$$

Thus, \(\mathbf{a} \cdot \mathbf{b} \) is invariant under rotation about the \(z \)-axis. It can easily be shown that it is also invariant under rotation about the \(x \)- and \(y \)-axes. Clearly, \(\mathbf{a} \cdot \mathbf{b} \) is a true scalar, so the above definition is a good one. Incidentally, \(\mathbf{a} \cdot \mathbf{b} \) is the only simple combination of the components of two vectors which transforms like a scalar. It is easily shown that the dot product is commutative and distributive:

\[
\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}, \quad (2.19)
\]

\[
\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}.
\]

The associative property is meaningless for the dot product, because we cannot have \((\mathbf{a} \cdot \mathbf{b}) \cdot \mathbf{c}\), since \(\mathbf{a} \cdot \mathbf{b} \) is scalar.

We have shown that the dot product \(\mathbf{a} \cdot \mathbf{b} \) is coordinate independent. But what is the physical significance of this? Consider the special case where \(\mathbf{a} = \mathbf{b} \). Clearly,

\[
\mathbf{a} \cdot \mathbf{b} = a_x^2 + a_y^2 + a_z^2 = \text{Length (OP)}^2, \quad (2.20)
\]

if \(\mathbf{a} \) is the position vector of \(P \) relative to the origin \(O \). So, the invariance of \(\mathbf{a} \cdot \mathbf{a} \) is equivalent to the invariance of the length, or magnitude, of vector \(\mathbf{a} \) under transformation. The length of vector \(\mathbf{a} \) is usually denoted \(|\mathbf{a}| \) (“the modulus of \(\mathbf{a} \)” or sometimes just \(\mathbf{a} \), so

\[
\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2 = a^2. \quad (2.21)
\]

Figure 5:
Let us now investigate the general case. The length squared of \(\mathbf{AB} \) (see Fig. 5) is

\[
(\mathbf{b} - \mathbf{a}) \cdot (\mathbf{b} - \mathbf{a}) = |\mathbf{a}|^2 + |\mathbf{b}|^2 - 2 \mathbf{a} \cdot \mathbf{b}.
\] (2.22)

However, according to the “cosine rule” of trigonometry,

\[
(\mathbf{AB})^2 = (\mathbf{OA})^2 + (\mathbf{OB})^2 - 2 (\mathbf{OA}) \cdot (\mathbf{OB}) \cos \theta,
\] (2.23)

where \(\mathbf{AB} \) denotes the length of side \(\mathbf{AB} \). It follows that

\[
\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta.
\] (2.24)

Clearly, the invariance of \(\mathbf{a} \cdot \mathbf{b} \) under transformation is equivalent to the invariance of the angle subtended between the two vectors. Note that if \(\mathbf{a} \cdot \mathbf{b} = 0 \) then either \(|\mathbf{a}| = 0, |\mathbf{b}| = 0 \), or the vectors \(\mathbf{a} \) and \(\mathbf{b} \) are perpendicular. The angle subtended between two vectors can easily be obtained from the dot product:

\[
\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}.
\] (2.25)

The work \(W \) performed by a constant force \(\mathbf{F} \) moving an object through a displacement \(\mathbf{r} \) is the product of the magnitude of \(\mathbf{F} \) times the displacement in the direction of \(\mathbf{F} \). If the angle subtended between \(\mathbf{F} \) and \(\mathbf{r} \) is \(\theta \) then

\[
W = |\mathbf{F}| (|\mathbf{r}| \cos \theta) = \mathbf{F} \cdot \mathbf{r}.
\] (2.26)

The rate of flow of liquid of constant velocity \(\mathbf{v} \) through a loop of vector area \(S \) is the product of the magnitude of the area times the component of the velocity perpendicular to the loop. Thus,

\[
\text{Rate of flow} = \mathbf{v} \cdot \mathbf{S}.
\] (2.27)

2.5 The vector product

We have discovered how to construct a scalar from the components of two general vectors \(\mathbf{a} \) and \(\mathbf{b} \). Can we also construct a vector which is not just a linear combination of \(\mathbf{a} \) and \(\mathbf{b} \)? Consider the following definition:

\[
\mathbf{a} \times \mathbf{b} = (a_x b_x, a_y b_y, a_z b_z).
\] (2.28)
Is \(\mathbf{a} \times \mathbf{b} \) a proper vector? Suppose that \(\mathbf{a} = (1, 0, 0) \), \(\mathbf{b} = (0, 1, 0) \). Clearly, \(\mathbf{a} \times \mathbf{b} = \mathbf{0} \). However, if we rotate the basis through 45° about the z-axis then \(\mathbf{a} = (1/\sqrt{2}, -1/\sqrt{2}, 0) \), \(\mathbf{b} = (1/\sqrt{2}, 1/\sqrt{2}, 0) \), and \(\mathbf{a} \times \mathbf{b} = (1/2, -1/2, 0) \). Thus, \(\mathbf{a} \times \mathbf{b} \) does not transform like a vector, because its magnitude depends on the choice of axes. So, above definition is a bad one.

Consider, now, the cross product or vector product:

\[
\mathbf{a} \times \mathbf{b} = (a_y b_z - a_z b_y, a_z b_x - a_x b_z, a_x b_y - a_y b_x) = \mathbf{c}.
\]

(2.29)

Does this rather unlikely combination transform like a vector? Let us try rotating the basis through \(\theta \) degrees about the z-axis using Eqs. (2.10)–(2.12). In the new basis,

\[
c_x' = (-a_x \sin \theta + a_y \cos \theta) b_z - a_z (-b_x \sin \theta + b_y \cos \theta) \\
= (a_y b_z - a_z b_y) \cos \theta + (a_z b_x - a_x b_z) \sin \theta \\
= c_x \cos \theta + c_y \sin \theta.
\]

(2.30)

Thus, the x-component of \(\mathbf{a} \times \mathbf{b} \) transforms correctly. It can easily be shown that the other components transform correctly as well, and that all components also transform correctly under rotation about the y- and z-axes. Thus, \(\mathbf{a} \times \mathbf{b} \) is a proper vector. Incidentally, \(\mathbf{a} \times \mathbf{b} \) is the only simple combination of the components of two vectors which transforms like a vector (which is non-coplanar with \(\mathbf{a} \) and \(\mathbf{b} \)).

The cross product is anticommutative,

\[
\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a},
\]

(2.31)

distributive,

\[
\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c},
\]

(2.32)

but is not associative:

\[
\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \neq (\mathbf{a} \times \mathbf{b}) \times \mathbf{c}.
\]

(2.33)

The cross product transforms like a vector, which means that it must have a well-defined direction and magnitude. We can show that \(\mathbf{a} \times \mathbf{b} \) is perpendicular to both \(\mathbf{a} \) and \(\mathbf{b} \). Consider \(\mathbf{a} \cdot \mathbf{a} \times \mathbf{b} \). If this is zero then the cross product must be
2.5 The vector product

perpendicular to \(\mathbf{a} \). Now

\[
\mathbf{a} \cdot (\mathbf{a} \times \mathbf{b}) = a_x (a_y b_z - a_z b_y) + a_y (a_z b_x - a_x b_z) + a_z (a_x b_y - a_y b_x)
\]
\[= 0. \tag{2.34}\]

Therefore, \(\mathbf{a} \times \mathbf{b} \) is perpendicular to \(\mathbf{a} \). Likewise, it can be demonstrated that \(\mathbf{a} \times \mathbf{b} \) is perpendicular to \(\mathbf{b} \). The vectors \(\mathbf{a}, \mathbf{b}, \) and \(\mathbf{a} \times \mathbf{b} \) form a right-handed set, like the unit vectors \(\mathbf{e}_x, \mathbf{e}_y, \) and \(\mathbf{e}_z \). In fact, \(\mathbf{e}_x \times \mathbf{e}_y = \mathbf{e}_z \). This defines a unique direction for \(\mathbf{a} \times \mathbf{b} \), which is obtained from the right-hand rule (see Fig. 6).

Let us now evaluate the magnitude of \(\mathbf{a} \times \mathbf{b} \). We have

\[
(\mathbf{a} \times \mathbf{b})^2 = (a_y b_z - a_z b_y)^2 + (a_z b_x - a_x b_z)^2 + (a_x b_y - a_y b_x)^2
\]
\[= (a_x^2 + a_y^2 + a_z^2) (b_x^2 + b_y^2 + b_z^2) - (a_x b_x + a_y b_y + a_z b_z)^2
\]
\[= |\mathbf{a}|^2 |\mathbf{b}|^2 - (\mathbf{a} \cdot \mathbf{b})^2
\]
\[= |\mathbf{a}|^2 |\mathbf{b}|^2 - |\mathbf{a}|^2 |\mathbf{b}|^2 \cos^2 \theta = |\mathbf{a}|^2 |\mathbf{b}|^2 \sin^2 \theta. \tag{2.35}\]

Thus,

\[|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta. \tag{2.36}\]

Clearly, \(\mathbf{a} \times \mathbf{a} = \mathbf{0} \) for any vector, since \(\theta \) is always zero in this case. Also, if \(\mathbf{a} \times \mathbf{b} = \mathbf{0} \) then either \(|\mathbf{a}| = 0 \), \(|\mathbf{b}| = 0 \), or \(\mathbf{b} \) is parallel (or antiparallel) to \(\mathbf{a} \).

Consider the parallelogram defined by vectors \(\mathbf{a} \) and \(\mathbf{b} \) (see Fig. 7). The scalar area is \(\mathbf{a} \cdot \mathbf{b} \). The vector area has the magnitude of the scalar area, and is
normal to the plane of the parallelogram, which means that it is perpendicular to both \mathbf{a} and \mathbf{b}. Clearly, the vector area is given by

$$S = \mathbf{a} \times \mathbf{b};$$

(2.37)

with the sense obtained from the right-hand grip rule by rotating \mathbf{a} onto \mathbf{b}.

Suppose that a force \mathbf{F} is applied at position \mathbf{r} (see Fig. 8). The moment, or torque, about the origin O is the product of the magnitude of the force and the length of the lever arm OQ. Thus, the magnitude of the moment is $|\mathbf{F}| |\mathbf{r}| \sin \theta$. The direction of the moment is conventionally the direction of the axis through O about which the force tries to rotate objects, in the sense determined by the right-hand grip rule. It follows that the vector moment is given by

$$\mathbf{M} = \mathbf{r} \times \mathbf{F}.$$

(2.38)

2.6 Rotation

Let us try to define a rotation vector $\mathbf{\theta}$ whose magnitude is the angle of the rotation, θ, and whose direction is the axis of the rotation, in the sense determined by the right-hand grip rule. Is this a good vector? The short answer is, no. The problem is that the addition of rotations is not commutative, whereas vector addition is commutative. Figure 9 shows the effect of applying two successive 90° rotations, one about x-axis, and the other about the z-axis, to a six-sided die. In the left-hand case, the z-rotation is applied before the x-rotation, and vice versa.
in the right-hand case. It can be seen that the die ends up in two completely different states. Clearly, the \(z \)-rotation plus the \(x \)-rotation does not equal the \(x \)-rotation plus the \(z \)-rotation. This non-commuting algebra cannot be represented by vectors. So, although rotations have a well-defined magnitude and direction, they are *not* vector quantities.

But, this is not quite the end of the story. Suppose that we take a general vector \(\mathbf{a} \) and rotate it about the \(z \)-axis by a *small* angle \(\delta \theta_z \). This is equivalent to rotating the basis about the \(z \)-axis by \(-\delta \theta_z \). According to Eqs. (2.10)–(2.12), we have

\[
\mathbf{a}' \simeq \mathbf{a} + \delta \theta_z \mathbf{e}_z \times \mathbf{a},
\]

(2.39)

where use has been made of the small angle expansions \(\sin \theta \simeq \theta \) and \(\cos \theta \simeq 1 \). The above equation can easily be generalized to allow small rotations about the \(x \)- and \(y \)-axes by \(\delta \theta_x \) and \(\delta \theta_y \), respectively. We find that

\[
\mathbf{a}' \simeq \mathbf{a} + \delta \mathbf{\theta} \times \mathbf{a},
\]

(2.40)

where

\[
\delta \mathbf{\theta} = \delta \theta_x \mathbf{e}_x + \delta \theta_y \mathbf{e}_y + \delta \theta_z \mathbf{e}_z.
\]

(2.41)

Clearly, we can define a rotation vector \(\delta \mathbf{\theta} \), but it only works for *small* angle rotations (*i.e.*, sufficiently small that the small angle expansions of sine and cosine are good). According to the above equation, a small \(z \)-rotation plus a small \(x \)-rotation is (approximately) equal to the two rotations applied in the opposite
Figure 9:
order. The fact that infinitesimal rotation is a vector implies that angular velocity,

$$\omega = \lim_{\delta t \to 0} \frac{\delta \theta}{\delta t},$$

(2.42)

must be a vector as well. Also, if \(a'\) is interpreted as \(a(t+\delta t)\) in the above equation then it is clear that the equation of motion of a vector precessing about the origin with angular velocity \(\omega\) is

$$\frac{da}{dt} = \omega \times a.$$
(2.43)

2.7 The scalar triple product

Consider three vectors \(a, b,\) and \(c.\) The scalar triple product is defined \(a \cdot b \times c.\) Now, \(b \times c\) is the vector area of the parallelogram defined by \(b\) and \(c.\) So, \(a \cdot b \times c\) is the scalar area of this parallelogram times the component of \(a\) in the direction of its normal. It follows that \(a \cdot b \times c\) is the volume of the parallelepiped defined by vectors \(a, b,\) and \(c\) (see Fig. 10). This volume is independent of how the triple product is formed from \(a, b,\) and \(c,\) except that

$$a \cdot b \times c = -a \cdot c \times b.$$
(2.44)

So, the “volume” is positive if \(a, b,\) and \(c\) form a right-handed set (i.e., if \(a\) lies above the plane of \(b\) and \(c,\) in the sense determined from the right-hand grip rule by rotating \(b\) onto \(c\)) and negative if they form a left-handed set. The triple
product is unchanged if the dot and cross product operators are interchanged:

\[\mathbf{a} \cdot \mathbf{b} \times \mathbf{c} = \mathbf{a} \times \mathbf{b} \cdot \mathbf{c}. \]
(2.45)

The triple product is also invariant under any cyclic permutation of \(\mathbf{a}, \mathbf{b}, \) and \(\mathbf{c} \),

\[\mathbf{a} \cdot \mathbf{b} \times \mathbf{c} = \mathbf{b} \cdot \mathbf{c} \times \mathbf{a} = \mathbf{c} \cdot \mathbf{a} \times \mathbf{b}, \]
(2.46)

but any anti-cyclic permutation causes it to change sign,

\[\mathbf{a} \cdot \mathbf{b} \times \mathbf{c} = -\mathbf{b} \cdot \mathbf{a} \times \mathbf{c}. \]
(2.47)

The scalar triple product is zero if any two of \(\mathbf{a}, \mathbf{b}, \) and \(\mathbf{c} \) are parallel, or if \(\mathbf{a}, \mathbf{b}, \) and \(\mathbf{c} \) are co-planar.

If \(\mathbf{a}, \mathbf{b}, \) and \(\mathbf{c} \) are non-coplanar, then any vector \(\mathbf{r} \) can be written in terms of them:

\[\mathbf{r} = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c}. \]
(2.48)

Forming the dot product of this equation with \(\mathbf{b} \times \mathbf{c} \), we then obtain

\[\mathbf{r} \cdot \mathbf{b} \times \mathbf{c} = \alpha \mathbf{a} \cdot \mathbf{b} \times \mathbf{c}, \]
(2.49)

so

\[\alpha = \frac{\mathbf{r} \cdot \mathbf{b} \times \mathbf{c}}{\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}}. \]
(2.50)

Analogous expressions can be written for \(\beta \) and \(\gamma \). The parameters \(\alpha, \beta, \) and \(\gamma \) are uniquely determined provided \(\mathbf{a} \cdot \mathbf{b} \times \mathbf{c} \neq 0 \): i.e., provided that the three basis vectors are not co-planar.

2.8 The vector triple product

For three vectors \(\mathbf{a}, \mathbf{b}, \) and \(\mathbf{c} \), the vector triple product is defined \(\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \). The brackets are important because \(\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \neq (\mathbf{a} \times \mathbf{b}) \times \mathbf{c} \). In fact, it can be demonstrated that

\[\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \equiv (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c} \]
(2.51)

and

\[(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} \equiv (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{b} \cdot \mathbf{c}) \mathbf{a}. \]
(2.52)
Let us try to prove the first of the above theorems. The left-hand side and the right-hand side are both proper vectors, so if we can prove this result in one particular coordinate system then it must be true in general. Let us take convenient axes such that the \(x \)-axis lies along \(\mathbf{b} \), and \(\mathbf{c} \) lies in the \(x \)-\(y \) plane. It follows that \(\mathbf{b} = (b_x, 0, 0) \), \(\mathbf{c} = (c_x, c_y, 0) \), and \(\mathbf{a} = (a_x, a_y, a_z) \). The vector \(\mathbf{b} \times \mathbf{c} \) is directed along the \(z \)-axis: \(\mathbf{b} \times \mathbf{c} = (0, 0, b_x c_y) \). It follows that \(\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \) lies in the \(x \)-\(y \) plane: \(\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (a_y b_x c_y, -a_x b_x c_y, 0) \). This is the left-hand side of Eq. (2.51) in our convenient axes. To evaluate the right-hand side, we need \(\mathbf{a} \cdot \mathbf{c} = a_x c_x + a_y c_y \) and \(\mathbf{a} \cdot \mathbf{b} = a_x b_x \). It follows that the right-hand side is

\[
\text{RHS} = (a_y c_y b_x, -a_x b_x c_y, 0) = \text{LHS},
\]

which proves the theorem.

2.9 Vector calculus

Suppose that vector \(\mathbf{a} \) varies with time, so that \(\mathbf{a} = \mathbf{a}(t) \). The time derivative of the vector is defined

\[
\frac{d\mathbf{a}}{dt} = \lim_{\delta t \to 0} \frac{\mathbf{a}(t + \delta t) - \mathbf{a}(t)}{\delta t}.
\]

When written out in component form this becomes

\[
\frac{d\mathbf{a}}{dt} = \left(\frac{d\mathbf{a}_x}{dt}, \frac{d\mathbf{a}_y}{dt}, \frac{d\mathbf{a}_z}{dt} \right).
\]

Suppose that \(\mathbf{a} \) is, in fact, the product of a scalar \(\phi(t) \) and another vector \(\mathbf{b}(t) \). What now is the time derivative of \(\mathbf{a} \)? We have

\[
\frac{d\mathbf{a}_x}{dt} = \frac{d}{dt} (\phi b_x) = \frac{d\phi}{dt} b_x + \phi \frac{db_x}{dt},
\]

which implies that

\[
\frac{d\mathbf{a}}{dt} = \frac{d\phi}{dt} \mathbf{b} + \phi \frac{d\mathbf{b}}{dt}.
\]
It is easily demonstrated that

\[
\frac{d}{dt} (\mathbf{a} \cdot \mathbf{b}) = \frac{d\mathbf{a}}{dt} \cdot \mathbf{b} + \mathbf{a} \cdot \frac{d\mathbf{b}}{dt}.
\] (2.58)

Likewise,

\[
\frac{d}{dt} (\mathbf{a} \times \mathbf{b}) = \frac{d\mathbf{a}}{dt} \times \mathbf{b} + \mathbf{a} \times \frac{d\mathbf{b}}{dt}.
\] (2.59)

It can be seen that the laws of vector differentiation are analogous to those in conventional calculus.

2.10 Line integrals

Consider a two-dimensional function \(f(x, y) \) which is defined for all \(x \) and \(y \). What is meant by the integral of \(f \) along a given curve from \(P \) to \(Q \) in the \(x\)-\(y \) plane? We first draw out \(f \) as a function of length \(l \) along the path (see Fig. 11). The integral is then simply given by

\[
\int_{P}^{Q} f(x, y) \, dl = \text{Area under the curve}.
\] (2.60)

As an example of this, consider the integral of \(f(x, y) = xy \) between \(P \) and \(Q \) along the two routes indicated in Fig. 12. Along route 1 we have \(x = y \), so
\[dl = \sqrt{2} \, dx. \] Thus,
\[\int_P^Q x \, y \, dl = \int_0^1 x^2 \sqrt{2} \, dx = \frac{\sqrt{2}}{3}. \] (2.61)

The integration along route 2 gives
\[\int_P^Q x \, y \, dl = \int_0^1 x \, y \, dx \bigg|_{y=0}^{y=1} + \int_0^1 x \, y \, dy \bigg|_{x=1}^{x=1} \]
\[= 0 + \int_0^1 y \, dy = \frac{1}{2}. \] (2.62)

Note that the integral depends on the route taken between the initial and final points.

The most common type of line integral is that where the contributions from \(dx \) and \(dy \) are evaluated separately, rather than through the path length \(dl \):
\[\int_P^Q \left[f(x, y) \, dx + g(x, y) \, dy \right]. \] (2.63)

As an example of this, consider the integral
\[\int_P^Q \left[y^3 \, dx + x \, dy \right] \] (2.64)
along the two routes indicated in Fig. 13. Along route 1 we have \(x = y + 1 \) and...
dx = dy, so
\[\int_{P}^{Q} = \int_{0}^{1} [y^3 \, dy + (y + 1) \, dy] = \frac{7}{4}. \]
(2.65)

Along route 2,
\[\int_{P}^{Q} = \int_{1}^{2} y^3 \, dx \bigg|_{y=0} + \int_{0}^{1} x \, dy \bigg|_{x=2} = 2. \]
(2.66)

Again, the integral depends on the path of integration.

Suppose that we have a line integral which does not depend on the path of integration. It follows that
\[\int_{P}^{Q} (f \, dx + g \, dy) = F(Q) - F(P) \]
(2.67)

for some function F. Given F(P) for one point P in the x-y plane, then
\[F(Q) = F(P) + \int_{P}^{Q} (f \, dx + g \, dy) \]
(2.68)

defines F(Q) for all other points in the plane. We can then draw a contour map of F(x, y). The line integral between points P and Q is simply the change in height in the contour map between these two points:
\[\int_{P}^{Q} (f \, dx + g \, dy) = \int_{P}^{Q} dF(x, y) = F(Q) - F(P). \]
(2.69)
Thus,
\[d\mathbf{F}(x, y) = f(x, y) \, dx + g(x, y) \, dy. \]
(2.70)

For instance, if \(\mathbf{F} = xy^3 \) then
\[d\mathbf{F} = y^3 \, dx + 3xy^2 \, dy \]
and
\[\int_P^Q \left(y^3 \, dx + 3xy^2 \, dy \right) = [x \, y^3]_P^Q \]
(2.71)
is independent of the path of integration.

It is clear that there are two distinct types of line integral. Those which depend only on their endpoints and not on the path of integration, and those which depend both on their endpoints and the integration path. Later on, we shall learn how to distinguish between these two types.

2.11 Vector line integrals

A **vector field** is defined as a set of vectors associated with each point in space. For instance, the velocity \(\mathbf{v}(\mathbf{r}) \) in a moving liquid (e.g., a whirlpool) constitutes a vector field. By analogy, a **scalar field** is a set of scalars associated with each point in space. An example of a scalar field is the temperature distribution \(T(\mathbf{r}) \) in a furnace.

Consider a general vector field \(\mathbf{A}(\mathbf{r}) \). Let \(d\mathbf{l} = (dx, dy, dz) \) be the vector element of line length. Vector line integrals often arise as

\[\int_P^Q \mathbf{A} \cdot d\mathbf{l} = \int_P^Q (A_x \, dx + A_y \, dy + A_z \, dz). \]
(2.72)

For instance, if \(\mathbf{A} \) is a force then the line integral is the work done in going from \(P \) to \(Q \).

As an example, consider the work done in a repulsive, inverse-square, central field, \(\mathbf{F} = -\mathbf{r}/|\mathbf{r}|^3 \). The element of work done is \(dW = \mathbf{F} \cdot d\mathbf{l} \). Take \(P = (\infty, 0, 0) \) and \(Q = (a, 0, 0) \). Route 1 is along the \(x \)-axis, so

\[W = \int_{\infty}^{a} \left(-\frac{1}{x^2} \right) \, dx = \left[\frac{1}{x} \right]_\infty^a = \frac{1}{a}. \]
(2.73)
The second route is, firstly, around a large circle \(r = \text{constant} \) to the point \((a, \infty, 0) \), and then parallel to the \(y \)-axis. In the first part no work is done, since \(\mathbf{F} \) is perpendicular to \(dl \). In the second part,

\[
W = \int^0_{\infty} \frac{-y \, dy}{(a^2 + y^2)^{3/2}} = \left[\frac{1}{(y^2 + a^2)^{1/2}} \right]^0_{\infty} = \frac{1}{a^3}.
\]

(2.74)

In this case, the integral is independent of the path. However, not all vector line integrals are path independent.

2.12 Surface integrals

Let us take a surface \(S \), which is not necessarily co-planar, and divide it into (scalar) elements \(\delta S_i \). Then

\[
\iint_S f(x, y, z) \, dS = \lim_{\delta S_i \to 0} \sum_i f(x, y, z) \, \delta S_i
\]

(2.75)

is a surface integral. For instance, the volume of water in a lake of depth \(D(x, y) \) is

\[
V = \iint_S D(x, y) \, dS.
\]

(2.76)

To evaluate this integral we must split the calculation into two ordinary integrals. The volume in the strip shown in Fig. 14 is

\[
\left[\int_{x_1}^{x_2} D(x, y) \, dx \right] \, dy.
\]

(2.77)

Note that the limits \(x_1 \) and \(x_2 \) depend on \(y \). The total volume is the sum over all strips:

\[
V = \int_{y_1}^{y_2} dy \left[\int_{x_1(y)}^{x_2(y)} D(x, y) \, dx \right] \equiv \iint_S D(x, y) \, dx \, dy.
\]

(2.78)

Of course, the integral can be evaluated by taking the strips the other way around:

\[
V = \int_{x_1}^{x_2} dx \int_{y_1(x)}^{y_2(x)} D(x, y) \, dy.
\]

(2.79)
Interchanging the order of integration is a very powerful and useful trick. But great care must be taken when evaluating the limits.

As an example, consider

\[\iint_S x^2 y \, dx \, dy, \quad (2.80) \]

where \(S \) is shown in Fig. 15. Suppose that we evaluate the \(x \) integral first:

\[
dy \left(\int_0^{1-y} x^2 y \, dx \right) = y \left[\frac{x^3}{3} \right]_0^{1-y} = \frac{y}{3} (1 - y)^3 \, dy. \quad (2.81)
\]

Let us now evaluate the \(y \) integral:

\[\int_0^1 \left(\frac{y}{3} - y^2 + y^3 - \frac{y^4}{3} \right) \, dy = \frac{1}{60}. \quad (2.82) \]

We can also evaluate the integral by interchanging the order of integration:

\[\int_0^1 x^2 \, dx \int_0^{1-x} y \, dy = \int_0^1 \frac{x^2}{2} (1 - x)^2 \, dx = \frac{1}{60}. \quad (2.83) \]

In some cases, a surface integral is just the product of two separate integrals. For instance,

\[\iint_S x^2 y \, dx \, dy \quad (2.84) \]
where S is a unit square. This integral can be written

$$\int_0^1 \int_0^1 x^2 \, y \, dy = \left(\int_0^1 x^2 \, dx \right) \left(\int_0^1 y \, dy \right) = \frac{1}{3} \frac{1}{2} = \frac{1}{6},$$

(2.85)

since the limits are both independent of the other variable.

In general, when interchanging the order of integration, the most important part of the whole problem is getting the limits of integration right. The only foolproof way of doing this is to draw a diagram.

2.13 Vector surface integrals

Surface integrals often occur during vector analysis. For instance, the rate of flow of a liquid of velocity \mathbf{v} through an infinitesimal surface of vector area $d\mathbf{S}$ is $\mathbf{v} \cdot d\mathbf{S}$. The net rate of flow through a surface S made up of lots of infinitesimal surfaces is

$$\int \int_S \mathbf{v} \cdot d\mathbf{S} = \lim_{d\mathbf{S} \rightarrow 0} \left[\sum \mathbf{v} \cos \theta \, dS \right],$$

(2.86)

where θ is the angle subtended between the normal to the surface and the flow velocity.

Analogously to line integrals, most surface integrals depend both on the surface and the rim. But some (very important) integrals depend only on the rim,
and not on the nature of the surface which spans it. As an example of this, consider incompressible fluid flow between two surfaces S_1 and S_2 which end on the same rim. The volume between the surfaces is constant, so what goes in must come out, and

$$\int \int_{S_1} \mathbf{v} \cdot dS = \int \int_{S_2} \mathbf{v} \cdot dS. \tag{2.87}$$

It follows that

$$\int \int \mathbf{v} \cdot dS \tag{2.88}$$

depends only on the rim, and not on the form of surfaces S_1 and S_2.

2.14 Volume integrals

A volume integral takes the form

$$\int \int \int_V f(x, y, z) \, dV, \tag{2.89}$$

where V is some volume, and $dV = dx \, dy \, dz$ is a small volume element. The volume element is sometimes written d^3r, or even $d\tau$. As an example of a volume integral, let us evaluate the centre of gravity of a solid hemisphere of radius a (centered on the origin). The height of the centre of gravity is given by

$$z = \frac{\int \int \int z \, dV}{\int \int \int dV}. \tag{2.90}$$

The bottom integral is simply the volume of the hemisphere, which is $2\pi a^3/3$. The top integral is most easily evaluated in spherical polar coordinates, for which $z = r \cos \theta$ and $dV = r^2 \sin \theta \, dr \, d\theta \, d\phi$. Thus,

$$\int \int z \, dV = \int_0^a dr \int_0^{\pi/2} d\theta \int_0^{2\pi} d\phi \, r \cos \theta \, r^2 \sin \theta$$

$$= \int_0^a r^3 dr \int_0^{\pi/2} \sin \theta \, \cos \theta \, d\theta \int_0^{2\pi} d\phi = \frac{\pi a^4}{4}, \tag{2.91}$$

giving

$$z = \frac{\pi a^4}{4} \frac{3}{2\pi a^3} = \frac{3a}{8}. \tag{2.92}$$
2.15 Gradient

A one-dimensional function $f(x)$ has a gradient df/dx which is defined as the slope of the tangent to the curve at x. We wish to extend this idea to cover scalar fields in two and three dimensions.

Consider a two-dimensional scalar field $h(x, y)$, which is (say) the height of a hill. Let $dl = (dx, dy)$ be an element of horizontal distance. Consider dh/dl, where dh is the change in height after moving an infinitesimal distance dl. This quantity is somewhat like the one-dimensional gradient, except that dh depends on the direction of dl, as well as its magnitude. In the immediate vicinity of some point P, the slope reduces to an inclined plane (see Fig. 16). The largest value of dh/dl is straight up the slope. For any other direction $dh/dl = dh/dl_{max} \cos \theta$: \[(2.93)\]

Let us define a two-dimensional vector, $\text{grad } h$, called the gradient of h, whose magnitude is $(dh/dl)_{max}$, and whose direction is the direction up the steepest slope. Because of the $\cos \theta$ property, the component of $\text{grad } h$ in any direction equals dh/dl for that direction. [The argument, here, is analogous to that used for vector areas in Sect. 2.3. See, in particular, Eq. (2.13).]

The component of dh/dl in the x-direction can be obtained by plotting out the profile of h at constant y, and then finding the slope of the tangent to the curve at given x. This quantity is known as the partial derivative of h with respect to x.
at constant \(y \), and is denoted \((\partial h/\partial x)_y\). Likewise, the gradient of the profile at constant \(x \) is written \((\partial h/\partial y)_x\). Note that the subscripts denoting constant-\(x \) and constant-\(y \) are usually omitted, unless there is any ambiguity. If follows that in component form

\[
\text{grad} h = \left(\frac{\partial h}{\partial x}, \frac{\partial h}{\partial y}\right).
\]

(2.94)

Now, the equation of the tangent plane at \(P = (x_0, y_0) \) is

\[
h_T(x, y) = h(x_0, y_0) + \alpha (x - x_0) + \beta (y - y_0).
\]

(2.95)

This has the same local gradients as \(h(x, y) \), so

\[
\alpha = \frac{\partial h}{\partial x}, \quad \beta = \frac{\partial h}{\partial y},
\]

(2.96)

by differentiation of the above. For small \(dx = x - x_0 \) and \(dy = y - y_0 \), the function \(h \) is coincident with the tangent plane. We have

\[
dh = \frac{\partial h}{\partial x} \, dx + \frac{\partial h}{\partial y} \, dy,
\]

(2.97)

but \(\text{grad} h = (\partial h/\partial x, \partial h/\partial y) \) and \(dl = (dx, dy) \), so

\[
dh = \text{grad} h \cdot dl.
\]

(2.98)

Incidentally, the above equation demonstrates that \(\text{grad} h \) is a proper vector, since the left-hand side is a scalar, and, according to the properties of the dot product, the right-hand side is also a scalar, provided that \(dl \) and \(\text{grad} h \) are both proper vectors (\(dl \) is an obvious vector, because it is directly derived from displacements).

Consider, now, a three-dimensional temperature distribution \(T(x, y, z) \) in (say) a reaction vessel. Let us define \(\text{grad} T \), as before, as a vector whose magnitude is \((dT/dl)_{\text{max}}\), and whose direction is the direction of the maximum gradient. This vector is written in component form

\[
\text{grad} T = \left(\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}, \frac{\partial T}{\partial z}\right).
\]

(2.99)
Here, \(\partial T/\partial x \equiv (\partial T/\partial x)_{y,z} \) is the gradient of the one-dimensional temperature profile at constant \(y \) and \(z \). The change in \(T \) in going from point \(P \) to a neighbouring point offset by \(\mathbf{dl} = (dx, dy, dz) \) is

\[
dT = \frac{\partial T}{\partial x} \, dx + \frac{\partial T}{\partial y} \, dy + \frac{\partial T}{\partial z} \, dz. \tag{2.100}
\]

In vector form, this becomes

\[
dT = \nabla T \cdot \mathbf{dl}. \tag{2.101}
\]

Suppose that \(dT = 0 \) for some \(\mathbf{dl} \). It follows that

\[
dT = \nabla T \cdot \mathbf{dl} = 0. \tag{2.102}
\]

So, \(\mathbf{dl} \) is perpendicular to \(\nabla T \). Since \(dT = 0 \) along so-called “isotherms” (i.e., contours of the temperature), we conclude that the isotherms (contours) are everywhere perpendicular to \(\nabla T \) (see Fig. 17).

It is, of course, possible to integrate \(dT \). The line integral from point \(P \) to point \(Q \) is written

\[
\int_{P}^{Q} dT = \int_{P}^{Q} \nabla T \cdot \mathbf{dl} = T(Q) - T(P). \tag{2.103}
\]

This integral is clearly independent of the path taken between \(P \) and \(Q \), so \(\int_{P}^{Q} \nabla T \cdot \mathbf{dl} \) must be path independent.
In general, $\int_P^Q \mathbf{A} \cdot d\mathbf{l}$ depends on path, but for some special vector fields the integral is path independent. Such fields are called conservative fields. It can be shown that if \mathbf{A} is a conservative field then $\mathbf{A} = \nabla \phi$ for some scalar field ϕ. The proof of this is straightforward. Keeping P fixed we have

$$\int_P^Q \mathbf{A} \cdot d\mathbf{l} = V(Q), \quad (2.104)$$

where $V(Q)$ is a well-defined function, due to the path independent nature of the line integral. Consider moving the position of the end point by an infinitesimal amount dx in the x-direction. We have

$$V(Q + dx) = V(Q) + \int_Q^{Q+dx} \mathbf{A} \cdot d\mathbf{l} = V(Q) + A_x dx. \quad (2.105)$$

Hence,

$$\frac{\partial V}{\partial x} = A_x, \quad (2.106)$$

with analogous relations for the other components of \mathbf{A}. It follows that

$$\mathbf{A} = \nabla V. \quad (2.107)$$

In physics, the force due to gravity is a good example of a conservative field. If \mathbf{A} is a force, then $\int \mathbf{A} \cdot d\mathbf{l}$ is the work done in traversing some path. If \mathbf{A} is conservative then

$$\oint \mathbf{A} \cdot d\mathbf{l} = 0, \quad (2.108)$$

where \oint corresponds to the line integral around some closed loop. The fact that zero net work is done in going around a closed loop is equivalent to the conservation of energy (this is why conservative fields are called “conservative”). A good example of a non-conservative field is the force due to friction. Clearly, a frictional system loses energy in going around a closed cycle, so $\oint \mathbf{A} \cdot d\mathbf{l} \neq 0$.

It is useful to define the vector operator

$$\nabla \equiv \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right), \quad (2.109)$$
which is usually called the \textit{grad} or \textit{del} operator. This operator acts on everything to its right in an expression, until the end of the expression or a closing bracket is reached. For instance,

\[
\text{grad} \ f = \nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right). \tag{2.110}
\]

For two scalar fields \(\phi \) and \(\psi \),

\[
\text{grad} (\phi \psi) = \phi \ \text{grad} \ \psi + \psi \ \text{grad} \ \phi \tag{2.111}
\]

can be written more succinctly as

\[
\nabla (\phi \psi) = \phi \nabla \psi + \psi \nabla \phi. \tag{2.112}
\]

Suppose that we rotate the basis about the \(z \)-axis by \(\theta \) degrees. By analogy with Eqs. (2.7)–(2.9), the old coordinates \((x, y, z)\) are related to the new ones \((x', y', z')\) via

\[
x = x' \cos \theta - y' \sin \theta, \tag{2.113}
\]
\[
y = x' \sin \theta + y' \cos \theta, \tag{2.114}
\]
\[
z = z'. \tag{2.115}
\]

Now,

\[
\frac{\partial}{\partial x'} = \left(\frac{\partial x}{\partial x'} \right)_{y',z'} \frac{\partial}{\partial x} + \left(\frac{\partial y}{\partial x'} \right)_{y',z'} \frac{\partial}{\partial y} + \left(\frac{\partial z}{\partial x'} \right)_{y',z'} \frac{\partial}{\partial z}, \tag{2.116}
\]

giving

\[
\frac{\partial}{\partial x'} = \cos \theta \frac{\partial}{\partial x} + \sin \theta \frac{\partial}{\partial y}, \tag{2.117}
\]

and

\[
\nabla_{x'} = \cos \theta \nabla_x + \sin \theta \nabla_y. \tag{2.118}
\]

It can be seen that the differential operator \(\nabla \) transforms like a proper vector, according to Eqs. (2.10)–(2.12). This is another proof that \(\nabla f \) is a good vector.
2.16 Divergence

Let us start with a vector field \(\mathbf{A} \). Consider \(\oint_S \mathbf{A} \cdot d\mathbf{S} \) over some closed surface \(S \), where \(d\mathbf{S} \) denotes an outward pointing surface element. This surface integral is usually called the flux of \(\mathbf{A} \) out of \(S \). If \(\mathbf{A} \) is the velocity of some fluid, then \(\oint_S \mathbf{A} \cdot d\mathbf{S} \) is the rate of flow of material out of \(S \).

If \(\mathbf{A} \) is constant in space then it is easily demonstrated that the net flux out of \(S \) is zero,

\[
\oint \mathbf{A} \cdot d\mathbf{S} = \mathbf{A} \cdot \oint d\mathbf{S} = \mathbf{A} \cdot \mathbf{S} = 0,
\]

since the vector area \(\mathbf{S} \) of a closed surface is zero.

![Figure 18:]

Suppose, now, that \(\mathbf{A} \) is not uniform in space. Consider a very small rectangular volume over which \(\mathbf{A} \) hardly varies. The contribution to \(\oint \mathbf{A} \cdot d\mathbf{S} \) from the two faces normal to the \(x \)-axis is

\[
A_x(x + dx) \, dy \, dz - A_x(x) \, dy \, dz = \frac{\partial A_x}{\partial x} \, dx \, dy \, dz = \frac{\partial A_x}{\partial x} \, dV,
\]

where \(dV = dx \, dy \, dz \) is the volume element (see Fig. 18). There are analogous contributions from the sides normal to the \(y \)- and \(z \)-axes, so the total of all the contributions is

\[
\oint \mathbf{A} \cdot d\mathbf{S} = \left(\frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} \right) \, dV.
\]
The divergence of a vector field is defined
\[\text{div} \mathbf{A} = \nabla \cdot \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}. \] (2.122)

Divergence is a good scalar (i.e., it is coordinate independent), since it is the dot product of the vector operator \(\nabla \) with \(\mathbf{A} \). The formal definition of \(\text{div} \mathbf{A} \) is
\[\text{div} \mathbf{A} = \lim_{dV \to 0} \frac{\oint_S \mathbf{A} \cdot d\mathbf{S}}{dV}. \] (2.123)

This definition is independent of the shape of the infinitesimal volume element.

One of the most important results in vector field theory is the so-called divergence theorem or Gauss’ theorem. This states that for any volume \(V \) surrounded by a closed surface \(S \),
\[\oint_S \mathbf{A} \cdot d\mathbf{S} = \int_V \text{div} \mathbf{A} \, dV, \] (2.124)
where \(d\mathbf{S} \) is an outward pointing volume element. The proof is very straightforward. We divide up the volume into lots of very small cubes, and sum \(\int \mathbf{A} \cdot d\mathbf{S} \) over all of the surfaces. The contributions from the interior surfaces cancel out, leaving just the contribution from the outer surface (see Fig. 19). We can use Eq. (2.121) for each cube individually. This tells us that the summation is equivalent to \(\int \text{div} \mathbf{A} \, dV \) over the whole volume. Thus, the integral of \(\mathbf{A} \cdot d\mathbf{S} \) over
the outer surface is equal to the integral of $\nabla \cdot \mathbf{A}$ over the whole volume, which proves the divergence theorem.

Now, for a vector field with $\nabla \cdot \mathbf{A} = 0$,

$$\oint_S \mathbf{A} \cdot \mathbf{dS} = 0 \quad (2.125)$$

for any closed surface S. So, for two surfaces on the same rim (see Fig. 20),

$$\int_{S_1} \mathbf{A} \cdot \mathbf{dS} = \int_{S_2} \mathbf{A} \cdot \mathbf{dS}. \quad (2.126)$$

Thus, if $\nabla \cdot \mathbf{A} = 0$ then the surface integral depends on the rim but not the nature of the surface which spans it. On the other hand, if $\nabla \cdot \mathbf{A} \neq 0$ then the integral depends on both the rim and the surface.

Consider an incompressible fluid whose velocity field is \mathbf{v}. It is clear that $\oint S \mathbf{v} \cdot \mathbf{dS} = 0$ for any closed surface, since what flows into the surface must flow out again. Thus, according to the divergence theorem, $\int \nabla \cdot \mathbf{v} \ dV = 0$ for any volume. The only way in which this is possible is if $\nabla \cdot \mathbf{v}$ is everywhere zero. Thus, the velocity components of an incompressible fluid satisfy the following differential relation:

$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} = 0. \quad (2.127)$$

Consider, now, a compressible fluid of density ρ and velocity \mathbf{v}. The surface integral $\oint S \rho \mathbf{v} \cdot \mathbf{dS}$ is the net rate of mass flow out of the closed surface S. This
must be equal to the rate of decrease of mass inside the volume \(V \) enclosed by \(S \), which is written \(- (\partial / \partial t) (\int_V \rho \, dV)\). Thus,

\[
\oint_S \rho \mathbf{v} \cdot d\mathbf{S} = -\frac{\partial}{\partial t} \left(\int_V \rho \, dV \right)
\]

for any volume. It follows from the divergence theorem that

\[
\text{div} (\rho \mathbf{v}) = -\frac{\partial \rho}{\partial t}.
\]

This is called the *equation of continuity* of the fluid, since it ensures that fluid is neither created nor destroyed as it flows from place to place. If \(\rho \) is constant then the equation of continuity reduces to the previous incompressible result, \(\text{div} \mathbf{v} = 0 \).

![Figure 21:](image)

It is sometimes helpful to represent a vector field \(\mathbf{A} \) by *lines of force* or *field-lines*. The direction of a line of force at any point is the same as the direction of \(\mathbf{A} \). The density of lines (i.e., the number of lines crossing a unit surface perpendicular to \(\mathbf{A} \)) is equal to \(|\mathbf{A}| \). For instance, in Fig. 21, \(|\mathbf{A}| \) is larger at point 1 than at point 2. The number of lines crossing a surface element \(d\mathbf{S} \) is \(\mathbf{A} \cdot d\mathbf{S} \). So, the net number of lines leaving a closed surface is

\[
\oint_S \mathbf{A} \cdot d\mathbf{S} = \int_V \text{div} \mathbf{A} \, dV.
\]

If \(\text{div} \mathbf{A} = 0 \) then there is no net flux of lines out of any surface. Such a field is called a *solenoidal* vector field. The simplest example of a solenoidal vector field is one in which the lines of force all form *closed loops*.

2.17 The Laplacian

So far we have encountered

\[\nabla \phi = \left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z} \right), \tag{2.131} \]

which is a vector field formed from a scalar field, and

\[\text{div} \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}, \tag{2.132} \]

which is a scalar field formed from a vector field. There are two ways in which we can combine \(\nabla \phi \) and \(\text{div} \mathbf{A} \). We can either form the vector field \(\nabla (\text{div} \mathbf{A}) \) or the scalar field \(\text{div} (\nabla \phi) \). The former is not particularly interesting, but the scalar field \(\text{div} (\nabla \phi) \) turns up in a great many physics problems, and is, therefore, worthy of discussion.

Let us introduce the heat flow vector \(\mathbf{h} \), which is the rate of flow of heat energy per unit area across a surface perpendicular to the direction of \(\mathbf{h} \). In many substances, heat flows directly down the temperature gradient, so that we can write

\[\mathbf{h} = -\kappa \nabla T, \tag{2.133} \]

where \(\kappa \) is the thermal conductivity. The net rate of heat flow \(\oint_S \mathbf{h} \cdot d\mathbf{S} \) out of some closed surface \(S \) must be equal to the rate of decrease of heat energy in the volume \(V \) enclosed by \(S \). Thus, we can write

\[\oint_S \mathbf{h} \cdot d\mathbf{S} = -\frac{\partial}{\partial t} \left(\int c T \, dV \right), \tag{2.134} \]

where \(c \) is the specific heat. It follows from the divergence theorem that

\[\text{div} \mathbf{h} = -c \frac{\partial T}{\partial t}. \tag{2.135} \]

Taking the divergence of both sides of Eq. (2.133), and making use of Eq. (2.135), we obtain

\[\text{div} (\kappa \nabla T) = c \frac{\partial T}{\partial t}, \tag{2.136} \]
or
\[\nabla \cdot (\kappa \nabla T) = \frac{c}{\kappa} \frac{\partial T}{\partial t}. \] (2.137)

If \(\kappa \) is constant then the above equation can be written
\[\text{div} (\text{grad} T) = \frac{c}{\kappa} \frac{\partial T}{\partial t}. \] (2.138)

The scalar field \(\text{div} (\text{grad} T) \) takes the form
\[
\text{div} (\text{grad} T) = \frac{\partial}{\partial x} \left(\frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(\frac{\partial T}{\partial z} \right)
= \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \equiv \nabla^2 T. \] (2.139)

Here, the scalar differential operator
\[
\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}
\] (2.140)
is called the Laplacian. The Laplacian is a good scalar operator (i.e., it is coordinate independent) because it is formed from a combination of \(\text{div} \) (another good scalar operator) and \(\text{grad} \) (a good vector operator).

What is the physical significance of the Laplacian? In one dimension, \(\nabla^2 T \) reduces to \(\frac{\partial^2 T}{\partial x^2} \). Now, \(\frac{\partial^2 T}{\partial x^2} \) is positive if \(T(x) \) is concave (from above) and negative if it is convex. So, if \(T \) is less than the average of \(T \) in its surroundings then \(\nabla^2 T \) is positive, and vice versa.

In two dimensions,
\[
\nabla^2 T = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}. \] (2.141)
Consider a local minimum of the temperature. At the minimum, the slope of \(T \) increases in all directions, so \(\nabla^2 T \) is positive. Likewise, \(\nabla^2 T \) is negative at a local maximum. Consider, now, a steep-sided valley in \(T \). Suppose that the bottom of the valley runs parallel to the \(x \)-axis. At the bottom of the valley \(\frac{\partial^2 T}{\partial y^2} \) is large and positive, whereas \(\frac{\partial^2 T}{\partial x^2} \) is small and may even be negative. Thus, \(\nabla^2 T \) is positive, and this is associated with \(T \) being less than the average local value.
Let us now return to the heat conduction problem:

$$\nabla^2 T = \frac{c}{\kappa} \frac{\partial T}{\partial t}. \quad (2.142)$$

It is clear that if $\nabla^2 T$ is positive then T is locally less than the average value, so $\partial T/\partial t > 0$: i.e., the region heats up. Likewise, if $\nabla^2 T$ is negative then T is locally greater than the average value, and heat flows out of the region: i.e., $\partial T/\partial t < 0$. Thus, the above heat conduction equation makes physical sense.

2.18 Curl

Consider a vector field \mathbf{A}, and a loop which lies in one plane. The integral of \mathbf{A} around this loop is written $\oint \mathbf{A} \cdot d\mathbf{l}$, where $d\mathbf{l}$ is a line element of the loop. If \mathbf{A} is a conservative field then $\mathbf{A} = \nabla \phi$ and $\oint \mathbf{A} \cdot d\mathbf{l} = 0$ for all loops. In general, for a non-conservative field, $\oint \mathbf{A} \cdot d\mathbf{l} \neq 0$.

For a small loop we expect $\oint \mathbf{A} \cdot d\mathbf{l}$ to be proportional to the area of the loop. Moreover, for a fixed area loop we expect $\oint \mathbf{A} \cdot d\mathbf{l}$ to depend on the orientation of the loop. One particular orientation will give the maximum value: $\oint \mathbf{A} \cdot d\mathbf{l} = I_{\text{max}}$. If the loop subtends an angle θ with this optimum orientation then we expect $I = I_{\text{max}} \cos \theta$. Let us introduce the vector field $\nabla \times \mathbf{A}$ whose magnitude is

$$|\nabla \times \mathbf{A}| = \lim_{dS \to 0} \frac{\oint \mathbf{A} \cdot d\mathbf{l}}{dS} \quad (2.143)$$

for the orientation giving I_{max}. Here, dS is the area of the loop. The direction of $\nabla \times \mathbf{A}$ is perpendicular to the plane of the loop, when it is in the orientation giving I_{max}, with the sense given by the right-hand grip rule.

Let us now express $\nabla \times \mathbf{A}$ in terms of the components of \mathbf{A}. First, we shall evaluate $\oint \mathbf{A} \cdot d\mathbf{l}$ around a small rectangle in the y-z plane (see Fig. 22). The contribution from sides 1 and 3 is

$$A_z(y + dy) \, dz - A_z(y) \, dz = \frac{\partial A_z}{\partial y} \, dy \, dz. \quad (2.144)$$
The contribution from sides 2 and 4 is

\[-A_y(z + dz) \, dy + A_y(z) \, dy = -\frac{\partial A_y}{\partial y} \, dy \, dz.\]

(2.145)

So, the total of all contributions gives

\[\oint \mathbf{A} \cdot d\mathbf{l} = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) \, dS,\]

(2.146)

where \(dS = dy \, dz\) is the area of the loop.

Consider a non-rectangular (but still small) loop in the \(y\)-\(z\) plane. We can divide it into rectangular elements, and form \(\oint \mathbf{A} \cdot d\mathbf{l}\) over all the resultant loops. The interior contributions cancel, so we are just left with the contribution from the outer loop. Also, the area of the outer loop is the sum of all the areas of the inner loops. We conclude that

\[\oint \mathbf{A} \cdot d\mathbf{l} = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) \, dS_x\]

(2.147)

is valid for a small loop \(d\mathbf{S} = (dS_x, 0, 0)\) of any shape in the \(y\)-\(z\) plane. Likewise, we can show that if the loop is in the \(x\)-\(z\) plane then \(d\mathbf{S} = (0, dS_y, 0)\) and

\[\oint \mathbf{A} \cdot d\mathbf{l} = \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right) \, dS_y.\]

(2.148)

Finally, if the loop is in the \(x\)-\(y\) plane then \(d\mathbf{S} = (0, 0, dS_z)\) and

\[\oint \mathbf{A} \cdot d\mathbf{l} = \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right) \, dS_z.\]

(2.149)
Imagine an arbitrary loop of vector area \(d\mathbf{S} = (dS_x, dS_y, dS_z) \). We can construct this out of three loops in the \(x \), \(y \), and \(z \)-directions, as indicated in Fig. 23. If we form the line integral around all three loops then the interior contributions cancel, and we are left with the line integral around the original loop. Thus,

\[
\oint \mathbf{A} \cdot d\mathbf{l} = \oint \mathbf{A} \cdot d\mathbf{l}_1 + \oint \mathbf{A} \cdot d\mathbf{l}_2 + \oint \mathbf{A} \cdot d\mathbf{l}_3,
\]

giving

\[
\oint \mathbf{A} \cdot d\mathbf{l} = \mathbf{curl} \mathbf{A} \cdot d\mathbf{S} = |\mathbf{curl} \mathbf{A}| |d\mathbf{S}| \cos \theta,
\]

where

\[
\mathbf{curl} \mathbf{A} = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}, \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}, \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right).
\]

Note that

\[
\mathbf{curl} \mathbf{A} = \nabla \times \mathbf{A}.
\]

This demonstrates that \(\mathbf{curl} \mathbf{A} \) is a good vector field, since it is the cross product of the \(\nabla \) operator (a good vector operator) and the vector field \(\mathbf{A} \).

Consider a solid body rotating about the \(z \)-axis. The angular velocity is given by \(\mathbf{\omega} = (0, 0, \omega) \), so the rotation velocity at position \(\mathbf{r} \) is

\[
\mathbf{v} = \mathbf{\omega} \times \mathbf{r}
\]
Let us evaluate \(\text{curl } v \) on the axis of rotation. The \(x \)-component is proportional to the integral \(\oint v \cdot \text{d}l \) around a loop in the \(y-z \) plane. This is plainly zero. Likewise, the \(y \)-component is also zero. The \(z \)-component is \(\oint v \cdot \text{d}l/dS \) around some loop in the \(x-y \) plane. Consider a circular loop. We have \(\oint v \cdot \text{d}l = 2\pi r \omega r \) with \(dS = \pi r^2 \). Here, \(r \) is the radial distance from the rotation axis. It follows that \((\text{curl } v)_z = 2\omega \), which is independent of \(r \). So, on the axis, \(\text{curl } v = (0, 0, 2\omega) \). Off the axis, at position \(r_0 \), we can write

\[
v = \omega \times (r - r_0) + \omega \times r_0.
\]

\((2.155) \)

The first part has the same curl as the velocity field on the axis, and the second part has zero curl, since it is constant. Thus, \(\text{curl } v = (0, 0, 2\omega) \) everywhere in the body. This allows us to form a physical picture of \(\text{curl } A \). If we imagine \(A \) as the velocity field of some fluid, then \(\text{curl } A \) at any given point is equal to twice the local angular rotation velocity: \(i.e., \) \(2\omega \). Hence, a vector field with \(\text{curl } A = 0 \) everywhere is said to be \textit{irrotational}.

Another important result of vector field theory is the \textit{curl theorem} or \textit{Stokes’ theorem},

\[
\oint_C A \cdot \text{d}l = \int_S \text{curl } A \cdot \text{d}S,
\]

\((2.156) \)

for some (non-planar) surface \(S \) bounded by a rim \(C \). This theorem can easily be proved by splitting the loop up into many small rectangular loops, and forming the integral around all of the resultant loops. All of the contributions from the interior loops cancel, leaving just the contribution from the outer rim. Making use of Eq. (2.151) for each of the small loops, we can see that the contribution from all of the loops is also equal to the integral of \(\text{curl } A \cdot \text{d}S \) across the whole surface. This proves the theorem.

One immediate consequence of Stokes’ theorem is that \(\text{curl } A \) is “incompressible.” Consider two surfaces, \(S_1 \) and \(S_2 \), which share the same rim. It is clear from Stokes’ theorem that \(\oint \text{curl } A \cdot \text{d}S \) is the same for both surfaces. Thus, it follows that \(\oint \text{curl } A \cdot \text{d}S = 0 \) for any closed surface. However, we have from the divergence theorem that \(\oint \text{curl } A \cdot \text{d}S = \int \text{div } (\text{curl } A) \text{d}V = 0 \) for any volume. Hence,

\[
\text{div } (\text{curl } A) \equiv 0.
\]

\((2.157) \)
So, \(\text{curl} \ A \) is a solenoidal field.

We have seen that for a conservative field \(\oint A \cdot dl = 0 \) for any loop. This is entirely equivalent to \(A = \text{grad} \ \phi \). However, the magnitude of \(\text{curl} \ A \) is \(\lim_{dS \to 0} \oint A \cdot dl / dS \) for some particular loop. It is clear then that \(\text{curl} \ A = 0 \) for a conservative field. In other words,

\[
\text{curl} (\text{grad} \ \phi) \equiv 0. \tag{2.158}
\]

Thus, a conservative field is also an irrotational one.

Finally, it can be shown that

\[
\text{curl} (\text{curl} \ A) = \text{grad} (\text{div} \ A) - \nabla^2 A, \tag{2.159}
\]

where

\[
\nabla^2 A = (\nabla^2 A_x, \nabla^2 A_y, \nabla^2 A_z). \tag{2.160}
\]

It should be emphasized, however, that the above result is only valid in Cartesian coordinates.

2.19 Summary

Vector addition:

\[
a + b \equiv (a_x + b_x, a_y + b_y, a_z + b_z)
\]

Scalar multiplication:

\[
n \cdot a \equiv (n \cdot a_x, n \cdot a_y, n \cdot a_z)
\]

Scalar product:

\[
a \cdot b = a_x b_x + a_y b_y + a_z b_z
\]

Vector product:

\[
a \times b = (a_y b_z - a_z b_y, a_z b_x - a_x b_z, a_x b_y - a_y b_x)
\]

Scalar triple product:

\[
a \cdot (b \times c) = a \times (b \cdot c) = b \cdot (c \times a) = -b \cdot (a \times c)
\]
Vector triple product:
\[\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c} \]
\[(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{b} \cdot \mathbf{c}) \mathbf{a} \]

Gradient:
\[
\nabla \phi = \left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z} \right)
\]

Divergence:
\[
\text{div} \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}
\]

Curl:
\[
\text{curl} \mathbf{A} = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}, \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}, \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right)
\]

Gauss’ theorem:
\[
\int_S \mathbf{A} \cdot d\mathbf{S} = \int_V \text{div} \mathbf{A} \ dV
\]

Stokes’ theorem:
\[
\int_C \mathbf{A} \cdot d\mathbf{l} = \int_S \text{curl} \mathbf{A} \cdot d\mathbf{S}
\]

Del operator:
\[
\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right)
\]
\[
\nabla \phi = \nabla \phi
\]
\[
\text{div} \mathbf{A} = \nabla \cdot \mathbf{A}
\]
\[
\text{curl} \mathbf{A} = \nabla \times \mathbf{A}
\]

Vector identities:
\[
\nabla \cdot \nabla \phi = \nabla^2 \phi = \left(\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} \right)
\]
\[
\nabla \cdot \nabla \times \mathbf{A} = 0
\]
\[
\nabla \times \nabla \phi = 0
\]
\[
\nabla^2 \mathbf{A} = \nabla (\nabla \cdot \mathbf{A}) - \nabla \times \nabla \times \mathbf{A}
\]
Other vector identities:

\[\nabla (\phi \psi) = \phi \nabla \psi + \psi \nabla \phi \]
\[\nabla \cdot (\phi \mathbf{A}) = \phi \nabla \cdot \mathbf{A} + \mathbf{A} \cdot \nabla \phi \]
\[\nabla \times (\phi \mathbf{A}) = \phi \nabla \times \mathbf{A} + \nabla \phi \times \mathbf{A} \]
\[\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot \nabla \times \mathbf{A} - \mathbf{A} \cdot \nabla \times \mathbf{B} \]
\[\nabla \times (\mathbf{A} \times \mathbf{B}) = \mathbf{A} (\nabla \cdot \mathbf{B}) - \mathbf{B} (\nabla \cdot \mathbf{A}) + (\mathbf{B} \cdot \nabla)\mathbf{A} - (\mathbf{A} \cdot \nabla)\mathbf{B} \]
\[\nabla (\mathbf{A} \cdot \mathbf{B}) = \mathbf{A} \times (\nabla \times \mathbf{B}) + \mathbf{B} \times (\nabla \times \mathbf{A}) + (\mathbf{A} \cdot \nabla)\mathbf{B} + (\mathbf{B} \cdot \nabla)\mathbf{A} \]

Cylindrical polar coordinates:

\[x = r \cos \theta, \quad y = r \sin \theta, \quad z = z, \quad dV = r \, dr \, d\theta \, dz \]
\[\nabla f = \left(\frac{\partial f}{\partial r}, \frac{1}{r} \frac{\partial f}{\partial \theta}, \frac{\partial f}{\partial z} \right) \]
\[\nabla \cdot \mathbf{A} = \frac{1}{r} \frac{\partial}{\partial r} (r A_r) + \frac{1}{r} \frac{\partial A_\theta}{\partial \theta} + \frac{\partial A_z}{\partial z} \]
\[\nabla \times \mathbf{A} = \left(\frac{1}{r} \frac{\partial}{\partial \theta} \left(\frac{1}{r} \frac{\partial A_z}{\partial \theta} \right) - \frac{1}{r^2} \frac{\partial A_z}{\partial r}, \frac{1}{r} \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial A_\theta}{\partial \theta} \right) - \frac{1}{r} \frac{\partial A_r}{\partial \theta} \right) \]
\[\nabla^2 f = \frac{1}{r} \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} + \frac{\partial^2 f}{\partial z^2} \]

Spherical polar coordinates:

\[x = r \sin \theta \cos \phi, \quad y = r \sin \theta \sin \phi, \quad z = z, \quad dV = r^2 \sin \theta \, dr \, d\theta \, d\phi \]
\[\nabla f = \left(\frac{\partial f}{\partial r}, \frac{1}{r} \frac{\partial f}{\partial \theta}, \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \right) \]
\[\nabla \cdot \mathbf{A} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 A_r) + \frac{1}{r} \frac{\partial}{\partial \theta} (\sin \theta A_\theta) + \frac{1}{r \sin \theta} \frac{\partial A_\phi}{\partial \phi} \]
\[(\nabla \times \mathbf{A})_r = \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta A_\phi) - \frac{1}{r \sin \theta} \frac{\partial A_\theta}{\partial \phi} \]
\[(\nabla \times \mathbf{A})_\theta = \frac{1}{r \sin \theta} \frac{\partial A_r}{\partial \phi} - \frac{1}{r} \frac{\partial (r A_\phi)}{\partial r} \]
\[(\nabla \times \mathbf{A})_z = \frac{1}{r} \frac{\partial (r A_\theta)}{\partial r} - \frac{1}{r \sin \theta} \frac{\partial A_r}{\partial \theta} \]
\[\nabla^2 f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(\frac{1}{r^2} \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \phi^2} \]
3 Time-independent Maxwell equations

3.1 Introduction

In this section, we shall take the familiar force laws of electrostatics and magnetostatics, and recast them as vector field equations.

3.2 Coulomb’s law

Between 1785 and 1787, the French physicist Charles Augustine de Coulomb performed a series of experiments involving electric charges, and eventually established what is nowadays known as Coulomb’s law. According to this law, the force acting between two electric charges is radial, inverse-square, and proportional to the product of the charges. Two like charges repel one another, whereas two unlike charges attract. Suppose that two charges, \(q_1 \) and \(q_2 \), are located at position vectors \(r_1 \) and \(r_2 \). The electrical force acting on the second charge is written

\[
f_2 = \frac{q_1 q_2}{4\pi \varepsilon_0} \frac{r_2 - r_1}{|r_2 - r_1|^3}
\]

(3.1)

in vector notation (see Fig. 24). An equal and opposite force acts on the first charge, in accordance with Newton’s third law of motion. The SI unit of electric charge is the coulomb (C). The magnitude of the charge on an electron is \(1.6022 \times 10^{-19} \) C. The universal constant \(\varepsilon_0 \) is called the permittivity of free space, and takes the value

\[
\varepsilon_0 = 8.8542 \times 10^{-12} \, \text{C}^2\text{N}^{-1}\text{m}^{-2}.
\]

(3.2)

Coulomb’s law has the same mathematical form as Newton’s law of gravity. Suppose that two masses, \(m_1 \) and \(m_2 \), are located at position vectors \(r_1 \) and \(r_2 \). The gravitational force acting on the second mass is written

\[
f_2 = -G \frac{m_1 m_2}{|r_2 - r_1|^3} (r_2 - r_1)
\]

(3.3)
in vector notation. The gravitational constant G takes the value

$$G = 6.6726 \times 10^{-11} \text{ N m}^2 \text{kg}^{-2}. \quad (3.4)$$

Coulomb’s law and Newton’s law are both inverse-square force laws: i.e.

$$|f_2| \propto \frac{1}{|r_2 - r_1|^2}. \quad (3.5)$$

However, they differ in two crucial respects. Firstly, the force due to gravity is always attractive (there is no such thing as a negative mass). Secondly, the magnitudes of the two forces are vastly different. Consider the ratio of the electrical and gravitational forces acting on two particles. This ratio is a constant, independent of the relative positions of the particles, and is given by

$$\frac{|f_{\text{electrical}}|}{|f_{\text{gravitational}}|} = \frac{q_1 q_2}{m_1 m_2} \frac{1}{4 \pi \varepsilon_0 G}. \quad (3.6)$$

For electrons, the charge to mass ratio is $q/m = 1.759 \times 10^{11} \text{ Ckg}^{-1}$, so

$$\frac{|f_{\text{electrical}}|}{|f_{\text{gravitational}}|} = 4.17 \times 10^{42}. \quad (3.7)$$

This is a colossal number! Suppose we are studying a physics problem involving the motion of particles in a box under the action of two forces with the same range, but differing in magnitude by a factor 10^{42}. It would seem a plausible approximation (to say the least) to start the investigation by neglecting the weaker
force. Applying this reasoning to the motion of particles in the Universe, we would expect the Universe to be governed entirely by electrical forces. However, this is not the case. The force which holds us to the surface of the Earth, and prevents us from floating off into space, is gravity. The force which causes the Earth to orbit the Sun is also gravity. In fact, on astronomical length-scales gravity is the dominant force, and electrical forces are largely irrelevant. The key to understanding this paradox is that there are both positive and negative electric charges, whereas there are only positive gravitational “charges.” This means that gravitational forces are always cumulative, whereas electrical forces can cancel one another out. Suppose, for the sake of argument, that the Universe starts out with randomly distributed electric charges. Initially, we expect electrical forces to completely dominate gravity. These forces try to make every positive charge get as far away as possible from the other positive charges, and as close as possible to the other negative charges. After a while, we expect the positive and negative charges to form close pairs. Just how close is determined by quantum mechanics, but, in general, it is pretty close: \(i.e., \) about \(10^{-10} \) m. The electrical forces due to the charges in each pair effectively cancel one another out on length-scales much larger than the mutual spacing of the pair. It is only possible for gravity to be the dominant long-range force if the number of positive charges in the Universe is almost equal to the number of negative charges. In this situation, every positive charge can find a negative charge to team up with, and there are virtually no charges left over. In order for the cancellation of long-range electrical forces to be effective, the relative difference in the number of positive and negative charges in the Universe must be incredibly small. In fact, positive and negative charges have to cancel each other out to such accuracy that most physicists believe that the net charge of the universe is \(exactly \) zero. But, it is not enough for the Universe to start out with zero charge. Suppose there were some elementary particle process which did not conserve electric charge. Even if this were to go on at a very low rate, it would not take long before the fine balance between positive and negative charges in the Universe was wrecked. So, it is important that electric charge is a \(conserved \) quantity \((i.e., \) the net charge of the Universe can neither increase or decrease). As far as we know, this is the case. To date, no elementary particle reactions have been discovered which create or destroy net electric charge.
In summary, there are two long-range forces in the Universe, electromagnetism and gravity. The former is enormously stronger than the latter, but is usually “hidden” away inside neutral atoms. The fine balance of forces due to negative and positive electric charges starts to break down on atomic scales. In fact, interatomic and intermolecular forces are all electrical in nature. So, electrical forces are basically what prevent us from falling though the floor. But, this is electromagnetism on the microscopic or atomic scale—what is usually termed quantum electromagnetism. This course is about classical electromagnetism. That is, electromagnetism on length-scales much larger than the atomic scale. Classical electromagnetism generally describes phenomena in which some sort of “violence” is done to matter, so that the close pairing of negative and positive charges is disrupted. This allows electrical forces to manifest themselves on macroscopic length-scales. Of course, very little disruption is necessary before gigantic forces are generated. It is no coincidence that the vast majority of useful machines which humankind has devised during the last century or so are electrical in nature.

Coulomb’s law and Newton’s law are both examples of what are usually referred to as action at a distance theories. According to Eqs. (3.1) and (3.3), if the first charge or mass is moved then the force acting on the second charge or mass immediately responds. In particular, equal and opposite forces act on the two charges or masses at all times. However, this cannot be correct according to Einstein’s theory of relativity, which implies that the maximum speed with which information can propagate through the Universe is the speed of light in vacuum. So, if the first charge or mass is moved then there must always be time delay (i.e., at least the time needed for a light signal to propagate between the two charges or masses) before the second charge or mass responds. Consider a rather extreme example. Suppose the first charge or mass is suddenly annihilated. The second charge or mass only finds out about this some time later. During this time interval, the second charge or mass experiences an electrical or gravitational force which is as if the first charge or mass were still there. So, during this period, there is an action but no reaction, which violates Newton’s third law of motion. It is clear that action at a distance is not compatible with relativity, and, consequently, that Newton’s third law of motion is not strictly true. Of course, Newton’s third
law is intimately tied up with the conservation of linear momentum in the Universe. This is a concept which most physicists are loath to abandon. It turns out that we can “rescue” momentum conservation by abandoning action at a distance theories, and instead adopting so-called field theories in which there is a medium, called a field, which transmits the force from one particle to another. In electromagnetism there are, in fact, two fields—the electric field, and the magnetic field. Electromagnetic forces are transmitted via these fields at the speed of light, which implies that the laws of relativity are never violated. Moreover, the fields can soak up energy and momentum. This means that even when the actions and reactions acting on particles are not quite equal and opposite, momentum is still conserved. We can bypass some of the problematic aspects of action at a distance by only considering steady-state situations. For the moment, this is how we shall proceed.

Consider N charges, \(q_1 \) through \(q_N \), which are located at position vectors \(\mathbf{r}_1 \) through \(\mathbf{r}_N \). Electrical forces obey what is known as the principle of superposition. The electrical force acting on a test charge \(q \) at position vector \(\mathbf{r} \) is simply the vector sum of all of the Coulomb law forces from each of the N charges taken in isolation. In other words, the electrical force exerted by the \(i \)th charge (say) on the test charge is the same as if all the other charges were not there. Thus, the force acting on the test charge is given by

\[
\mathbf{f}(\mathbf{r}) = q \sum_{i=1}^{N} \frac{q_i}{4\pi \varepsilon_0} \frac{\mathbf{r} - \mathbf{r}_i}{|\mathbf{r} - \mathbf{r}_i|^3}.
\]

(3.8)

It is helpful to define a vector field \(\mathbf{E}(\mathbf{r}) \), called the electric field, which is the force exerted on a unit test charge located at position vector \(\mathbf{r} \). So, the force on a test charge is written

\[
\mathbf{f} = q \mathbf{E},
\]

(3.9)

and the electric field is given by

\[
\mathbf{E}(\mathbf{r}) = \sum_{i=1}^{N} \frac{q_i}{4\pi \varepsilon_0} \frac{\mathbf{r} - \mathbf{r}_i}{|\mathbf{r} - \mathbf{r}_i|^3}.
\]

(3.10)

At this point, we have no reason to believe that the electric field has any real physical existence. It is just a useful device for calculating the force which acts on test charges placed at various locations.
The electric field from a single charge q located at the origin is purely radial, points outwards if the charge is positive, inwards if it is negative, and has magnitude

$$E_r(r) = \frac{q}{4\pi \varepsilon_0 r^2}, \quad (3.11)$$

where $r = |\mathbf{r}|$.

![Figure 25:](image)

We can represent an electric field by *field-lines*. The direction of the lines indicates the direction of the local electric field, and the density of the lines perpendicular to this direction is proportional to the magnitude of the local electric field. Thus, the field of a point positive charge is represented by a group of equally spaced straight lines radiating from the charge (see Fig. 25).

The electric field from a collection of charges is simply the vector sum of the fields from each of the charges taken in isolation. In other words, electric fields are completely *superposable*. Suppose that, instead of having discrete charges, we have a continuous distribution of charge represented by a *charge density* $\rho(\mathbf{r})$. Thus, the charge at position vector \mathbf{r}' is $\rho(\mathbf{r}') \, d^3 r'$, where $d^3 r'$ is the volume element at \mathbf{r}'. It follows from a simple extension of Eq. (3.10) that the electric field generated by this charge distribution is

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi \varepsilon_0} \int \rho(\mathbf{r}') \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3} \, d^3 r', \quad (3.12)$$

where the volume integral is over all space, or, at least, over all space for which $\rho(\mathbf{r}')$ is non-zero.
3.3 The electric scalar potential

Suppose that $\mathbf{r} = (x, y, z)$ and $\mathbf{r}' = (x', y', z')$ in Cartesian coordinates. The x component of $(\mathbf{r} - \mathbf{r}')/|\mathbf{r} - \mathbf{r}'|^3$ is written

$$\frac{x - x'}{[(x - x')^2 + (y - y')^2 + (z - z')^2]^{3/2}}.$$ \hspace{1cm} (3.13)

However, it is easily demonstrated that

$$\frac{x - x'}{[(x - x')^2 + (y - y')^2 + (z - z')^2]^{3/2}} = -\frac{\partial}{\partial x} \left(\frac{1}{[(x - x')^2 + (y - y')^2 + (z - z')^2]^{1/2}} \right).$$ \hspace{1cm} (3.14)

Since there is nothing special about the x-axis, we can write

$$\frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3} = -\nabla \left(\frac{1}{|\mathbf{r} - \mathbf{r}'|} \right),$$ \hspace{1cm} (3.15)

where $\nabla \equiv (\partial/\partial x, \partial/\partial y, \partial/\partial z)$ is a differential operator which involves the components of \mathbf{r} but not those of \mathbf{r}'. It follows from Eq. (3.12) that

$$\mathbf{E} = -\nabla \phi,$$ \hspace{1cm} (3.16)

where

$$\phi(\mathbf{r}) = \frac{1}{4\pi \varepsilon_0} \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d^3\mathbf{r}'.$$ \hspace{1cm} (3.17)

Thus, the electric field generated by a collection of fixed charges can be written as the gradient of a scalar potential, and this potential can be expressed as a simple volume integral involving the charge distribution.

The scalar potential generated by a charge q located at the origin is

$$\phi(\mathbf{r}) = \frac{q}{4\pi \varepsilon_0 |\mathbf{r}|}.$$ \hspace{1cm} (3.18)

According to Eq. (3.10), the scalar potential generated by a set of N discrete charges q_i, located at \mathbf{r}_i, is

$$\phi(\mathbf{r}) = \sum_{i=1}^{N} \phi_i(\mathbf{r}),$$ \hspace{1cm} (3.19)
3 TIME-INDEPENDENT MAXWELL EQUATIONS 3.3 The electric scalar potential

where

$$\phi_i(r) = \frac{q_i}{4\pi \varepsilon_0 |r - r_i|}.$$ \hspace{1cm} (3.20)

Thus, the scalar potential is just the sum of the potentials generated by each of the charges taken in isolation.

Suppose that a particle of charge \(q\) is taken along some path from point \(P\) to point \(Q\). The net work done on the particle by electrical forces is

$$W = \int_P^Q \mathbf{f} \cdot d\mathbf{l},$$ \hspace{1cm} (3.21)

where \(\mathbf{f}\) is the electrical force, and \(d\mathbf{l}\) is a line element along the path. Making use of Eqs. (3.9) and (3.16), we obtain

$$W = q \int_P^Q \mathbf{E} \cdot d\mathbf{l} = -q \int_P^Q \nabla \phi \cdot d\mathbf{l} = -q [\phi(Q) - \phi(P)].$$ \hspace{1cm} (3.22)

Thus, the work done on the particle is simply minus its charge times the difference in electric potential between the end point and the beginning point. This quantity is clearly independent of the path taken between \(P\) and \(Q\). So, an electric field generated by stationary charges is an example of a conservative field. In fact, this result follows immediately from vector field theory once we are told, in Eq. (3.16), that the electric field is the gradient of a scalar potential. The work done on the particle when it is taken around a closed loop is zero, so

$$\oint_C \mathbf{E} \cdot d\mathbf{l} = 0$$ \hspace{1cm} (3.23)

for any closed loop \(C\). This implies from Stokes’ theorem that

$$\nabla \times \mathbf{E} = 0$$ \hspace{1cm} (3.24)

for any electric field generated by stationary charges. Equation (3.24) also follows directly from Eq. (3.16), since \(\nabla \times \nabla \phi = 0\) for any scalar potential \(\phi\).

The SI unit of electric potential is the volt, which is equivalent to a joule per coulomb. Thus, according to Eq. (3.22), the electrical work done on a particle when it is taken between two points is the product of its charge and the voltage difference between the points.
We are familiar with the idea that a particle moving in a gravitational field possesses potential energy as well as kinetic energy. If the particle moves from point \(P \) to a lower point \(Q \) then the gravitational field does work on the particle causing its kinetic energy to increase. The increase in kinetic energy of the particle is balanced by an equal decrease in its potential energy, so that the overall energy of the particle is a conserved quantity. Therefore, the work done on the particle as it moves from \(P \) to \(Q \) is \textit{minus} the difference in its gravitational potential energy between points \(Q \) and \(P \). Of course, it only makes sense to talk about gravitational potential energy because the gravitational field is conservative. Thus, the work done in taking a particle between two points is path independent, and, therefore, well-defined. This means that the difference in potential energy of the particle between the beginning and end points is also well-defined. We have already seen that an electric field generated by stationary charges is a conservative field. It follows that we can define an electrical potential energy of a particle moving in such a field. By analogy with gravitational fields, the work done in taking a particle from point \(P \) to point \(Q \) is equal to minus the difference in potential energy of the particle between points \(Q \) and \(P \). It follows from Eq. (3.22), that the potential energy of the particle at a general point \(Q \), relative to some reference point \(P \) (where the potential energy is set to zero), is given by

\[
\mathcal{E}(Q) = q \phi(Q).
\]

Free particles try to move down gradients of potential energy, in order to attain a minimum potential energy state. Thus, free particles in the Earth's gravitational field tend to fall downwards. Likewise, positive charges moving in an electric field tend to migrate towards regions with the most negative voltage, and \textit{vice versa} for negative charges.

The scalar electric potential is undefined to an additive constant. So, the transformation

\[
\phi(r) \to \phi(r) + c
\]

leaves the electric field unchanged according to Eq. (3.16). The potential can be fixed unambiguously by specifying its value at a single point. The usual convention is to say that the potential is zero at infinity. This convention is implicit in Eq. (3.17), where it can be seen that \(\phi \to 0 \) as \(|r| \to \infty \), provided that the total charge \(\int \rho(r') \, d^3r' \) is finite.
3.4 Gauss’ law

Consider a single charge located at the origin. The electric field generated by such a charge is given by Eq. (3.11). Suppose that we surround the charge by a concentric spherical surface S of radius r (see Fig. 26). The flux of the electric field through this surface is given by

$$\oint_S \mathbf{E} \cdot d\mathbf{S} = \oint_S E_r \, dS_r = E_r(r) \, 4\pi \, r^2 = \frac{q}{4\pi \varepsilon_0} \, 4\pi \, r^2 = \frac{q}{\varepsilon_0},$$

(3.27)

since the normal to the surface is always parallel to the local electric field. However, we also know from Gauss’ theorem that

$$\oint_S \mathbf{E} \cdot d\mathbf{S} = \int_V \nabla \cdot \mathbf{E} \, d^3r,$$

(3.28)

where V is the volume enclosed by surface S. Let us evaluate $\nabla \cdot \mathbf{E}$ directly. In Cartesian coordinates, the field is written

$$\mathbf{E} = \frac{q}{4\pi \varepsilon_0} \left(\frac{x}{r^3}, \frac{y}{r^3}, \frac{z}{r^3} \right),$$

(3.29)

where $r^2 = x^2 + y^2 + z^2$. So,

$$\frac{\partial E_x}{\partial x} = \frac{q}{4\pi \varepsilon_0} \left(\frac{1}{r^3} - \frac{3}{r^4} \frac{x}{r^2} \right) = \frac{q}{4\pi \varepsilon_0} \frac{r^2 - 3x^2}{r^5}.$$

(3.30)

Here, use has been made of

$$\frac{\partial r}{\partial x} = \frac{x}{r},$$

(3.31)
Formulae analogous to Eq. (3.30) can be obtained for $\partial E_y/\partial y$ and $\partial E_z/\partial z$. The divergence of the field is thus given by

$$\nabla \cdot E = \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} = \frac{q}{4\pi \varepsilon_0} \left(\frac{3r^2 - 3x^2 - 3y^2 - 3z^2}{r^5} \right) = 0. \quad (3.32)$$

This is a puzzling result! We have from Eqs. (3.27) and (3.28) that

$$\nabla \cdot E \cdot d^3r = \frac{q}{\varepsilon_0}, \quad (3.33)$$

and yet we have just proved that $\nabla \cdot E = 0$. This paradox can be resolved after a close examination of Eq. (3.32). At the origin ($r = 0$) we find that $\nabla \cdot E = 0/0$, which means that $\nabla \cdot E$ can take any value at this point. Thus, Eqs. (3.32) and (3.33) can be reconciled if $\nabla \cdot E$ is some sort of “spike” function: *i.e.*, it is zero everywhere except arbitrarily close to the origin, where it becomes very large. This must occur in such a manner that the volume integral over the spike is finite.

Let us examine how we might construct a one-dimensional spike function. Consider the “box-car” function

$$g(x, \epsilon) = \begin{cases}
1/\epsilon & \text{for } |x| < \epsilon/2 \\
0 & \text{otherwise}
\end{cases} \quad (3.34)$$

(see Fig. 27). It is clear that

$$\int_{-\infty}^{\infty} g(x, \epsilon) \, dx = 1. \quad (3.35)$$
Now consider the function

$$\delta(x) = \lim_{\epsilon \to 0} g(x, \epsilon). \quad (3.36)$$

This is zero everywhere except arbitrarily close to \(x = 0\). According to Eq. (3.35), it also possess a finite integral;

$$\int_{-\infty}^{\infty} \delta(x) \, dx = 1. \quad (3.37)$$

Thus, \(\delta(x)\) has all of the required properties of a spike function. The one-dimensional spike function \(\delta(x)\) is called the Dirac delta-function after the Cambridge physicist Paul Dirac who invented it in 1927 while investigating quantum mechanics. The delta-function is an example of what mathematicians call a generalized function: it is not well-defined at \(x = 0\), but its integral is nevertheless well-defined. Consider the integral

$$\int_{-\infty}^{\infty} f(x) \, \delta(x) \, dx, \quad (3.38)$$

where \(f(x)\) is a function which is well-behaved in the vicinity of \(x = 0\). Since the delta-function is zero everywhere apart from very close to \(x = 0\), it is clear that

$$\int_{-\infty}^{\infty} f(x) \, \delta(x) \, dx = f(0) \int_{-\infty}^{\infty} \delta(x) \, dx = f(0), \quad (3.39)$$

where use has been made of Eq. (3.37). The above equation, which is valid for any well-behaved function, \(f(x)\), is effectively the definition of a delta-function. A simple change of variables allows us to define \(\delta(x-x_0)\), which is a spike function centred on \(x = x_0\). Equation (3.39) gives

$$\int_{-\infty}^{\infty} f(x) \, \delta(x-x_0) \, dx = f(x_0). \quad (3.40)$$

We actually want a three-dimensional spike function: \(i.e.,\) a function which is zero everywhere apart from arbitrarily close to the origin, and whose volume integral is unity. If we denote this function by \(\delta(r)\) then it is easily seen that the three-dimensional delta-function is the product of three one-dimensional delta-functions:

$$\delta(r) = \delta(x) \, \delta(y) \, \delta(z). \quad (3.41)$$
This function is clearly zero everywhere except the origin. But is its volume integral unity? Let us integrate over a cube of dimensions $2a$ which is centred on the origin, and aligned along the Cartesian axes. This volume integral is obviously separable, so that

$$\int \delta(\mathbf{r}) \, d^3\mathbf{r} = \int_{-a}^{a} \delta(x) \, dx \int_{-a}^{a} \delta(y) \, dy \int_{-a}^{a} \delta(z) \, dz. \quad (3.42)$$

The integral can be turned into an integral over all space by taking the limit $a \to \infty$. However, we know that for one-dimensional delta-functions $\int_{-\infty}^{\infty} \delta(x) \, dx = 1$, so it follows from the above equation that

$$\int \delta(\mathbf{r}) \, d^3\mathbf{r} = 1, \quad (3.43)$$

which is the desired result. A simple generalization of previous arguments yields

$$\int f(\mathbf{r}) \delta(\mathbf{r}) \, d^3\mathbf{r} = f(0), \quad (3.44)$$

where $f(\mathbf{r})$ is any well-behaved scalar field. Finally, we can change variables and write

$$\delta(\mathbf{r} - \mathbf{r}') = \delta(x - x') \delta(y - y') \delta(z - z'), \quad (3.45)$$

which is a three-dimensional spike function centred on $\mathbf{r} = \mathbf{r}'$. It is easily demonstrated that

$$\int f(\mathbf{r}) \delta(\mathbf{r} - \mathbf{r}') \, d^3\mathbf{r} = f(\mathbf{r}'). \quad (3.46)$$

Up to now, we have only considered volume integrals taken over all space. However, it should be obvious that the above result also holds for integrals over any finite volume V which contains the point $\mathbf{r} = \mathbf{r}'$. Likewise, the integral is zero if V does not contain $\mathbf{r} = \mathbf{r}'$.

Let us now return to the problem in hand. The electric field generated by a charge q located at the origin has $\nabla \cdot \mathbf{E} = 0$ everywhere apart from the origin, and also satisfies

$$\int_V \nabla \cdot \mathbf{E} \, d^3\mathbf{r} = \frac{q}{\varepsilon_0} \quad (3.47)$$
for a spherical volume V centered on the origin. These two facts imply that

$$\nabla \cdot \mathbf{E} = \frac{q}{\varepsilon_0} \delta(r), \quad (3.48)$$

where use has been made of Eq. (3.43).

At this stage, vector field theory has yet to show its worth.. After all, we have just spent an inordinately long time proving something using vector field theory which we previously proved in one line [see Eq. (3.27)] using conventional analysis. It is time to demonstrate the power of vector field theory. Consider, again, a charge q at the origin surrounded by a spherical surface S which is centered on the origin. Suppose that we now displace the surface S, so that it is no longer centered on the origin. What is the flux of the electric field out of S? This is not a simple problem for conventional analysis, because the normal to the surface is no longer parallel to the local electric field. However, using vector field theory this problem is no more difficult than the previous one. We have

$$\oint_S \mathbf{E} \cdot d\mathbf{S} = \int_V \nabla \cdot \mathbf{E} \, d^3r \quad (3.49)$$

from Gauss’ theorem, plus Eq. (3.48). From these equations, it is clear that the flux of \mathbf{E} out of S is q/ε_0 for a spherical surface displaced from the origin. However, the flux becomes zero when the displacement is sufficiently large that the origin is no longer enclosed by the sphere. It is possible to prove this via conventional analysis, but it is certainly not easy. Suppose that the surface S is not spherical but is instead highly distorted. What now is the flux of \mathbf{E} out of S? This is a virtually impossible problem in conventional analysis, but it is still easy using vector field theory. Gauss’ theorem and Eq. (3.48) tell us that the flux is q/ε_0 provided that the surface contains the origin, and that the flux is zero otherwise. This result is completely independent of the shape of S.

Consider N charges q_i located at \mathbf{r}_i. A simple generalization of Eq. (3.48) gives

$$\nabla \cdot \mathbf{E} = \sum_{i=1}^{N} \frac{q_i}{\varepsilon_0} \delta(\mathbf{r} - \mathbf{r}_i). \quad (3.50)$$

Thus, Gauss’ theorem (3.49) implies that

$$\oint_S \mathbf{E} \cdot d\mathbf{S} = \int_V \nabla \cdot \mathbf{E} \, d^3r = \frac{Q}{\varepsilon_0}, \quad (3.51)$$
where Q is the total charge enclosed by the surface S. This result is called Gauss’ law, and does not depend on the shape of the surface.

Suppose, finally, that instead of having a set of discrete charges, we have a continuous charge distribution described by a charge density $\rho(r)$. The charge contained in a small rectangular volume of dimensions dx, dy, and dz located at position r is $Q = \rho(r) \, dx \, dy \, dz$. However, if we integrate $\nabla \cdot E$ over this volume element we obtain

$$\nabla \cdot E \, dx \, dy \, dz = \frac{Q}{\varepsilon_0} = \frac{\rho \, dx \, dy \, dz}{\varepsilon_0}, \quad (3.52)$$

where use has been made of Eq. (3.51). Here, the volume element is assumed to be sufficiently small that $\nabla \cdot E$ does not vary significantly across it. Thus, we obtain

$$\nabla \cdot E = \frac{\rho}{\varepsilon_0}. \quad (3.53)$$

This is the first of four field equations, called Maxwell’s equations, which together form a complete description of electromagnetism. Of course, our derivation of Eq. (3.53) is only valid for electric fields generated by stationary charge distributions. In principle, additional terms might be required to describe fields generated by moving charge distributions. However, it turns out that this is not the case, and that Eq. (3.53) is universally valid.

Equation (3.53) is a differential equation describing the electric field generated by a set of charges. We already know the solution to this equation when the charges are stationary: it is given by Eq. (3.12),

$$E(r) = \frac{1}{4\pi \varepsilon_0} \int \rho(r') \frac{r - r'}{|r - r'|^3} \, d^3r'. \quad (3.54)$$

Equations (3.53) and (3.54) can be reconciled provided

$$\nabla \cdot \left(\frac{r - r'}{|r - r'|^3} \right) = -\nabla^2 \left(\frac{1}{|r - r'|} \right) = 4\pi \delta(r - r'), \quad (3.55)$$

where use has been made of Eq. (3.15). It follows that

$$\nabla \cdot E(r) = \frac{1}{4\pi \varepsilon_0} \int \rho(r') \nabla \cdot \left(\frac{r - r'}{|r - r'|^3} \right) \, d^3r'$$
\[\frac{\rho(r')}{\epsilon_0} \delta(r - r') \, d^3r' = \frac{\rho(r)}{\epsilon_0}, \quad (3.56)\]

which is the desired result. The most general form of Gauss’ law, Eq. (3.51), is obtained by integrating Eq. (3.53) over a volume \(V\) surrounded by a surface \(S\), and making use of Gauss’ theorem:

\[\oint_S \mathbf{E} \cdot d\mathbf{S} = \frac{1}{\epsilon_0} \int_V \rho(r) \, d^3r. \quad (3.57)\]

One particularly interesting application of Gauss’ law is Earnshaw’s theorem, which states that it is impossible for a collection of charged particles to remain in static equilibrium solely under the influence of electrostatic forces. For instance, consider the motion of the \(i\)th particle in the electric field, \(\mathbf{E}\), generated by all of the other static particles. The equilibrium position of the \(i\)th particle corresponds to some point \(r_i\), where \(\mathbf{E}(r_i) = 0\). By implication, \(r_i\) does not correspond to the equilibrium position of any other particle. However, in order for \(r_i\) to be a stable equilibrium point, the particle must experience a restoring force when it is moved a small distance away from \(r_i\) in any direction. Assuming that the \(i\)th particle is positively charged, this means that the electric field must point radially towards \(r_i\) at all neighbouring points. Hence, if we apply Gauss’ law to a small sphere centred on \(r_i\), then there must be a negative flux of \(\mathbf{E}\) through the surface of the sphere, implying the presence of a negative charge at \(r_i\). However, there is no such charge at \(r_i\). Hence, we conclude that \(\mathbf{E}\) cannot point radially towards \(r_i\) at all neighbouring points. In other words, there must be some neighbouring points at which \(\mathbf{E}\) is directed away from \(r_i\). Hence, a positively charged particle placed at \(r_i\) can always escape by moving to such points. One corollary of Earnshaw’s theorem is that classical electrostatics cannot account for the stability of atoms and molecules.

3.5 Poisson’s equation

We have seen that the electric field generated by a set of stationary charges can be written as the gradient of a scalar potential, so that

\[\mathbf{E} = -\nabla \phi. \quad (3.58)\]
This equation can be combined with the field equation (3.53) to give a partial
differential equation for the scalar potential:
\[\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}. \]
(3.59)

This is an example of a very famous type of partial differential equation known as Poisson’s equation.

In its most general form, Poisson’s equation is written
\[\nabla^2 u = v, \]
(3.60)
where \(u(\mathbf{r}) \) is some scalar potential which is to be determined, and \(v(\mathbf{r}) \) is a known “source function.” The most common boundary condition applied to this equation is that the potential \(u \) is zero at infinity. The solutions to Poisson’s equation are completely superposable. Thus, if \(u_1 \) is the potential generated by the source function \(v_1 \), and \(u_2 \) is the potential generated by the source function \(v_2 \), so that
\[\nabla^2 u_1 = v_1, \quad \nabla^2 u_2 = v_2, \]
(3.61)
then the potential generated by \(v_1 + v_2 \) is \(u_1 + u_2 \), since
\[\nabla^2 (u_1 + u_2) = \nabla^2 u_1 + \nabla^2 u_2 = v_1 + v_2. \]
(3.62)
Poisson’s equation has this property because it is linear in both the potential and the source term.

The fact that the solutions to Poisson’s equation are superposable suggests a general method for solving this equation. Suppose that we could construct all of the solutions generated by point sources. Of course, these solutions must satisfy the appropriate boundary conditions. Any general source function can be built up out of a set of suitably weighted point sources, so the general solution of Poisson’s equation must be expressible as a weighted sum over the point source solutions. Thus, once we know all of the point source solutions we can construct any other solution. In mathematical terminology, we require the solution to
\[\nabla^2 G(\mathbf{r}, \mathbf{r}’) = \delta(\mathbf{r} - \mathbf{r}’) \]
(3.63)
which goes to zero as \(|\mathbf{r}| \to \infty \). The function \(G(\mathbf{r}, \mathbf{r}’) \) is the solution generated by a unit point source located at position \(\mathbf{r}’ \). This function is known to mathematicians.
as a Green’s function. The solution generated by a general source function \(v(r) \) is simply the appropriately weighted sum of all of the Green’s function solutions:

\[
u(r) = \int G(r, r') \, v(r') \, d^3r'. \tag{3.64}\]

We can easily demonstrate that this is the correct solution:

\[
\nabla^2 u(r) = \int \left[\nabla^2 G(r, r') \right] \, v(r') \, d^3r' = \int \delta(r - r') \, v(r') \, d^3r' = v(r). \tag{3.65}
\]

Let us return to Eq. (3.59):

\[
\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}. \tag{3.66}
\]

The Green’s function for this equation satisfies Eq. (3.63) with \(|G| \to \infty \) as \(|r| \to 0 \). It follows from Eq. (3.55) that

\[
G(r, r') = -\frac{1}{4\pi |r - r'|}. \tag{3.67}
\]

Note, from Eq. (3.20), that the Green’s function has the same form as the potential generated by a point charge. This is hardly surprising, given the definition of a Green’s function. It follows from Eq. (3.64) and (3.67) that the general solution to Poisson’s equation, (3.66), is written

\[
\phi(r) = \frac{1}{4\pi \varepsilon_0} \int \frac{\rho(r')}{|r - r'|} \, d^3r'. \tag{3.68}
\]

In fact, we have already obtained this solution by another method [see Eq. (3.17)].

3.6 Ampère’s experiments

As legend has it, in 1820 the Danish physicist Hans Christian Ørsted was giving a lecture demonstration of various electrical and magnetic effects. Suddenly, much to his surprise, he noticed that the needle of a compass he was holding was deflected when he moved it close to a current carrying wire. Up until
then, magnetism has been thought of as solely a property of some rather unusual rocks called loadstones. Word of this discovery spread quickly along the scientific grapevine, and the French physicist Andre Marie Ampère immediately decided to investigate further. Ampère’s apparatus consisted (essentially) of a long straight wire carrying an electric current I. Ampère quickly discovered that the needle of a small compass maps out a series of concentric circular loops in the plane perpendicular to a current carrying wire (see Fig. 28). The direction of circulation around these magnetic loops is conventionally taken to be the direction in which the North pole of the compass needle points. Using this convention, the circulation of the loops is given by a right-hand rule: if the thumb of the right-hand points along the direction of the current then the fingers of the right-hand circulate in the same sense as the magnetic loops.

Ampère’s next series of experiments involved bringing a short test wire, carrying a current I', close to the original wire, and investigating the force exerted on the test wire (see Fig. 29). This experiment is not quite as clear cut as Coulomb’s experiment because, unlike electric charges, electric currents cannot exist as point entities—they have to flow in complete circuits. We must imagine that the circuit which connects with the central wire is sufficiently far away that it has no appreciable influence on the outcome of the experiment. The circuit which connects with the test wire is more problematic. Fortunately, if the feed wires are twisted around each other, as indicated in Fig. 29, then they effectively cancel one another out, and also do not influence the outcome of the experiment.
Ampère discovered that the force exerted on the test wire is directly proportional to its length. He also made the following observations. If the current in the test wire (i.e., the test current) flows parallel to the current in the central wire then the two wires attract one another. If the current in the test wire is reversed then the two wires repel one another. If the test current points radially towards the central wire (and the current in the central wire flows upwards) then the test wire is subject to a downwards force. If the test current is reversed then the force is upwards. If the test current is rotated in a single plane, so that it starts parallel to the central current and ends up pointing radially towards it, then the force on the test wire is of constant magnitude, and is always at right-angles to the test current. If the test current is parallel to a magnetic loop then there is no force exerted on the test wire. If the test current is rotated in a single plane, so that it starts parallel to the central current and ends up pointing along a magnetic loop, then the magnitude of the force on the test wire attenuates like \(\cos \theta \) (where \(\theta \) is the angle the current is turned through—\(\theta = 0 \) corresponds to the case where the test current is parallel to the central current), and its direction is again always at right-angles to the test current. Finally, Ampère was able to establish that the attractive force between two parallel current carrying wires is proportional to the product of the two currents, and falls off like the inverse of the perpendicular distance between the wires.

This rather complicated force law can be summed up succinctly in vector notation provided that we define a vector field \(\mathbf{B} \), called the \textit{magnetic field}, whose direction is always parallel to the loops mapped out by a small compass. The de-
dependence of the force per unit length, F, acting on a test wire with the different possible orientations of the test current is described by

$$F = I' \times B,$$

(3.69)

where I' is a vector whose direction and magnitude are the same as those of the test current. Incidentally, the SI unit of electric current is the ampere (A), which is the same as a coulomb per second. The SI unit of magnetic field-strength is the tesla (T), which is the same as a newton per ampere per meter. The variation of the force per unit length acting on a test wire with the strength of the central current and the perpendicular distance r to the central wire is summed up by saying that the magnetic field-strength is proportional to I and inversely proportional to r. Thus, defining cylindrical polar coordinates aligned along the axis of the central current, we have

$$B_\theta = \frac{\mu_0 I}{2\pi r},$$

(3.70)

with $B_r = B_z = 0$. The constant of proportionality μ_0 is called the permeability of free space, and takes the value

$$\mu_0 = 4\pi \times 10^{-7} \text{ N A}^{-2}.$$

(3.71)

The concept of a magnetic field allows the calculation of the force on a test wire to be conveniently split into two parts. In the first part, we calculate the magnetic field generated by the current flowing in the central wire. This field circulates in the plane normal to the wire: its magnitude is proportional to the central current, and inversely proportional to the perpendicular distance from the wire. In the second part, we use Eq. (3.69) to calculate the force per unit length acting on a short current carrying wire located in the magnetic field generated by the central current. This force is perpendicular to both the magnetic field and the direction of the test current. Note that, at this stage, we have no reason to suppose that the magnetic field has any real physical existence. It is introduced merely to facilitate the calculation of the force exerted on the test wire by the central wire.
3.7 The Lorentz force

The flow of an electric current down a conducting wire is ultimately due to the motion of electrically charged particles (in most cases, electrons) through the conducting medium. It seems reasonable, therefore, that the force exerted on the wire when it is placed in a magnetic field is really the resultant of the forces exerted on these moving charges. Let us suppose that this is the case.

Let \(A \) be the (uniform) cross-sectional area of the wire, and let \(n \) be the number density of mobile charges in the conductor. Suppose that the mobile charges each have charge \(q \) and velocity \(\mathbf{v} \). We must assume that the conductor also contains stationary charges, of charge \(-q\) and number density \(n \) (say), so that the net charge density in the wire is zero. In most conductors, the mobile charges are electrons and the stationary charges are atomic nuclei. The magnitude of the electric current flowing through the wire is simply the number of coulombs per second which flow past a given point. In one second, a mobile charge moves a distance \(\mathbf{v} \), so all of the charges contained in a cylinder of cross-sectional area \(A \) and length \(\mathbf{v} \) flow past a given point. Thus, the magnitude of the current is \(q n A \mathbf{v} \). The direction of the current is the same as the direction of motion of the charges, so the vector current is \(\mathbf{I}' = q n A \mathbf{v} \). According to Eq. (3.69), the force per unit length acting on the wire is

\[
\mathbf{F} = q n A \mathbf{v} \times \mathbf{B}.
\]

(3.72)

However, a unit length of the wire contains \(nA \) moving charges. So, assuming that each charge is subject to an equal force from the magnetic field (we have no reason to suppose otherwise), the force acting on an individual charge is

\[
\mathbf{f} = q \mathbf{v} \times \mathbf{B}.
\]

(3.73)

We can combine this with Eq. (3.9) to give the force acting on a charge \(q \) moving with velocity \(\mathbf{v} \) in an electric field \(\mathbf{E} \) and a magnetic field \(\mathbf{B} \):

\[
\mathbf{f} = q \mathbf{E} + q \mathbf{v} \times \mathbf{B}.
\]

(3.74)

This is called the Lorentz force law, after the Dutch physicist Hendrik Antoon Lorentz who first formulated it. The electric force on a charged particle is parallel
to the local electric field. The magnetic force, however, is perpendicular to both the local magnetic field and the particle’s direction of motion. No magnetic force is exerted on a stationary charged particle.

The equation of motion of a free particle of charge q and mass m moving in electric and magnetic fields is

$$m \frac{d\mathbf{v}}{dt} = q \mathbf{E} + q \mathbf{v} \times \mathbf{B}, \quad (3.75)$$

according to the Lorentz force law. This equation of motion was first verified in a famous experiment carried out by the Cambridge physicist J.J. Thompson in 1897. Thompson was investigating cathode rays, a then mysterious form of radiation emitted by a heated metal element held at a large negative voltage (i.e., a cathode) with respect to another metal element (i.e., an anode) in an evacuated tube. German physicists held that cathode rays were a form of electromagnetic radiation, whilst British and French physicists suspected that they were, in reality, a stream of charged particles. Thompson was able to demonstrate that the latter view was correct. In Thompson’s experiment, the cathode rays passed through a region of “crossed” electric and magnetic fields (still in vacuum). The fields were perpendicular to the original trajectory of the rays, and were also mutually perpendicular.

Let us analyze Thompson’s experiment. Suppose that the rays are originally traveling in the x-direction, and are subject to a uniform electric field E in the z-direction and a uniform magnetic field B in the $-y$-direction. Let us assume, as Thompson did, that cathode rays are a stream of particles of mass m and charge q. The equation of motion of the particles in the z-direction is

$$m \frac{d^2z}{dt^2} = q (E - vB), \quad (3.76)$$

where v is the velocity of the particles in the x-direction. Thompson started off his experiment by only turning on the electric field in his apparatus, and measuring the deflection d of the ray in the z-direction after it had traveled a distance l through the electric field. It is clear from the equation of motion that

$$d = \frac{qE t^2}{m} = \frac{qE l^2}{m2v^2}, \quad (3.77)$$
where the “time of flight” t is replaced by l/v. This formula is only valid if $d \ll l$, which is assumed to be the case. Next, Thompson turned on the magnetic field in his apparatus, and adjusted it so that the cathode ray was no longer deflected. The lack of deflection implies that the net force on the particles in the z-direction was zero. In other words, the electric and magnetic forces balanced exactly. It follows from Eq. (3.76) that with a properly adjusted magnetic field strength

$$v = \frac{E}{B}. \quad (3.78)$$

Thus, Eqs. (3.77) and (3.78) and can be combined and rearranged to give the charge to mass ratio of the particles in terms of measured quantities:

$$\frac{q}{m} = \frac{2 d E}{l^2 B^2}. \quad (3.79)$$

Using this method, Thompson inferred that cathode rays were made up of negatively charged particles (the sign of the charge is obvious from the direction of the deflection in the electric field) with a charge to mass ratio of -1.7×10^{11} C/kg. A decade later, in 1908, the American Robert Millikan performed his famous “oil drop” experiment, and discovered that mobile electric charges are quantized in units of -1.6×10^{-19} C. Assuming that mobile electric charges and the particles which make up cathode rays are one and the same thing, Thompson’s and Millikan’s experiments imply that the mass of these particles is 9.4×10^{-31} kg. Of course, this is the mass of an electron (the modern value is 9.1×10^{-31} kg), and -1.6×10^{-19} C is the charge of an electron. Thus, cathode rays are, in fact, streams of electrons which are emitted from a heated cathode, and then accelerated because of the large voltage difference between the cathode and anode.

Consider, now, a particle of mass m and charge q moving in a uniform magnetic field, $B = B \hat{z}$. According, to Eq. (3.75), the particle’s equation of motion can be written:

$$m \frac{dv}{dt} = q v \times B. \quad (3.80)$$

This reduces to

$$\frac{dv_x}{dt} = \Omega v_y, \quad (3.81)$$
Here, $\Omega = q B / m$ is called the *cyclotron frequency*. The above equations can be solved to give

$$v_x = v_\perp \cos(\Omega t), \quad (3.84)$$
$$v_y = -v_\perp \sin(\Omega t), \quad (3.85)$$
$$v_z = v_{||}, \quad (3.86)$$

and

$$x = \frac{v_\perp}{\Omega} \sin(\Omega t), \quad (3.87)$$
$$y = v_\perp \cos(\Omega t), \quad (3.88)$$
$$z = v_{||} t. \quad (3.89)$$

According to these equations, the particle trajectory is a spiral whose axis is parallel to the magnetic field. The radius of the spiral is $\rho = v_\perp / \Omega$, where v_\perp is the particle's constant speed in the plane perpendicular to the magnetic field. The particle drifts parallel to the magnetic field at a constant velocity, $v_{||}$. Finally, the particle gyrates in the plane perpendicular to the magnetic field at the cyclotron frequency.

Finally, if a particle is subject to a force \mathbf{f} and moves a distance $\delta \mathbf{r}$ in a time interval δt, then the work done on the particle by the force is

$$\delta W = \mathbf{f} \cdot \delta \mathbf{r}. \quad (3.90)$$

The power input to the particle from the force field is

$$P = \lim_{\delta t \to 0} \frac{\delta W}{\delta t} = \mathbf{f} \cdot \mathbf{v}, \quad (3.91)$$

where \mathbf{v} is the particle's velocity. It follows from the Lorentz force law, Eq. (3.74), that the power input to a particle moving in electric and magnetic fields is

$$P = q \mathbf{v} \cdot \mathbf{E}. \quad (3.92)$$
Note that a charged particle can gain (or lose) energy from an electric field, but not from a magnetic field. This is because the magnetic force is always perpendicular to the particle's direction of motion, and, therefore, does no work on the particle [see Eq. (3.90)]. Thus, in particle accelerators, magnetic fields are often used to guide particle motion (e.g., in a circle) but the actual acceleration is performed by electric fields.

3.8 Ampère’s law

Magnetic fields, like electric fields, are completely superposable. So, if a field \(B_1 \) is generated by a current \(I_1 \) flowing through some circuit, and a field \(B_2 \) is generated by a current \(I_2 \) flowing through another circuit, then when the currents \(I_1 \) and \(I_2 \) flow through both circuits simultaneously the generated magnetic field is \(B_1 + B_2 \).

![Figure 30:](image)

Consider two parallel wires separated by a perpendicular distance \(r \) and carrying electric currents \(I_1 \) and \(I_2 \), respectively (see Fig. 30). The magnetic field strength at the second wire due to the current flowing in the first wire is \(B = \mu_0 I_1 / 2\pi r \). This field is orientated at right-angles to the second wire, so the force per unit length exerted on the second wire is

\[
F = \frac{\mu_0 I_1 I_2}{2\pi r}. \tag{3.93}
\]

This follows from Eq. (3.69), which is valid for continuous wires as well as short test wires. The force acting on the second wire is directed radially inwards to-
wards the first wire. The magnetic field strength at the first wire due to the current flowing in the second wire is \(B = \frac{\mu_0 I_2}{2\pi r} \). This field is orientated at right-angles to the first wire, so the force per unit length acting on the first wire is equal and opposite to that acting on the second wire, according to Eq. (3.69). Equation (3.93) is sometimes called Ampère’s law, and is clearly another example of an action at a distance law: \textit{i.e.}, if the current in the first wire is suddenly changed then the force on the second wire immediately adjusts. In reality, there should be a short time delay, at least as long as the propagation time for a light signal between the two wires. Clearly, Ampère’s law is not strictly correct. However, as long as we restrict our investigations to \textit{steady} currents it is perfectly adequate.

3.9 Magnetic monopoles?

Suppose that we have an infinite straight wire carrying an electric current \(I \). Let the wire be aligned along the \(z \)-axis. The magnetic field generated by such a wire is written

\[
B = \frac{\mu_0 I}{2\pi} \left(\frac{-y}{r^2}, \frac{x}{r^2}, 0 \right)
\]

in Cartesian coordinates, where \(r = \sqrt{x^2 + y^2} \). The divergence of this field is

\[
\nabla \cdot B = \frac{\mu_0 I}{2\pi} \left(\frac{2y}{r^4} \frac{x}{r^4} - \frac{2x}{r^4} \frac{y}{r^4} \right) = 0,
\]

where use has been made of \(\frac{\partial r}{\partial x} = x/r \), \textit{etc.} We saw in Sect. 3.4 that the divergence of the electric field appeared, at first sight, to be zero. But, in reality, it was a delta-function, because the volume integral of \(\nabla \cdot E \) was non-zero. Does the same sort of thing happen for the divergence of the magnetic field? Well, if we could find a closed surface \(S \) for which \(\int_S B \cdot dS \neq 0 \) then, according to Gauss’ theorem, \(\int_V \nabla \cdot B \, dV \neq 0 \), where \(V \) is the volume enclosed by \(S \). This would certainly imply that \(\nabla \cdot B \) is some sort of delta-function. So, can we find such a surface? The short answer is, no. Consider a cylindrical surface aligned with the wire. The magnetic field is everywhere tangential to the outward surface element, so this surface certainly has zero magnetic flux coming out of it. In fact,
it is impossible to invent any closed surface for which $\oint_S \mathbf{B} \cdot d\mathbf{S} \neq 0$ with \mathbf{B} given by Eq. (3.94) (if you do not believe this, try it yourselves!). This suggests that the divergence of a magnetic field generated by steady electric currents really is zero. Admittedly, we have only proved this for infinite straight currents, but, as will be demonstrated presently, it is true in general.

If $\nabla \cdot \mathbf{B} = 0$ then \mathbf{B} is a solenoidal vector field. In other words, field-lines of \mathbf{B} never begin or end. This is certainly the case in Eq. (3.94) where the field-lines are a set of concentric circles centred on the z-axis. What about magnetic fields generated by permanent magnets (the modern equivalent of lodestones)? Do they also never begin or end? Well, we know that a conventional bar magnet has both a North and South magnetic pole (like the Earth). If we track the magnetic field-lines with a small compass they all emanate from the South pole, spread out, and eventually reconverge on the North pole (see Fig. 31). It appears likely (but we cannot prove it with a compass) that the field-lines inside the magnet connect from the North to the South pole so as to form closed loops which never begin or end.

![Figure 31: Magnetic field lines of a bar magnet](image)

Can we produce an isolated North or South magnetic pole: for instance, by snapping a bar magnet in two? A compass needle would always point towards an isolated North pole, so this would act like a negative “magnetic charge.” Likewise, a compass needle would always point away from an isolated South pole, so this would act like a positive “magnetic charge.” It is clear from Fig. 32 that if we take a closed surface S containing an isolated magnetic pole, which is usu-
ally termed a magnetic monopole, then \(\oint_S \mathbf{B} \cdot d\mathbf{S} \neq 0 \): the flux will be positive for an isolated South pole, and negative for an isolated North pole. It follows from Gauss’ theorem that if \(\oint_S \mathbf{B} \cdot d\mathbf{S} \neq 0 \) then \(\nabla \cdot \mathbf{B} \neq 0 \). Thus, the statement that magnetic fields are solenoidal, or that \(\nabla \cdot \mathbf{B} = 0 \), is equivalent to the statement that there are no magnetic monopoles. It is not clear, a priori, that this is a true statement. In fact, it is quite possible to formulate electromagnetism so as to allow for magnetic monopoles. However, as far as we know, there are no magnetic monopoles in the Universe. At least, if there are any then they are all hiding from us! We know that if we try to make a magnetic monopole by snapping a bar magnet in two then we just end up with two smaller bar magnets. If we snap one of these smaller magnets in two then we end up with two even smaller bar magnets. We can continue this process down to the atomic level without ever producing a magnetic monopole. In fact, permanent magnetism is generated by electric currents circulating on the atomic scale, so this type of magnetism is not fundamentally different to the magnetism generated by macroscopic currents.

In conclusion, all steady magnetic fields in the Universe are generated by circulating electric currents of some description. Such fields are solenoidal: that is, they never begin or end, and satisfy the field equation

\[
\nabla \cdot \mathbf{B} = 0.
\]

This, incidentally, is the second of Maxwell’s equations. Essentially, it says that there is no such thing as a magnetic monopole. We have only proved that \(\nabla \cdot \mathbf{B} = 0 \)
3 TIME-INDEPENDENT MAXWELL EQUATIONS

3.10 Ampere’s circuital law

Consider, again, an infinite straight wire aligned along the z-axis and carrying a current \(I \). The field generated by such a wire is written

\[
B_\theta = \frac{\mu_0 I}{2\pi r}
\]

in cylindrical polar coordinates. Consider a circular loop \(C \) in the x-y plane which is centred on the wire. Suppose that the radius of this loop is \(r \). Let us evaluate the line integral \(\oint_C \mathbf{B} \cdot d\mathbf{l} \). This integral is easy to perform because the magnetic field is always parallel to the line element. We have

\[
\oint_C \mathbf{B} \cdot d\mathbf{l} = \oint B_\theta r \, d\theta = \mu_0 I.
\]

(3.98)

However, we know from Stokes’ theorem that

\[
\oint_C \mathbf{B} \cdot d\mathbf{l} = \int_S \nabla \times \mathbf{B} \cdot d\mathbf{S},
\]

(3.99)

where \(S \) is any surface attached to the loop \(C \).

Let us evaluate \(\nabla \times \mathbf{B} \) directly. According to Eq. (3.94),

\[
(\nabla \times \mathbf{B})_x = \frac{\partial B_z}{\partial y} - \frac{\partial B_y}{\partial z} = 0,
\]

(3.100)

\[
(\nabla \times \mathbf{B})_y = \frac{\partial B_x}{\partial z} - \frac{\partial B_z}{\partial x} = 0,
\]

(3.101)

\[
(\nabla \times \mathbf{B})_z = \frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y} = \frac{\mu_0 I}{2\pi} \left(\frac{1}{r^2} - \frac{2x^2}{r^4} + \frac{1}{r^2} - \frac{2y^2}{r^4} \right) = 0,
\]

(3.102)

where use has been made of \(\partial r/\partial x = x/r, \) etc. We now have a problem. Equations (3.98) and (3.99) imply that

\[
\int_S \nabla \times \mathbf{B} \cdot d\mathbf{S} = \mu_0 I.
\]

(3.103)
But, we have just demonstrated that $\nabla \times \mathbf{B} = \mathbf{0}$. This problem is very reminiscent of the difficulty we had earlier with $\nabla \cdot \mathbf{E}$. Recall that $\int_V \nabla \cdot \mathbf{E} \, dV = q/\varepsilon_0$ for a volume V containing a discrete charge q, but that $\nabla \cdot \mathbf{E} = 0$ at a general point. We got around this problem by saying that $\nabla \cdot \mathbf{E}$ is a three-dimensional delta-function whose spike is coincident with the location of the charge. Likewise, we can get around our present difficulty by saying that $\nabla \times \mathbf{B}$ is a two-dimensional delta-function. A three-dimensional delta-function is a singular (but integrable) point in space, whereas a two-dimensional delta-function is a singular line in space. It is clear from an examination of Eqs. (3.100)–(3.102) that the only component of $\nabla \times \mathbf{B}$ which can be singular is the z-component, and that this can only be singular on the z-axis (i.e., $r = 0$). Thus, the singularity coincides with the location of the current, and we can write

$$\nabla \times \mathbf{B} = \mu_0 I \delta(x) \delta(y) \mathbf{\hat{z}}. \quad (3.104)$$

The above equation certainly gives $(\nabla \times \mathbf{B})_x = (\nabla \times \mathbf{B})_y = 0$, and $(\nabla \times \mathbf{B})_z = 0$ everywhere apart from the z-axis, in accordance with Eqs. (3.100)–(3.102). Suppose that we integrate over a plane surface S connected to the loop C. The surface element is $d\mathbf{S} = dx \, dy \, \mathbf{\hat{z}}$, so

$$\int_S \nabla \times \mathbf{B} \cdot d\mathbf{S} = \mu_0 I \int \int \delta(x) \delta(y) \, dx \, dy \quad (3.105)$$

where the integration is performed over the region $\sqrt{x^2 + y^2} \leq r$. However, since the only part of S which actually contributes to the surface integral is the bit which lies infinitesimally close to the z-axis, we can integrate over all x and y without changing the result. Thus, we obtain

$$\int_S \nabla \times \mathbf{B} \cdot d\mathbf{S} = \mu_0 I \int_{-\infty}^{\infty} \delta(x) \, dx \int_{-\infty}^{\infty} \delta(y) \, dy = \mu_0 I, \quad (3.106)$$

which is in agreement with Eq. (3.103).

But, why have we gone to so much trouble to prove something using vector field theory which can be demonstrated in one line via conventional analysis [see Eq. (3.98)]? The answer, of course, is that the vector field result is easily generalized, whereas the conventional result is just a special case. For instance,
it is clear that Eq. (3.106) is true for any surface attached to the loop C, not just a plane surface. Moreover, suppose that we distort our simple circular loop C so that it is no longer circular or even lies in one plane. What now is the line integral of \mathbf{B} around the loop? This is no longer a simple problem for conventional analysis, because the magnetic field is not parallel to a line element of the loop. However, according to Stokes’ theorem,

$$\oint_{C} \mathbf{B} \cdot d\mathbf{l} = \int_{S} \nabla \times \mathbf{B} \cdot d\mathbf{S},$$

(3.107)

with $\nabla \times \mathbf{B}$ given by Eq. (3.104). Note that the only part of S which contributes to the surface integral is an infinitesimal region centered on the z-axis. So, as long as S actually intersects the z-axis, it does not matter what shape the rest the surface is, and we always get the same answer for the surface integral: namely,

$$\oint_{C} \mathbf{B} \cdot d\mathbf{l} = \int_{S} \nabla \times \mathbf{B} \cdot d\mathbf{S} = \mu_0 I.$$

(3.108)

Thus, provided the curve C circulates the z-axis, and, therefore, any surface S attached to C intersects the z-axis, the line integral $\oint_{C} \mathbf{B} \cdot d\mathbf{l}$ is equal to $\mu_0 I$. Of course, if C does not circulate the z-axis then an attached surface S does not intersect the z-axis and $\oint_{C} \mathbf{B} \cdot d\mathbf{l}$ is zero. There is one more proviso. The line integral $\oint_{C} \mathbf{B} \cdot d\mathbf{l}$ is $\mu_0 I$ for a loop which circulates the z-axis in a clockwise direction (looking up the z-axis). However, if the loop circulates in an anti-clockwise direction then the integral is $-\mu_0 I$. This follows because in the latter case the z-component of the surface element $d\mathbf{S}$ is oppositely directed to the current flow at the point where the surface intersects the wire.

Let us now consider N wires directed along the z-axis, with coordinates (x_i, y_i) in the x-y plane, each carrying a current I_i in the positive z-direction. It is fairly obvious that Eq. (3.104) generalizes to

$$\nabla \times \mathbf{B} = \mu_0 \sum_{i=1}^{N} I_i \delta(x - x_i) \delta(y - y_i) \hat{z}.$$

(3.109)

If we integrate the magnetic field around some closed curve C, which can have any shape and does not necessarily lie in one plane, then Stokes’ theorem and
the above equation imply that
\[\oint_C \mathbf{B} \cdot d\mathbf{l} = \int_S \nabla \times \mathbf{B} \cdot d\mathbf{S} = \mu_0 \mathcal{I}, \tag{3.110} \]
where \(\mathcal{I} \) is the total current enclosed by the curve. Again, if the curve circulates the \(i \)th wire in a clockwise direction (looking down the direction of current flow) then the wire contributes \(I_i \) to the aggregate current \(\mathcal{I} \). On the other hand, if the curve circulates in an anti-clockwise direction then the wire contributes \(-I_i\). Finally, if the curve does not circulate the wire at all then the wire contributes nothing to \(\mathcal{I} \).

Equation (3.109) is a field equation describing how a set of \(z \)-directed current carrying wires generate a magnetic field. These wires have zero-thickness, which implies that we are trying to squeeze a finite amount of current into an infinitesimal region. This accounts for the delta-functions on the right-hand side of the equation. Likewise, we obtained delta-functions in Sect. 3.4 because we were dealing with point charges. Let us now generalize to the more realistic case of diffuse currents. Suppose that the \(z \)-current flowing through a small rectangle in the \(x \)-\(y \) plane, centred on coordinates \((x, y)\) and of dimensions \(dx \) and \(dy \), is \(j_z(x, y) \, dx \, dy \). Here, \(j_z \) is termed the current density in the \(z \)-direction. Let us integrate \((\nabla \times \mathbf{B})_z\) over this rectangle. The rectangle is assumed to be sufficiently small that \((\nabla \times \mathbf{B})_z\) does not vary appreciably across it. According to Eq. (3.110), this integral is equal to \(\mu_0 \) times the total \(z \)-current flowing through the rectangle. Thus,
\[(\nabla \times \mathbf{B})_z \, dx \, dy = \mu_0 j_z \, dx \, dy, \tag{3.111} \]
which implies that
\[(\nabla \times \mathbf{B})_z = \mu_0 j_z. \tag{3.112} \]
Of course, there is nothing special about the \(z \)-axis. Suppose we have a set of diffuse currents flowing in the \(x \)-direction. The current flowing through a small rectangle in the \(y \)-\(z \) plane, centred on coordinates \((y, z)\) and of dimensions \(dy \) and \(dz \), is given by \(j_x(y, z) \, dy \, dz \), where \(j_x \) is the current density in the \(x \)-direction. It is fairly obvious that we can write
\[(\nabla \times \mathbf{B})_x = \mu_0 j_x, \tag{3.113} \]
with a similar equation for diffuse currents flowing along the \(y \)-axis. We can combine these equations with Eq. (3.112) to form a single vector field equation which describes how electric currents generate magnetic fields,

\[
\nabla \times \mathbf{B} = \mu_0 \mathbf{j},
\]

where \(\mathbf{j} = (j_x, j_y, j_z) \) is the vector current density. This is the third Maxwell equation. The electric current flowing through a small area \(dS \) located at position \(r \) is \(\mathbf{j}(r) \cdot dS \). Suppose that space is filled with particles of charge \(q \), number density \(n(r) \), and velocity \(\mathbf{v}(r) \). The charge density is given by \(\rho(r) = q \, n \). The current density is given by \(\mathbf{j}(r) = q \, n \, \mathbf{v} \), and is obviously a proper vector field (velocities are proper vectors since they are ultimately derived from displacements).

If we form the line integral of \(\mathbf{B} \) around some general closed curve \(C \), making use of Stokes’ theorem and the field equation (3.114), then we obtain

\[
\oint_C \mathbf{B} \cdot d\mathbf{l} = \mu_0 \int_S \mathbf{j} \cdot d\mathbf{S}. \quad (3.115)
\]

In other words, the line integral of the magnetic field around any closed loop \(C \) is equal to \(\mu_0 \) times the flux of the current density through \(C \). This result is called \textit{Ampère’s circuital law}. If the currents flow in zero-thickness wires then Ampère’s circuital law reduces to Eq. (3.110).

The flux of the current density through \(C \) is evaluated by integrating \(\mathbf{j} \cdot d\mathbf{S} \) over any surface \(S \) attached to \(C \). Suppose that we take two different surfaces \(S_1 \) and \(S_2 \). It is clear that if Ampère’s circuital law is to make any sense then the surface integral \(\int_{S_1} \mathbf{j} \cdot d\mathbf{S} \) had better equal the integral \(\int_{S_2} \mathbf{j} \cdot d\mathbf{S} \). That is, when we work out the flux of the current though \(C \) using two different attached surfaces then we had better get the same answer, otherwise Eq. (3.115) is wrong (since the left-hand side is clearly independent of the surface spanning \(C \)). We saw in Sect. 2 that if the integral of a vector field \(\mathbf{A} \) over some surface attached to a loop depends only on the loop, and is independent of the surface which spans it, then this implies that \(\nabla \cdot \mathbf{A} = 0 \). The flux of the current density through any loop \(C \) is calculated by evaluating the integral \(\int_S \mathbf{j} \cdot d\mathbf{S} \) for any surface \(S \) which spans the loop. According to Ampère’s circuital law, this integral depends only on \(C \) and is completely independent of \(S \) (i.e., it is equal to the line integral of \(\mathbf{B} \) around \(C \),
which depends on C but not on S). This implies that $\nabla \cdot j = 0$. In fact, we can obtain this relation directly from the field equation (3.114). We know that the divergence of a curl is automatically zero, so taking the divergence of Eq. (3.114), we obtain
\[
\nabla \cdot j = 0.
\] (3.116)

We have shown that if Ampère’s circuital law is to make any sense then we need $\nabla \cdot j = 0$. Physically, this implies that the net current flowing through any closed surface S is zero. Up to now, we have only considered stationary charges and steady currents. It is clear that if all charges are stationary and all currents are steady then there can be no net current flowing through a closed surface S, since this would imply a build up of charge in the volume V enclosed by S. In other words, as long as we restrict our investigation to stationary charges, and steady currents, then we expect $\nabla \cdot j = 0$, and Ampère’s circuital law makes sense. However, suppose that we now relax this restriction. Suppose that some of the charges in a volume V decide to move outside V. Clearly, there will be a non-zero net flux of electric current through the bounding surface S whilst this is happening. This implies from Gauss’ theorem that $\nabla \cdot j \neq 0$. Under these circumstances Ampère’s circuital law collapses in a heap. We shall see later that we can rescue Ampère’s circuital law by adding an extra term involving a time derivative to the right-hand side of the field equation (3.114). For steady-state situations (i.e., $\partial / \partial t = 0$), this extra term can be neglected. Thus, the field equation $\nabla \times B = \mu_0 j$ is, in fact, only two-thirds of Maxwell’s third equation: there is a term missing on the right-hand side.

We have now derived two field equations involving magnetic fields (actually, we have only derived one and two-thirds):
\[
\nabla \cdot B = 0,
\] (3.117)
\[
\nabla \times B = \mu_0 j.
\] (3.118)

We obtained these equations by looking at the fields generated by infinitely long, straight, steady currents. This, of course, is a rather special class of currents. We should now go back and repeat the process for general currents. In fact, if we did this we would find that the above field equations still hold (provided that
the currents are steady). Unfortunately, this demonstration is rather messy and extremely tedious. There is a better approach. Let us assume that the above field equations are valid for any set of steady currents. We can then, with relatively little effort, use these equations to generate the correct formula for the magnetic field induced by a general set of steady currents, thus proving that our assumption is correct. More of this later.

3.11 Helmholtz’s theorem

Let us now embark on a slight mathematical digression. Up to now, we have only studied the electric and magnetic fields generated by stationary charges and steady currents. We have found that these fields are describable in terms of four field equations:

\[\nabla \cdot E = \frac{\rho}{\varepsilon_0} , \]
\[\nabla \times E = 0 \]
\[\nabla \cdot B = 0 , \]
\[\nabla \times B = \mu_0 j \]

for electric fields, and

for magnetic fields. There are no other field equations. This strongly suggests that if we know the divergence and the curl of a vector field then we know everything there is to know about the field. In fact, this is the case. There is a mathematical theorem which sums this up. It is called Helmholtz’s theorem after the German polymath Hermann Ludwig Ferdinand von Helmholtz.

Let us start with scalar fields. Field equations are a type of differential equation: \textit{i.e.}, they deal with the infinitesimal differences in quantities between neighbouring points. The question is, what differential equation completely specifies a scalar field? This is easy. Suppose that we have a scalar field \(\phi \) and a field equation which tells us the gradient of this field at all points: something like

\[\nabla \phi = A , \]

88
where $\mathbf{A}(\mathbf{r})$ is a vector field. Note that we need $\nabla \times \mathbf{A} = \mathbf{0}$ for self consistency, since the curl of a gradient is automatically zero. The above equation completely specifies ϕ once we are given the value of the field at a single point, P (say). Thus,

$$\phi(Q) = \phi(P) + \int_{P}^{Q} \nabla \phi \cdot d\mathbf{l} = \phi(P) + \int_{P}^{Q} \mathbf{A} \cdot d\mathbf{l},$$

(3.124)

where Q is a general point. The fact that $\nabla \times \mathbf{A} = \mathbf{0}$ means that \mathbf{A} is a conservative field, which guarantees that the above equation gives a unique value for ϕ at a general point in space.

Suppose that we have a vector field \mathbf{F}. How many differential equations do we need to completely specify this field? Hopefully, we only need two: one giving the divergence of the field, and one giving its curl. Let us test this hypothesis. Suppose that we have two field equations:

$$\nabla \cdot \mathbf{F} = D,$$

(3.125)

$$\nabla \times \mathbf{F} = \mathbf{C},$$

(3.126)

where D is a scalar field and \mathbf{C} is a vector field. For self-consistency, we need

$$\nabla \cdot \mathbf{C} = 0,$$

(3.127)

since the divergence of a curl is automatically zero. The question is, do these two field equations plus some suitable boundary conditions completely specify \mathbf{F}? Suppose that we write

$$\mathbf{F} = -\nabla \mathbf{U} + \nabla \times \mathbf{W}.$$

(3.128)

In other words, we are saying that a general field \mathbf{F} is the sum of a conservative field, $\nabla \mathbf{U}$, and a solenoidal field, $\nabla \times \mathbf{W}$. This sounds plausible, but it remains to be proved. Let us start by taking the divergence of the above equation, and making use of Eq. (3.125). We get

$$\nabla^{2} \mathbf{U} = -D.$$

(3.129)

Note that the vector field \mathbf{W} does not figure in this equation, because the divergence of a curl is automatically zero. Let us now take the curl of Eq. (3.128):

$$\nabla \times \mathbf{F} = \nabla \times \nabla \times \mathbf{W} = \nabla (\nabla \cdot \mathbf{W}) - \nabla^{2} \mathbf{W} = -\nabla^{2} \mathbf{W}.$$

(3.130)
Here, we assume that the divergence of W is zero. This is another thing which remains to be proved. Note that the scalar field U does not figure in this equation, because the curl of a divergence is automatically zero. Using Eq. (3.126), we get

$$\nabla^2 W_x = -C_x,$$ \hspace{1cm} (3.131)

$$\nabla^2 W_y = -C_y,$$ \hspace{1cm} (3.132)

$$\nabla^2 W_z = -C_z,$$ \hspace{1cm} (3.133)

So, we have transformed our problem into four differential equations, Eq. (3.129) and Eqs. (3.131)–(3.133), which we need to solve. Let us look at these equations. We immediately notice that they all have exactly the same form. In fact, they are all versions of Poisson’s equation. We can now make use of a principle made famous by Richard P. Feynman: “the same equations have the same solutions.”

Recall that earlier on we came across the following equation:

$$\nabla^2 \phi = -\frac{\rho}{\epsilon_0},$$ \hspace{1cm} (3.134)

where ϕ is the electrostatic potential and ρ is the charge density. We proved that the solution to this equation, with the boundary condition that ϕ goes to zero at infinity, is

$$\phi(r) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(r')}{|r - r'|} \, d^3r'.$$ \hspace{1cm} (3.135)

Well, if the same equations have the same solutions, and Eq. (3.135) is the solution to Eq. (3.134), then we can immediately write down the solutions to Eq. (3.129) and Eqs. (3.131)–(3.133). We get

$$U(r) = \frac{1}{4\pi} \int \frac{D(r')}{|r - r'|} \, d^3r',$$ \hspace{1cm} (3.136)

and

$$W_x(r) = \frac{1}{4\pi} \int \frac{C_x(r')}{|r - r'|} \, d^3r',$$ \hspace{1cm} (3.137)

$$W_y(r) = \frac{1}{4\pi} \int \frac{C_y(r')}{|r - r'|} \, d^3r',$$ \hspace{1cm} (3.138)

$$W_z(r) = \frac{1}{4\pi} \int \frac{C_z(r')}{|r - r'|} \, d^3r'.$$ \hspace{1cm} (3.139)
The last three equations can be combined to form a single vector equation:

\[\mathbf{W}(\mathbf{r}) = \frac{1}{4\pi} \int \frac{\mathbf{C}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d^3\mathbf{r}'. \] \hspace{1cm} (3.140)

We assumed earlier that \(\nabla \cdot \mathbf{W} = 0 \). Let us check to see if this is true. Note that

\[\frac{\partial}{\partial x} \left(\frac{1}{|\mathbf{r} - \mathbf{r}'|} \right) = - \frac{x - x'}{|\mathbf{r} - \mathbf{r}'|^3} = \frac{x' - x}{|\mathbf{r} - \mathbf{r}'|^3} = - \frac{\partial}{\partial x'} \left(\frac{1}{|\mathbf{r} - \mathbf{r}'|} \right), \] \hspace{1cm} (3.141)

which implies that

\[\nabla \left(\frac{1}{|\mathbf{r} - \mathbf{r}'|} \right) = - \nabla' \left(\frac{1}{|\mathbf{r} - \mathbf{r}'|} \right), \] \hspace{1cm} (3.142)

where \(\nabla' \) is the operator \((\partial/\partial x', \partial/\partial y', \partial/\partial z') \). Taking the divergence of Eq. \((3.140)\), and making use of the above relation, we obtain

\[\nabla \cdot \mathbf{W} = \frac{1}{4\pi} \int \mathbf{C}(\mathbf{r}') \cdot \nabla \left(\frac{1}{|\mathbf{r} - \mathbf{r}'|} \right) \, d^3\mathbf{r}' = - \frac{1}{4\pi} \int \mathbf{C}(\mathbf{r}') \cdot \nabla' \left(\frac{1}{|\mathbf{r} - \mathbf{r}'|} \right) \, d^3\mathbf{r}'. \] \hspace{1cm} (3.143)

Now

\[\int_{-\infty}^{\infty} g \frac{\partial f}{\partial x} \, dx = [gf]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} f \frac{\partial g}{\partial x} \, dx. \] \hspace{1cm} (3.144)

However, if \(g f \to 0 \) as \(x \to \pm \infty \) then we can neglect the first term on the right-hand side of the above equation and write

\[\int_{-\infty}^{\infty} g \frac{\partial f}{\partial x} \, dx = - \int_{-\infty}^{\infty} f \frac{\partial g}{\partial x} \, dx. \] \hspace{1cm} (3.145)

A simple generalization of this result yields

\[\int g \cdot \nabla f \, d^3\mathbf{r} = - \int f \nabla \cdot g \, d^3\mathbf{r}, \] \hspace{1cm} (3.146)

provided that \(g_x f \to 0 \) as \(|\mathbf{r}| \to \infty \), etc. Thus, we can deduce that

\[\nabla \cdot \mathbf{W} = \frac{1}{4\pi} \int \frac{\nabla' \cdot \mathbf{C}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d^3\mathbf{r}'. \] \hspace{1cm} (3.147)

from Eq. \((3.143)\), provided \(|\mathbf{C}(\mathbf{r})| \) is bounded as \(|\mathbf{r}| \to \infty \). However, we have already shown that \(\nabla \cdot \mathbf{C} = 0 \) from self-consistency arguments, so the above equation implies that \(\nabla \cdot \mathbf{W} = 0 \), which is the desired result.
We have constructed a vector field \mathbf{F} which satisfies Eqs. (3.125) and (3.126) and behaves sensibly at infinity: i.e., $|\mathbf{F}| \to 0$ as $|\mathbf{r}| \to \infty$. But, is our solution the only possible solution of Eqs. (3.125) and (3.126) with sensible boundary conditions at infinity? Another way of posing this question is to ask whether there are any solutions of

$$\nabla^2 U = 0, \quad \nabla^2 W_i = 0, \quad (3.148)$$

where i denotes x, y, or z, which are bounded at infinity. If there are then we are in trouble, because we can take our solution and add to it an arbitrary amount of a vector field with zero divergence and zero curl, and thereby obtain another solution which also satisfies physical boundary conditions. This would imply that our solution is not unique. In other words, it is not possible to unambiguously reconstruct a vector field given its divergence, its curl, and physical boundary conditions. Fortunately, the equation

$$\nabla^2 \phi = 0, \quad (3.149)$$

which is called Laplace’s equation, has a very nice property: its solutions are unique. That is, if we can find a solution to Laplace’s equation which satisfies the boundary conditions then we are guaranteed that this is the only solution. We shall prove this later on in the course. Well, let us invent some solutions to Eqs. (3.148) which are bounded at infinity. How about

$$U = W_i = 0? \quad (3.150)$$

These solutions certainly satisfy Laplace’s equation, and are well-behaved at infinity. Because the solutions to Laplace’s equations are unique, we know that Eqs. (3.150) are the only solutions to Eqs. (3.148). This means that there is no vector field which satisfies physical boundary equations at infinity and has zero divergence and zero curl. In other words, our solution to Eqs. (3.125) and (3.126) is the only solution. Thus, we have unambiguously reconstructed the vector field \mathbf{F} given its divergence, its curl, and sensible boundary conditions at infinity. This is Helmholtz’s theorem.

We have just proved a number of very useful, and also very important, points. First, according to Eq. (3.128), a general vector field can be written as the sum
of a conservative field and a solenoidal field. Thus, we ought to be able to write electric and magnetic fields in this form. Second, a general vector field which is zero at infinity is completely specified once its divergence and its curl are given. Thus, we can guess that the laws of electromagnetism can be written as four field equations,

\[\nabla \cdot \mathbf{E} = \text{something}, \quad (3.151) \]
\[\nabla \times \mathbf{E} = \text{something}, \quad (3.152) \]
\[\nabla \cdot \mathbf{B} = \text{something}, \quad (3.153) \]
\[\nabla \times \mathbf{B} = \text{something}, \quad (3.154) \]

without knowing the first thing about electromagnetism (other than the fact that it deals with two vector fields). Of course, Eqs. (3.119)–(3.122) are of exactly this form. We also know that there are only four field equations, since the above equations are sufficient to completely reconstruct both \(\mathbf{E} \) and \(\mathbf{B} \). Furthermore, we know that we can solve the field equations without even knowing what the right-hand sides look like. After all, we solved Eqs. (3.125)–(3.126) for completely general right-hand sides. [Actually, the right-hand sides have to go to zero at infinity, otherwise integrals like Eq. (3.136) blow up.] We also know that any solutions we find are unique. In other words, there is only one possible steady electric and magnetic field which can be generated by a given set of stationary charges and steady currents. The third thing which we proved was that if the right-hand sides of the above field equations are all zero then the only physical solution is \(\mathbf{E} = \mathbf{B} = \mathbf{0} \). This implies that steady electric and magnetic fields cannot generate themselves. Instead, they have to be generated by stationary charges and steady currents. So, if we come across a steady electric field we know that if we trace the field-lines back we shall eventually find a charge. Likewise, a steady magnetic field implies that there is a steady current flowing somewhere. All of these results follow from vector field theory (i.e., from the general properties of fields in three-dimensional space), prior to any investigation of electromagnetism.
3.12 The magnetic vector potential

Electric fields generated by stationary charges obey

$$\nabla \times \mathbf{E} = 0.$$ (3.155)

This immediately allows us to write

$$\mathbf{E} = -\nabla \phi,$$ (3.156)

since the curl of a gradient is automatically zero. In fact, whenever we come across an irrotational vector field in physics we can always write it as the gradient of some scalar field. This is clearly a useful thing to do, since it enables us to replace a vector field by a much simpler scalar field. The quantity ϕ in the above equation is known as the electric scalar potential.

Magnetic fields generated by steady currents (and unsteady currents, for that matter) satisfy

$$\nabla \cdot \mathbf{B} = 0.$$ (3.157)

This immediately allows us to write

$$\mathbf{B} = \nabla \times \mathbf{A},$$ (3.158)

since the divergence of a curl is automatically zero. In fact, whenever we come across a solenoidal vector field in physics we can always write it as the curl of some other vector field. This is not an obviously useful thing to do, however, since it only allows us to replace one vector field by another. Nevertheless, Eq. (3.158) is one of the most useful equations we shall come across in this lecture course. The quantity \mathbf{A} is known as the magnetic vector potential.

We know from Helmholtz’s theorem that a vector field is fully specified by its divergence and its curl. The curl of the vector potential gives us the magnetic field via Eq. (3.158). However, the divergence of \mathbf{A} has no physical significance. In fact, we are completely free to choose $\nabla \cdot \mathbf{A}$ to be whatever we like. Note that, according to Eq. (3.158), the magnetic field is invariant under the transformation

$$\mathbf{A} \rightarrow \mathbf{A} - \nabla \psi.$$ (3.159)
3

In other words, the vector potential is undetermined to the gradient of a scalar field. This is just another way of saying that we are free to choose $\nabla \cdot A$. Recall that the electric scalar potential is undetermined to an arbitrary additive constant, since the transformation

$$\phi \rightarrow \phi + c$$ \hspace{1cm} (3.160)

leaves the electric field invariant in Eq. (3.156). The transformations (3.159) and (3.160) are examples of what mathematicians call \textit{gauge transformations}. The choice of a particular function ψ or a particular constant c is referred to as a choice of the gauge. We are free to fix the gauge to be whatever we like. The most sensible choice is the one which makes our equations as simple as possible. The usual gauge for the scalar potential ϕ is such that $\phi \rightarrow 0$ at infinity. The usual gauge for A is such that

$$\nabla \cdot A = 0.$$ \hspace{1cm} (3.161)

This particular choice is known as the \textit{Coulomb gauge}.

It is obvious that we can always add a constant to ϕ so as to make it zero at infinity. But it is not at all obvious that we can always perform a gauge transformation such as to make $\nabla \cdot A$ zero. Suppose that we have found some vector field A whose curl gives the magnetic field but whose divergence is non-zero. Let

$$\nabla \cdot A = v(\mathbf{r}).$$ \hspace{1cm} (3.162)

The question is, can we find a scalar field ψ such that after we perform the gauge transformation (3.159) we are left with $\nabla \cdot A = 0$. Taking the divergence of Eq. (3.159) it is clear that we need to find a function ψ which satisfies

$$\nabla^2 \psi = v.$$ \hspace{1cm} (3.163)

But this is just Poisson’s equation. We know that we can always find a unique solution of this equation (see Sect. 3.11). This proves that, in practice, we can always set the divergence of A equal to zero.

Let us again consider an infinite straight wire directed along the z-axis and carrying a current I. The magnetic field generated by such a wire is written

$$B = \frac{\mu_0 I}{2\pi} \left(\frac{-y}{r^2}, \frac{x}{r^2}, 0 \right).$$ \hspace{1cm} (3.164)
We wish to find a vector potential \mathbf{A} whose curl is equal to the above magnetic field, and whose divergence is zero. It is not difficult to see that

$$\mathbf{A} = -\frac{\mu_0}{4\pi} \left(0, 0, \ln[x^2 + y^2] \right)$$

fits the bill. Note that the vector potential is parallel to the direction of the current. This would seem to suggest that there is a more direct relationship between the vector potential and the current than there is between the magnetic field and the current. The potential is not very well-behaved on the z-axis, but this is just because we are dealing with an infinitely thin current.

Let us take the curl of Eq. (3.158). We find that

$$\nabla \times \mathbf{B} = \nabla \times \nabla \times \mathbf{A} = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A} = -\nabla^2 \mathbf{A},$$

where use has been made of the Coulomb gauge condition (3.161). We can combine the above relation with the field equation (3.114) to give

$$\nabla^2 \mathbf{A} = -\mu_0 \mathbf{j}.$$ (3.167)

Writing this in component form, we obtain

$$\nabla^2 A_x = -\mu_0 j_x,$$ (3.168)

$$\nabla^2 A_y = -\mu_0 j_y,$$ (3.169)

$$\nabla^2 A_z = -\mu_0 j_z.$$ (3.170)

But, this is just Poisson’s equation three times over. We can immediately write the unique solutions to the above equations:

$$A_x(r) = \frac{\mu_0}{4\pi} \int \frac{j_x(r')}{|r - r'|} \, d^3r',$$ (3.171)

$$A_y(r) = \frac{\mu_0}{4\pi} \int \frac{j_y(r')}{|r - r'|} \, d^3r',$$ (3.172)

$$A_z(r) = \frac{\mu_0}{4\pi} \int \frac{j_z(r')}{|r - r'|} \, d^3r'.$$ (3.173)

These solutions can be recombined to form a single vector solution

$$\mathbf{A}(r) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{j}(r')}{|r - r'|} \, d^3r'.$$ (3.174)
Of course, we have seen a equation like this before:

\[\phi(r) = \frac{1}{4\pi \varepsilon_0} \int \frac{\rho(r')}{|r - r'|} \, d^3 r'. \]

(3.175)

Equations (3.174) and (3.175) are the unique solutions (given the arbitrary choice of gauge) to the field equations (3.119)–(3.122): they specify the magnetic vector and electric scalar potentials generated by a set of stationary charges, of charge density \(\rho(r) \), and a set of steady currents, of current density \(j(r) \). Incidentally, we can prove that Eq. (3.174) satisfies the gauge condition \(\nabla \cdot A = 0 \) by repeating the analysis of Eqs. (3.140)–(3.147) (with \(W \rightarrow A \) and \(C \rightarrow \mu_0 j \)), and using the fact that \(\nabla \cdot j = 0 \) for steady currents.

3.13 The Biot-Savart law

According to Eq. (3.156), we can obtain an expression for the electric field generated by stationary charges by taking minus the gradient of Eq. (3.175). This yields

\[E(r) = \frac{1}{4\pi \varepsilon_0} \int \rho(r') \, \frac{r - r'}{|r - r'|^3} \, d^3 r', \]

which we recognize as Coulomb's law written for a continuous charge distribution. According to Eq. (3.158), we can obtain an equivalent expression for the magnetic field generated by steady currents by taking the curl of Eq. (3.174). This gives

\[B(r) = \frac{\mu_0}{4\pi} \int \frac{j(r') \times (r - r')}{|r - r'|^3} \, d^3 r', \]

(3.177)

where use has been made of the vector identity \(\nabla \times (\phi A) = \phi \nabla \times A + \nabla \phi \times A \). Equation (3.177) is known as the Biot-Savart law after the French physicists Jean Baptiste Biot and Felix Savart: it completely specifies the magnetic field generated by a steady (but otherwise quite general) distributed current.

Let us reduce our distributed current to an idealized zero thickness wire. We can do this by writing

\[j(r) \, d^3 r = I(r) \, dl, \]

(3.178)
where \(\mathbf{I} \) is the vector current (\(i.e. \), its direction and magnitude specify the direction and magnitude of the current) and \(dl \) is an element of length along the wire. Equations (3.177) and (3.178) can be combined to give

\[
\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{I}(\mathbf{r}') \times (\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3} \, dl,
\]

which is the form in which the Biot-Savart law is most usually written. This law is to magnetostatics (\(i.e. \), the study of magnetic fields generated by steady currents) what Coulomb’s law is to electrostatics (\(i.e. \), the study of electric fields generated by stationary charges). Furthermore, it can be experimentally verified given a set of currents, a compass, a test wire, and a great deal of skill and patience. This justifies our earlier assumption that the field equations (3.117) and (3.118) are valid for general current distributions (recall that we derived them by studying the fields generated by infinite, straight wires). Note that both Coulomb’s law and the Biot-Savart law are **gauge independent**: \(i.e. \), they do not depend on the particular choice of gauge.

Consider an infinite straight wire, directed along the \(z \)-axis, and carrying a current \(I \) (see Fig. 33). Let us reconstruct the magnetic field generated by the wire at point \(P \) using the Biot-Savart law. Suppose that the perpendicular distance to the wire is \(\rho \). It is easily seen that

\[
\mathbf{I} \times (\mathbf{r} - \mathbf{r}') = I\rho \hat{\theta}.
\]
Thus, according to Eq. (3.179), we have
\[B_\theta = \frac{\mu_0}{4\pi} \int_{-\pi/2}^{\pi/2} \frac{I \rho}{\rho^3 (\cos \phi)^{-3}} \cos \phi \ d\phi \]
\[= \frac{\mu_0 I}{4\pi \rho} \int_{-\pi/2}^{\pi/2} \cos \phi \ d\phi = \frac{\mu_0 I}{4\pi \rho} \left[\sin \phi \right]_{-\pi/2}^{\pi/2}, \]
which gives the familiar result
\[B_\theta = \frac{\mu_0 I}{2\pi \rho}. \]

So, we have come full circle in our investigation of magnetic fields. Note that the simple result (3.185) can only be obtained from the Biot-Savart law after some non-trivial algebra. Examination of more complicated current distributions using this law invariably leads to lengthy, involved, and extremely unpleasant calculations.

3.14 Electrostatics and magnetostatics

We have now completed our theoretical investigation of electrostatics and magnetostatics. Our next task is to incorporate time variation into our analysis. However, before we start this, let us briefly review our progress so far. We have found that the electric fields generated by stationary charges, and the magnetic fields generated by steady currents, are describable in terms of four field equations:
\[\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}, \]
\[\nabla \times \mathbf{E} = \mathbf{0}, \]
\[\nabla \cdot \mathbf{B} = 0, \]
\[\nabla \times \mathbf{B} = \mu_0 \mathbf{j}. \]
The boundary conditions are that the fields are zero at infinity, assuming that the generating charges and currents are localized to some region in space. According to Helmholtz’s theorem, the above field equations, plus the boundary conditions, are sufficient to uniquely specify the electric and magnetic fields. The physical significance of this is that divergence and curl are the only rotationally invariant first-order differential properties of a general vector field: i.e., the only quantities which do not change their physical characteristics when the coordinate axes are rotated. Since physics does not depend on the orientation of the coordinate axes (which is, after all, quite arbitrary), divergence and curl are the only quantities which can appear in first-order differential field equations which claim to describe physical phenomena.

The field equations can be integrated to give:

\[\oint_S \mathbf{E} \cdot d\mathbf{S} = \frac{1}{\varepsilon_0} \int_V \rho \, dV, \quad (3.190) \]

\[\oint_C \mathbf{E} \cdot d\mathbf{l} = 0, \quad (3.191) \]

\[\oint_S \mathbf{B} \cdot d\mathbf{S} = 0, \quad (3.192) \]

\[\oint_C \mathbf{B} \cdot d\mathbf{l} = \mu_0 \oint_{S'} j \cdot d\mathbf{S}. \quad (3.193) \]

Here, \(S \) is a closed surface enclosing a volume \(V \). Also, \(C \) is a closed loop, and \(S' \) is some surface attached to this loop. The field equations (3.186)–(3.189) can be deduced from Eqs. (3.190)–(3.193) using Gauss’ theorem and Stokes’ theorem. Equation (3.190) is called Gauss’ law, and says that the flux of the electric field out of a closed surface is proportional to the enclosed electric charge. Equation (3.192) has no particular name, and says that there is no such things as a magnetic monopole. Equation (3.193) is called Ampère’s circuital law, and says that the line integral of the magnetic field around any closed loop is proportional to the flux of the current through the loop. Finally, Eqs. (3.191) and (3.193) are incomplete: each acquires an extra term on the right-hand side in time-dependent situations.
The field equation (3.187) is automatically satisfied if we write
\[\mathbf{E} = -\nabla \phi. \] (3.194)
Likewise, the field equation (3.188) is automatically satisfied if we write
\[\mathbf{B} = \nabla \times \mathbf{A}. \] (3.195)
Here, \(\phi \) is the electric scalar potential, and \(\mathbf{A} \) is the magnetic vector potential. The electric field is clearly unchanged if we add a constant to the scalar potential:
\[\mathbf{E} \rightarrow \mathbf{E} \quad \text{as} \quad \phi \rightarrow \phi + c. \] (3.196)
The magnetic field is similarly unchanged if we add the gradient of a scalar field to the vector potential:
\[\mathbf{B} \rightarrow \mathbf{B} \quad \text{as} \quad \mathbf{A} \rightarrow \mathbf{A} + \nabla \psi. \] (3.197)
The above transformations, which leave the \(\mathbf{E} \) and \(\mathbf{B} \) fields invariant, are called gauge transformations. We are free to choose \(c \) and \(\psi \) to be whatever we like: \textit{i.e.}, we are free to choose the gauge. The most sensible gauge is the one which make our equations as simple and symmetric as possible. This corresponds to the choice
\[\phi(\mathbf{r}) \rightarrow 0 \quad \text{as} \quad |\mathbf{r}| \rightarrow \infty, \] (3.198)
and
\[\nabla \cdot \mathbf{A} = 0. \] (3.199)
The latter convention is known as the Coulomb gauge.

Taking the divergence of Eq. (3.194) and the curl of Eq. (3.195), and making use of the Coulomb gauge, we find that the four field equations (3.186)–(3.189) can be reduced to Poisson’s equation written four times over:
\[\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}, \] (3.200)
\[\nabla^2 \mathbf{A} = -\mu_0 \mathbf{j}. \] (3.201)
Poisson’s equation is just about the simplest \textit{rotationally invariant} second-order partial differential equation it is possible to write. Note that \(\nabla^2 \) is clearly rotationally invariant, since it is the divergence of a gradient, and both divergence
and gradient are rotationally invariant. We can always construct the solution to Poisson’s equation, given the boundary conditions. Furthermore, we have a uniqueness theorem which tells us that our solution is the only possible solution. Physically, this means that there is only one electric and magnetic field which is consistent with a given set of stationary charges and steady currents. This sounds like an obvious, almost trivial, statement. But there are many areas of physics (for instance, fluid mechanics and plasma physics) where we also believe, for physical reasons, that for a given set of boundary conditions the solution should be unique. The problem is that in most cases when we reduce the problem to a partial differential equation we end up with something far nastier than Poisson’s equation. In general, we cannot solve this equation. In fact, we usually cannot even prove that it possess a solution for general boundary conditions, let alone that the solution is unique. So, we are very fortunate indeed that in electrostatics and magnetostatics the problem boils down to solving a nice partial differential equation. When physicists make statements to the effect that “electromagnetism is the best understood theory in physics,” which they often do, what they are really saying is that the partial differential equations which crop up in this theory are soluble and have nice properties.

Poisson’s equation
\[\nabla^2 u = v \]
(3.202)
is linear, which means that its solutions are superposable. We can exploit this fact to construct a general solution to this equation. Suppose that we can find the solution to
\[\nabla^2 G(\mathbf{r}, \mathbf{r}') = \delta(\mathbf{r} - \mathbf{r}') \]
(3.203)
which satisfies the boundary conditions. This is the solution driven by a unit amplitude point source located at position vector \(\mathbf{r}' \). Since any general source can be built up out of a weighted sum of point sources, it follows that a general solution to Poisson’s equation can be built up out of a weighted superposition of point source solutions. Mathematically, we can write
\[u(\mathbf{r}) = \int G(\mathbf{r}, \mathbf{r}') v(\mathbf{r}') \, d^3 \mathbf{r}'. \]
(3.204)
The function \(G \) is called the Green’s function. The Green’s function for Poisson’s
equation is
\[G(r, r') = -\frac{1}{4\pi} \frac{1}{|r - r'|}. \] (3.205)

Note that this Green’s function is proportional to the scalar potential of a point charge located at \(r' \): this is hardly surprising, given the definition of a Green’s function.

According to Eqs. (3.200), (3.201), (3.202), (3.204), and (3.205), the scalar and vector potentials generated by a set of stationary charges and steady currents take the form

\[\phi(r) = \frac{1}{4\pi \varepsilon_0} \int \frac{\rho(r')}{|r - r'|} \, d^3r', \] (3.206)
\[A(r) = \frac{\mu_0}{4\pi} \int \frac{j(r')}{|r - r'|} \, d^3r'. \] (3.207)

Making use of Eqs. (3.194), (3.195), (3.206), and (3.207), we obtain the fundamental force laws for electric and magnetic fields. Coulomb’s law,

\[E(r) = \frac{1}{4\pi \varepsilon_0} \int \frac{\rho(r') \, r - r'}{|r - r'|^3} \, d^3r', \] (3.208)

and the Biot-Savart law,

\[B(r) = \frac{\mu_0}{4\pi} \int \frac{j(r') \times (r - r')}{|r - r'|^3} \, d^3r'. \] (3.209)

Of course, both of these laws are examples of action at a distance laws, and, therefore, violate the theory of relativity. However, this is not a problem as long as we restrict ourselves to fields generated by time-independent charge and current distributions.

The question, now, is by how much is this scheme which we have just worked out going to be disrupted when we take time variation into account. The answer, somewhat surprisingly, is by very little indeed. So, in Eqs. (3.186)–(3.209) we can already discern the basic outline of classical electromagnetism. Let us continue our investigation.
4 Time-dependent Maxwell’s equations

4.1 Introduction

In this section, we shall take the time-independent set Maxwell’s equations, derived in the previous section, and generalize it to the full set of time-dependent Maxwell’s equations.

4.2 Faraday’s law

The history of humankind’s development of physics can be thought of as the history of the synthesis of ideas. Physicists keep finding that apparently disparate phenomena can be understood as different aspects of some more fundamental phenomenon. This process has continued until today all physical phenomena can be described in terms of three fundamental forces: gravity, the electroweak force, and the strong force. One of the main goals of modern physics is to find some way of combining these three forces so that all of physics can be described in terms of a single unified force. This, essentially, is the purpose of string theory.

The first great synthesis of ideas in physics took place in 1666 when Issac Newton realised that the force which causes apples to fall downwards is the same as the force which maintains the planets in elliptical orbits around the Sun. The second great synthesis, which we are about to study in more detail, took place in 1830 when Michael Faraday discovered that electricity and magnetism are two aspects of the same thing, usually referred to as electromagnetism. The third great synthesis, which we shall discuss presently, took place in 1873 when James Clerk Maxwell demonstrated that light and electromagnetism are intimately related. The last (but, hopefully, not the final) great synthesis took place in 1967 when Steve Weinberg and Abdus Salam showed that the electromagnetic force and the weak nuclear force (i.e., the one which is responsible for β decays) can be combined to give the electroweak force. Unfortunately, Weinberg’s work lies well beyond the scope of this lecture course.
Let us now consider Faraday’s experiments, having put them in their proper historical context. Prior to 1830, the only known way to make an electric current flow through a conducting wire was to connect the ends of the wire to the positive and negative terminals of a battery. We measure a battery’s ability to push current down a wire in terms of its \textit{voltage}, by which we mean the voltage difference between its positive and negative terminals. What does voltage correspond to in physics? Well, volts are the units used to measure electric scalar potential, so when we talk about a 6V battery, what we are really saying is that the difference in electric scalar potential between its positive and negative terminals is six volts. This insight allows us to write

\[
V = \phi(\oplus) - \phi(\ominus) = \int_{\oplus}^{\ominus} \nabla \phi \cdot \text{d}l = \int_{\oplus}^{\ominus} E \cdot \text{d}l, \quad (4.1)
\]

where \(V\) is the battery voltage, \(\oplus\) denotes the positive terminal, \(\ominus\) the negative terminal, and \(\text{d}l\) is an element of length along the wire. Of course, the above equation is a direct consequence of \(E = -\nabla \phi\). Clearly, a voltage difference between two ends of a wire attached to a battery implies the presence of an electric field which pushes charges through the wire. This field is directed from the positive terminal of the battery to the negative terminal, and is, therefore, such as to force electrons to flow through the wire from the negative to the positive terminal. As expected, this means that a net positive current flows from the positive to the negative terminal. The fact that \(E\) is a conservative field ensures that the voltage difference \(V\) is independent of the path of the wire. In other words, two different wires attached to the same battery develop identical voltage differences.

Let us now consider a closed loop of wire (with no battery). The voltage around such a loop, which is sometimes called the \textit{electromotive force} or \textit{e.m.f.}, is

\[
V = \oint E \cdot \text{d}l = 0. \quad (4.2)
\]

This is a direct consequence of the field equation \(\nabla \times E = 0\). So, since \(E\) is a conservative field then the electromotive force around a closed loop of wire is automatically zero, and no current flows around the wire. This all seems to make sense. However, Michael Faraday is about to throw a spanner in our works! He discovered in 1830 that a changing magnetic field can cause a current to flow
around a closed loop of wire (in the absence of a battery). Well, if current flows through a wire then there must be an electromotive force. So,

\[V = \oint E \cdot dl \neq 0, \quad (4.3) \]

which immediately implies that \(E \) is not a conservative field, and that \(\nabla \times E \neq 0 \). Clearly, we are going to have to modify some of our ideas regarding electric fields.

Faraday continued his experiments and found that another way of generating an electromotive force around a loop of wire is to keep the magnetic field constant and move the loop. Eventually, Faraday was able to formulate a law which accounted for all of his experiments. The e.m.f. generated around a loop of wire in a magnetic field is proportional to the rate of change of the flux of the magnetic field through the loop. So, if the loop is denoted \(C \), and \(S \) is some surface attached to the loop, then Faraday’s experiments can be summed up by writing

\[V = \oint_C E \cdot dl = A \frac{\partial}{\partial t} \int_S B \cdot dS, \quad (4.4) \]

where \(A \) is a constant of proportionality. Thus, the changing flux of the magnetic field through the loop creates an electric field directed around the loop. This process is known as magnetic induction.

S.I. units have been carefully chosen so as to make \(|A| = 1\) in the above equation. The only thing we now have to decide is whether \(A = +1 \) or \(A = -1 \). In other words, which way around the loop does the induced e.m.f. want to drive the current? We possess a general principle which allows us to decide questions like this. It is called Le Chatelier’s principle. According to Le Chatelier’s principle, every change generates a reaction which tries to minimize the change. Essentially, this means that the Universe is stable to small perturbations. When this principle is applied to the special case of magnetic induction, it is usually called Lenz’s law. According to Lenz’s law, the current induced around a closed loop is always such that the magnetic field it produces tries to counteract the change in magnetic flux which generates the electromotive force. From Fig. 34, it is clear that if the magnetic field \(B \) is increasing and the current \(I \) circulates clockwise (as seen from above) then it generates a field \(B' \) which opposes the increase in
magnetic flux through the loop, in accordance with Lenz’s law. The direction of the current is opposite to the sense of the current loop C (assuming that the flux of B through the loop is positive), so this implies that $A = -1$ in Eq. (4.4). Thus, Faraday’s law takes the form

$$\oint_C \mathbf{E} \cdot d\mathbf{l} = -\frac{\partial}{\partial t} \int_S \mathbf{B} \cdot d\mathbf{S}.$$ \hspace{1cm} (4.5)$$

Experimentally, Faraday’s law is found to correctly predict the e.m.f. \textit{(i.e., $\oint \mathbf{E} \cdot d\mathbf{l}$)} generated in any wire loop, irrespective of the position or shape of the loop. It is reasonable to assume that the same e.m.f. would be generated in the absence of the wire (of course, no current would flow in this case). Thus, Eq. (4.5) is valid for any closed loop C. If Faraday’s law is to make any sense then it must also be true for any surface S attached to the loop C. Clearly, if the flux of the magnetic field through the loop depends on the surface upon which it is evaluated then Faraday’s law is going to predict different e.m.f.s for different surfaces. Since there is no preferred surface for a general non-coplanar loop, this would not make very much sense. The condition for the flux of the magnetic field, $\int_S \mathbf{B} \cdot d\mathbf{S}$, to depend only on the loop C to which the surface S is attached, and not on the nature of the surface itself, is

$$\oint_{S'} \mathbf{B} \cdot d\mathbf{S}' = 0,$$ \hspace{1cm} (4.6)
for any closed surface S.

Faraday’s law, Eq. (4.5), can be converted into a field equation using Stokes’ theorem. We obtain

$$\nabla \times E = -\frac{\partial B}{\partial t}. \quad (4.7)$$

This is the final Maxwell equation. It describes how a changing magnetic field can generate, or induce, an electric field. Gauss’ theorem applied to Eq. (4.6) yields the familiar field equation

$$\nabla \cdot B = 0. \quad (4.8)$$

This ensures that the magnetic flux through a loop is a well-defined quantity.

The divergence of Eq. (4.7) yields

$$\frac{\partial \nabla \cdot B}{\partial t} = 0. \quad (4.9)$$

Thus, the field equation (4.7) actually demands that the divergence of the magnetic field be constant in time for self-consistency (this means that the flux of the magnetic field through a loop need not be a well-defined quantity, as long as its time derivative is well-defined). However, a constant non-solenoidal magnetic field can only be generated by magnetic monopoles, and magnetic monopoles do not exist (as far as we are aware). Hence, $\nabla \cdot B = 0$. The absence of magnetic monopoles is an observational fact: it cannot be predicted by any theory. If magnetic monopoles were discovered tomorrow this would not cause physicists any problems. We know how to generalize Maxwell’s equations to include both magnetic monopoles and currents of magnetic monopoles. In this generalized formalism, Maxwell’s equations are completely symmetric with respect to electric and magnetic fields, and $\nabla \cdot B \neq 0$. However, an extra term (involving the current of magnetic monopoles) must be added to the right-hand side of Eq. (4.7) in order to make it self-consistent.

4.3 Electric scalar potential?

Now we have a problem. We can only write the electric field in terms of a scalar potential (i.e., $E = -\nabla \phi$) provided that $\nabla \times E = 0$. However, we have just found
that in the presence of a changing magnetic field the curl of the electric field is non-zero. In other words, \(\mathbf{E} \) is not, in general, a conservative field. Does this mean that we have to abandon the concept of electric scalar potential? Fortunately, no. It is still possible to define a scalar potential which is physically meaningful.

Let us start from the equation

\[
\nabla \cdot \mathbf{B} = 0, \quad (4.10)
\]

which is valid for both time-varying and non time-varying magnetic fields. Since the magnetic field is solenoidal, we can write it as the curl of a vector potential:

\[
\mathbf{B} = \nabla \times \mathbf{A}. \quad (4.11)
\]

So, there is no problem with the vector potential in the presence of time-varying fields. Let us substitute Eq. (4.11) into the field equation (4.7). We obtain

\[
\nabla \times \mathbf{E} = -\frac{\partial \nabla \times \mathbf{A}}{\partial t}, \quad (4.12)
\]

which can be written

\[
\nabla \times \left(\mathbf{E} + \frac{\partial \mathbf{A}}{\partial t} \right) = \mathbf{0}. \quad (4.13)
\]

We know that a curl-free vector field can always be expressed as the gradient of a scalar potential, so let us write

\[
\mathbf{E} + \frac{\partial \mathbf{A}}{\partial t} = -\nabla \phi, \quad (4.14)
\]

or

\[
\mathbf{E} = -\nabla \phi - \frac{\partial \mathbf{A}}{\partial t}. \quad (4.15)
\]

This is a very nice equation! It tells us that the scalar potential \(\phi \) only describes the conservative electric field generated by electric charges. The electric field induced by time-varying magnetic fields is non-conservative, and is described by the magnetic vector potential \(\mathbf{A} \).
Electric and magnetic fields can be written in terms of scalar and vector potentials, as follows:

\[
E = -\nabla \phi - \frac{\partial A}{\partial t}, \quad (4.16)
\]
\[
B = \nabla \times A. \quad (4.17)
\]

However, this prescription is not unique. There are many different potentials which can generate the same fields. We have come across this problem before. It is called \textit{gauge invariance}. The most general transformation which leaves the \(E\) and \(B\) fields unchanged in Eqs. \(4.16\) and \(4.17\) is

\[
\phi \rightarrow \phi + \frac{\partial \psi}{\partial t}, \quad (4.18)
\]
\[
A \rightarrow A - \nabla \psi. \quad (4.19)
\]

This is clearly a generalization of the gauge transformation which we found earlier for static fields:

\[
\phi \rightarrow \phi + c, \quad (4.20)
\]
\[
A \rightarrow A - \nabla \psi, \quad (4.21)
\]

where \(c\) is a constant. In fact, if \(\psi(\mathbf{r}, t) \rightarrow \psi(\mathbf{r}) + c \, t\) then Eqs. \(4.18\) and \(4.19\) reduce to Eqs. \(4.20\) and \(4.21\).

We are free to choose the gauge so as to make our equations as simple as possible. As before, the most sensible gauge for the scalar potential is to make it go to zero at infinity:

\[
\phi(\mathbf{r}) \rightarrow 0 \quad \text{as} \quad |\mathbf{r}| \rightarrow \infty. \quad (4.22)
\]

For steady fields, we found that the optimum gauge for the vector potential was the so-called Coulomb gauge:

\[
\nabla \cdot A = 0. \quad (4.23)
\]

We can still use this gauge for non-steady fields. The argument which we gave earlier (see Sect. 3.12), that it is always possible to transform away the divergence of a vector potential, remains valid. One of the nice features of the
Coulomb gauge is that when we write the electric field,

$$\mathbf{E} = -\nabla \phi - \frac{\partial \mathbf{A}}{\partial t}, \quad (4.24)$$

we find that the part which is generated by charges (i.e., the first term on the right-hand side) is conservative, and the part induced by magnetic fields (i.e., the second term on the right-hand side) is purely solenoidal. Earlier on, we proved mathematically that a general vector field can be written as the sum of a conservative field and a solenoidal field (see Sect. 3.11). Now we are finding that when we split up the electric field in this manner the two fields have different physical origins: the conservative part of the field emanates from electric charges, whereas the solenoidal part is induced by magnetic fields.

Equation (4.24) can be combined with the field equation

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0} \quad (4.25)$$

(which remains valid for non-steady fields) to give

$$-\nabla^2 \phi - \frac{\partial \nabla \cdot \mathbf{A}}{\partial t} = \frac{\rho}{\varepsilon_0}. \quad (4.26)$$

With the Coulomb gauge condition, $\nabla \cdot \mathbf{A} = 0$, the above expression reduces to

$$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}, \quad (4.27)$$

which is just Poisson’s equation. Thus, we can immediately write down an expression for the scalar potential generated by non-steady fields. It is exactly the same as our previous expression for the scalar potential generated by steady fields, namely

$$\phi(\mathbf{r}, t) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\mathbf{r}', t)}{|\mathbf{r} - \mathbf{r}'|} \, d^3\mathbf{r}'. \quad (4.28)$$

However, this apparently simple result is extremely deceptive. Equation (4.28) is a typical action at a distance law. If the charge density changes suddenly at \mathbf{r}' then the potential at \mathbf{r} responds immediately. However, we shall see later that the full time-dependent Maxwell’s equations only allow information to propagate at the speed of light (i.e., they do not violate relativity). How can these two statements
be reconciled? The crucial point is that the scalar potential cannot be measured directly, it can only be inferred from the electric field. In the time-dependent case, there are two parts to the electric field: that part which comes from the scalar potential, and that part which comes from the vector potential [see Eq. (4.24)]. So, if the scalar potential responds immediately to some distance rearrangement of charge density it does not necessarily follow that the electric field also has an immediate response. What actually happens is that the change in the part of the electric field which comes from the scalar potential is balanced by an equal and opposite change in the part which comes from the vector potential, so that the overall electric field remains unchanged. This state of affairs persists at least until sufficient time has elapsed for a light signal to travel from the distant charges to the region in question. Thus, relativity is not violated, since it is the electric field, and not the scalar potential, which carries physically accessible information.

It is clear that the apparent action at a distance nature of Eq. (4.28) is highly misleading. This suggests, very strongly, that the Coulomb gauge is not the optimum gauge in the time-dependent case. A more sensible choice is the so called Lorentz gauge:

$$\nabla \cdot \mathbf{A} = -\varepsilon_0 \mu_0 \frac{\partial \phi}{\partial t}. \quad (4.29)$$

It can be shown, by analogy with earlier arguments (see Sect. 3.12), that it is always possible to make a gauge transformation, at a given instance in time, such that the above equation is satisfied. Substituting the Lorentz gauge condition into Eq. (4.26), we obtain

$$\varepsilon_0 \mu_0 \frac{\partial^2 \phi}{\partial t^2} - \nabla^2 \phi = \frac{\rho}{\varepsilon_0}. \quad (4.30)$$

It turns out that this is a three-dimensional wave equation in which information propagates at the speed of light. But, more of this later. Note that the magnetically induced part of the electric field (i.e., $-\partial \mathbf{A}/\partial t$) is not purely solenoidal in the Lorentz gauge. This is a slight disadvantage of the Lorentz gauge with respect to the Coulomb gauge. However, this disadvantage is more than offset by other advantages which will become apparent presently. Incidentally, the fact that the part of the electric field which we ascribe to magnetic induction changes when we change the gauge suggests that the separation of the field into magnetically induced and charge induced components is not unique in the general time-varying
4.5 The displacement current

Michael Faraday revolutionized physics in 1830 by showing that electricity and magnetism were interrelated phenomena. He achieved this breakthrough by careful experimentation. Between 1864 and 1873, James Clerk Maxwell achieved a similar breakthrough by pure thought. Of course, this was only possible because he was able to take the experimental results of Faraday, Ampère, etc., as his starting point. Prior to 1864, the laws of electromagnetism were written in integral form. Thus, Gauss’s law was (in S.I. units) the flux of the electric field through a closed surface equals the total enclosed charge, divided by \(\varepsilon_0 \). The no magnetic monopole law was the flux of the magnetic field through any closed surface is zero. Faraday’s law was the electromotive force generated around a closed loop equals minus the rate of change of the magnetic flux through the loop. Finally, Ampère’s circuital law was the line integral of the magnetic field around a closed loop equals the total current flowing through the loop, multiplied by \(\mu_0 \). Maxwell’s first great achievement was to realize that these laws could be expressed as a set of first-order partial differential equations. Of course, he wrote his equations out in component form, because modern vector notation did not come into vogue until about the time of the First World War. In modern notation, Maxwell first wrote:

\[
\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}, \tag{4.31}
\]

\[
\nabla \cdot \mathbf{B} = 0, \tag{4.32}
\]

\[
\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \tag{4.33}
\]

\[
\nabla \times \mathbf{B} = \mu_0 \mathbf{j}. \tag{4.34}
\]

Maxwell’s second great achievement was to realize that these equations are wrong.

We can see that there is something slightly unusual about Eqs. (4.31)–(4.34). They are very unfair to electric fields! After all, time-varying magnetic fields can induce electric fields, but electric fields apparently cannot affect magnetic fields in any way. However, there is a far more serious problem associated with the
above equations, which we alluded to earlier on. Consider the integral form of
the last Maxwell equation (i.e., Ampère’s circuital law)

\[\oint_C \mathbf{B} \cdot d\mathbf{l} = \mu_0 \oint_S \mathbf{j} \cdot d\mathbf{S}. \]

(4.35)

This says that the line integral of the magnetic field around a closed loop \(C \) is
equal to \(\mu_0 \) times the flux of the current density through the loop. The problem
is that the flux of the current density through a loop is not, in general, a well-
defined quantity. In order for the flux to be well-defined, the integral of \(\mathbf{j} \cdot d\mathbf{S} \) over
some surface \(S \) attached to a loop \(C \) must depend on \(C \), but not on the details of
\(S \). This is only the case if

\[\nabla \cdot \mathbf{j} = 0. \]

(4.36)

Unfortunately, the above condition is only satisfied for non time-varying fields.

Why do we say that, in general, \(\nabla \cdot \mathbf{j} \neq 0 \)? Well, consider the flux of \(\mathbf{j} \) out of
some closed surface \(S \) enclosing a volume \(V \). This is clearly equivalent to the rate
at which charge flows out of \(S \). However, if charge is a conserved quantity (and
we certainly believe that it is) then the rate at which charge flows out of \(S \) must
equal the rate of decrease of the charge contained in volume \(V \). Thus,

\[\oint_S \mathbf{j} \cdot d\mathbf{S} = -\frac{\partial}{\partial t} \int_V \rho \, dV. \]

(4.37)

Making use of Gauss’ theorem, this yields

\[\nabla \cdot \mathbf{j} = -\frac{\partial \rho}{\partial t}. \]

(4.38)

Thus, \(\nabla \cdot \mathbf{j} = 0 \) is only true in a steady-state (i.e., when \(\partial / \partial t \equiv 0 \)).

The problem with Ampère’s circuital law is well illustrated by the following
very famous example. Consider a long straight wire interrupted by a parallel
plate capacitor. Suppose that \(C \) is some loop which circles the wire. In the non
time-dependent situation, the capacitor acts like a break in the wire, so no cur-
rent flows, and no magnetic field is generated. There is clearly no problem with
Ampère’s law in this case. However, in the time-dependent situation, a transient
current flows in the wire as the capacitor charges up, or charges down, and so

114
a transient magnetic field is generated. Thus, the line integral of the magnetic field around C is (transiently) non-zero. According to Ampère’s circuital law, the flux of the current through any surface attached to C should also be (transiently) non-zero. Let us consider two such surfaces. The first surface, S_1, intersects the wire. This surface causes us no problem, since the flux of j though the surface is clearly non-zero (because it intersects a current carrying wire). The second surface, S_2, passes between the plates of the capacitor, and, therefore, does not intersect the wire at all. Clearly, the flux of the current through this surface is zero. The current fluxes through surfaces S_1 and S_2 are obviously different. However, both surfaces are attached to the same loop C, so the fluxes should be the same, according to Ampère’s law (4.35). It would appear that Ampère’s circuital law is about to disintegrate! However, we notice that although the surface S_2 does not intersect any electric current, it does pass through a region of strong changing electric field as it threads between the plates of the charging (or discharging) capacitor. Perhaps, if we add a term involving $\frac{\partial E}{\partial t}$ to the right-hand side of Eq. (4.34) then we can somehow fix up Ampère’s circuital law? This is, essentially, how Maxwell reasoned more than one hundred years ago.

Let us try out this scheme. Suppose that we write

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j} + \lambda \frac{\partial \mathbf{E}}{\partial t}$$

(4.39)

instead of Eq. (4.34). Here, λ is some constant. Does this resolve our problem? We want the flux of the right-hand side of the above equation through some loop C to be well-defined; i.e., it should only depend on C, and not the particular surface S (which spans C) upon which it is evaluated. This is another way of saying that we want the divergence of the right-hand side to be zero. In fact, we can see that this is necessary for self-consistency, since the divergence of the left-hand side is automatically zero. So, taking the divergence of Eq. (4.39), we obtain

$$0 = \mu_0 \nabla \cdot \mathbf{j} + \lambda \frac{\partial \nabla \cdot \mathbf{E}}{\partial t}.$$

(4.40)

But, we know that

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0},$$

(4.41)
so combining the previous two equations we arrive at

\[
\mu_0 \nabla \cdot \mathbf{j} + \frac{\lambda}{\varepsilon_0} \frac{\partial \mathbf{E}}{\partial t} = 0.
\] (4.42)

Now, our charge conservation law (4.38) can be written

\[
\nabla \cdot \mathbf{j} + \frac{\partial \rho}{\partial t} = 0.
\] (4.43)

The previous two equations are in agreement provided \(\lambda = \varepsilon_0 \mu_0\). So, if we modify the final Maxwell equation such that it reads

\[
\nabla \times \mathbf{B} = \mu_0 \mathbf{j} + \varepsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t},
\] (4.44)

then we find that the divergence of the right-hand side is zero as a consequence of charge conservation. The extra term is called the displacement current (this name was invented by Maxwell). In summary, we have shown that although the flux of the real current through a loop is not well-defined, if we form the sum of the real current and the displacement current then the flux of this new quantity through a loop is well-defined.

Of course, the displacement current is not a current at all. It is, in fact, associated with the generation of magnetic fields by time-varying electric fields. Maxwell came up with this rather curious name because many of his ideas regarding electric and magnetic fields were completely wrong. For instance, Maxwell believed in the æther, and he thought that electric and magnetic fields were some sort of stresses in this medium. He also thought that the displacement current was associated with displacements of the æther (hence, the name). The reason that these misconceptions did not invalidate his equations is quite simple. Maxwell based his equations on the results of experiments, and he added in his extra term so as to make these equations mathematically self-consistent. Both of these steps are valid irrespective of the existence or non-existence of the æther.

“But, hang on a minute,” you might say, “you can’t go around adding terms to laws of physics just because you feel like it! The field equations (4.31)–(4.34) are derived directly from the results of famous nineteenth century experiments. If there is a new term involving the time derivative of the electric field which
needs to be added into these equations, how come there is no corresponding nineteenth century experiment which demonstrates this? We have Faraday’s law which shows that changing magnetic fields generate electric fields. Why is there no “Joe Blogg’s” law that says that changing electric fields generate magnetic fields?” This is a perfectly reasonable question. The answer is that the new term describes an effect which is far too small to have been observed in nineteenth century experiments. Let us demonstrate this.

First, we shall show that it is comparatively easy to detect the induction of an electric field by a changing magnetic field in a desktop laboratory experiment. The Earth’s magnetic field is about 1 gauss (that is, 10^{-4} tesla). Magnetic fields generated by electromagnets (which will fit on a laboratory desktop) are typically about one hundred times bigger than this. Let us, therefore, consider a hypothetical experiment in which a 100 gauss magnetic field is switched on suddenly. Suppose that the field ramps up in one tenth of a second. What electromotive force is generated in a 10 centimeter square loop of wire located in this field? Faraday’s law is written

$$V = -\frac{\partial}{\partial t} \int B \cdot dS \sim \frac{BA}{t},$$

(4.45)

where $B = 0.01$ tesla is the field-strength, $A = 0.01 \text{ m}^2$ is the area of the loop, and $t = 0.1$ seconds is the ramp time. It follows that $V \sim 1$ millivolt. Well, one millivolt is easily detectable. In fact, most hand-held laboratory voltmeters are calibrated in millivolts. It is clear that we would have no difficulty whatsoever detecting the magnetic induction of electric fields in a nineteenth century style laboratory experiment.

Let us now consider the electric induction of magnetic fields. Suppose that our electric field is generated by a parallel plate capacitor of spacing one centimeter which is charged up to 100 volts. This gives a field of 10^4 volts per meter. Suppose, further, that the capacitor is discharged in one tenth of a second. The law of electric induction is obtained by integrating Eq. (4.44), and neglecting the first term on the right-hand side. Thus,

$$\int B \cdot dl = e_0 \mu_0 \frac{\partial}{\partial t} \int E \cdot dS.$$

(4.46)
Let us consider a loop 10 centimeters square. What is the magnetic field generated around this loop (we could try to measure this with a Hall probe)? Very approximately, we find that

\[lB \sim \varepsilon_0 \mu_0 \frac{E l^2}{t}, \]

where \(l = 0.1 \) meters is the dimensions of the loop, \(B \) is the magnetic field-strength, \(E = 10^4 \) volts per meter is the electric field, and \(t = 0.1 \) seconds is the decay time of the field. We find that \(B \sim 10^{-9} \) gauss. Modern technology is unable to detect such a small magnetic field, so we cannot really blame Faraday for not noticing electric induction in 1830.

“So,” you might say, “why did you bother mentioning this displacement current thing in the first place if it is undetectable?” Again, a perfectly fair question. The answer is that the displacement current is detectable in some experiments. Suppose that we take an FM radio signal, amplify it so that its peak voltage is one hundred volts, and then apply it to the parallel plate capacitor in the previous hypothetical experiment. What size of magnetic field would this generate? Well, a typical FM signal oscillates at \(10^9 \) Hz, so \(t \) in the previous example changes from 0.1 seconds to \(10^{-9} \) seconds. Thus, the induced magnetic field is about \(10^{-1} \) gauss. This is certainly detectable by modern technology. So, it would seem that if the electric field is oscillating fast then electric induction of magnetic fields is an observable effect. In fact, there is a virtually infallible rule for deciding whether or not the displacement current can be neglected in Eq. (4.44). If electromagnetic radiation is important then the displacement current must be included. On the other hand, if electromagnetic radiation is unimportant then the displacement current can be safely neglected. Clearly, Maxwell’s inclusion of the displacement current in Eq. (4.44) was a vital step in his later realization that his equations allowed propagating wave-like solutions. These solutions are, of course, electromagnetic waves. But, more of this later.

We are now in a position to write out Maxwell’s equations in all their glory! We get

\[\nabla \cdot E = \frac{\rho}{\varepsilon_0}, \]

\[\nabla \cdot B = 0, \]

(4.48)

(4.49)
4 TIME-DEPENDENT MAXWELL’S EQUATIONS 4.6 Potential formulation

\[\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \quad (4.50) \]

\[\nabla \times \mathbf{B} = \mu_0 \mathbf{j} + \epsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t}. \quad (4.51) \]

These four partial differential equations constitute a complete description of the behaviour of electric and magnetic fields. The first equation describes how electric fields are induced by charges. The second equation says that there is no such thing as a magnetic monopole. The third equation describes the induction of electric fields by changing magnetic fields, and the fourth equation describes the generation of magnetic fields by electric currents and the induction of magnetic fields by changing electric fields. Note that with the inclusion of the displacement current these equations treat electric and magnetic fields on an equal footing: i.e., electric fields can induce magnetic fields, and vice versa. Equations (4.48)–(4.51) sum up the experimental results of Coulomb, Ampère, and Faraday very succinctly: they are called Maxwell’s equations because James Clerk Maxwell was the first to write them down (in component form). Maxwell also fixed them up so that they made mathematical sense.

4.6 Potential formulation

We have seen that Eqs. (4.49) and (4.50) are automatically satisfied if we write the electric and magnetic fields in terms of potentials:

\[\mathbf{E} = -\nabla \phi - \frac{\partial \mathbf{A}}{\partial t}, \quad (4.52) \]

\[\mathbf{B} = \nabla \times \mathbf{A}. \quad (4.53) \]

This prescription is not unique, but we can make it unique by adopting the following conventions:

\[\phi(\mathbf{r}) \to 0 \text{ as } |\mathbf{r}| \to \infty, \quad (4.54) \]

\[\nabla \cdot \mathbf{A} = -\epsilon_0 \mu_0 \frac{\partial \phi}{\partial t}. \quad (4.55) \]
The above equations can be combined with Eq. (4.48) to give

$$\epsilon_0\mu_0 \frac{\partial^2 \phi}{\partial t^2} - \nabla^2 \phi = \frac{\rho}{\epsilon_0}. \quad (4.56)$$

Let us now consider Eq. (4.51). Substitution of Eqs. (4.52) and (4.53) into this formula yields

$$\nabla \times \nabla \times \mathbf{A} \equiv \nabla(\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A} = \mu_0 \mathbf{j} - \epsilon_0\mu_0 \frac{\partial \nabla \phi}{\partial t} - \epsilon_0\mu_0 \frac{\partial^2 \mathbf{A}}{\partial t^2}, \quad (4.57)$$

or

$$\epsilon_0\mu_0 \frac{\partial^2 \mathbf{A}}{\partial t^2} - \nabla^2 \mathbf{A} = \mu_0 \mathbf{j} - \nabla \left(\nabla \cdot \mathbf{A} + \epsilon_0\mu_0 \frac{\partial \phi}{\partial t} \right). \quad (4.58)$$

We can now see quite clearly where the Lorentz gauge condition (4.29) comes from. The above equation is, in general, very complicated, since it involves both the vector and scalar potentials. But, if we adopt the Lorentz gauge, then the last term on the right-hand side becomes zero, and the equation simplifies considerably, such that it only involves the vector potential. Thus, we find that Maxwell’s equations reduce to the following:

$$\epsilon_0\mu_0 \frac{\partial^2 \phi}{\partial t^2} - \nabla^2 \phi = \frac{\rho}{\epsilon_0}, \quad (4.59)$$

$$\epsilon_0\mu_0 \frac{\partial^2 \mathbf{A}}{\partial t^2} - \nabla^2 \mathbf{A} = \mu_0 \mathbf{j}. \quad (4.60)$$

This is the same (scalar) equation written four times over. In steady-state (i.e., $\frac{\partial}{\partial t} = 0$), it reduces to Poisson’s equation, which we know how to solve. With the $\frac{\partial^2}{\partial t^2}$ terms included, it becomes a slightly more complicated equation (in fact, a driven three-dimensional wave equation).

4.7 Electromagnetic waves

This is an appropriate point at which to demonstrate that Maxwell’s equations possess propagating wave-like solutions. Let us start from Maxwell’s equations in
free space (i.e., with no charges and no currents):

\[\nabla \cdot \mathbf{E} = 0, \quad (4.61) \]
\[\nabla \cdot \mathbf{B} = 0, \quad (4.62) \]
\[\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \quad (4.63) \]
\[\nabla \times \mathbf{B} = \varepsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t}. \quad (4.64) \]

Note that these equations exhibit a nice symmetry between the electric and magnetic fields.

There is an easy way to show that the above equations possess wave-like solutions, and a hard way. The easy way is to assume that the solutions are going to be wave-like beforehand. Specifically, let us search for plane-wave solutions of the form:

\[\mathbf{E}(\mathbf{r}, t) = E_0 \cos(k \cdot \mathbf{r} - \omega t), \quad (4.65) \]
\[\mathbf{B}(\mathbf{r}, t) = B_0 \cos(k \cdot \mathbf{r} - \omega t + \phi). \quad (4.66) \]

Here, \(E_0\) and \(B_0\) are constant vectors, \(k\) is called the wave-vector, and \(\omega\) is the angular frequency. The frequency in hertz, \(f\), is related to the angular frequency via \(\omega = 2\pi f\). The frequency is conventionally defined to be positive. The quantity \(\phi\) is a phase difference between the electric and magnetic fields. Actually, it is more convenient to write

\[\mathbf{E} = E_0 e^{i(k \cdot \mathbf{r} - \omega t)}, \quad (4.67) \]
\[\mathbf{B} = B_0 e^{i(k \cdot \mathbf{r} - \omega t)} \quad (4.68) \]

where, by convention, the physical solution is the real part of the above equations. The phase difference \(\phi\) is absorbed into the constant vector \(B_0\) by allowing it to become complex. Thus, \(B_0 \rightarrow B_0 e^{i\phi}\). In general, the vector \(E_0\) is also complex.

A wave maximum of the electric field satisfies

\[k \cdot \mathbf{r} = \omega t + n 2\pi + \phi, \quad (4.69) \]
where \(n \) is an integer and \(\phi \) is some phase angle. The solution to this equation is a set of equally spaced parallel planes (one plane for each possible value of \(n \)), whose normals lie in the direction of the wave-vector \(\mathbf{k} \), and which propagate in this direction with phase-velocity

\[
\nu = \frac{\omega}{k}.
\]

(4.70)

The spacing between adjacent planes (i.e., the wave-length) is given by

\[
\lambda = \frac{2\pi}{k}
\]

(4.71)

(see Fig. 35).

Consider a general plane-wave vector field

\[
\mathbf{A} = A_0 e^{i(k \cdot \mathbf{r} - \omega t)}.
\]

(4.72)

What is the divergence of \(\mathbf{A} \)? This is easy to evaluate. We have

\[
\nabla \cdot \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} = (A_{0x} i \mathbf{k}_x + A_{0y} i \mathbf{k}_y + A_{0z} i \mathbf{k}_z) e^{i(k \cdot \mathbf{r} - \omega t)}
\]

\[
= i \mathbf{k} \cdot \mathbf{A}.
\]

(4.73)
How about the curl of \mathbf{A}? This is slightly more difficult. We have

$$
(\nabla \times \mathbf{A})_x = \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} = (i k_y A_z - i k_z A_y)
$$

$$
= i (k \times \mathbf{A})_x.
$$

Thus this is easily generalized to

$$
\nabla \times \mathbf{A} = i k \times \mathbf{A}.
$$

(4.75)

We can see that vector field operations on a plane-wave simplify to replacing the ∇ operator with $i k$.

The first Maxwell equation (4.61) reduces to

$$
i k \cdot \mathbf{E}_0 = 0,
$$

(4.76)

using the assumed electric and magnetic fields (4.67) and (4.68), and Eq. (4.73). Thus, the electric field is perpendicular to the direction of propagation of the wave. Likewise, the second Maxwell equation gives

$$
i k \cdot \mathbf{B}_0 = 0,
$$

(4.77)

implying that the magnetic field is also perpendicular to the direction of propagation. Clearly, the wave-like solutions of Maxwell’s equation are a type of transverse wave. The third Maxwell equation gives

$$
i k \times \mathbf{E}_0 = i \omega \mathbf{B}_0,
$$

(4.78)

where use has been made of Eq. (4.75). Dotting this equation with \mathbf{E}_0 yields

$$
\mathbf{E}_0 \cdot \mathbf{B}_0 = \frac{\mathbf{E}_0 \cdot k \times \mathbf{E}_0}{\omega} = 0.
$$

(4.79)

Thus, the electric and magnetic fields are mutually perpendicular. Dotting equation (4.78) with \mathbf{B}_0 yields

$$
\mathbf{B}_0 \cdot k \times \mathbf{E}_0 = \omega B_0^2 > 0.
$$

(4.80)

Thus, the vectors \mathbf{E}_0, \mathbf{B}_0, and k are mutually perpendicular, and form a right-handed set. The final Maxwell equation gives

$$
i k \times \mathbf{B}_0 = -i \epsilon_0 \mu_0 \omega \mathbf{E}_0.
$$

(4.81)
Combining this with Eq. (4.78) yields
\[\mathbf{k} \times (\mathbf{k} \times \mathbf{E}_0) = (\mathbf{k} \cdot \mathbf{E}_0) \mathbf{k} - k^2 \mathbf{E}_0 = -k^2 \mathbf{E}_0 = -\varepsilon_0 \mu_0 \omega^2 \mathbf{E}_0, \]
(4.82)
or
\[k^2 = \varepsilon_0 \mu_0 \omega^2, \]
(4.83)
where use has been made of Eq. (4.76). However, we know from Eq. (4.70) that the phase-velocity \(c \) is related to the magnitude of the wave-vector and the angular wave frequency via \(c = \omega / k \). Thus, we obtain
\[c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}}. \]
(4.84)

So, we have found transverse wave solutions of the free-space Maxwell equations, propagating at some phase-velocity \(c \), which is given by a combination of \(\varepsilon_0 \) and \(\mu_0 \). The constants \(\varepsilon_0 \) and \(\mu_0 \) are easily measurable. The former is related to the force acting between stationary electric charges, and the latter to the force acting between steady electric currents. Both of these constants were fairly well-known in Maxwell’s time. Maxwell, incidentally, was the first person to look for wave-like solutions of his equations, and, thus, to derive Eq. (4.84). The modern values of \(\varepsilon_0 \) and \(\mu_0 \) are
\[\varepsilon_0 = 8.8542 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}, \]
(4.85)
\[\mu_0 = 4\pi \times 10^{-7} \text{ N A}^{-2}. \]
(4.86)
Let us use these values to find the phase-velocity of “electromagnetic waves.” We obtain
\[c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} = 2.998 \times 10^8 \text{ m s}^{-1}. \]
(4.87)
Of course, we immediately recognize this as the velocity of light. Maxwell also made this connection back in the 1870’s. He conjectured that light, whose nature had previously been unknown, was a form of electromagnetic radiation. This was a remarkable prediction. After all, Maxwell’s equations were derived from the results of benchtop laboratory experiments, involving charges, batteries, coils, and currents, which apparently had nothing whatsoever to do with light.
Maxwell was able to make another remarkable prediction. The wave-length of light was well-known in the late nineteenth century from studies of diffraction through slits, etc. Visible light actually occupies a surprisingly narrow wave-length range. The shortest wave-length blue light which is visible has $\lambda = 0.4$ microns (one micron is 10^{-6} meters). The longest wave-length red light which is visible has $\lambda = 0.76$ microns. However, there is nothing in our analysis which suggests that this particular range of wave-lengths is special. Electromagnetic waves can have any wave-length. Maxwell concluded that visible light was a small part of a vast spectrum of previously undiscovered types of electromagnetic radiation. Since Maxwell’s time, virtually all of the non-visible parts of the electromagnetic spectrum have been observed. Table 1 gives a brief guide to the electromagnetic spectrum. Electromagnetic waves are of particular importance because they are our only source of information regarding the universe around us. Radio waves and microwaves (which are comparatively hard to scatter) have provided much of our knowledge about the centre of our own galaxy. This is completely unobservable in visible light, which is strongly scattered by interstellar gas and dust lying in the galactic plane. For the same reason, the spiral arms of our galaxy can only be mapped out using radio waves. Infrared radiation is useful for detecting proto-stars, which are not yet hot enough to emit visible radiation. Of course, visible radiation is still the mainstay of astronomy. Satellite based ultraviolet observations have yielded invaluable insights into the structure and distribution of distant galaxies. Finally, X-ray and γ-ray astronomy usually concentrates on exotic objects in the Galaxy, such as pulsars and supernova remnants.

<table>
<thead>
<tr>
<th>Radiation Type</th>
<th>Wave-length Range (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma Rays</td>
<td>$< 10^{-11}$</td>
</tr>
<tr>
<td>X-Rays</td>
<td>10^{-11}–10^{-9}</td>
</tr>
<tr>
<td>Ultraviolet</td>
<td>10^{-9}–10^{-7}</td>
</tr>
<tr>
<td>Visible</td>
<td>10^{-7}–10^{-6}</td>
</tr>
<tr>
<td>Infrared</td>
<td>10^{-6}–10^{-4}</td>
</tr>
<tr>
<td>Microwave</td>
<td>10^{-4}–10^{-1}</td>
</tr>
<tr>
<td>TV-FM</td>
<td>10^{-1}–10^1</td>
</tr>
<tr>
<td>Radio</td>
<td>$> 10^1$</td>
</tr>
</tbody>
</table>

Table 1: The electromagnetic spectrum
Equations (4.76), (4.78), and the relation $c = \omega/k$, imply that

$$B_0 = \frac{E_0}{c}.$$ \hfill (4.88)

Thus, the magnetic field associated with an electromagnetic wave is smaller in magnitude than the electric field by a factor c. Consider a free charge interacting with an electromagnetic wave. The force exerted on the charge is given by the Lorentz formula

$$f = q(E + v \times B).$$ \hfill (4.89)

The ratio of the electric and magnetic forces is

$$\frac{f_{\text{magnetic}}}{f_{\text{electric}}} \approx \frac{v B_0}{E_0} \sim \frac{v}{c}.$$ \hfill (4.90)

So, unless the charge is relativistic, the electric force greatly exceeds the magnetic force. Clearly, in most terrestrial situations electromagnetic waves are an essentially electric phenomenon (as far as their interaction with matter goes). For this reason, electromagnetic waves are usually characterized by their wave-vector (which specifies the direction of propagation and the wave-length) and the plane of polarization (i.e., the plane of oscillation) of the associated electric field. For a given wave-vector \mathbf{k}, the electric field can have any direction in the plane normal to \mathbf{k}. However, there are only two independent directions in a plane (i.e., we can only define two linearly independent vectors in a plane). This implies that there are only two independent polarizations of an electromagnetic wave, once its direction of propagation is specified.

Let us now derive the velocity of light from Maxwell’s equation the hard way. Suppose that we take the curl of the fourth Maxwell equation, Eq. (4.64). We obtain

$$\nabla \times \nabla \times B = \nabla(\nabla \cdot B) - \nabla^2 B = -\nabla^2 B = \varepsilon_0 \mu_0 \frac{\partial \nabla \times E}{\partial t}. \hfill (4.91)$$

Here, we have used the fact that $\nabla \cdot B = 0$. The third Maxwell equation, Eq. (4.63), yields

$$\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) B = \mathbf{0}, \hfill (4.92)$$
where use has been made of Eq. (4.87). A similar equation can be obtained for the electric field by taking the curl of Eq. (4.63):

\[
\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \right) \mathbf{E} = 0,
\]

(4.93)

We have found that electric and magnetic fields both satisfy equations of the form

\[
\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \right) \mathbf{A} = 0
\]

(4.94)
in free space. As is easily verified, the most general solution to this equation (with a positive frequency) is

\[
\begin{align*}
A_x &= F_x(k \cdot r - k c t), \\
A_y &= F_y(k \cdot r - k c t), \\
A_z &= F_z(k \cdot r - k c t),
\end{align*}
\]

(4.95, 4.96, 4.97)

where \(F_x(\phi), F_y(\phi),\) and \(F_z(\phi)\) are one-dimensional scalar functions. Looking along the direction of the wave-vector, so that \(r = (k/k) r,\) we find that

\[
\begin{align*}
A_x &= F_x[k(r - c t)], \\
A_y &= F_y[k(r - c t)], \\
A_z &= F_z[k(r - c t)].
\end{align*}
\]

(4.98, 4.99, 4.100)
The \(x\)-component of this solution is shown schematically in Fig. 36. It clearly propagates in \(r\) with velocity \(c\). If we look along a direction which is perpendicular to \(k\) then \(k \cdot r = 0,\) and there is no propagation. Thus, the components of \(\mathbf{A}\) are arbitrarily shaped pulses which propagate, without changing shape, along the direction of \(k\) with velocity \(c\). These pulses can be related to the sinusoidal plane-wave solutions which we found earlier by Fourier transformation. Thus, any arbitrary shaped pulse propagating in the direction of \(k\) with velocity \(c\) can be broken down into lots of sinusoidal oscillations propagating in the same direction with the same velocity.

The operator

\[
\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}
\]

(4.101)
is called the d’Alembertian. It is the four-dimensional equivalent of the Laplacian. Recall that the Laplacian is invariant under rotational transformation. The d’Alembertian goes one better than this, since it is both rotationally invariant and Lorentz invariant. The d’Alembertian is conventionally denoted \Box^2. Thus, electromagnetic waves in free space satisfy the wave equations

$$\Box^2 E = 0,$$ \hspace{1cm} (4.102)

$$\Box^2 B = 0.$$ \hspace{1cm} (4.103)

When written in terms of the vector and scalar potentials, Maxwell’s equations reduce to

$$\Box^2 \phi = -\frac{\rho}{\epsilon_0},$$ \hspace{1cm} (4.104)

$$\Box^2 A = -\mu_0 j.$$ \hspace{1cm} (4.105)

These are clearly driven wave equations. Our next task is to find the solutions to these equations.

4.8 Green’s functions

Earlier on in this lecture course, we had to solve Poisson’s equation

$$\nabla^2 u = v,$$ \hspace{1cm} (4.106)
where \(v(r)\) is denoted the source function. The potential \(u(r)\) satisfies the boundary condition
\[
u(r, t) \to 0 \quad \text{as } |r| \to \infty,
\]
provided that the source function is reasonably localized. The solutions to Poisson’s equation are superposable (because the equation is linear). This property is exploited in the Green’s function method of solving this equation. The Green’s function \(G(r, r')\) is the potential, which satisfies the appropriate boundary conditions, generated by a unit amplitude point source located at \(r'\). Thus,
\[
\nabla^2 G(r, r') = \delta(r - r').
\]
Any source function \(v(r)\) can be represented as a weighted sum of point sources
\[
v(r) = \int \delta(r - r') v(r') \, d^3r'.
\]
It follows from superposability that the potential generated by the source \(v(r)\) can be written as the weighted sum of point source driven potentials (i.e., Green’s functions)
\[
u(r) = \int G(r, r') \, v(r') \, d^3r'.
\]
We found earlier that the Green’s function for Poisson’s equation is
\[
G(r, r') = -\frac{1}{4\pi} \frac{1}{|r - r'|}.
\]
It follows that the general solution to Eq. (4.106) is written
\[
u(r) = -\frac{1}{4\pi} \int \frac{v(r')}{|r - r'|} \, d^3r'.
\]
Note that the point source driven potential (4.111) is perfectly sensible. It is spherically symmetric about the source, and falls off smoothly with increasing distance from the source.

We now need to solve the wave equation
\[
\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) u = v,
\]
where \(v(\mathbf{r}, t) \) is a time-varying source function. The potential \(u(\mathbf{r}, t) \) satisfies the boundary conditions

\[
u(\mathbf{r}) \to 0 \quad \text{as} \quad |\mathbf{r}| \to \infty \quad \text{and} \quad |t| \to \infty.
\]

The solutions to Eq. (4.113) are superposable (since the equation is linear), so a Green’s function method of solution is again appropriate. The Green’s function \(G(\mathbf{r}, \mathbf{r}'; t, t') \) is the potential generated by a point impulse located at position \(\mathbf{r}' \) and applied at time \(t' \). Thus,

\[
\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \right) G(\mathbf{r}, \mathbf{r}'; t, t') = \delta(\mathbf{r} - \mathbf{r}') \delta(t - t').
\]

(4.115)

Of course, the Green’s function must satisfy the correct boundary conditions. A general source \(v(\mathbf{r}, t) \) can be built up from a weighted sum of point impulses

\[
v(\mathbf{r}, t) = \int \int \delta(\mathbf{r} - \mathbf{r}') \delta(t - t') v(\mathbf{r}', t') \, d^3\mathbf{r}' \, dt'.
\]

(4.116)

It follows that the potential generated by \(v(\mathbf{r}, t) \) can be written as the weighted sum of point impulse driven potentials

\[
u(\mathbf{r}, t) = \int \int G(\mathbf{r}, \mathbf{r}'; t, t') v(\mathbf{r}', t') \, d^3\mathbf{r}' \, dt'.
\]

(4.117)

So, how do we find the Green’s function?

Consider

\[
G(\mathbf{r}, \mathbf{r}'; t, t') = \frac{F(t - t' - |\mathbf{r} - \mathbf{r}'|/c)}{|\mathbf{r} - \mathbf{r}'|},
\]

(4.118)

where \(F(\phi) \) is a general scalar function. Let us try to prove the following theorem:

\[
\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \right) G = -4\pi F(t - t') \delta(\mathbf{r} - \mathbf{r}').
\]

(4.119)

At a general point, \(\mathbf{r} \neq \mathbf{r}' \), the above expression reduces to

\[
\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \right) G = 0.
\]

(4.120)
So, we basically have to show that \(G \) is a valid solution of the free space wave equation. We can easily show that

\[
\frac{\partial |\mathbf{r} - \mathbf{r}'|}{\partial x} = \frac{x - x'}{|\mathbf{r} - \mathbf{r}'|}. \tag{4.121}
\]

It follows by simple differentiation that

\[
\frac{\partial^2 G}{\partial x^2} = \left(\frac{3(x - x')^2 - |\mathbf{r} - \mathbf{r}'|^2}{|\mathbf{r} - \mathbf{r}'|^5} \right) F' \frac{c}{|\mathbf{r} - \mathbf{r}'|^3} + \left(\frac{3(x - x')^2 - |\mathbf{r} - \mathbf{r}'|^2}{|\mathbf{r} - \mathbf{r}'|^4} \right) F'' - \frac{(x - x')^2 F'''}{c^2 |\mathbf{r} - \mathbf{r}'|^3}, \tag{4.122}
\]

where \(F'(\phi) = dF(\phi)/d\phi \). We can derive analogous equations for \(\frac{\partial^2 G}{\partial y^2} \) and \(\frac{\partial^2 G}{\partial z^2} \). Thus,

\[
\nabla^2 G = \frac{\partial^2 G}{\partial x^2} + \frac{\partial^2 G}{\partial y^2} + \frac{\partial^2 G}{\partial z^2} = \frac{F''}{|\mathbf{r} - \mathbf{r}'| c^2} - \frac{1}{c^2} \frac{\partial^2 G}{\partial t^2}, \tag{4.123}
\]

giving

\[
\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \right) G = 0, \tag{4.124}
\]

which is the desired result. Consider, now, the region around \(\mathbf{r} = \mathbf{r}' \). It is clear from Eq. (4.122) that the dominant term on the right-hand side as \(|\mathbf{r} - \mathbf{r}'| \to 0 \) is the first one, which is essentially \(F \partial^2(|\mathbf{r} - \mathbf{r}'|^{-1})/\partial x^2 \). It is also clear that \((1/c^2)(\partial^2 G/\partial t^2) \) is negligible compared to this term. Thus, as \(|\mathbf{r} - \mathbf{r}'| \to 0 \) we find that

\[
\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \right) G \to F(t - t') \nabla^2 \left(\frac{1}{|\mathbf{r} - \mathbf{r}'|} \right). \tag{4.125}
\]

However, according to Eqs. (4.108) and (4.111)

\[
\nabla^2 \left(\frac{1}{|\mathbf{r} - \mathbf{r}'|} \right) = -4\pi \delta(\mathbf{r} - \mathbf{r}'). \tag{4.126}
\]

We conclude that

\[
\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \right) G = -4\pi F(t - t') \delta(\mathbf{r} - \mathbf{r}'), \tag{4.127}
\]
which is the desired result.

Let us now make the special choice

\[F(\phi) = -\frac{\delta(\phi)}{4\pi}. \] (4.128)

It follows from Eq. (4.127) that

\[\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \right) G = \delta(\mathbf{r} - \mathbf{r}') \delta(t - t'). \] (4.129)

Thus,

\[G(\mathbf{r}, \mathbf{r}'; t, t') = -\frac{1}{4\pi} \frac{\delta(t - t' - |\mathbf{r} - \mathbf{r}'|/c)}{|\mathbf{r} - \mathbf{r}'|} \] (4.130)

is the Green’s function for the driven wave equation (4.113).

The time-dependent Green’s function (4.130) is the same as the steady-state Green’s function (4.111), apart from the delta-function appearing in the former. What does this delta-function do? Well, consider an observer at point \(\mathbf{r} \). Because of the delta-function, our observer only measures a non-zero potential at one particular time

\[t = t' + \frac{|\mathbf{r} - \mathbf{r}'|}{c}. \] (4.131)

It is clear that this is the time the impulse was applied at position \(\mathbf{r}' \) (i.e., \(t' \)) plus the time taken for a light signal to travel between points \(\mathbf{r}' \) and \(\mathbf{r} \). At time \(t > t' \), the locus of all the points at which the potential is non-zero is

\[|\mathbf{r} - \mathbf{r}'| = c (t - t'). \] (4.132)

In other words, it is a sphere centred on \(\mathbf{r}' \) whose radius is the distance traveled by light in the time interval since the impulse was applied at position \(\mathbf{r}' \). Thus, the Green’s function (4.130) describes a spherical wave which emanates from position \(\mathbf{r}' \) at time \(t' \) and propagates at the speed of light. The amplitude of the wave is inversely proportional to the distance from the source.
4.9 Retarded potentials

We are now in a position to solve Maxwell’s equations. Recall that in steady-state, Maxwell’s equations reduce to

\[\nabla^2 \phi = -\frac{\rho}{\epsilon_0}, \]
(4.133)

\[\nabla^2 \mathbf{A} = -\mu_0 \mathbf{j}. \]
(4.134)

The solutions to these equations are easily found using the Green’s function for Poisson’s equation (4.111):

\[\phi(\mathbf{r}) = \frac{1}{4\pi \epsilon_0} \int \frac{\rho(\mathbf{r'})}{|\mathbf{r} - \mathbf{r'}|} d^3\mathbf{r'}, \]
(4.135)

\[\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{j}(\mathbf{r'})}{|\mathbf{r} - \mathbf{r'}|} d^3\mathbf{r'}. \]
(4.136)

The time-dependent Maxwell equations reduce to

\[\Box^2 \phi = -\frac{\rho}{\epsilon_0}, \]
(4.137)

\[\Box^2 \mathbf{A} = -\mu_0 \mathbf{j}. \]
(4.138)

We can solve these equations using the time-dependent Green’s function (4.130). From Eq. (4.117) we find that

\[\phi(\mathbf{r}, t) = \frac{1}{4\pi \epsilon_0} \int \int \frac{\delta(t - t' - |\mathbf{r} - \mathbf{r'}|/c) \rho(\mathbf{r'}, t')}{|\mathbf{r} - \mathbf{r'}|} d^3\mathbf{r'} dt', \]
(4.139)

with a similar equation for \(\mathbf{A} \). Using the well-known property of delta-functions, these equations reduce to

\[\phi(\mathbf{r}, t) = \frac{1}{4\pi \epsilon_0} \int \frac{\rho(\mathbf{r'}, t - |\mathbf{r} - \mathbf{r'}|/c)}{|\mathbf{r} - \mathbf{r'}|} d^3\mathbf{r'}, \]
(4.140)

\[\mathbf{A}(\mathbf{r}, t) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{j}(\mathbf{r'}, t - |\mathbf{r} - \mathbf{r'}|/c)}{|\mathbf{r} - \mathbf{r'}|} d^3\mathbf{r'}. \]
(4.141)

These are the general solutions to Maxwell’s equations. Note that the time-dependent solutions, (4.140) and (4.141), are the same as the steady-state solutions, (4.135) and (4.136), apart from the weird way in which time appears in
the former. According to Eqs. (4.140) and (4.141), if we want to work out the potentials at position \mathbf{r} and time t then we have to perform integrals of the charge density and current density over all space (just like in the steady-state situation). However, when we calculate the contribution of charges and currents at position \mathbf{r}' to these integrals we do not use the values at time t, instead we use the values at some earlier time $t - |\mathbf{r} - \mathbf{r}'|/c$. What is this earlier time? It is simply the latest time at which a light signal emitted from position \mathbf{r}' would be received at position \mathbf{r} before time t. This is called the *retarded time*. Likewise, the potentials (4.140) and (4.141) are called *retarded potentials*. It is often useful to adopt the following notation

$$A(\mathbf{r}', t - |\mathbf{r} - \mathbf{r}'|/c) \equiv [A(\mathbf{r}', t)]. \quad (4.142)$$

The square brackets denote retardation (i.e., using the retarded time instead of the real time). Using this notation Eqs. (4.140) and (4.141), become

$$\phi(\mathbf{r}) = \frac{1}{4\pi \varepsilon_0} \int \frac{[\rho(\mathbf{r}')]}{|\mathbf{r} - \mathbf{r}'|} d^3\mathbf{r}', \quad (4.143)$$

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{[\mathbf{j}(\mathbf{r}')]}{|\mathbf{r} - \mathbf{r}'|} d^3\mathbf{r}'. \quad (4.144)$$

The time dependence in the above equations is taken as read.

We are now in a position to understand electromagnetism at its most fundamental level. A charge distribution $\rho(\mathbf{r}, t)$ can be thought of as built up out of a collection, or series, of charges which instantaneously come into existence, at some point \mathbf{r}' and some time t', and then disappear again. Mathematically, this is written

$$\rho(\mathbf{r}, t) = \int \int \delta(\mathbf{r} - \mathbf{r}') \delta(t - t') \rho(\mathbf{r}', t') d^3\mathbf{r}' dt'. \quad (4.145)$$

Likewise, we can think of a current distribution $\mathbf{j}(\mathbf{r}, t)$ as built up out of a collection or series of currents which instantaneously appear and then disappear:

$$\mathbf{j}(\mathbf{r}, t) = \int \int \delta(\mathbf{r} - \mathbf{r}') \delta(t - t') \mathbf{j}(\mathbf{r}', t') d^3\mathbf{r}' dt'. \quad (4.146)$$

Each of these ephemeral charges and currents excites a spherical wave in the appropriate potential. Thus, the charge density at \mathbf{r}' and t' sends out a wave in
the scalar potential:

\[
\phi(\mathbf{r}, t) = \frac{\rho(\mathbf{r}', t')}{4\pi \varepsilon_0} \frac{\delta(t - t' - |\mathbf{r} - \mathbf{r}'|/c)}{|\mathbf{r} - \mathbf{r}'|}.
\] (4.147)

Likewise, the current density at \(\mathbf{r}'\) and \(t'\) sends out a wave in the vector potential:

\[
\mathbf{A}(\mathbf{r}, t) = \frac{\mu_0 \mathbf{j}(\mathbf{r}', t')}{4\pi} \frac{\delta(t - t' - |\mathbf{r} - \mathbf{r}'|/c)}{|\mathbf{r} - \mathbf{r}'|}.
\] (4.148)

These waves can be thought of as messengers which inform other charges and currents about the charges and currents present at position \(\mathbf{r}'\) and time \(t'\). However, these messengers travel at a finite speed: \(i.e.\), the speed of light. So, by the time they reach other charges and currents their message is a little out of date. Every charge and every current in the Universe emits these spherical waves. The resultant scalar and vector potential fields are given by Eqs. (4.143) and (4.144). Of course, we can turn these fields into electric and magnetic fields using Eqs. (4.52) and (4.53). We can then evaluate the force exerted on charges using the Lorentz formula. We can see that we have now escaped from the apparent action at a distance nature of Coulomb’s law and the Biot-Savart law. Electromagnetic information is carried by spherical waves in the vector and scalar potentials, and, therefore, travels at the velocity of light. Thus, if we change the position of a charge then a distant charge can only respond after a time delay sufficient for a spherical wave to propagate from the former to the latter charge.

Let us compare the steady-state law

\[
\phi(\mathbf{r}) = \frac{1}{4\pi \varepsilon_0} \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d^3\mathbf{r}'
\] (4.149)

with the corresponding time-dependent law

\[
\phi(\mathbf{r}) = \frac{1}{4\pi \varepsilon_0} \int \frac{[\rho(\mathbf{r}')]}{|\mathbf{r} - \mathbf{r}'|} \, d^3\mathbf{r}'
\] (4.150)

These two formulae look very similar indeed, but there is an important difference. We can imagine (rather pictorially) that every charge in the Universe is continuously performing the integral (4.150), and is also performing a similar integral to find the vector potential. After evaluating both potentials, the charge
can calculate the fields, and, using the Lorentz force law, it can then work out its equation of motion. The problem is that the information the charge receives from the rest of the Universe is carried by our spherical waves, and is always slightly out of date (because the waves travel at a finite speed). As the charge considers more and more distant charges or currents, its information gets more and more out of date. (Similarly, when astronomers look out to more and more distant galaxies in the Universe, they are also looking backwards in time. In fact, the light we receive from the most distant observable galaxies was emitted when the Universe was only about one third of its present age.) So, what does our electron do? It simply uses the most up to date information about distant charges and currents which it possesses. So, instead of incorporating the charge density \(\rho(r, t) \) in its integral, the electron uses the \textit{retarded} charge density \([\rho(r, t)]\) (i.e., the density evaluated at the retarded time). This is effectively what Eq. (4.150) says.

Consider a thought experiment in which a charge \(q \) appears at position \(r_0 \) at time \(t_1 \), persists for a while, and then disappears at time \(t_2 \). What is the electric field generated by such a charge? Using Eq. (4.150), we find that

\[
\phi(r) = \frac{q}{4\pi \epsilon_0 |r - r_0|} \quad \text{for} \quad t_1 \leq t - |r - r_0|/c \leq t_2
\]

\[
= 0 \quad \text{otherwise.} \quad (4.151)
\]

Now, \(E = -\nabla \phi \) (since there are no currents, and therefore no vector potential is generated), so

\[
E(r) = \frac{q}{4\pi \epsilon_0 |r - r_0|^3} \quad \text{for} \quad t_1 \leq t - |r - r_0|/c \leq t_2
\]

\[
= 0 \quad \text{otherwise.} \quad (4.152)
\]

This solution is shown pictorially in Fig. 37. We can see that the charge effectively emits a Coulomb electric field which propagates radially away from the charge at the speed of light. Likewise, it is easy to show that a current carrying wire effectively emits an Ampèrian magnetic field at the speed of light.

We can now appreciate the essential difference between time-dependent electromagnetism and the action at a distance laws of Coulomb and Biot & Savart.
In the latter theories, the field-lines act rather like rigid wires attached to charges (or circulating around currents). If the charges (or currents) move then so do the field-lines, leading inevitably to unphysical action at a distance type behaviour. In the time-dependent theory, charges act rather like water sprinklers: i.e., they spray out the Coulomb field in all directions at the speed of light. Similarly, current carrying wires throw out magnetic field loops at the speed of light. If we move a charge (or current) then field-lines emitted beforehand are not affected, so the field at a distant charge (or current) only responds to the change in position after a time delay sufficient for the field to propagate between the two charges (or currents) at the speed of light.

In Coulomb’s law and the Biot-Savart law, it is not entirely obvious that the electric and magnetic fields have a real existence. After all, the only measurable quantities are the forces acting between charges and currents. We can describe the force acting on a given charge or current, due to the other charges and currents in the Universe, in terms of the local electric and magnetic fields, but we have no way of knowing whether these fields persist when the charge or current is not present (i.e., we could argue that electric and magnetic fields are just a convenient way of calculating forces, but, in reality, the forces are transmitted directly between charges and currents by some form of magic). However, it is patently obvious that electric and magnetic fields have a real existence in the time-dependent theory. Consider the following thought experiment. Suppose
that a charge \(q_1 \) comes into existence for a period of time, emits a Coulomb field, and then disappears. Suppose that a distant charge \(q_2 \) interacts with this field, but is sufficiently far from the first charge that by the time the field arrives the first charge has already disappeared. The force exerted on the second charge is only ascribable to the electric field: it cannot be ascribed to the first charge, because this charge no longer exists by the time the force is exerted. The electric field clearly transmits energy and momentum between the two charges. Anything which possesses energy and momentum is “real” in a physical sense. Later on in this course, we shall demonstrate that electric and magnetic fields conserve energy and momentum.

Let us now consider a moving charge. Such a charge is continually emitting spherical waves in the scalar potential, and the resulting wavefront pattern is sketched in Fig. 38. Clearly, the wavefronts are more closely spaced in front of the charge than they are behind it, suggesting that the electric field in front is larger than the field behind. In a medium, such as water or air, where waves travel at a finite speed, \(c \) (say), it is possible to get a very interesting effect if the wave source travels at some velocity \(v \) which exceeds the wave speed. This is illustrated in Fig. 39.

The locus of the outermost wave front is now a cone instead of a sphere. The wave intensity on the cone is extremely large: this is a shock wave! The half-angle \(\theta \) of the shock wave cone is simply \(\sin^{-1}(c/v) \). In water, shock waves are produced by fast moving boats. We call these bow waves. In air, shock waves are
produced by speeding bullets and supersonic jets. In the latter case, we call these *sonic booms*. Is there any such thing as an electromagnetic shock wave? At first sight, the answer to this question would appear to be, no. After all, electromagnetic waves travel at the speed of light, and no wave source (i.e., an electrically charged particle) can travel faster than this velocity. This is a rather disappointing conclusion. However, when an electromagnetic wave travels through matter a remarkable thing happens. The oscillating electric field of the wave induces a slight separation of the positive and negative charges in the atoms which make up the material. We call separated positive and negative charges an electric dipole. Of course, the atomic dipoles oscillate in sympathy with the field which induces them. However, an oscillating electric dipole radiates electromagnetic waves. Amazingly, when we add the original wave to these induced waves, it is exactly as if the original wave propagates through the material in question at a velocity which is *slower* than the velocity of light in vacuum. Suppose, now, that we shoot a charged particle through the material faster than the slowed down velocity of electromagnetic waves. This is possible since the waves are traveling slower than the velocity of light in vacuum. In practice, the particle has to be traveling pretty close to the velocity of light in vacuum (i.e., it has to be relativistic), but modern particle accelerators produce copious amounts of such particles. Now, we can get an electromagnetic shock wave. We expect an intense cone of emission, just like the bow wave produced by a fast ship. In fact, this type of radiation has been
observed. It is called Cherenkov radiation, and it is very useful in high energy physics. Cherenkov radiation is typically produced by surrounding a particle accelerator with perspex blocks. Relativistic charged particles emanating from the accelerator pass through the perspex traveling faster than the local velocity of light, and therefore emit Cherenkov radiation. We know the velocity of light (c_*, say) in perspex (this can be worked out from the refractive index), so if we can measure the half angle θ of the radiation cone emitted by each particle then we can evaluate the speed of the particle v via the geometric relation $\sin \theta = c_*/v$.

4.10 Advanced potentials?

We have defined the retarded time

$$t_r = t - |r - r'|/c$$

(4.153)

as the latest time at which a light signal emitted from position r' would reach position r before time t. We have also shown that a solution to Maxwell’s equations can be written in terms of retarded potentials:

$$\phi(r, t) = \frac{1}{4\pi \varepsilon_0} \int \frac{\rho(r', t_r)}{|r - r'|} d^3r',$$

(4.154)

etc. But, is this the most general solution? Suppose that we define the advanced time.

$$t_a = t + |r - r'|/c.$$

(4.155)

This is the time a light signal emitted at time t from position r would reach position r'. It turns out that we can also write a solution to Maxwell’s equations in terms of advanced potentials:

$$\phi(r, t) = \frac{1}{4\pi \varepsilon_0} \int \frac{\rho(r', t_a)}{|r - r'|} d^3r',$$

(4.156)

etc. In fact, this is just as good a solution to Maxwell’s equation as the one involving retarded potentials. To get some idea what is going on, let us examine the Green’s function corresponding to our retarded potential solution:

$$\phi(r, t) = \frac{\rho(r', t')}{4\pi \varepsilon_0 \frac{\delta(t - t' - |r - r'|/c)}{|r - r'|}},$$

(4.157)
with a similar equation for the vector potential. This says that the charge density present at position \(\mathbf{r}' \) and time \(t' \) emits a spherical wave in the scalar potential which propagates forwards in time. The Green’s function corresponding to our advanced potential solution is

\[
\phi(\mathbf{r}, t) = \frac{\rho(\mathbf{r}', t')}{4\pi\varepsilon_0} \frac{\delta(t - t' + |\mathbf{r} - \mathbf{r}'|/c)}{|\mathbf{r} - \mathbf{r}'|}.
\]

(4.158)

This says that the charge density present at position \(\mathbf{r}' \) and time \(t' \) emits a spherical wave in the scalar potential which propagates backwards in time. “But, hang on a minute,” you might say, “everybody knows that electromagnetic waves can’t travel backwards in time. If they did then causality would be violated.” Well, you know that electromagnetic waves do not propagate backwards in time, I know that electromagnetic waves do not propagate backwards in time, but the question is do Maxwell’s equations know this? Consider the wave equation for the scalar potential:

\[
\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \right) \phi = -\frac{\rho}{\varepsilon_0}.
\]

(4.159)

This equation is manifestly symmetric in time (i.e., it is invariant under the transformation \(t \rightarrow -t \)). Thus, backward traveling waves are just as good a solution to this equation as forward traveling waves. The equation is also symmetric in space (i.e., it is invariant under the transformation \(x \rightarrow -x \)). So, why do we adopt the Green’s function (4.157) which is symmetric in space (i.e., it is invariant under \(x \rightarrow -x \)) but asymmetric in time (i.e., it is not invariant under \(t \rightarrow -t \))? Would it not be better to use the completely symmetric Green’s function

\[
\phi(\mathbf{r}, t) = \frac{\rho(\mathbf{r}', t')}{4\pi\varepsilon_0} \frac{1}{2} \left(\frac{\delta(t - t' - |\mathbf{r} - \mathbf{r}'|/c)}{|\mathbf{r} - \mathbf{r}'|} + \frac{\delta(t - t' + |\mathbf{r} - \mathbf{r}'|/c)}{|\mathbf{r} - \mathbf{r}'|} \right) \tag{4.160}
\]

In other words, a charge emits half of its waves running forwards in time (i.e., retarded waves), and the other half running backwards in time (i.e., advanced waves). This sounds completely crazy! However, in the 1940’s Richard P. Feynman and John A. Wheeler pointed out that under certain circumstances this prescription gives the right answer. Consider a charge interacting with “the rest of the Universe,” where the “rest of the Universe” denotes all of the distant charges in the Universe, and is, by implication, an awful long way away from our original
charge. Suppose that the “rest of the Universe” is a perfect reflector of advanced waves and a perfect absorber of retarded waves. The waves emitted by the charge can be written schematically as

\[F = \frac{1}{2} \text{(retarded)} + \frac{1}{2} \text{(advanced)}. \]

(4.161)

The response of the rest of the universe is written

\[R = \frac{1}{2} \text{(retarded)} - \frac{1}{2} \text{(advanced)}. \]

(4.162)

This is illustrated in the space-time diagram Fig. 40. Here, A and R denote the advanced and retarded waves emitted by the charge, respectively. The advanced wave travels to “the rest of the Universe” and is reflected: i.e., the distant charges oscillate in response to the advanced wave and emit a retarded wave a, as shown. The retarded wave a is spherical wave which converges on the original charge, passes through the charge, and then diverges again. The divergent wave is denoted aa. Note that a looks like a negative advanced wave emitted by the charge, whereas aa looks like a positive retarded wave emitted by the charge. This is essentially what Eq. (4.162) says. The retarded waves R and aa are absorbed by “the rest of the Universe.”
If we add the waves emitted by the charge to the response of “the rest of the Universe” we obtain
\[F' = F + R = \text{(retarded)}. \] (4.163)

Thus, charges appear to emit only retarded waves, which agrees with our everyday experience. Clearly, in this model we have side-stepped the problem of a time asymmetric Green’s function by adopting time asymmetric boundary conditions to the Universe: i.e., the distant charges in the Universe absorb retarded waves and reflect advanced waves. This is possible because the absorption takes place at the end of the Universe (i.e., at the “big crunch,” or whatever) and the reflection takes place at the beginning of the Universe (i.e., at the “big bang”). It is quite plausible that the state of the Universe (and, hence, its interaction with electromagnetic waves) is completely different at these two times. It should be pointed out that the Feynman-Wheeler model runs into trouble when one tries to combine electromagnetism with quantum mechanics. These difficulties have yet to be resolved, so at present the status of this model is that it is “an interesting idea,” but it is still not fully accepted into the canon of physics.

4.11 Retarded fields

We know the solution to Maxwell’s equations in terms of retarded potentials. Let us now construct the associated electric and magnetic fields using
\[E = -\nabla \phi - \frac{\partial A}{\partial t}, \] (4.164)
\[B = \nabla \times A. \] (4.165)

It is helpful to write
\[R = r - r', \] (4.166)
where \(R = |r - r'| \). The retarded time becomes \(t_r = t - R/c \), and a general retarded quantity is written \([F(r, t)] \equiv F(r, t_r) \). Thus, we can write the retarded potential solutions of Maxwell’s equations in the especially compact form:
\[\phi = \frac{1}{4\pi \varepsilon_0} \int \frac{[\rho]}{R} dV', \] (4.167)
\[\mathbf{A} = \frac{\mu_0}{4\pi} \int \frac{[\mathbf{j}]}{\mathbf{R}} \, dV', \]

(4.168)

where \(dV' \equiv d^3r' \).

It is easily seen that

\[
\nabla \phi = \frac{1}{4\pi \epsilon_0} \int \left([\rho] \nabla (R^{-1}) + \frac{[\partial \rho / \partial t]}{R} \nabla t_r \right) dV' \\
= -\frac{1}{4\pi \epsilon_0} \int \left(\frac{[\rho]}{R^3} \mathbf{R} + \frac{[\partial \rho / \partial t]}{cR^2} \mathbf{R} \right) dV',
\]

(4.169)

where use has been made of

\[
\nabla R = \frac{\mathbf{R}}{R}, \quad \nabla (R^{-1}) = -\frac{\mathbf{R}}{R^3}, \quad \nabla t_r = -\frac{\mathbf{R}}{cR}.
\]

Likewise,

\[
\nabla \times \mathbf{A} = \frac{\mu_0}{4\pi} \int \left(\nabla (R^{-1}) \times [\mathbf{j}] + \frac{\nabla t_r \times [\partial \mathbf{j} / \partial t]}{R} \right) dV' \\
= -\frac{\mu_0}{4\pi} \int \left(\frac{\mathbf{R} \times [\mathbf{j}]}{R^3} + \frac{\mathbf{R} \times [\partial \mathbf{j} / \partial t]}{cR^2} \right) dV'.
\]

(4.171)

Equations (4.164), (4.165), (4.169), and (4.171) can be combined to give

\[
\mathbf{E} = \frac{1}{4\pi \epsilon_0} \int \left(\left[\rho \right] \frac{\mathbf{R}}{R^3} + \frac{\left[\partial \rho / \partial t \right]}{cR^2} \frac{\mathbf{R}}{c^2R} - \frac{\left[\partial \mathbf{j} / \partial t \right]}{cR^2} \right) dV',
\]

(4.172)

which is the time-dependent generalization of Coulomb’s law, and

\[
\mathbf{B} = \frac{\mu_0}{4\pi} \int \left(\frac{[\mathbf{j} \times \mathbf{R}]}{R^3} + \frac{[\partial \mathbf{j} / \partial t] \times \mathbf{R}}{cR^2} \right) dV',
\]

(4.173)

which is the time-dependent generalization of the Biot-Savart law.

Suppose that the typical variation time-scale of our charges and currents is \(t_0 \). Let us define \(R_0 = c t_0 \), which is the distance a light ray travels in time \(t_0 \). We can evaluate Eqs. (4.172) and (4.173) in two asymptotic limits: the near field region \(R \ll R_0 \), and the far field region \(R \gg R_0 \). In the near field region,

\[
\frac{|t - t_r|}{t_0} = \frac{R}{R_0} \ll 1,
\]

(4.174)
so the difference between retarded time and standard time is relatively small. This allows us to expand retarded quantities in a Taylor series. Thus,

\[
[\rho] \simeq \rho + \frac{\partial \rho}{\partial t} (t_r - t) + \frac{1}{2} \frac{\partial^2 \rho}{\partial t^2} (t_r - t)^2 + \cdots, \tag{4.175}
\]
giving

\[
[\rho] \simeq \rho - \frac{\partial \rho}{\partial t} \frac{R}{c} + \frac{1}{2} \frac{\partial^2 \rho}{\partial t^2} \frac{R^2}{c^2} + \cdots. \tag{4.176}
\]

Expansion of the retarded quantities in the near field region yields

\[
E \simeq \frac{1}{4\pi \varepsilon_0} \int \left(\frac{\rho \mathbf{R}}{R^3} - \frac{1}{2} \frac{\partial^2 \rho}{\partial t^2} \frac{\mathbf{R}}{c^2 R} - \frac{\partial j / \partial t}{c^2 R} + \cdots \right) dV', \tag{4.177}
\]
\[
B \simeq \frac{\mu_0}{4\pi} \int \left(\frac{\mathbf{j} \times \mathbf{R}}{R^3} - \frac{1}{2} \frac{\partial^2 \mathbf{j} / \partial t^2}{c^2 R} \times \mathbf{R} + \cdots \right) dV'. \tag{4.178}
\]

In Eq. (4.177), the first term on the right-hand side corresponds to Coulomb’s law, the second term is the correction due to retardation effects, and the third term corresponds to Faraday induction. In Eq. (4.178), the first term on the right-hand side is the Biot-Savart law, and the second term is the correction due to retardation effects. Note that the retardation corrections are only of order \((R/R_0)^2\). We might suppose, from looking at Eqs. (4.172) and (4.173), that the corrections should be of order \(R/R_0\). However, all of the order \(R/R_0\) terms canceled out in the previous expansion. Suppose, then, that we have a d.c. circuit sitting on a laboratory benchtop. Let the currents in the circuit change on a typical time-scale of one tenth of a second. In this time, light can travel about \(3 \times 10^7\) meters, so \(R_0 \sim 30,000\) kilometers. The length-scale of the experiment is about one meter, so \(R = 1\) meter. Thus, the retardation corrections are of order \((3 \times 10^7)^{-2} \sim 10^{-15}\). It is clear that we are fairly safe just using Coulomb’s law, Faraday’s law, and the Biot-Savart law to analyze the fields generated by this type of circuit.

In the far field region, \(R \gg R_0\), Eqs. (4.172) and (4.173) are dominated by the terms which vary like \(R^{-1}\), so

\[
E \simeq -\frac{1}{4\pi \varepsilon_0} \int \frac{[\partial j_\perp / \partial t]}{c^2 R} dV', \tag{4.179}
\]
\[
B \simeq \frac{\mu_0}{4\pi} \int \frac{[\partial j_\perp / \partial t] \times \mathbf{R}}{c R^2} dV', \tag{4.180}
\]
where

\[\mathbf{j}_\perp = \mathbf{j} - \frac{(\mathbf{j} \cdot \mathbf{R})}{R^2} \mathbf{R}. \] (4.181)

Here, use has been made of \[\nabla \mathbf{j} = -[\nabla \cdot \mathbf{j}] \mathbf{R}/cR + O(1/R^2). \] Suppose that our charges and currents are localized to some region in the vicinity of \(\mathbf{r}' = \mathbf{r}_c \). Let \(\mathbf{R}_* = \mathbf{r} - \mathbf{r}_c \), with \(\mathbf{R}_* = |\mathbf{r} - \mathbf{r}_c| \). Suppose that the extent of the current and charge containing region is much less than \(\mathbf{R}_* \). It follows that retarded quantities can be written

\[[\rho(\mathbf{r}, t)] \simeq \rho(\mathbf{r}, t - \mathbf{R}_*/c), \] (4.182)

etc. Thus, the electric field reduces to

\[\mathbf{E} \simeq -\frac{1}{4\pi \varepsilon_0} \frac{\int \partial \mathbf{j}_\perp / \partial t \, dV'}{c^2 \mathbf{R}_*}, \] (4.183)

whereas the magnetic field is given by

\[\mathbf{B} \simeq \frac{1}{4\pi \varepsilon_0} \frac{\int \partial \mathbf{j}_\perp / \partial t \, dV'}{c^3 \mathbf{R}_*^2} \times \mathbf{R}_*. \] (4.184)

Note that

\[\frac{\mathbf{E}}{\mathbf{B}} = c, \] (4.185)

and

\[\mathbf{E} \cdot \mathbf{B} = 0. \] (4.186)

This configuration of electric and magnetic fields is characteristic of an electromagnetic wave (see Sect. 4.7). Thus, Eqs. (4.183) and (4.184) describe an electromagnetic wave propagating radially away from the charge and current containing region. Note that the wave is driven by time-varying electric currents. Now, charges moving with a constant velocity constitute a steady current, so a non-steady current is associated with accelerating charges. We conclude that accelerating electric charges emit electromagnetic waves. The wave fields, (4.183) and (4.184), fall off like the inverse of the distance from the wave source. This behaviour should be contrasted with that of Coulomb or Biot-Savart fields, which fall off like the inverse square of the distance from the source. The fact that wave fields attenuate fairly gently with increasing distance from the source is what
makes astronomy possible. If wave fields obeyed an inverse square law then no
appreciable radiation would reach us from the rest of the Universe.

In conclusion, electric and magnetic fields look simple in the near field region
(they are just Coulomb fields, etc.) and also in the far field region (they are just
electromagnetic waves). Only in the intermediate region, \(R \sim R_0 \), do things start
getting really complicated (so we generally do not look in this region!).

4.12 Summary

This marks the end of our theoretical investigation of Maxwell’s equations. Let us
now summarize what we have learned so far. The field equations which govern
electric and magnetic fields are written:

\[
\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}, \quad (4.187) \\
\nabla \cdot \mathbf{B} = 0, \quad (4.188) \\
\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \quad (4.189) \\
\nabla \times \mathbf{B} = \mu_0 \mathbf{j} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}. \quad (4.190)
\]

These equations can be integrated to give

\[
\int_S \mathbf{E} \cdot d\mathbf{S} = \frac{1}{\varepsilon_0} \int_V \rho \, dV, \quad (4.191)
\]

\[
\int_S \mathbf{B} \cdot d\mathbf{S} = 0, \quad (4.192)
\]

\[
\int_C \mathbf{E} \cdot d\mathbf{l} = -\frac{\partial}{\partial t} \int_S \mathbf{B} \cdot d\mathbf{S}, \quad (4.193)
\]

\[
\int_C \mathbf{B} \cdot d\mathbf{l} = \mu_0 \int_S \mathbf{j} \cdot d\mathbf{S} + \frac{1}{c^2} \frac{\partial}{\partial t} \int_S \mathbf{E} \cdot d\mathbf{S}. \quad (4.194)
\]

Equations (4.188) and (4.189) are automatically satisfied by writing

\[
\mathbf{E} = -\nabla \phi - \frac{\partial \mathbf{A}}{\partial t}, \quad (4.195)
\]
This prescription is not unique (there are many choices of \(\phi \) and \(A \) which generate the same fields) but we can make it unique by adopting the following conventions:

\[
\phi(r) \rightarrow 0 \quad \text{as} \quad |r| \rightarrow \infty,
\]

and

\[
\frac{1}{c^2} \frac{\partial \phi}{\partial t} + \nabla \cdot A = 0.
\]

Equations (4.187) and (4.190) reduce to

\[
\Box^2 \phi = -\frac{\rho}{\varepsilon_0}, \quad \Box^2 A = -\mu_0 j.
\]

These are driven wave equations of the general form

\[\Box^2 u \equiv \left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \right) u = v.\]

The Green’s function for this equation which satisfies the boundary conditions and is consistent with causality is

\[G(r, r'; t, t') = -\frac{1}{4\pi} \frac{\delta(t - t' - |r - r'|/c)}{|r - r'|}.
\]

Thus, the solutions to Eqs. (4.199) and (4.200) are

\[
\phi(r, t) = \frac{1}{4\pi \varepsilon_0} \int \frac{[\rho] R}{R} dV',
\]

\[
A(r, t) = \frac{\mu_0}{4\pi} \int \frac{[j]}{R} dV',
\]

where \(R = |r - r'| \), and \(dV' = d^3r' \), with \([A] \equiv A(r', t - R/c)\). These solutions can be combined with Eqs. (4.195) and (4.196) to give

\[
E(r, t) = \frac{1}{4\pi \varepsilon_0} \int \left(\left[\frac{[\rho]}{R^3} + \left[\frac{\partial [j]}{\partial t}\right] \frac{R}{c R^2} - \frac{[\partial [j]/\partial t]}{c^2 R} \right] \frac{R}{R^2} \right) dV',
\]

\[
B(r, t) = \frac{\mu_0}{4\pi} \int \left(\left[\frac{[j]}{R^3} + \left[\frac{\partial [j]/\partial t}{c R^2} \right] \times \frac{R}{c R^2} \right] \frac{R}{R^2} \right) dV'.
\]
Equations (4.187)–(4.206) constitute the complete theory of classical electromagnetism. We can express the same information in terms of field equations [Eqs. (4.187)–(4.190)], integrated field equations [Eqs. (4.191)–(4.194)], retarded electromagnetic potentials [Eqs. (4.203) and (4.204)], and retarded electromagnetic fields [Eqs. (4.205) and (4.206)]. Let us now consider the applications of this theory.
5 Electrostatics

5.1 Introduction

In this section, we shall use Maxwell’s equations to investigate the electric fields generated by stationary charge distributions.

5.2 Electrostatic energy

Consider a collection of N static point charges q_i located at position vectors \mathbf{r}_i (where i runs from 1 to N). What is the electrostatic energy stored in such a collection? Another way of asking this is, how much work would we have to do in order to assemble the charges, starting from an initial state in which they are all at rest and very widely separated?

We know that a static electric field is conservative, and can consequently be written in terms of a scalar potential:

$$ \mathbf{E} = -\nabla \phi. $$

(5.1)

We also know that the electric force on a charge q is written

$$ \mathbf{f} = q \mathbf{E}. $$

(5.2)

The work W we would have to do against electrical forces in order to move the charge from point P to point Q is simply

$$ W = -\int_{P}^{Q} \mathbf{f} \cdot d\mathbf{l} = -q \int_{P}^{Q} \mathbf{E} \cdot d\mathbf{l} = q \int_{P}^{Q} \nabla \phi \cdot d\mathbf{l} = q [\phi(Q) - \phi(P)]. $$

(5.3)

The negative sign in the above expression comes about because we would have to exert a force $-\mathbf{f}$ on the charge, in order to counteract the force exerted by the electric field. Recall that the scalar potential generated by a point charge q' at position \mathbf{r}' is

$$ \phi(\mathbf{r}) = \frac{1}{4\pi \varepsilon_0} \frac{q'}{|\mathbf{r} - \mathbf{r}'|}. $$

(5.4)
Let us build up our collection of charges one by one. It takes no work to bring the first charge from infinity, since there is no electric field to fight against. Let us clamp this charge in position at \(\mathbf{r}_1 \). In order to bring the second charge into position at \(\mathbf{r}_2 \), we have to do work against the electric field generated by the first charge. According to Eqs. (5.3) and Eqs. (5.4), this work is given by

\[
W_2 = \frac{1}{4\pi \varepsilon_0} \frac{q_2 q_1}{|\mathbf{r}_2 - \mathbf{r}_1|}.
\] (5.5)

Let us now bring the third charge into position. Since electric fields and scalar potentials are superposable, the work done whilst moving the third charge from infinity to \(\mathbf{r}_3 \) is simply the sum of the works done against the electric fields generated by charges 1 and 2 taken in isolation:

\[
W_3 = \frac{1}{4\pi \varepsilon_0} \left(\frac{q_3 q_1}{|\mathbf{r}_3 - \mathbf{r}_1|} + \frac{q_3 q_2}{|\mathbf{r}_3 - \mathbf{r}_2|} \right).
\] (5.6)

Thus, the total work done in assembling the three charges is given by

\[
W = \frac{1}{4\pi \varepsilon_0} \left(\frac{q_2 q_1}{|\mathbf{r}_2 - \mathbf{r}_1|} + \frac{q_3 q_1}{|\mathbf{r}_3 - \mathbf{r}_1|} + \frac{q_3 q_2}{|\mathbf{r}_3 - \mathbf{r}_2|} \right).
\] (5.7)

This result can easily be generalized to \(N \) charges:

\[
W = \frac{1}{4\pi \varepsilon_0} \sum_{i=1}^{N} \sum_{j<i}^{N} \frac{q_i q_j}{|\mathbf{r}_i - \mathbf{r}_j|}.
\] (5.8)

The restriction that \(j \) must be less than \(i \) makes the above summation rather messy. If we were to sum without restriction (other than \(j \neq i \)) then each pair of charges would be counted twice. It is convenient to do just this, and then to divide the result by two. Thus,

\[
W = \frac{1}{2} \frac{1}{4\pi \varepsilon_0} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{q_i q_j}{|\mathbf{r}_i - \mathbf{r}_j|}.
\] (5.9)

This is the potential energy (i.e., the difference between the total energy and the kinetic energy) of a collection of charges. We can think of this as the work needed
to bring static charges from infinity and assemble them in the required formation. Alternatively, this is the kinetic energy which would be released if the collection were dissolved, and the charges returned to infinity. But where is this potential energy stored? Let us investigate further.

Equation (5.9) can be written

\[W = \frac{1}{2} \sum_{i=1}^{N} q_i \phi_i, \quad (5.10) \]

where

\[\phi_i = \frac{1}{4\pi \varepsilon_0} \sum_{j=1, j \neq i}^{N} \frac{q_j}{|\mathbf{r}_i - \mathbf{r}_j|}, \quad (5.11) \]

is the scalar potential experienced by the \(i \)th charge due to the other charges in the distribution.

Let us now consider the potential energy of a continuous charge distribution. It is tempting to write

\[W = \frac{1}{2} \int \rho \phi \, d^3\mathbf{r}, \quad (5.12) \]

by analogy with Eqs. (5.10) and (5.11), where

\[\phi(\mathbf{r}) = \frac{1}{4\pi \varepsilon_0} \int \frac{\rho'(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d^3\mathbf{r}' \quad (5.13) \]

is the familiar scalar potential generated by a continuous charge distribution. Let us try this out. We know from Maxwell’s equations that

\[\rho = \varepsilon_0 \nabla \cdot \mathbf{E}, \quad (5.14) \]

so Eq. (5.12) can be written

\[W = \frac{\varepsilon_0}{2} \int \phi \nabla \cdot \mathbf{E} \, d^3\mathbf{r}. \quad (5.15) \]

Vector field theory yields the standard result

\[\nabla \cdot (\mathbf{E} \phi) = \phi \nabla \cdot \mathbf{E} + \mathbf{E} \cdot \nabla \phi. \quad (5.16) \]
However, $\nabla \phi = -E$, so we obtain
\[W = \frac{\varepsilon_0}{2} \left[\int \nabla \cdot (E \phi) \, d^3r + \int E^2 \, d^3r \right] \quad (5.17) \]

Application of Gauss’ theorem gives
\[W = \frac{\varepsilon_0}{2} \left(\oint_S \phi E \cdot dS + \int_V E^2 \, dV \right), \quad (5.18) \]

where V is some volume which encloses all of the charges, and S is its bounding surface. Let us assume that V is a sphere, centred on the origin, and let us take the limit in which the radius r of this sphere goes to infinity. We know that, in general, the electric field at large distances from a bounded charge distribution looks like the field of a point charge, and, therefore, falls off like $1/r^2$. Likewise, the potential falls off like $1/r$. However, the surface area of the sphere increases like r^2. Hence, it is clear that, in the limit as $r \to \infty$, the surface integral in Eq. (5.18) falls off like $1/r$, and is consequently zero. Thus, Eq. (5.18) reduces to
\[W = \frac{\varepsilon_0}{2} \int E^2 \, d^3r, \quad (5.19) \]

where the integral is over all space. This is a very nice result. It tells us that the potential energy of a continuous charge distribution is stored in the electric field. Of course, we now have to assume that an electric field possesses an energy density
\[U = \frac{\varepsilon_0}{2} E^2. \quad (5.20) \]

We can easily check that Eq. (5.19) is correct. Suppose that we have a charge Q which is uniformly distributed within a sphere of radius a. Let us imagine building up this charge distribution from a succession of thin spherical layers of infinitesimal thickness. At each stage, we gather a small amount of charge from infinity, and spread it over the surface of the sphere in a thin layer from r to $r + dr$. We continue this process until the final radius of the sphere is a. If $q(r)$ is the charge in the sphere when it has attained radius r, then the work done in bringing a charge dq to it is
\[dW = \frac{1}{4\pi \varepsilon_0} \frac{q(r) \, dq}{r}. \quad (5.21) \]
This follows from Eq. (5.5), since the electric field generated by a spherical charge distribution (outside itself) is the same as that of a point charge \(q(r) \) located at the origin \((r = 0) \) (see later). If the constant charge density in the sphere is \(\rho \) then

\[
q(r) = \frac{4}{3} \pi r^3 \rho, \tag{5.22}
\]

and

\[
dq = 4\pi r^2 \rho \, dr. \tag{5.23}
\]

Thus, Eq. (5.21) becomes

\[
dW = \frac{4\pi}{3 \varepsilon_0} \rho^2 r^4 \, dr. \tag{5.24}
\]

The total work needed to build up the sphere from nothing to radius \(a \) is plainly

\[
W = \frac{4\pi}{3 \varepsilon_0} \rho^2 \int_0^a r^4 \, dr = \frac{4\pi}{15 \varepsilon_0} \rho^2 a^5. \tag{5.25}
\]

This can also be written in terms of the total charge \(Q = \frac{4}{3} \pi a^3 \rho \) as

\[
W = \frac{3}{54\pi \varepsilon_0} \frac{Q^2}{a}. \tag{5.26}
\]

Now that we have evaluated the potential energy of a spherical charge distribution by the direct method, let us work it out using Eq. (5.19). We assume that the electric field is radial and spherically symmetric, so \(\mathbf{E} = E_r(r) \hat{r} \). Application of Gauss’ law,

\[
\oint \mathbf{E} \cdot d\mathbf{S} = \frac{1}{\varepsilon_0} \int_V \rho \, dV, \tag{5.27}
\]

where \(V \) is a sphere of radius \(r \), yields

\[
E_r(r) = \frac{Q}{4\pi \varepsilon_0 a^3} \frac{r}{a^3} \tag{5.28}
\]

for \(r < a \), and

\[
E_r(r) = \frac{Q}{4\pi \varepsilon_0 r^2} \tag{5.29}
\]
for \(r \geq a \). Note that the electric field generated outside the charge distribution is the same as that of a point charge \(Q \) located at the origin, \(r = 0 \). Equations (5.19), (5.28), and (5.29) yield

\[
W = \frac{Q^2}{8\pi \varepsilon_0} \left(\frac{1}{a^6} \int_0^a r^4 \, dr + \int_a^{\infty} \frac{dr}{r^2} \right),
\]

which reduces to

\[
W = \frac{Q^2}{8\pi \varepsilon_0 a} \left(\frac{1}{5} + 1 \right) = \frac{3}{5} \frac{Q^2}{4\pi \varepsilon_0 a}.
\]

Thus, Eq. (5.19) gives the correct answer.

The reason we have checked Eq. (5.19) so carefully is that on close inspection it is found to be inconsistent with Eq. (5.10), from which it was supposedly derived! For instance, the energy given by Eq. (5.19) is manifestly positive definite, whereas the energy given by Eq. (5.10) can be negative (it is certainly negative for a collection of two point charges of opposite sign). The inconsistency was introduced into our analysis when we replaced Eq. (5.11) by Eq. (5.13). In Eq. (5.11), the self-interaction of the \(i \)th charge with its own electric field is specifically excluded, whereas it is included in Eq. (5.13). Thus, the potential energies (5.10) and (5.19) are different, because in the former we start from ready-made point charges, whereas in the latter we build up the whole charge distribution from scratch. Thus, if we were to work out the potential energy of a point charge distribution using Eq. (5.19) we would obtain the energy (5.10) plus the energy required to assemble the point charges. What is the energy required to assemble a point charge? In fact, it is infinite. To see this, let us suppose, for the sake of argument, that our point charges are actually made of charge uniformly distributed over a small sphere of radius \(a \). According to Eq. (5.26), the energy required to assemble the \(i \)th point charge is

\[
W_i = \frac{3}{5} \frac{q_i^2}{4\pi \varepsilon_0 a}.
\]

We can think of this as the self-energy of the \(i \)th charge. Thus, we can write

\[
W = \frac{\varepsilon_0}{2} \int E^2 \, d^3r = \frac{1}{2} \sum_{i=1}^{N} q_i \phi_i + \sum_{i=1}^{N} W_i
\]
which enables us to reconcile Eqs. (5.10) and (5.19). Unfortunately, if our point charges really are point charges then \(a \to 0 \), and the self-energy of each charge becomes infinite. Thus, the potential energies predicted by Eqs. (5.10) and (5.19) differ by an infinite amount. What does this all mean? We have to conclude that the idea of locating electrostatic potential energy in the electric field is inconsistent with the existence of point charges. One way out of this difficulty would be to say that all elementary charges, such as electrons, are not points, but instead small distributions of charge. Alternatively, we could say that our classical theory of electromagnetism breaks down on very small length-scales due to quantum effects. Unfortunately, the quantum mechanical version of electromagnetism (quantum electrodynamics, or QED, for short) suffers from the same infinities in the self-energies of particles as the classical version. There is a prescription, called renormalization, for steering round these infinities, and getting finite answers which agree with experiments to extraordinary accuracy. However, nobody really understands why this prescription works. The problem of the infinite self-energies of elementary charged particles is still unresolved.

5.3 Ohm’s law

We all know the simplest version of Ohm’s law:

\[
V = I R, \tag{5.34}
\]

where \(V \) is the voltage drop across a resistor of resistance \(R \) when a current \(I \) flows through it. Let us generalize this law so that it is expressed in terms of \(E \) and \(j \), rather than \(V \) and \(I \). Consider a length \(l \) of a conductor of uniform cross-sectional area \(A \) with a current \(I \) flowing down it. In general, we expect the electrical resistance of the conductor to be proportional to its length, and inversely proportional to its area (i.e., it is harder to push an electrical current down a long rather than a short wire, and it is easier to push a current down a wide rather than a narrow conducting channel.) Thus, we can write

\[
R = \eta \frac{l}{A}. \tag{5.35}
\]
The constant η is called the *resistivity*, and is measured in units of ohm-meters. Ohm’s law becomes

$$V = \eta \frac{l}{A} I. \quad (5.36)$$

However, $I/A = j_z$ (supposing that the conductor is aligned along the z-axis) and $V/l = E_z$, so the above equation reduces to

$$E_z = \eta j_z. \quad (5.37)$$

There is nothing special about the z-axis (in an isotropic conducting medium), so the previous formula immediately generalizes to

$$E = \eta j. \quad (5.38)$$

This is the vector form of Ohm’s law.

A charge q which moves through a voltage drop V acquires an energy qV from the electric field. In a resistor, this energy is dissipated as heat. This type of heating is called *ohmic heating*. Suppose that N charges per unit time pass through a resistor. The current flowing is obviously $I = Nq$. The total energy gained by the charges, which appears as heat inside the resistor, is

$$P = NqV = IV \quad (5.39)$$

per unit time. Thus, the heating power is

$$P = IV = I^2 R = \frac{V^2}{R}. \quad (5.40)$$

Equations (5.39) and (5.40) generalize to

$$P = j \cdot E = \eta j^2, \quad (5.41)$$

where P is now the power dissipated per unit volume in a resistive medium.

5.4 Conductors

Most (but not all) electrical conductors obey Ohm’s law. Such conductors are termed *ohmic*. Suppose that we apply an electric field to an ohmic conductor.
What is going to happen? According to Eq. (5.38), the electric field drives currents. These redistribute the charge inside the conductor until the original electric field is canceled out. At this point, the currents stop flowing. It might be objected that the currents could keep flowing in closed loops. According to Ohm’s law, this would require a non-zero e.m.f., $\oint E \cdot dl$, acting around each loop (unless the conductor is a superconductor, with $\eta = 0$). However, we know that in steady-state

$$\oint_{C} E \cdot dl = 0$$

(5.42)

around any closed loop C. This proves that a steady-state e.m.f. acting around a closed loop inside a conductor is impossible. The only other alternative is

$$j = E = 0$$

(5.43)

inside a conductor. It immediately follows from the Maxwell equation, $\nabla \cdot E = \rho / \varepsilon_0$, that

$$\rho = 0.$$

(5.44)

So, there are no electric charges in the interior of a conductor. But, how can a conductor cancel out an applied electric field if it contains no charges? The answer is that all of the charges reside on the surface of the conductor. In reality, the charges lie within one or two atomic layers of the surface (see any textbook on solid-state physics). The difference in scalar potential between two points P and Q is simply

$$\phi(Q) - \phi(P) = \int_{P}^{Q} \nabla \phi \cdot dl = - \int_{P}^{Q} E \cdot dl.$$

(5.45)

However, if P and Q lie inside the same conductor then it is clear from Eq. (5.45) that the potential difference between P and Q is zero. This is true no matter where P and Q are situated inside the conductor, so we conclude that the scalar potential must be uniform inside a conductor. A corollary of this is that the surface of a conductor is an equipotential (i.e., $\phi =$ constant) surface.

Not only is the electric field inside a conductor zero. It is also possible to demonstrate that the field within an empty cavity lying inside a conductor is also zero, provided that there are no charges within the cavity. Let us, first of all,
apply Gauss’ law to a surface S which surrounds the cavity, but lies wholly in the conducting material (see Fig. 41). Since the electric field is zero in a conductor, it follows that zero net charge is enclosed by S. This does not preclude the possibility that there are equal amounts of positive and negative charges distributed on the inner surface of the conductor. However, we can easily rule out this possibility using the steady-state relation

$$\oint_C \mathbf{E} \cdot d\mathbf{l} = 0; \quad (5.46)$$

for any closed loop C. If there are any electric field-lines inside the cavity then they must run from the positive to the negative surface charges. Consider a loop C which straddles the cavity and the conductor, such as the one shown in Fig. 41. In the presence of field-lines, it is clear that the line integral of \mathbf{E} along that portion of the loop which lies inside the cavity is non-zero. However, the line integral of \mathbf{E} along that portion of the loop which runs through the conducting material is obviously zero (since $\mathbf{E} = 0$ inside a conductor). Thus, the line integral of the field around the closed loop C is non-zero. This, clearly contradicts Eq. (5.46). In fact, this equation implies that the line integral of the electric field along any path which runs through the cavity, from one point on the interior surface of the conductor to another, is zero. This can only be the case if the electric field itself
is zero everywhere inside the cavity. There is one proviso to this argument. The
electric field inside a cavity is only zero if the cavity contains no charges. If the
cavity contains charges then our argument fails because it is possible to envisage
that the line integral of the electric field along many different paths across the
cavity could be zero without the fields along these paths necessarily being zero
(this argument is somewhat inexact: we shall improve it later on).

We have shown that if a cavity is completely enclosed by a conductor then no
stationary distribution of charges outside can ever produce any fields inside. So,
we can shield a piece of electrical equipment from stray external electric fields by
placing it inside a metal can. Using similar arguments to those given above, we
can also show that no static distribution of charges inside a closed conductor can
ever produce a field outside the conductor. Clearly, shielding works both ways!

Let us consider some small region on the surface of a conductor. Suppose that
the local surface charge density is \(\sigma \), and that the electric field just outside the
conductor is \(\mathbf{E} \). Note that this field must be directed \textit{normal} to the surface of the
conductor. Any parallel component would be shorted out by surface currents.
Another way of saying this is that the surface of a conductor is an equipotential
surface. We know that \(\nabla \phi \) is always perpendicular to equipotential surfaces, so
\(\mathbf{E} = -\nabla \phi \) must be locally perpendicular to a conducting surface. Let us use
Gauss’ law,
\[\oint_S \mathbf{E} \cdot d\mathbf{S} = \frac{1}{\varepsilon_0} \int_V \rho \, dV, \]
(5.47)
where \(V \) is a so-called Gaussian pill-box (see Fig. 42). This is a pill-box shaped volume whose two ends are aligned normal to the surface of the conductor, with the surface running between them, and whose sides are tangential to the surface normal. It is clear that \(\mathbf{E} \) is parallel to the sides of the box, so the sides make no contribution to the surface integral. The end of the box which lies inside the conductor also makes no contribution, since \(\mathbf{E} = 0 \) inside a conductor. Thus, the only non-zero contribution to the surface integral comes from the end lying in free space. This contribution is simply \(\mathbf{E} \perp A \), where \(\mathbf{E} \perp \) denotes an outward pointing (from the conductor) normal electric field, and \(A \) is the cross-sectional area of the box. The charge enclosed by the box is simply \(\sigma A \), from the definition of a surface charge density. Thus, Gauss’ law yields
\[\mathbf{E} \perp = \frac{\sigma}{\varepsilon_0} \]
(5.48)
as the relationship between the normal electric field immediately outside a conductor and the surface charge density.

Let us look at the electric field generated by a sheet charge distribution a little more carefully. Suppose that the charge per unit area is \(\sigma \). By symmetry, we expect the field generated below the sheet to be the mirror image of that above
the sheet (at least, locally). Thus, if we integrate Gauss’ law over a pill-box of cross sectional area A, as shown in Fig. 43, then the two ends both contribute $E_{\text{sheet}} A$ to the surface integral, where E_{sheet} is the normal electric field generated above and below the sheet. The charge enclosed by the pill-box is just σA. Thus, Gauss’ law yields a symmetric electric field

$$E_{\text{sheet}} = +\frac{\sigma}{2 \varepsilon_0} \quad \text{above}, \quad (5.49)$$

$$E_{\text{sheet}} = -\frac{\sigma}{2 \varepsilon_0} \quad \text{below}. \quad (5.50)$$

So, how do we get the asymmetric electric field of a conducting surface, which is zero immediately below the surface (i.e., inside the conductor) and non-zero immediately above it? Clearly, we have to add in an external field (i.e., a field which is not generated locally by the sheet charge). The requisite field is

$$E_{\text{ext}} = \frac{\sigma}{2 \varepsilon_0} \quad (5.51)$$

both above and below the charge sheet. The total field is the sum of the field generated locally by the charge sheet and the external field. Thus, we obtain

$$E_{\text{total}} = +\frac{\sigma}{\varepsilon_0} \quad \text{above}, \quad (5.52)$$

$$E_{\text{total}} = 0 \quad \text{below}, \quad (5.53)$$

which is in agreement with Eq. (5.48).

The external field exerts a force on the charge sheet. The field generated locally by the sheet itself obviously cannot exert a force (the sheet cannot exert a force on itself!). The force per unit area acting on the surface of the conductor always acts outward, and is given by

$$p = \sigma E_{\text{ext}} = \frac{\sigma^2}{2 \varepsilon_0}. \quad (5.54)$$

Thus, there is an electrostatic pressure acting on any charged conductor. This effect can be visualized by charging up soap bubbles: the additional electrostatic pressure eventually causes them to burst. The electrostatic pressure can also be written

$$p = \frac{\varepsilon_0}{2} E^2, \quad (5.55)$$
where \(E \) is the field strength immediately above the surface of the conductor. Note that, according to the above formula, the electrostatic pressure is equivalent to the energy density of the electric field immediately outside the conductor. This is not a coincidence. Suppose that the conductor expands by an average distance \(dx \), due to the electrostatic pressure. The electric field is excluded from the region into which the conductor expands. The volume of this region \(dV = A \, dx \), where \(A \) is the surface area of the conductor. Thus, the energy of the electric field decreases by an amount \(dE = U \, dV = (\varepsilon_0/2) \, E^2 \, dV \), where \(U \) is the energy density of the field. This decrease in energy can be ascribed to the work which the field does on the conductor in order to make it expand. This work is \(dW = p \, A \, dx \), where \(p \) is the force per unit area the field exerts on the conductor. Thus, \(dE = dW \), from energy conservation, giving

\[
p = \frac{\varepsilon_0}{2} E^2.
\]

(5.56)

This technique for calculating a force given an expression for the energy of a system as a function of some adjustable parameter is called the principle of virtual work, and is very useful.

We have seen that an electric field is excluded from the inside of the conductor, but not from the outside, giving rise to a net outward force. We can account for this by saying that the field exerts a negative pressure \((\varepsilon_0/2) \, E^2 \) on the conductor. We know that if we evacuate a metal can then the pressure difference between the inside and the outside eventually causes it to implode. Likewise, if we place the can in a strong electric field then the pressure difference between the inside and the outside will eventually cause it to explode. How big a field do we need before the electrostatic pressure difference is the same as that obtained by evacuating the can? In other words, what field exerts a negative pressure of one atmosphere (\(i.e. \), \(10^5 \) newtons per meter squared) on conductors? The answer is a field of strength \(E \sim 10^8 \) volts per meter. Fortunately, this is a rather large field, so there is no danger of your car exploding when you turn on the stereo!
5 ELECTROSTATICS

5.5 Boundary conditions on the electric field

What are the most general boundary conditions satisfied by the electric field at the interface between two media: e.g., the interface between a vacuum and a conductor? Consider an interface P between two media A and B. Let us, first of all, apply Gauss’ law,

$$\oint_S \mathbf{E} \cdot d\mathbf{S} = \frac{1}{\varepsilon_0} \int_V \rho \, dV,$$

(5.57)

to a Gaussian pill-box S of cross-sectional area A whose two ends are locally parallel to the interface (see Fig. 44). The ends of the box can be made arbitrarily close together. In this limit, the flux of the electric field out of the sides of the box is obviously negligible. The only contribution to the flux comes from the two ends. In fact,

$$\oint_S \mathbf{E} \cdot d\mathbf{S} = (E_{\perp A} - E_{\perp B}) A,$$

(5.58)

where $E_{\perp A}$ is the perpendicular (to the interface) electric field in medium A at the interface, etc. The charge enclosed by the pill-box is simply σA, where σ is the sheet charge density on the interface. Note that any volume distribution of charge gives rise to a negligible contribution to the right-hand side of the above equation, in the limit where the two ends of the pill-box are very closely spaced. Thus, Gauss’ law yields

$$E_{\perp A} - E_{\perp B} = \frac{\sigma}{\varepsilon_0}$$

(5.59)
at the interface: *i.e.*, the presence of a charge sheet on an interface causes a discontinuity in the perpendicular component of the electric field. What about the parallel electric field? Let us apply Faraday’s law to a rectangular loop C whose long sides, length l, run parallel to the interface,

$$\int_C \mathbf{E} \cdot d\mathbf{l} = -\frac{\partial}{\partial t} \int_S \mathbf{B} \cdot d\mathbf{S}$$ \hspace{1cm} (5.60)

(see Fig. 44). The length of the short sides is assumed to be arbitrarily small. The dominant contribution to the loop integral comes from the long sides:

$$\int_C \mathbf{E} \cdot d\mathbf{l} = (E_{\parallel A} - E_{\parallel B})l;$$ \hspace{1cm} (5.61)

where $E_{\parallel A}$ is the parallel (to the interface) electric field in medium A at the interface, etc. The flux of the magnetic field through the loop is approximately $B_{\perp}A$, where B_{\perp} is the component of the magnetic field which is normal to the loop, and A is the area of the loop. But, $A \to 0$ as the short sides of the loop are shrunk to zero. So, unless the magnetic field becomes infinite (we shall assume that it does not), the flux also tends to zero. Thus,

$$E_{\parallel A} - E_{\parallel B} = 0;$$ \hspace{1cm} (5.62)

i.e., there can be no discontinuity in the parallel component of the electric field across an interface.

5.6 Capacitors

We can store electrical charge on the surface of a conductor. However, electric fields will be generated immediately above this surface. The conductor can only successfully store charge if it is electrically insulated from its surroundings. Air is a very good insulator. Unfortunately, air ceases to be an insulator when the electric field-strength through it exceeds some critical value which is about $E_{\text{crit}} \approx 10^6$ volts per meter. This phenomenon, which is called *break-down*, is associated with the formation of sparks. The most well-known example of the break-down of air is during a lightning strike. Clearly, a good charge storing device is one
which holds a large amount of charge but only generates small electric fields. Such a device is called a \textit{capacitor}.

Consider two thin, parallel, conducting plates of cross-sectional area A which are separated by a \textit{small} distance d (\textit{i.e.}, $d \ll \sqrt{A}$). Suppose that each plate carries an equal and opposite charge Q. We expect this charge to spread evenly over the plates to give an effective sheet charge density $\sigma = \pm Q/A$ on each plate. Suppose that the upper plate carries a positive charge and that the lower plate carries a negative charge. According to Eqs. (5.49) and (5.50), the field generated by the upper plate is normal to the plate and of magnitude

$$E_{\text{upper}} = + \frac{\sigma}{2\varepsilon_0} \quad \text{above},$$

$$E_{\text{upper}} = - \frac{\sigma}{2\varepsilon_0} \quad \text{below}. \quad (5.63)$$

Likewise, the field generated by the lower plate is

$$E_{\text{lower}} = - \frac{\sigma}{2\varepsilon_0} \quad \text{above},$$

$$E_{\text{lower}} = + \frac{\sigma}{2\varepsilon_0} \quad \text{below}. \quad (5.64)$$

Note that we are neglecting any “leakage” of the field at the edges of the plates. This is reasonable if the plates are closely spaced. The total field is the sum of the two fields generated by the upper and lower plates. Thus, the net field is normal to the plates, and of magnitude

$$E_\perp = \frac{\sigma}{\varepsilon_0} \quad \text{between},$$

$$E_\perp = 0 \quad \text{otherwise}. \quad (5.67)$$

Since the electric field is uniform, the potential difference between the plates is simply

$$V = E_\perp d = \frac{\sigma d}{\varepsilon_0}. \quad (5.69)$$

It is conventional to measure the capacity of a conductor, or set of conductors, to store charge, but generate small electric fields, in terms of a parameter called the
capacitance. This is usually denoted \(C \). The capacitance of a charge storing device is simply the ratio of the charge stored to the potential difference generated by the charge. Thus,

\[
C = \frac{Q}{V}.
\]
(5.70)

Clearly, a good charge storing device has a high capacitance. Incidentally, capacitance is measured in coulombs per volt, or farads. This is a rather unwieldy unit, since good capacitors typically have capacitances which are only about one millionth of a farad. For a parallel plate capacitor, it is clear that

\[
C = \frac{\sigma A}{V} = \frac{\varepsilon_0 A}{d}.
\]
(5.71)

Note that the capacitance only depends on geometric quantities, such as the area and spacing of the plates. This is a consequence of the superposability of electric fields. If we double the charge on conductors then we double the electric fields generated around them, and we, therefore, double the potential difference between the conductors. Thus, the potential difference between the conductors is always directly proportional to the charge carried: the constant of proportionality (the inverse of the capacitance) can only depend on geometry.

Suppose that the charge \(\pm Q \) on each plate is built up gradually by transferring small amounts of charge from one plate to another. If the instantaneous charge on the plates is \(\pm q \), and an infinitesimal amount of positive charge \(dq \) is transferred from the negatively charged plate to the positively charged plate, then the work done is \(dW = V dq = q dq/C \), where \(V \) is the instantaneous voltage difference between the plates. Note that the voltage difference is such that it opposes any increase in the charge on either plate. The total work done in charging the capacitor is

\[
W = \frac{1}{C} \int_0^Q q ~dq = \frac{Q^2}{2C} = \frac{1}{2} CV^2,
\]
(5.72)

where use has been made of Eq. (5.70). The energy stored in the capacitor is the same as the work required to charge up the capacitor. Thus,

\[
W = \frac{1}{2} CV^2.
\]
(5.73)

This is a general result which holds for all types of capacitor.
The energy of a charged parallel plate capacitor is actually stored in the electric field between the plates. This field is of approximately constant magnitude \(E = \frac{V}{d} \), and occupies a region of volume \(A d \). Thus, given the energy density of an electric field, \(U = \frac{\varepsilon_0}{2} E^2 \), the energy stored in the electric field is

\[
W = \frac{\varepsilon_0 V^2}{2} A d = \frac{1}{2} C V^2,
\]

(5.74)

where use has been made of Eq. (5.71). Note that Eqs. (5.72) and (5.74) agree.

We all know that if we connect a capacitor across the terminals of a battery then a transient current flows as the capacitor charges up. The capacitor can then be placed to one side, and, some time later, the stored charge can be used: for instance, to transiently light a bulb in an electrical circuit. What is interesting here is that the energy stored in the capacitor is stored as an electric field, so we can think of a capacitor as a device which either stores energy in, or extracts energy from, an electric field.

The idea, which we discussed earlier, that an electric field exerts a negative pressure \(\left(\frac{\varepsilon_0}{2} \right) E^2 \) on conductors immediately suggests that the two plates in a parallel plate capacitor attract one another with a mutual force

\[
F = \frac{\varepsilon_0}{2} E^2 A = \frac{1}{2} C V^2.
\]

(5.75)

It is not necessary to have two oppositely charged conductors in order to make a capacitor. Consider an isolated sphere of radius \(a \) which carries a charge \(Q \). The radial electric field generated outside the sphere is given by

\[
E_r(r > a) = \frac{Q}{4\pi \varepsilon_0 r^2}.
\]

(5.76)

The potential difference between the sphere and infinity, or, more realistically, some large, relatively distant reservoir of charge such as the Earth, is

\[
V = \frac{Q}{4\pi \varepsilon_0 a}.
\]

(5.77)

Thus, the capacitance of the sphere is

\[
C = \frac{Q}{V} = 4\pi \varepsilon_0 a.
\]

(5.78)
The energy of a sphere when it carries a charge \(Q \) is again given by \(\frac{1}{2} CV^2 \). It can easily be demonstrated that this is really the energy contained in the electric field around the sphere.

Suppose that we have two spheres of radii \(a \) and \(b \), respectively, which are connected by an electric wire. The wire allows charge to move back and forth between the spheres until they reach the same potential (with respect to infinity). Let \(Q \) be the charge on the first sphere and \(Q' \) the charge on the second sphere. Of course, the total charge \(Q_0 = Q + Q' \) carried by the two spheres is a conserved quantity. It follows from Eq. (5.77) that

\[
\frac{Q}{Q_0} = \frac{a}{a + b}, \quad (5.79)
\]

\[
\frac{Q'}{Q_0} = \frac{b}{a + b}. \quad (5.80)
\]

Note that if one sphere is much smaller than the other one, e.g., \(b \ll a \), then the large sphere grabs most of the charge:

\[
\frac{Q}{Q'} \approx \frac{a}{b} \gg 1. \quad (5.81)
\]

The ratio of the electric fields generated just above the surfaces of the two spheres follows from Eqs. (5.76) and (5.81):

\[
\frac{E_b}{E_a} \approx \frac{a}{b}. \quad (5.82)
\]

If \(b \ll a \), then the field just above the smaller sphere is far larger than that above the larger sphere. Equation (5.82) is a simple example of a far more general rule. The electric field above some point on the surface of a conductor is inversely proportional to the local radius of curvature of the surface.

It is clear that if we wish to store significant amounts of charge on a conductor then the surface of the conductor must be made as smooth as possible. Any sharp spikes on the surface will inevitably have comparatively small radii of curvature. Intense local electric fields are generated in these regions. These can easily exceed the critical field for the break-down of air, leading to sparking.
and the eventual loss of the charge on the conductor. Sparking can also be very destructive because the associated electric currents flow through very localized regions giving rise to intense ohmic heating.

As a final example, consider two co-axial conducting cylinders of radii a and b, where $a < b$. Suppose that the charge per unit length carried by the outer and inner cylinders is $+q$ and $-q$, respectively. We can safely assume that $E = E_r(r) \hat{r}$, by symmetry (adopting standard cylindrical polar coordinates). Let us apply Gauss’ law to a cylinder of radius r, co-axial with the conductors, and of length l. For $a < r < b$, we find that

$$2\pi r l E_r(r) = \frac{q l}{\varepsilon_0},$$

so

$$E_r = \frac{q}{2\pi \varepsilon_0 r}$$

for $a < r < b$. It is fairly obvious that $E_r = 0$ if r is not in the range a to b. The potential difference between the inner and outer cylinders is

$$V = -\int_{\text{inner}}^{\text{outer}} E \cdot dl = \int_{\text{inner}}^{\text{outer}} E \cdot dl$$

$$= \int_a^b E_r dr = \frac{q}{2\pi \varepsilon_0} \int_a^b \frac{dr}{r},$$

so

$$V = \frac{q}{2\pi \varepsilon_0} \ln \frac{b}{a}. \quad (5.85)$$

Thus, the capacitance per unit length of the two cylinders is

$$C = \frac{q}{V} = \frac{2\pi \varepsilon_0}{\ln b/a}. \quad (5.87)$$

5.7 Poisson’s equation

We know that in steady-state we can write

$$E = -\nabla \phi,$$
with the scalar potential satisfying Poisson’s equation:

\[\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}. \]

(5.89)

We even know the general solution to this equation:

\[\phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d^3\mathbf{r}'. \]

(5.90)

So, what else is there to say about Poisson’s equation? Well, consider a positive (say) point charge in the vicinity of an uncharged, insulated, conducting sphere. The charge attracts negative charges to the near side of the sphere, and repels positive charges to the far side. The surface charge distribution induced on the sphere is such that it is maintained at a constant electrical potential. We now have a problem. We cannot use formula (5.90) to work out the potential \(\phi(\mathbf{r}) \) around the sphere, since we do not know how the charges induced on the conducting surface are distributed. The only things which we know about the surface of the sphere are that it is an equipotential surface, and carries zero net charge. Clearly, in the presence of conducting surfaces the solution (5.90) to Poisson’s equation is completely useless. Let us now try to develop some techniques for solving Poisson’s equation which allow us to solve real problems (which invariably involve conductors).

5.8 The uniqueness theorem

We have already seen the great value of the uniqueness theorem for Poisson’s equation (or Laplace’s equation) in our discussion of Helmholtz’s theorem (see Sect. 3.11). Let us now examine this theorem in detail.

Consider a volume \(V \) bounded by some surface \(S \). Suppose that we are given the charge density \(\rho \) throughout \(V \), and the value of the scalar potential \(\phi_S \) on \(S \). Is this sufficient information to uniquely specify the scalar potential throughout \(V \)? Suppose, for the sake of argument, that the solution is not unique. Let there be two potentials \(\phi_1 \) and \(\phi_2 \) which satisfy

\[\nabla^2 \phi_1 = -\frac{\rho}{\varepsilon_0}, \]

(5.91)
throughout V, and
\[\phi_1 = \phi_S, \quad (5.93) \]
\[\phi_2 = \phi_S \quad (5.94) \]
on S. We can form the difference between these two potentials:
\[\phi_3 = \phi_1 - \phi_2. \quad (5.95) \]
The potential ϕ_3 clearly satisfies
\[\nabla^2 \phi_3 = 0 \quad (5.96) \]
throughout V, and
\[\phi_3 = 0 \quad (5.97) \]
on S.

According to vector field theory,
\[\nabla \cdot (\phi_3 \nabla \phi_3) \equiv (\nabla \phi_3)^2 + \phi_3 \nabla^2 \phi_3. \quad (5.98) \]
Thus, using Gauss’ theorem
\[\int_V \{ (\nabla \phi_3)^2 + \phi_3 \nabla^2 \phi_3 \} \, dV = \int_S \phi_3 \nabla \phi_3 \cdot dS. \quad (5.99) \]
But, $\nabla^2 \phi_3 = 0$ throughout V, and $\phi_3 = 0$ on S, so the above equation reduces to
\[\int_V (\nabla \phi_3)^2 \, dV = 0. \quad (5.100) \]
Note that $(\nabla \phi_3)^2$ is a positive definite quantity. The only way in which the volume integral of a positive definite quantity can be zero is if that quantity itself is zero throughout the volume. This is not necessarily the case for a non-positive definite quantity: we could have positive and negative contributions from various regions inside the volume which cancel one another out. Thus, since $(\nabla \phi_3)^2$ is positive definite, it follows that
\[\phi_3 = \text{constant} \quad (5.101) \]
throughout V. However, we know that $\phi_3 = 0$ on S, so we get

$$\phi_3 = 0$$

throughout V. In other words,

$$\phi_1 = \phi_2$$

throughout V and on S. Our initial assumption that ϕ_1 and ϕ_2 are two different solutions of Poisson’s equation, satisfying the same boundary conditions, turns out to be incorrect.

The fact that the solutions to Poisson’s equation are unique is very useful. It means that if we find a solution to this equation—no matter how contrived the derivation—then this is the only possible solution. One immediate use of the uniqueness theorem is to prove that the electric field inside an empty cavity in a conductor is zero. Recall that our previous proof of this was rather involved, and was also not particularly rigorous (see Sect. 5.4). We know that the interior surface of the conductor is at some constant potential V, say. So, we have $\phi = V$ on the boundary of the cavity, and $\nabla^2 \phi = 0$ inside the cavity (since it contains no charges). One rather obvious solution to these equations is $\phi = V$ throughout the cavity. Since the solutions to Poisson’s equation are unique, this is the only solution. Thus,

$$\mathbf{E} = -\nabla \phi = -\nabla V = 0$$

inside the cavity.

Suppose that some volume V contains a number of conductors. We know that the surface of each conductor is an equipotential surface, but, in general, we do not know what potential each surface is at (unless we are specifically told that it is earthed, etc.). However, if the conductors are insulated it is plausible that we might know the charge on each conductor. Suppose that there are N conductors, each carrying a charge Q_i ($i = 1$ to N), and suppose that the region V containing these conductors is filled by a known charge density ρ, and bounded by some surface S which is either infinity or an enclosing conductor. Is this enough information to uniquely specify the electric field throughout V?

Well, suppose that it is not enough information, so that there are two fields \mathbf{E}_1
and \mathbf{E}_2 which satisfy

$$\nabla \cdot \mathbf{E}_1 = \frac{\rho}{\varepsilon_0}, \quad (5.105)$$

$$\nabla \cdot \mathbf{E}_2 = \frac{\rho}{\varepsilon_0} \quad (5.106)$$

throughout V, with

$$\int_{S_i} \mathbf{E}_1 \cdot d\mathbf{S}_i = \frac{Q_i}{\varepsilon_0}, \quad (5.107)$$

$$\int_{S_i} \mathbf{E}_2 \cdot d\mathbf{S}_i = \frac{Q_i}{\varepsilon_0} \quad (5.108)$$
on the surface of the ith conductor, and, finally,

$$\int_S \mathbf{E}_1 \cdot d\mathbf{S} = \frac{Q_{\text{total}}}{\varepsilon_0}, \quad (5.109)$$

$$\int_S \mathbf{E}_2 \cdot d\mathbf{S} = \frac{Q_{\text{total}}}{\varepsilon_0} \quad (5.110)$$

over the bounding surface, where

$$Q_{\text{total}} = \sum_{i=1}^{N} Q_i + \int_V \rho \, dV \quad (5.111)$$
is the total charge contained in volume V.

Let us form the difference field

$$\mathbf{E}_3 = \mathbf{E}_1 - \mathbf{E}_2. \quad (5.112)$$

It is clear that

$$\nabla \cdot \mathbf{E}_3 = 0 \quad (5.113)$$

throughout V, and

$$\int_{S_i} \mathbf{E}_3 \cdot d\mathbf{S}_i = 0 \quad (5.114)$$

for all i, with

$$\int_S \mathbf{E}_3 \cdot d\mathbf{S} = 0. \quad (5.115)$$
Now, we know that each conductor is at a constant potential, so if
\[E_3 = -\nabla \phi_3, \]
then \(\phi_3 \) is a constant on the surface of each conductor. Furthermore, if the outer surface \(S \) is infinity then \(\phi_1 = \phi_2 = \phi_3 = 0 \) on this surface. If the outer surface is an enclosing conductor then \(\phi_3 \) is a constant on this surface. Either way, \(\phi_3 \) is constant on \(S \).

Consider the vector identity
\[\nabla \cdot (\phi_3 E_3) = \phi_3 \nabla \cdot E_3 + E_3 \cdot \nabla \phi_3. \]
(5.117)

We have \(\nabla \cdot E_3 = 0 \) throughout \(V \), and \(\nabla \phi_3 = -E_3 \), so the above identity reduces to
\[\nabla \cdot (\phi_3 E_3) = -E_3^2 \]
(5.118)
throughout \(V \). Integrating over \(V \), and making use of Gauss’ theorem, yields
\[\int_V E_3^2 \, dV = -\sum_{i=1}^{N} \int_{S_i} \phi_3 E_3 \cdot dS_i - \int_S \phi_3 E_3 \cdot dS. \]
(5.119)

However, \(\phi_3 \) is a constant on the surfaces \(S_i \) and \(S \). So, making use of Eqs. (5.114) and (5.115), we obtain
\[\int_V E_3^2 \, dV = 0. \]
(5.120)
Of course, \(E_3^2 \) is a positive definite quantity, so the above relation implies that
\[E_3 = 0 \]
(5.121)
throughout \(V \): \textit{i.e.}, the fields \(E_1 \) and \(E_2 \) are identical throughout \(V \).

For a general electrostatic problem involving charges and conductors, it is clear that if we are given either the potential at the surface of each conductor or the charge carried by each conductor (plus the charge density throughout the volume, \textit{etc.}) then we can uniquely determine the electric field. There are many other uniqueness theorems which generalize this result still further: \textit{i.e.}, we could be given the potential of some of the conductors and the charge carried by the others, and the solution would still be unique.
At this point, it is worth noting that there are also uniqueness theorems associated with magnetostatics. For instance, if the current density, \(j \), is specified throughout some volume \(V \), and either the magnetic field, \(\mathbf{B} \), or the vector potential, \(\mathbf{A} \), is specified on the bounding surface \(S \), then the magnetic field is uniquely determined throughout \(V \) and on \(S \). The proof of this proposition proceeds along the usual lines. Suppose that the magnetic field is not uniquely determined. In other words, suppose there are two magnetic fields, \(\mathbf{B}_1 \) and \(\mathbf{B}_2 \), satisfying
\[
\nabla \times \mathbf{B}_1 = \mu_0 j, \tag{5.122}
\]
\[
\nabla \times \mathbf{B}_2 = \mu_0 j, \tag{5.123}
\]
throughout \(V \). Suppose, further, that either \(\mathbf{B}_1 = \mathbf{B}_2 = \mathbf{B}_S \) or \(\mathbf{A}_1 = \mathbf{A}_2 = \mathbf{A}_S \) on \(S \). Forming the difference field, \(\mathbf{B}_3 = \mathbf{B}_1 - \mathbf{B}_2 \), we have
\[
\nabla \times \mathbf{B}_3 = 0 \tag{5.124}
\]
throughout \(V \), and either \(\mathbf{B}_3 = 0 \) or \(\mathbf{A}_3 = 0 \) on \(S \). Now, according to vector field theory,
\[
\int_V \left[(\nabla \times \mathbf{U})^2 - \mathbf{U} \cdot \nabla \times \nabla \times \mathbf{U} \right] \, dV \equiv \oint_S \mathbf{U} \times (\nabla \times \mathbf{U}) \cdot d\mathbf{S}. \tag{5.125}
\]
Setting \(\mathbf{U} = \mathbf{A}_3 \), and using \(\mathbf{B}_3 = \nabla \times \mathbf{A}_3 \) and Eq. (5.124), we obtain
\[
\int_V B_3^2 \, dV = \oint_S \mathbf{A}_3 \times \mathbf{B}_3 \cdot d\mathbf{S}. \tag{5.126}
\]
However, we know that either \(\mathbf{B}_3 \) or \(\mathbf{A}_3 \) is zero on \(S \). Hence, we obtain
\[
\int_V B_3^2 \, dV = 0. \tag{5.127}
\]
Since, \(B_3^2 \) is positive definite, the only way in which the above equation can be satisfied is if \(B_3 \) is zero throughout \(V \). Hence, \(\mathbf{B}_1 = \mathbf{B}_2 \) throughout \(V \), and the solution is therefore unique.

5.9 One-dimensional solution of Poisson’s equation

So, how do we actually solve Poisson’s equation,
\[
\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = -\frac{\rho(x, y, z)}{\varepsilon_0}, \tag{5.128}
\]

in practice? In general, the answer is that we use a computer. However, there are a few situations, possessing a high degree of symmetry, where it is possible to find analytic solutions. Let us discuss some of these solutions.

Suppose, first of all, that there is no variation of quantities in (say) the y- and z-directions. In this case, Poisson's equation reduces to an ordinary differential equation in \(x \), the solution of which is relatively straight-forward. Consider, for instance, a vacuum diode, in which electrons are emitted from a hot cathode and accelerated towards an anode, which is held at a large positive potential \(V_0 \) with respect to the cathode. We can think of this as an essentially one-dimensional problem. Suppose that the cathode is at \(x = 0 \) and the anode at \(x = d \). Poisson's equation takes the form

\[
\frac{d^2 \phi}{dx^2} = -\frac{\rho(x)}{\varepsilon_0},
\]

where \(\phi(x) \) satisfies the boundary conditions \(\phi(0) = 0 \) and \(\phi(d) = V_0 \). By energy conservation, an electron emitted from rest at the cathode has an \(x \)-velocity \(v(x) \) which satisfies

\[
\frac{1}{2} m_e v^2(x) - e \phi(x) = 0.
\]

Finally, in a steady-state, the electric current \(I \) (between the anode and cathode) is independent of \(x \) (otherwise, charge will build up at some points). In fact,

\[
I = -\rho(x) v(x) A,
\]

where \(A \) is the cross-sectional area of the diode. The previous three equations can be combined to give

\[
\frac{d^2 \phi}{dx^2} = \frac{I}{\varepsilon_0 A} \left(\frac{m_e}{2 e} \right)^{1/2} \phi^{-1/2}.
\]

The solution of the above equation which satisfies the boundary conditions is

\[
\phi = V_0 \left(\frac{x}{d} \right)^{4/3},
\]

with

\[
I = \frac{4}{9} \frac{\varepsilon_0 A}{d^2} \left(\frac{2 e}{m_e} \right)^{1/2} V_0^{3/2}.
\]
This relationship between the current and the voltage in a vacuum diode is called the Child-Langmuir law.

Let us now consider the solution of Poisson’s equation in more than one dimension.

5.10 The method of images

Suppose that we have a point charge \(q \) held a distance \(d \) from an infinite, grounded, conducting plate. Let the plate lie in the \(x\)-\(y \) plane, and suppose that the point charge is located at coordinates \((0, 0, d)\). What is the scalar potential above the plane? This is not a simple question because the point charge induces surface charges on the plate, and we do not know how these are distributed.

What do we know in this problem? We know that the conducting plate is an equipotential surface. In fact, the potential of the plate is zero, since it is grounded. We also know that the potential at infinity is zero (this is our usual boundary condition for the scalar potential). Thus, we need to solve Poisson’s equation in the region \(z > 0 \), for a single point charge \(q \) at position \((0, 0, d)\), subject to the boundary conditions

\[
\phi(z = 0) = 0, \quad (5.135)
\]

and

\[
\phi \to 0 \quad (5.136)
\]

as \(x^2 + y^2 + z^2 \to \infty \). Let us forget about the real problem, for a moment, and concentrate on a slightly different one. We refer to this as the analogue problem. In the analogue problem, we have a charge \(q \) located at \((0, 0, d)\) and a charge \(-q\) located at \((0, 0, -d)\), with no conductors present. We can easily find the scalar potential for this problem, since we know where all the charges are located. We get

\[
\phi_{\text{analogue}}(x, y, z) = \frac{1}{4\pi \varepsilon_0} \left\{ \frac{q}{\sqrt{x^2 + y^2 + (z - d)^2}} - \frac{q}{\sqrt{x^2 + y^2 + (z + d)^2}} \right\}. \quad (5.137)
\]
Note, however, that
\[\phi_{\text{analogue}}(z = 0) = 0, \quad (5.138) \]
and
\[\phi_{\text{analogue}} \to 0 \quad (5.139) \]
as \(x^2 + y^2 + z^2 \to \infty \). In addition, \(\phi_{\text{analogue}} \) satisfies Poisson’s equation for a charge at \((0, 0, d)\), in the region \(z > 0 \). Thus, \(\phi_{\text{analogue}} \) is a solution to the problem posed earlier, in the region \(z > 0 \). Now, the uniqueness theorem tells us that there is only one solution to Poisson’s equation which satisfies a given, well-posed set of boundary conditions. So, \(\phi_{\text{analogue}} \) must be the correct potential in the region \(z > 0 \). Of course, \(\phi_{\text{analogue}} \) is completely wrong in the region \(z < 0 \). We know this because the grounded plate shields the region \(z < 0 \) from the point charge, so that \(\phi = 0 \) in this region. Note that we are leaning pretty heavily on the uniqueness theorem here! Without this theorem, it would be hard to convince a skeptical person that \(\phi = \phi_{\text{analogue}} \) is the correct solution in the region \(z > 0 \).

Now that we know the potential in the region \(z > 0 \), we can easily work out the distribution of charges induced on the conducting plate. We already know that the relation between the electric field immediately above a conducting surface and the density of charge on the surface is
\[E_\perp = \frac{\sigma}{\varepsilon_0}. \quad (5.140) \]
In this case,
\[E_\perp = E_z(z = 0_+) = -\frac{\partial \phi(z = 0_+)}{\partial z} = -\frac{\partial \phi_{\text{analogue}}(z = 0_+)}{\partial z}, \quad (5.141) \]
so
\[\sigma = -\varepsilon_0 \frac{\partial \phi_{\text{analogue}}(z = 0_+)}{\partial z}. \quad (5.142) \]
It follows from Eq. (5.137) that
\[\frac{\partial \phi}{\partial z} = \frac{q}{4\pi \varepsilon_0} \left\{ \frac{-(z-d)}{[x^2 + y^2 + (z-d)^2]^{3/2}} + \frac{(z+d)}{[x^2 + y^2 + (z+d)^2]^{3/2}} \right\}, \quad (5.143) \]
so
\[\sigma(x, y) = -\frac{q d}{2\pi (x^2 + y^2 + d^2)^{3/2}}. \quad (5.144) \]
Clearly, the charge induced on the plate has the opposite sign to the point charge. The charge density on the plate is also symmetric about the \(z \)-axis, and is largest where the plate is closest to the point charge. The total charge induced on the plate is

\[
Q = \int_{x-y \text{ plane}} \sigma \, dS,
\]

which yields

\[
Q = -\frac{q \, d}{2\pi} \int_{0}^{\infty} \frac{2\pi \, r \, dr}{(r^2 + d^2)^{3/2}},
\]

where \(r^2 = x^2 + y^2 \). Thus,

\[
Q = -\frac{q \, d}{2} \int_{0}^{\infty} \frac{dk}{(k + d^2)^{3/2}} = q \, d \left[\frac{1}{(k + d^2)^{1/2}} \right]_{0}^{\infty} = -q.
\]

So, the total charge induced on the plate is equal and opposite to the point charge which induces it.

Our point charge induces charges of the opposite sign on the conducting plate. This, presumably, gives rise to a force of attraction between the charge and the plate. What is this force? Well, since the potential, and, hence, the electric field, in the vicinity of the point charge is the same as in the analogue problem, then the force on the charge must be the same as well. In the analogue problem, there are two charges \(\pm q \) a net distance \(2d \) apart. The force on the charge at position \((0, 0, d)\) (i.e., the real charge) is

\[
F = -\frac{1}{4\pi \varepsilon_0} \frac{q^2}{(2d)^2} \hat{z}.
\]

What, finally, is the potential energy of the system. For the analogue problem this is just

\[
W_{\text{analogue}} = -\frac{1}{4\pi \varepsilon_0} \frac{q^2}{2d}.
\]

Note that the fields on opposite sides of the conducting plate are mirror images of one another in the analogue problem. So are the charges (apart from the change in sign). This is why the technique of replacing conducting surfaces by imaginary
charges is called the method of images. We know that the potential energy of a set of charges is equivalent to the energy stored in the electric field. Thus,

\[W = \frac{\varepsilon_0}{2} \int_{\text{all space}} E^2 \, dV. \]

(5.150)

In the analogue problem, the fields on either side of the \(x-y \) plane are mirror images of one another, so \(E^2(x, y, z) = E^2(x, y, -z) \). It follows that

\[W_{\text{analogue}} = 2 \frac{\varepsilon_0}{2} \int_{z>0} E^2_{\text{analogue}} \, dV. \]

(5.151)

In the real problem

\[E(z > 0) = E_{\text{analogue}}(z > 0), \]

(5.152)

\[E(z < 0) = 0. \]

(5.153)

So,

\[W = \frac{\varepsilon_0}{2} \int_{z>0} E^2 \, dV = \frac{\varepsilon_0}{2} \int_{z>0} E^2_{\text{analogue}} \, dV = \frac{1}{2} W_{\text{analogue}}, \]

(5.154)

giving

\[W = -\frac{1}{4\pi \varepsilon_0} \frac{q^2}{4d}. \]

(5.155)

There is another method by which we can obtain the above result. Suppose that the charge is gradually moved towards the plate along the \(z \)-axis from infinity until it reaches position \((0, 0, d) \). How much work is required to achieve this? We know that the force of attraction acting on the charge is

\[F_z = -\frac{1}{4\pi \varepsilon_0} \frac{q^2}{4z^2}. \]

(5.156)

Thus, the work required to move this charge by \(dz \) is

\[dW = -F_z \, dz = \frac{1}{4\pi \varepsilon_0} \frac{q^2}{4z^2} \, dz. \]

(5.157)

The total work needed to move the charge from \(z = \infty \) to \(z = d \) is

\[W = \frac{1}{4\pi \varepsilon_0} \int_{\infty}^{d} \frac{q^2}{4z^2} \, dz = \frac{1}{4\pi \varepsilon_0} \left[-\frac{q^2}{4z} \right]_\infty^d = -\frac{1}{4\pi \varepsilon_0} \frac{q^2}{4d}. \]

(5.158)
Of course, this work is equivalent to the potential energy we evaluated earlier, and is, in turn, the same as the energy contained in the electric field.

As a second example of the method of images, consider a grounded spherical conductor of radius a placed at the origin. Suppose that a charge q is placed outside the sphere at $(b, 0, 0)$, where $b > a$. What is the force of attraction between the sphere and the charge? In this case, we proceed by considering an analogue problem in which the sphere is replaced by an image charge $-q'$ placed somewhere on the x-axis at $(c, 0, 0)$. The electric potential throughout space in the analogue problem is simply

$$
\phi = \frac{q}{4\pi \varepsilon_0 \left[(x-b)^2 + y^2 + z^2 \right]^{1/2}} - \frac{q'}{4\pi \varepsilon_0 \left[(x-c)^2 + y^2 + z^2 \right]^{1/2}}. \quad (5.159)
$$

The image charge is chosen so as to make the surface $\phi = 0$ correspond to the surface of the sphere. Setting the above expression to zero, and performing a little algebra, we find that the $\phi = 0$ surface satisfies

$$
x^2 + \frac{2(c - \lambda b)}{\lambda - 1} x + y^2 + z^2 = \frac{c^2 - \lambda b^2}{\lambda - 1}, \quad (5.160)
$$

where $\lambda = q'^2/q^2$. Of course, the surface of the sphere satisfies

$$
x^2 + y^2 + z^2 = a^2. \quad (5.161)
$$

The above two equations can be made identical by setting $\lambda = c/b$ and $a^2 = \lambda b^2$, or

$$
q' = \frac{a}{b} q, \quad (5.162)
$$

and

$$
c = \frac{a^2}{b}. \quad (5.163)
$$

According to the uniqueness theorem, the potential in the analogue problem is now identical with that in the real problem, outside the sphere. (Of course, in the real problem, the potential inside the sphere is zero.) Hence, the force of attraction between the sphere and the original charge in the real problem is the same as the force of attraction between the two charges in the analogue problem. It follows that

$$
f = \frac{q q'}{4\pi \varepsilon_0 (b-c)^2} = \frac{q^2}{4\pi \varepsilon_0} \frac{a b}{(b^2 - a^2)^2}. \quad (5.164)
$$
There are many other image problems, each of which involves replacing a conductor with an imaginary charge (or charges) which mimics the electric field in some region (but not everywhere). Unfortunately, we do not have time to discuss any more of these problems.

5.11 Complex analysis

Let us now investigate another trick for solving Poisson’s equation (actually it only solves Laplace’s equation). Unfortunately, this method can only be applied in *two dimensions*.

The complex variable is conventionally written

\[z = x + iy \] \hspace{1cm} (5.165)

(z should not be confused with a z-coordinate: this is a strictly two-dimensional problem). We can write functions \(F(z) \) of the complex variable just like we would write functions of a real variable. For instance,

\[F(z) = z^2, \] \hspace{1cm} (5.166)

\[F(z) = \frac{1}{z}. \] \hspace{1cm} (5.167)

For a given function, \(F(z) \), we can substitute \(z = x + iy \) and write

\[F(z) = U(x, y) + iV(x, y), \] \hspace{1cm} (5.168)

where \(U \) and \(V \) are two *real* two-dimensional functions. Thus, if

\[F(z) = z^2, \] \hspace{1cm} (5.169)

then

\[F(x + iy) = (x + iy)^2 = (x^2 - y^2) + 2ixy, \] \hspace{1cm} (5.170)

giving

\[U(x, y) = x^2 - y^2, \] \hspace{1cm} (5.171)

\[V(x, y) = 2xy. \] \hspace{1cm} (5.172)
We can define the derivative of a complex function in just the same manner as we would define the derivative of a real function. Thus,
\[
\frac{dF}{dz} = \lim_{\delta z \to 0} \frac{F(z + \delta z) - F(z)}{\delta z}.
\] (5.173)

However, we now have a slight problem. If \(F(z) \) is a “well-defined” function (we shall leave it to the mathematicians to specify exactly what being well-defined entails: suffice to say that most functions we can think of are well-defined) then it should not matter from which direction in the complex plane we approach \(z \) when taking the limit in Eq. (5.173). There are, of course, many different directions we could approach \(z \) from, but if we look at a regular complex function, \(F(z) = z^2 \) (say), then
\[
\frac{dF}{dz} = 2z
\] (5.174)
is perfectly well-defined, and is, therefore, completely independent of the details of how the limit is taken in Eq. (5.173).

The fact that Eq. (5.173) has to give the same result, no matter which path we approach \(z \) from, means that there are some restrictions on the functions \(U \) and \(V \) in Eq. (5.168). Suppose that we approach \(z \) along the real axis, so that \(\delta z = \delta x \). Then,
\[
\frac{dF}{dz} = \lim_{\delta x \to 0} \frac{U(x + \delta x, y) + i V(x + \delta x, y) - U(x, y) - i V(x, y)}{\delta x} = \frac{\partial U}{\partial x} + i \frac{\partial V}{\partial x}.
\] (5.175)

Suppose that we now approach \(z \) along the imaginary axis, so that \(\delta z = i \delta y \). Then,
\[
\frac{dF}{dz} = \lim_{\delta y \to 0} \frac{U(x, y + \delta y) + i V(x, y + \delta y) - U(x, y) - i V(x, y)}{i \delta y} = -i \frac{\partial U}{\partial y} + \frac{\partial V}{\partial y}.
\] (5.176)

If \(F(z) \) is a well-defined function then its derivative must also be well-defined, which implies that the above two expressions are equivalent. This requires that
\[
\frac{\partial U}{\partial x} = \frac{\partial V}{\partial y},
\] (5.177)
\[\frac{\partial V}{\partial x} = -\frac{\partial U}{\partial y}. \]

These are called the *Cauchy-Riemann relations*, and are, in fact, sufficient to ensure that all possible ways of taking the limit \((5.173)\) give the same answer.

So far, we have found that a general complex function \(F(z)\) can be written

\[F(z) = U(x, y) + iV(x, y), \]

where \(z = x + iy\). If \(F(z)\) is well-defined then \(U\) and \(V\) *automatically* satisfy the Cauchy-Riemann relations. But, what has all of this got to do with electrostatics? Well, we can combine the two Cauchy-Riemann relations. We get

\[\frac{\partial^2 U}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial V}{\partial y} \right) = \frac{\partial U}{\partial y} \frac{\partial V}{\partial x} = \frac{\partial}{\partial y} \left(\frac{\partial U}{\partial x} \right), \]

and

\[\frac{\partial^2 V}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial U}{\partial y} \right) = \frac{\partial U}{\partial y} \frac{\partial V}{\partial x} = \frac{\partial}{\partial y} \left(\frac{\partial U}{\partial x} \right), \]

which reduce to

\[\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} = 0, \]

\[\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = 0. \]

Thus, both \(U\) and \(V\) *automatically* satisfy Laplace's equation in two dimensions; *i.e.*, both \(U\) and \(V\) are possible two-dimensional scalar potentials in free space.

Consider the two-dimensional gradients of \(U\) and \(V\):

\[\nabla U = \left(\frac{\partial U}{\partial x}, \frac{\partial U}{\partial y} \right), \]

\[\nabla V = \left(\frac{\partial V}{\partial x}, \frac{\partial V}{\partial y} \right). \]

Now

\[\nabla U \cdot \nabla V = \frac{\partial U \partial V}{\partial x \partial x} + \frac{\partial U \partial V}{\partial y \partial y}. \]
It follows from the Cauchy-Riemann relations that
\[\nabla U \cdot \nabla V = \frac{\partial V}{\partial y} \frac{\partial V}{\partial x} - \frac{\partial V}{\partial x} \frac{\partial V}{\partial y} = 0. \] \hfill (5.187)

Thus, the contours of \(U \) are everywhere perpendicular to the contours of \(V \). It follows that if \(U \) maps out the contours of some free space scalar potential then \(V \) indicates the directions of the associated electric field-lines, and \textit{vice versa}.

For every well-defined complex function we can think of, we get two sets of free space potentials, and the associated electric field-lines. For example, consider the function \(F(z) = z^2 \), for which
\[U = x^2 - y^2, \tag{5.188} \]
\[V = 2xy. \tag{5.189} \]

These are, in fact, the equations of two sets of orthogonal hyperboloids. So, \(U(x, y) \) (the solid lines in Fig. 45) might represent the contours of some scalar potential and \(V(x, y) \) (the dashed lines in Fig. 45) the associated electric field lines, or \textit{vice versa}. But, how could we actually generate a hyperboloidal potential? This is easy. Consider the contours of \(U \) at level \(\pm 1 \). These could represent the surfaces of four hyperboloid conductors maintained at potentials \(\pm V \). The
scalar potential in the region between these conductors is given by $V \mathbf{U}(x, y)$, and the associated electric field-lines follow the contours of $V(x, y)$. Note that

$$E_x = -\frac{\partial \phi}{\partial x} = -V \frac{\partial U}{\partial x} = -2Vx$$

(5.190)

Thus, the x-component of the electric field is directly proportional to the distance from the x-axis. Likewise, for y-component of the field is directly proportional to the distance from the y-axis. This property can be exploited to make devices (called quadrupole electrostatic lenses) which are useful for focusing particle beams.

As a second example, consider the complex function

$$F(z) = z - \frac{c^2}{z},$$

(5.191)

where c is real and positive. Writing $F(z) = U(x, y) + iV(x, y)$, we find that

$$U(x, y) = x - \frac{c^2 x}{x^2 + y^2}.$$

(5.192)

Far from the origin, $U \to x$, which is the potential of a uniform electric field, of unit amplitude, pointing in the $-x$-direction. The locus of $U = 0$ is $x = 0$, and

$$x^2 + y^2 = c^2,$$

(5.193)

which corresponds to a circle of radius c centered on the origin. Hence, we conclude that the potential

$$\phi(x, y, z) = -E_0 U(x, y) = -E_0 x + E_0 c^2 \frac{x}{x^2 + y^2}$$

(5.194)

corresponds to that outside a grounded, infinitely long, conducting cylinder of radius c, running parallel to the z-axis, placed in a uniform x-directed electric field of magnitude E_0. Of course, the potential inside the cylinder (i.e., $x^2 + y^2 < c^2$) is zero. The induced charge density on the surface of the cylinder is simply

$$\sigma = \varepsilon_0 E_r(r = c) = -\varepsilon_0 \frac{\partial \phi(r = c)}{\partial r} = 2 \varepsilon_0 E_0 \cos \theta,$$

(5.195)
where \(r^2 = x^2 + y^2 \), and \(x = r \cos \theta \). Note that zero net charge is induced on the surface.

We can think of the set of all possible well-defined complex functions as a reference library of solutions to Laplace’s equation in two dimensions. We have only considered a couple of examples, but there are, of course, very many complex functions which generate interesting potentials. For instance, \(F(z) = z^{1/2} \) generates the potential around a semi-infinite, thin, grounded, conducting plate placed in an external field, whereas \(F(z) = z^{3/2} \) yields the potential outside a grounded, rectangular, conducting corner under similar circumstances.

5.12 Separation of variables

The method of images and complex analysis are two rather elegant techniques for solving Poisson’s equation. Unfortunately, they both have an extremely limited range of application. The final technique we shall discuss in this course, namely, the separation of variables, is somewhat messy, but possess a far wider range of application. Let us examine a specific example.

Consider two semi-infinite, grounded, conducting plates lying parallel to the \(x \)-\(z \) plane, one at \(y = 0 \), and the other at \(y = \pi \) (see Fig. 46). The left end, at \(x = 0 \), is closed off by an infinite strip insulated from the two plates, and maintained at a specified potential \(\phi_0(y) \). What is the potential in the region between the plates?

![Figure 46:](image_url)

We first of all assume that the potential is \(z \)-independent, since everything
else in the problem is. This reduces the problem to two dimensions. Poisson’s
equation is written
\[\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0 \] (5.196)
in the vacuum region between the conductors. The boundary conditions are
\[\phi(x, 0) = 0, \] (5.197)
\[\phi(x, \pi) = 0 \] (5.198)
for \(x > 0 \), since the two plates are earthed, plus
\[\phi(0, y) = \phi_0(y) \] (5.199)
for \(0 \leq y \leq \pi \), and
\[\phi(x, y) \to 0 \] (5.200)
as \(x \to \infty \). The latter boundary condition is our usual one for the scalar potential
at infinity.

The central assumption in the method of separation of variables is that a multi-
dimensional potential can be written as the product of one-dimensional poten-
tials, so that
\[\phi(x, y) = X(x) Y(y). \] (5.201)
The above solution is obviously a very special one, and is, therefore, only likely
to satisfy a very small subset of possible boundary conditions. However, it turns
out that by adding together lots of different solutions of this form we can match
to general boundary conditions.

Substituting (5.201) into (5.196), we obtain
\[Y \frac{d^2 X}{dx^2} + X \frac{d^2 Y}{dy^2} = 0. \] (5.202)
Let us now separate the variables: i.e., let us collect all of the \(x \)-dependent terms
on one side of the equation, and all of the \(y \)-dependent terms on the other side.
Thus,
\[\frac{1}{X} \frac{d^2 X}{dx^2} = -\frac{1}{Y} \frac{d^2 Y}{dy^2}. \] (5.203)
This equation has the form

\[f(x) = g(y), \quad (5.204) \]

where \(f \) and \(g \) are general functions. The only way in which the above equation can be satisfied, for general \(x \) and \(y \), is if both sides are equal to the same constant. Thus,

\[\frac{1}{X} \frac{d^2X}{dx^2} = k^2 = -\frac{1}{Y} \frac{d^2Y}{dy^2}. \quad (5.205) \]

The reason why we write \(k^2 \), rather than \(-k^2 \), will become apparent later on. Equation (5.205) separates into two ordinary differential equations:

\[\frac{d^2X}{dx^2} = k^2 X, \quad (5.206) \]
\[\frac{d^2Y}{dy^2} = -k^2 Y. \quad (5.207) \]

We know the general solution to these equations:

\[X = A \exp(kx) + B \exp(-kx), \quad (5.208) \]
\[Y = C \sin(ky) + D \cos(ky), \quad (5.209) \]

giving

\[\phi = [A \exp(kx) + B \exp(-kx)] [C \sin(ky) + D \cos(ky)]. \quad (5.210) \]

Here, \(A, B, C, \) and \(D \) are arbitrary constants. The boundary condition (5.200) is automatically satisfied if \(A = 0 \) and \(k > 0 \). Note that the choice \(k^2 \), instead of \(-k^2 \), in Eq. (5.205) facilitates this by making \(\phi \) either grow or decay monotonically in the \(x \)-direction instead of oscillating. The boundary condition (5.197) is automatically satisfied if \(D = 0 \). The boundary condition (5.198) is satisfied provided that

\[\sin(k \pi) = 0, \quad (5.211) \]

which implies that \(k \) is a positive integer, \(n \) (say). So, our solution reduces to

\[\phi(x, y) = C \exp(-n x) \sin(n y), \quad (5.212) \]

where \(B \) has been absorbed into \(C \). Note that this solution is only able to satisfy the final boundary condition (5.199) provided \(\phi_0(y) \) is proportional to \(\sin(n y) \).
Thus, at first sight, it would appear that the method of separation of variables only works for a very special subset of boundary conditions. However, this is not the case.

Now comes the clever bit! Since Poisson’s equation is linear, any linear combination of solutions is also a solution. We can therefore form a more general solution than (5.212) by adding together lots of solutions involving different values of \(n \). Thus,
\[
\phi(x, y) = \sum_{n=1}^{\infty} C_n \exp(-n x) \sin(n y),
\]
where the \(C_n \) are constants. This solution automatically satisfies the boundary conditions (5.197), (5.198) and (5.200). The final boundary condition (5.199) reduces to
\[
\phi(0, y) = \sum_{n=1}^{\infty} C_n \sin(n y) = \phi_0(y).
\]

The question now is what choice of the \(C_n \) fits an arbitrary function \(\phi_0(y) \)? To answer this question we can make use of two very useful properties of the functions \(\sin(n y) \). Namely, that they are mutually orthogonal, and form a complete set. The orthogonality property of these functions manifests itself through the relation
\[
\int_0^\pi \sin(n y) \sin(n' y) \, dy = \frac{\pi}{2} \delta_{nn'},
\]
where the function \(\delta_{nn'} = 1 \) if \(n = n' \) and 0 otherwise is called a Kroenecker delta. The completeness property of sine functions means that any general function \(\phi_0(y) \) can always be adequately represented as a weighted sum of sine functions with various different \(n \) values. Multiplying both sides of Eq. (5.214) by \(\sin(n' y) \), and integrating over \(y \), we obtain
\[
\sum_{n=1}^{\infty} C_n \int_0^\pi \sin(n y) \sin(n' y) \, dy = \int_0^\pi \phi_0(y) \sin(n' y) \, dy.
\]
The orthogonality relation yields
\[
\frac{\pi}{2} \sum_{n=1}^{\infty} C_n \delta_{nn'} = \frac{\pi}{2} C_{n'} = \int_0^\pi \phi_0(y) \sin(n' y) \, dy,
\]
so
\[C_n = \frac{2}{\pi} \int_0^\pi \phi_0(y) \sin(ny) \, dy. \]
(5.218)

Thus, we now have a general solution to the problem for any driving potential \(\phi_0(y) \).

If the potential \(\phi_0(y) \) is constant then
\[C_n = \frac{2 \phi_0}{\pi} \int_0^\pi \sin(ny) \, dy = \frac{2 \phi_0}{n \pi} [1 - \cos(n \pi)], \]
(5.219)
giving
\[C_n = 0 \]
(5.220)
for even \(n \), and
\[C_n = \frac{4 \phi_0}{n \pi} \]
(5.221)
for odd \(n \). Thus,
\[\phi(x, y) = \frac{4 \phi_0}{\pi} \sum_{n=1,3,5} \frac{\exp(-nx) \sin(ny)}{n}. \]
(5.222)

In the above problem, we write the potential as the product of one-dimensional functions. Some of these functions grow and decay monotonically \(i.e. \), the exponential functions), and the others oscillate \(i.e. \), the sinusoidal functions). The success of the method depends crucially on the orthogonality and completeness of the oscillatory functions. A set of functions \(f_n(x) \) is orthogonal if the integral of the product of two different members of the set over some range is always zero: \(i.e. \),
\[\int_a^b f_n(x) f_m(x) \, dx = 0, \]
(5.223)
for \(n \neq m \). A set of functions is complete if any other function can be expanded as a weighted sum of them. It turns out that the scheme set out above can be generalized to more complicated geometries. For instance, in spherical geometry, the monotonic functions are power law functions of the radial variable, and the oscillatory functions are Legendre polynomials. The latter are both mutually
orthogonal and form a complete set. There are also cylindrical, ellipsoidal, hyperbolic, toroidal, etc. coordinates. In all cases, the associated oscillating functions are mutually orthogonal and form a complete set. This implies that the method of separation of variables is of quite general applicability.

Finally, as a simple example of the solution of Poisson’s equation in spherical geometry, let us consider the case of a conducting sphere of radius \(a \), centered on the origin, placed in a uniform \(z \)-directed electric field of magnitude \(E_0 \). The scalar potential \(\phi \) satisfies \(\nabla^2 \phi = 0 \) for \(r \geq a \), with the boundary conditions \(\phi \to -E_0 r \cos \theta \) (giving \(E \to E_0 \hat{z} \)) as \(r \to \infty \), and \(\phi = 0 \) at \(r = a \). Here, \(r \) and \(\theta \) are spherical polar coordinates. Let us try the simplified separable solution

\[
\phi(r, \theta) = r^m \cos \theta. \tag{5.224}
\]

It is easily demonstrated that the above solution satisfies \(\nabla^2 \phi = 0 \) provided \(m = 1 \) or \(-2\). Thus, the most general solution of \(\nabla^2 \phi \) which satisfies the boundary condition at \(r \to \infty \) is

\[
\phi(r, \theta) = -E_0 r \cos \theta + \alpha r^{-2} \cos \theta. \tag{5.225}
\]

The boundary condition at \(r = a \) is satisfied provided

\[
\alpha = E_0 a^3. \tag{5.226}
\]

Of course, \(\phi = 0 \) inside the sphere (i.e., \(r < a \)). The charge sheet density induced on the surface of the sphere is given by

\[
\sigma = \varepsilon_0 E_\tau(r = a) = -\varepsilon_0 \frac{\partial \phi(r = a)}{\partial r} = 3 \varepsilon_0 E_0 \cos \theta. \tag{5.227}
\]
6 Dielectric and magnetic media

6.1 Introduction

In this section, we shall use Maxwell’s equations to investigate the effect of dielectric and magnetic media on electric and magnetic fields.

6.2 Polarization

The terrestrial environment is characterized by dielectric media (e.g., air, water) which are, for the most part, electrically neutral, since they are made up of neutral atoms and molecules. However, if these atoms and molecules are placed in an electric field then they tend to polarize. Suppose that when a given neutral molecule is placed in an electric field \(\mathbf{E} \), the centre of charge of its constituent electrons (whose total charge is \(q \)) is displaced by a distance \(d \) with respect to the centre of charge of its constituent atomic nucleus. The dipole moment of the molecule is defined \(\mathbf{p} = q \mathbf{d} \). If there are \(N \) such molecules per unit volume then the electric polarization \(\mathbf{P} \) (i.e., the dipole moment per unit volume) is given by \(\mathbf{P} = N \mathbf{p} \). More generally,

\[
\mathbf{P}(\mathbf{r}) = \sum_i N_i \langle \mathbf{p}_i \rangle,
\]

(6.1)

where \(\langle \mathbf{p}_i \rangle \) is the average dipole moment of the \(i \)th type of molecule in the vicinity of point \(\mathbf{r} \), and \(N_i \) is the average number of such molecules per unit volume at \(\mathbf{r} \).

Consider an infinitesimal cube of dielectric material with \(x \)-coordinates between \(x \) and \(x + dx \), \(y \)-coordinates between \(y \) and \(y + dy \), and \(z \)-coordinates between \(z \) and \(z + dz \). Suppose that the dielectric consists of electrically neutral polar molecules, of varying number density \(N(\mathbf{r}) \), whose electrons, charge \(q \), displace a constant distance \(d \) from the nuclei, charge \(-q \). Thus, the dipole moment per unit volume is \(\mathbf{P}(\mathbf{r}) = N(\mathbf{r}) q d \). Due to the polarization of the molecules, a net charge \(N(x, y, z) q dx \, dy \, dz \) enters the bottom face of the cube, perpendicular to the \(x \)-axis, whilst a net charge \(N(x + dx, y, z) q dx \, dy \, dz \) leaves the top face. Hence, the net charge acquired by the cube due to molecular polarization
in the x-direction is $dq = -N(x + dx, y, z) \, dq_x \, dy \, dz + N(x, y, z) \, dq_x \, dy \, dz = -[\partial N(x, y, z)/\partial x] \, q \, dx \, dy \, dz = -[\partial P_x(x, y, z)/\partial x] \, dx \, dy \, dz$. There are analogous contributions due to polarization in the y- and z-directions. Hence, the net charge acquired by the cube due to molecular polarization is $dq = -[\partial P_x(x, y, z)/\partial x + \partial P_y(x, y, z)/\partial y + \partial P_z(x, y, z)/\partial z] \, dx \, dy \, dz = -(\nabla \cdot P) \, dx \, dy \, dz$. Thus, it follows that the charge density acquired by the cube due to molecular polarization is simply $-\nabla \cdot P$.

As explained above, it is easily demonstrated that any divergence of the polarization field $P(r)$ of a dielectric medium gives rise to an effective charge density ρ_b in the medium, where

$$\rho_b = -\nabla \cdot P. \quad (6.2)$$

This charge density is attributable to bound charges (i.e., charges which arise from the polarization of neutral atoms), and is usually distinguished from the charge density ρ_f due to free charges, which represents a net surplus or deficit of electrons in the medium. Thus, the total charge density ρ in the medium is

$$\rho = \rho_f + \rho_b. \quad (6.3)$$

It must be emphasized that both terms in this equation represent real physical charge. Nevertheless, it is useful to make the distinction between bound and free charges, especially when it comes to working out the energy associated with electric fields in dielectric media.

Gauss’ law takes the differential form

$$\nabla \cdot E = \frac{\rho}{\varepsilon_0} = \frac{\rho_f + \rho_b}{\varepsilon_0}. \quad (6.4)$$

This expression can be rearranged to give

$$\nabla \cdot D = \rho_f, \quad (6.5)$$

where

$$D = \varepsilon_0 E + P \quad (6.6)$$

is termed the electric displacement, and has the same dimensions as P (dipole moment per unit volume). Gauss’ theorem tells us that

$$\int_S D \cdot dS = \int_V \rho_f \, dV. \quad (6.7)$$
In other words, the flux of \mathbf{D} out of some closed surface S is equal to the total free charge enclosed within that surface. Unlike the electric field \mathbf{E} (which is the force acting on a unit charge), or the polarization \mathbf{P} (the dipole moment per unit volume), the electric displacement \mathbf{D} has no clear physical meaning. The only reason for introducing this quantity is that it enables us to calculate electric fields in the presence of dielectric materials without first having to know the distribution of bound charges. However, this is only possible if we have a constitutive relation connecting \mathbf{E} and \mathbf{D}. It is conventional to assume that the induced polarization \mathbf{P} is directly proportional to the electric field \mathbf{E}, so that

$$\mathbf{P} = \varepsilon_0 \chi_e \mathbf{E}, \quad (6.8)$$

where χ_e is termed the electric susceptibility of the medium. It follows that

$$\mathbf{D} = \varepsilon_0 \varepsilon \mathbf{E}, \quad (6.9)$$

where

$$\varepsilon = 1 + \chi_e \quad (6.10)$$

is termed the dielectric constant or relative permittivity of the medium. (Likewise, ε_0 is termed the permittivity of free space.) Note that ε is dimensionless. It follows from Eqs. (6.5) and (6.9) that

$$\nabla \cdot \mathbf{E} = \frac{\rho_f}{\varepsilon_0 \varepsilon}. \quad (6.11)$$

Thus, the electric fields produced by free charges in a uniform dielectric medium are analogous to those produced by the same charges in a vacuum, except that they are reduced by a factor ε. This reduction can be understood in terms of a polarization of the atoms or molecules of the dielectric medium that produces electric fields in opposition to those generated by the free charges. One immediate consequence of this is that the capacitance of a capacitor is increased by a factor ε if the empty space between the electrodes is filled with a dielectric medium of dielectric constant ε (assuming that fringing fields can be neglected).

It must be understood that Eqs. (6.8)–(6.11) are just an approximation which is generally found to hold under terrestrial conditions (provided that the fields are
not too large) for isotropic media. For anisotropic media (e.g., crystals), Eq. (6.9) generalizes to
\[\mathbf{D} = \varepsilon_0 \varepsilon \cdot \mathbf{E}, \] (6.12)
where \(\varepsilon \) is a second-rank tensor known as the dielectric tensor. For strong electric fields, \(\mathbf{D} \) ceases to vary linearly with \(\mathbf{E} \). Indeed, for sufficiently strong electric fields, neutral molecules are disrupted, and the whole concept of a dielectric medium becomes meaningless.

6.3 Boundary conditions for \(\mathbf{E} \) and \(\mathbf{D} \)

When the space surrounding a set of charges contains dielectric material of non-uniform dielectric constant then the electric field no longer has the same functional form as in vacuum. Suppose, for example, that the space is occupied by two dielectric media whose uniform dielectric constants are \(\varepsilon_1 \) and \(\varepsilon_2 \). What are the boundary conditions on \(\mathbf{E} \) and \(\mathbf{D} \) at the interface between the two media?

Imagine a Gaussian pill-box enclosing part of the interface. The thickness of the pill-box is allowed to tend towards zero, so that the only contribution to the outward flux of \(\mathbf{D} \) comes from the flat faces of the box, which are parallel to the interface. Assuming that there is no free charge inside the pill-box (which is reasonable in the limit in which the volume of the box tends to zero), then Eq. (6.7) yields
\[\mathbf{D}_2 - \mathbf{D}_1 = 0; \] (6.13)
where \(\mathbf{D}_1 \) is the component of the electric displacement in medium 1 which is normal to the interface, etc. If the fields and charges are non time-varying then the differential form of Faraday’s law yield \(\nabla \times \mathbf{E} = 0 \), which gives the familiar boundary condition (obtained by integrating around a small loop which straddles the interface)
\[\mathbf{E}_2 - \mathbf{E}_1 = 0. \] (6.14)
Generally, there is a bound charge sheet on the interface whose density follows from Gauss' law:
\[\sigma_b = \varepsilon_0 (\mathbf{E}_2 - \mathbf{E}_1). \] (6.15)
In conclusion, the normal component of the electric displacement, and the tangential component of the electric field, are both continuous across any interface between two dielectric media.

6.4 Boundary value problems with dielectrics

Consider a point charge \(q \) embedded in a semi-infinite dielectric \(\varepsilon_1 \) a distance \(d \) away from a plane interface which separates the first medium from another semi-infinite dielectric \(\varepsilon_2 \). The interface is assumed to coincide with the plane \(z = 0 \). We need to find solutions to the equations

\[
\varepsilon_1 \nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0} \quad (6.16)
\]

for \(z > 0 \),

\[
\varepsilon_2 \nabla \cdot \mathbf{E} = 0 \quad (6.17)
\]

for \(z < 0 \), and

\[
\nabla \times \mathbf{E} = \mathbf{0} \quad (6.18)
\]

everywhere, subject to the boundary conditions at \(z = 0 \) that

\[
\varepsilon_1 E_z(z = 0^+) = \varepsilon_2 E_z(z = 0^-), \quad (6.19)
\]

\[
E_x(z = 0^+) = E_x(z = 0^-), \quad (6.20)
\]

\[
E_y(z = 0^+) = E_y(z = 0^-). \quad (6.21)
\]

In order to solve this problem, we shall employ a slightly modified form of the well-known method of images. Since \(\nabla \times \mathbf{E} = \mathbf{0} \) everywhere, the electric field can be written in terms of a scalar potential. So, \(\mathbf{E} = -\nabla \phi \). Consider the region \(z > 0 \). Let us assume that the scalar potential in this region is the same as that obtained when the whole of space is filled with the dielectric \(\varepsilon_1 \), and, in addition to the real charge \(q \) at position \(A \), there is a second charge \(q' \) at the image position \(A' \) (see Fig. 47). If this is the case, then the potential at some point \(P \) in the region \(z > 0 \) is given by

\[
\phi(z > 0) = \frac{1}{4\pi \varepsilon_0 \varepsilon_1} \left(\frac{q}{R_1} + \frac{q'}{R_2} \right), \quad (6.22)
\]
where $R_1 = \sqrt{r^2 + (d-z)^2}$ and $R_2 = \sqrt{r^2 + (d+z)^2}$, when written in terms of cylindrical polar coordinates, (r, θ, z), aligned along the z-axis. Note that the potential (6.22) is clearly a solution of Eq. (6.16) in the region $z > 0$. It gives $\nabla \cdot E = 0$, with the appropriate singularity at the position of the point charge q.

Consider the region $z < 0$. Let us assume that the scalar potential in this region is the same as that obtained when the whole of space is filled with the dielectric ε_2, and a charge q'' is located at the point A. If this is the case, then the potential in this region is given by

$$
\phi(z < 0) = \frac{1}{4\pi \varepsilon_0 \varepsilon_2} \frac{q''}{R_1}.
$$

(6.23)

The above potential is clearly a solution of Eq. (6.17) in the region $z < 0$. It gives $\nabla \cdot E = 0$, with no singularities.

It now remains to choose q' and q'' in such a manner that the boundary conditions (6.19)–(6.21) are satisfied. The boundary conditions (6.20) and (6.21) are obviously satisfied if the scalar potential is continuous at the interface between the two dielectric media:

$$
\phi(z = 0^+) = \phi(z = 0^-).
$$

(6.24)
The boundary condition (6.19) implies a jump in the normal derivative of the scalar potential across the interface:

\[\frac{\epsilon_1}{\epsilon} \frac{\partial \phi(z = 0^+)}{\partial z} = \frac{\epsilon_2}{\epsilon} \frac{\partial \phi(z = 0^-)}{\partial z}. \]

(6.25)

The first matching condition yields

\[\frac{q + q'}{\epsilon_1} = \frac{q''}{\epsilon_2}, \]

(6.26)

whereas the second gives

\[q - q' = q''. \]

(6.27)

Here, use has been made of

\[\frac{\partial}{\partial z} \left(\frac{1}{R_1} \right)_{z=0} = -\frac{\partial}{\partial z} \left(\frac{1}{R_2} \right)_{z=0} = \frac{d}{(r^2 + d^2)^{3/2}}. \]

(6.28)

Equations (6.26) and (6.27) imply that

\[q' = -\left(\frac{\epsilon_2 - \epsilon_1}{\epsilon_2 + \epsilon_1} \right) q, \]

(6.29)

\[q'' = \left(\frac{2 \epsilon_2}{\epsilon_2 + \epsilon_1} \right) q. \]

(6.30)

The bound charge density is given by \(\rho_b = -\nabla \cdot \mathbf{P} \), however, inside either dielectric, \(\mathbf{P} = \epsilon_0 \chi_e \mathbf{E} \), so \(\nabla \cdot \mathbf{P} = \epsilon_0 \chi_e \nabla \cdot \mathbf{E} = 0 \), except at the point charge \(q \). Thus, there is zero bound charge density in either dielectric medium. However, there is a bound charge sheet on the interface between the two dielectric media. In fact, the density of this sheet is given by

\[\sigma_b = \epsilon_0 (E_{z1} - E_{z2})_{z=0}. \]

(6.31)

Hence,

\[\sigma_b = \epsilon_0 \frac{\partial \phi(z = 0^-)}{\partial z} - \epsilon_0 \frac{\partial \phi(z = 0^+)}{\partial z} = -\frac{q}{2\pi} \frac{\epsilon_2 - \epsilon_1}{\epsilon_1} \frac{d}{(r^2 + d^2)^{3/2}}. \]

(6.32)

In the limit \(\epsilon_2 \gg \epsilon_1 \), the dielectric \(\epsilon_2 \) behaves like a conducting medium (i.e., \(\mathbf{E} \to 0 \) in the region \(z < 0 \)), and the bound surface charge density on the interface
approaches that obtained in the case where the plane \(z = 0 \) coincides with a conducting surface (see Sect. 5.10).

As a second example, consider a dielectric sphere of radius \(a \), and uniform dielectric constant \(\varepsilon \), placed in a uniform \(z \)-directed electric field of magnitude \(E_0 \). Suppose that the sphere is centered on the origin. Now, for an electrostatic problem, we can always write \(\mathbf{E} = -\nabla \phi \). In the present problem, \(\nabla \cdot \mathbf{E} = 0 \) both inside and outside the sphere, since there are no free charges, and the bound volume charge density is zero in a uniform dielectric medium (or a vacuum). Hence, the scalar potential satisfies Laplace’s equation, \(\nabla^2 \phi = 0 \), throughout space. Adopting spherical polar coordinates, \((r, \theta, \phi)\), aligned along the \(z \)-axis, the boundary conditions are that \(\phi \to -E_0 r \cos \theta \) as \(r \to \infty \), and that \(\phi \) is well-behaved at \(r = 0 \). At the surface of the sphere, \(r = a \), the continuity of \(E_\| \) implies that \(\phi \) is continuous. Furthermore, the continuity of \(D_\perp = \varepsilon_0 \varepsilon E_\perp \) leads to the matching condition

\[
\left. \frac{\partial \phi}{\partial r} \right|_{r=a+} = \varepsilon \left. \frac{\partial \phi}{\partial r} \right|_{r=a-}. \tag{6.33}
\]

Let us try separable solutions of the form \(r^m \cos \theta \). It is easily demonstrated that such solutions satisfy Laplace’s equation provided that \(m = 1 \) or \(m = -2 \). Hence, the most general solution to Laplace’s equation outside the sphere, which satisfies the boundary condition at \(r \to \infty \), is

\[
\phi(r, \theta) = -E_0 r \cos \theta + E_0 \alpha \frac{a^3 \cos \theta}{r^2}. \tag{6.34}
\]

Likewise, the most general solution inside the sphere, which satisfies the boundary condition at \(r = 0 \), is

\[
\phi(r, \theta) = -E_1 r \cos \theta. \tag{6.35}
\]

The continuity of \(\phi \) at \(r = a \) yields

\[
E_0 - E_0 \alpha = E_1. \tag{6.36}
\]

Likewise, the matching condition (6.33) gives

\[
E_0 + 2E_0 \alpha = \varepsilon E_1. \tag{6.37}
\]
Hence,

\[\alpha = \frac{\varepsilon - 1}{\varepsilon + 2}, \quad (6.38) \]

\[E_1 = \frac{3 E_0}{\varepsilon + 2}. \quad (6.39) \]

Note that the electric field inside the sphere is uniform, parallel to the external electric field outside the sphere, and of magnitude \(E_1 \). Moreover, \(E_1 < E_0 \), provided that \(\varepsilon > 1 \). Finally, the density of the bound charge sheet on the surface of the sphere is

\[\sigma_b = -\varepsilon_0 \left(\frac{\partial \Phi}{\partial r} \bigg|_{r=a^+} - \frac{\partial \Phi}{\partial r} \bigg|_{r=a^-} \right) = 3 \varepsilon_0 \frac{\varepsilon - 1}{\varepsilon + 2} \cos \theta. \quad (6.40) \]

As a final example, consider a spherical cavity, of radius \(a \), in a uniform dielectric medium, of dielectric constant \(\varepsilon \), in the presence of a \(z \)-directed electric field of magnitude \(E_0 \). This problem is analogous to the previous problem, except that the matching condition (6.33) becomes

\[\varepsilon \frac{\partial \Phi}{\partial r} \bigg|_{r=a^+} = \frac{\partial \Phi}{\partial r} \bigg|_{r=a^-}. \quad (6.41) \]

Hence,

\[\alpha = \frac{1 - \varepsilon}{1 + 2 \varepsilon}, \quad (6.42) \]

\[E_1 = \frac{3 \varepsilon E_0}{1 + 2 \varepsilon}. \quad (6.43) \]

Note that the field inside the cavity is uniform, parallel to the external electric field outside the sphere, and of magnitude \(E_1 \). Moreover, \(E_1 > E_0 \), provided that \(\varepsilon > 1 \). The density of the bound charge sheet on the surface of the cavity is

\[\sigma_b = -\varepsilon_0 \left(\frac{\partial \Phi}{\partial r} \bigg|_{r=a^+} - \frac{\partial \Phi}{\partial r} \bigg|_{r=a^-} \right) = 3 \varepsilon_0 \frac{1 - \varepsilon}{1 + 2 \varepsilon} \cos \theta. \quad (6.44) \]
Consider a system of free charges embedded in a dielectric medium. The increase in the total energy when a small amount of free charge \(\delta \rho_f \) is added to the system is given by

\[
\delta W = \int \phi \delta \rho_f \, d^3r, \tag{6.45}
\]

where the integral is taken over all space, and \(\phi(\mathbf{r}) \) is the electrostatic potential. Here, it is assumed that the original charges and the dielectric are held fixed, so that no mechanical work is performed. It follows from Eq. (6.5) that

\[
\delta W = \int \phi \nabla \cdot \delta \mathbf{D} \, d^3r, \tag{6.46}
\]

where \(\delta \mathbf{D} \) is the change in the electric displacement associated with the charge increment. Now the above equation can also be written

\[
\delta W = \int \nabla \cdot (\phi \, \delta \mathbf{D}) \, d^3r - \int \nabla \phi \cdot \delta \mathbf{D} \, d^3r, \tag{6.47}
\]

giving

\[
\delta W = \int \phi \, \delta \mathbf{D} \cdot dS - \int \nabla \phi \cdot \delta \mathbf{D} \, d^3r, \tag{6.48}
\]

where use has been made of Gauss’ theorem. If the dielectric medium is of finite spatial extent then we can neglect the surface term to give

\[
\delta W = - \int \nabla \phi \cdot \delta \mathbf{D} \, d^3r = \int \mathbf{E} \cdot \delta \mathbf{D} \, d^3r. \tag{6.49}
\]

This energy increment cannot be integrated unless \(\mathbf{E} \) is a known function of \(\mathbf{D} \). Let us adopt the conventional approach, and assume that \(\mathbf{D} = \varepsilon_0 \varepsilon \mathbf{E} \), where the dielectric constant \(\varepsilon \) is independent of the electric field. The change in energy associated with taking the displacement field from zero to \(\mathbf{D}(\mathbf{r}) \) at all points in space is given by

\[
W = \int_0^D \delta W = \int_0^D \mathbf{E} \cdot \delta \mathbf{D} \, d^3r, \tag{6.50}
\]

or

\[
W = \int_0^E \frac{\varepsilon_0 \varepsilon (\mathbf{E}^2)}{2} \, d^3r = \frac{1}{2} \int_0^E \varepsilon \varepsilon_0 \mathbf{E}^2 \, d^3r, \tag{6.51}
\]
which reduces to

\[W = \frac{1}{2} \int \mathbf{E} \cdot \mathbf{D} \, d^3 \mathbf{r}. \] \hspace{1cm} (6.52)

Thus, the electrostatic energy density inside a dielectric medium is given by

\[\mathcal{U} = \frac{1}{2} \mathbf{E} \cdot \mathbf{D}. \] \hspace{1cm} (6.53)

This is a standard result, and is often quoted in textbooks. Nevertheless, it is important to realize that the above formula is only valid in dielectric media in which the electric displacement \(\mathbf{D} \) varies linearly with the electric field \(\mathbf{E} \). Note that Eq. (6.53) is consistent with the expression (5.20) which we obtained earlier.

6.6 Magnetization

All matter is built up out of atoms, and each atom consists of electrons in motion. The currents associated with this motion are termed atomic currents. Each atomic current is a tiny closed circuit of atomic dimensions, and may therefore be appropriately described as a magnetic dipole. If the atomic currents of a given atom all flow in the same plane then the atomic dipole moment is directed normal to the plane (in the sense given by the right-hand rule), and its magnitude is the product of the total circulating current and the area of the current loop. More generally, if \(\mathbf{j}(\mathbf{r}) \) is the atomic current density at the point \(\mathbf{r} \) then the magnetic moment of the atom is

\[\mathbf{m} = \frac{1}{2} \int \mathbf{r} \times \mathbf{j} \, d^3 \mathbf{r}, \] \hspace{1cm} (6.54)

where the integral is over the volume of the atom. If there are \(N \) such atoms or molecules per unit volume then the magnetization \(\mathbf{M} \) (i.e., the magnetic dipole moment per unit volume) is given by \(\mathbf{M} = N \mathbf{m} \). More generally,

\[\mathbf{M}(\mathbf{r}) = \sum_i N_i \langle \mathbf{m}_i \rangle, \] \hspace{1cm} (6.55)

where \(\langle \mathbf{m}_i \rangle \) is the average magnetic dipole moment of the \(i \)th type of molecule in the vicinity of point \(\mathbf{r} \), and \(N_i \) is the average number of such molecules per unit volume at \(\mathbf{r} \).
Consider a general medium which is made up of molecules which are polarizable and possess a net magnetic moment. It is easily demonstrated that any circulation in the magnetization field $\mathbf{M}(\mathbf{r})$ gives rise to an effective current density \mathbf{j}_m in the medium. In fact,

$$\mathbf{j}_m = \nabla \times \mathbf{M}.$$ \hspace{1cm} (6.56)

This current density is called the \textit{magnetization current density}, and is usually distinguished from the \textit{true current density}, \mathbf{j}_t, which represents the convection of free charges in the medium. In fact, there is a third type of current called a \textit{polarization current}, which is due to the apparent convection of bound charges. It is easily demonstrated that the polarization current density, \mathbf{j}_p, is given by

$$\mathbf{j}_p = \frac{\partial \mathbf{P}}{\partial t}.$$ \hspace{1cm} (6.57)

Thus, the total current density, \mathbf{j}, in the medium takes the form

$$\mathbf{j} = \mathbf{j}_t + \nabla \times \mathbf{M} + \frac{\partial \mathbf{P}}{\partial t}. \hspace{1cm} (6.58)$$

It must be emphasized that all terms on the right-hand side of the above equation represent real physical currents, although only the first term is due to the motion of real charges (over more than atomic dimensions).

The differential form of Ampère’s law is

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t},$$ \hspace{1cm} (6.59)

which can also be written

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j}_t + \mu_0 \nabla \times \mathbf{M} + \mu_0 \frac{\partial \mathbf{D}}{\partial t},$$ \hspace{1cm} (6.60)

where use has been made of the definition $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$. The above expression can be rearranged to give

$$\nabla \times \mathbf{H} = \mathbf{j}_t + \frac{\partial \mathbf{D}}{\partial t},$$ \hspace{1cm} (6.61)

where

$$\mathbf{H} = \frac{\mathbf{B}}{\mu_0} - \mathbf{M}.$$ \hspace{1cm} (6.62)
is termed the *magnetic intensity*, and has the same dimensions as \mathbf{M} (*i.e.*, magnetic dipole moment per unit volume). In a steady-state situation, Stokes’ theorem tell us that

$$\int_C \mathbf{H} \cdot d\mathbf{l} = \int_S \mathbf{j}_t \cdot d\mathbf{S}. \quad (6.63)$$

In other words, the line integral of \mathbf{H} around some closed curve is equal to the flux of true current through any surface attached to that curve. Unlike the magnetic field \mathbf{B} (which specifies the force $q \mathbf{v} \times \mathbf{B}$ acting on a charge q moving with velocity \mathbf{v}), or the magnetization \mathbf{M} (the magnetic dipole moment per unit volume), the magnetic intensity \mathbf{H} has no clear physical meaning. The only reason for introducing it is that it enables us to calculate fields in the presence of magnetic materials without first having to know the distribution of magnetization currents. However, this is only possible if we possess a constitutive relation connecting \mathbf{B} and \mathbf{H}.

6.7 Magnetic susceptibility and permeability

In a large class of materials, there exists an approximately linear relationship between \mathbf{M} and \mathbf{H}. If the material is isotropic then

$$\mathbf{M} = \chi_m \mathbf{H}, \quad (6.64)$$

where χ_m is called the *magnetic susceptibility*. If χ_m is positive then the material is called *paramagnetic*, and the magnetic field is strengthened by the presence of the material. On the other hand, if χ_m is negative then the material is *diamagnetic*, and the magnetic field is weakened in the presence of the material. The magnetic susceptibilities of paramagnetic and diamagnetic materials are generally extremely small. A few sample values are given in Table. 2.\(^1\)

A linear relationship between \mathbf{M} and \mathbf{H} also implies a linear relationship between \mathbf{B} and \mathbf{H}. In fact, we can write

$$\mathbf{B} = \mu \mathbf{H}, \quad (6.65)$$

\(^1\)Data obtained from the *Handbook of Chemistry and Physics*, Chemical Rubber Company Press, Boca Raton, FL.
6.8 Ferromagnetism

There is, however, a third class of magnetic materials called ferromagnetic materials. Such materials are characterized by a possible permanent magnetization, and generally have a profound effect on magnetic fields \(i.e., \mu \gg \mu_0 \). Unfortunately, ferromagnetic materials do not generally exhibit a linear dependence between \(M \) and \(H \), or \(B \) and \(H \), so that we cannot employ Eqs. (6.64) and (6.65) with constant values of \(\chi_m \) and \(\mu \). It is still expedient to use Eq. (6.65) as the definition of \(\mu \), with \(\mu = \mu(H) \). However, this practice can lead to difficulties under certain circumstances. The permeability of a ferromagnetic material, as defined by Eq. (6.65), can vary through the entire range of possible values from zero to infinity, and may be either positive or negative. The most sensible approach is to consider each problem involving ferromagnetic materials separately, try to determine which region of the \(B-H \) diagram is important for the particular case in

\[\mu = \mu_0 \left(1 + \chi_m\right) \]

(6.66)

is termed the magnetic permeability of the material in question.\(^2\) (Likewise, \(\mu_0 \) is termed the permeability of free space.) Note that \(\mu \) has the same units as \(\mu_0 \). It is clear from Table 2 that the permeabilities of common diamagnetic and paramagnetic materials do not differ substantially from the permeability of free space. In fact, to all intents and purposes, the magnetic properties of such materials can be safely neglected \(i.e., \mu = \mu_0 \).

Table 2:

<table>
<thead>
<tr>
<th>Material</th>
<th>(\chi_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium</td>
<td>(2.3 \times 10^{-5})</td>
</tr>
<tr>
<td>Copper</td>
<td>(-0.98 \times 10^{-5})</td>
</tr>
<tr>
<td>Diamond</td>
<td>(-2.2 \times 10^{-5})</td>
</tr>
<tr>
<td>Tungsten</td>
<td>(6.8 \times 10^{-5})</td>
</tr>
<tr>
<td>Hydrogen (1 atm)</td>
<td>(-0.21 \times 10^{-8})</td>
</tr>
<tr>
<td>Oxygen (1 atm)</td>
<td>(209.0 \times 10^{-8})</td>
</tr>
<tr>
<td>Nitrogen (1 atm)</td>
<td>(-0.50 \times 10^{-8})</td>
</tr>
</tbody>
</table>

\(^2\)We could alternatively define a dimensionless relative magnetic permeability by writing \(B = \mu \mu_0 H \).
hand, and then make approximations appropriate to this region.

First, let us consider an unmagnetized sample of ferromagnetic material. If the magnetic intensity, which is initially zero, is increased *monotonically*, then the B-H relationship traces out a curve such as that shown in Fig. 48. This is called a *magnetization curve*. It is evident that the permeabilities μ derived from the curve (according to the rule $\mu = B/H$) are always positive, and show a wide range of values. The maximum permeability occurs at the “knee” of the curve. In some materials, this maximum permeability is as large as $10^5 \mu_0$. The reason for the knee in the curve is that the magnetization M reaches a maximum value in the material, so that

$$B = \mu_0 (H + M)$$ \hspace{1cm} (6.67)

continues to increase at large H only because of the $\mu_0 H$ term. The maximum value of M is called the *saturation magnetization* of the material.

Next, consider a ferromagnetic sample magnetized by the above procedure. If the magnetic intensity H is decreased, the B-H relation does not follow back down the curve of Fig. 48, but instead moves along a new curve, sketched in Fig. 49, to the point R. Thus, the magnetization, once established, does not disappear with the removal of H. In fact, it takes a reversed magnetic intensity to reduce
the magnetization to zero. If H continues to build up in the reversed direction, then M (and hence B) becomes increasingly negative. Finally, when H increases again the operating point follows the lower curve of Fig. 49. Thus, the B-H curve for increasing H is quite different to that for decreasing H. This phenomenon is known as hysteresis.

The curve sketched in Fig. 49 called the hysteresis loop of the material in question. The value of B at the point R is called the retentivity or remanence. The magnitude of H at the point C is called the coercivity. It is evident that μ is negative in the second and fourth quadrants of the loop, and positive in the first and third quadrants. The shape of the hysteresis loop depends not only on the nature of the ferromagnetic material, but also on the maximum value of H to which the material has been subjected. However, once this maximum value, H_{max}, becomes sufficiently large to produce saturation in the material, the hysteresis loop does not change shape with any further increase in H_{max}.

Ferromagnetic materials are used either to channel magnetic flux (e.g., around transformer circuits) or as sources of magnetic field (e.g., permanent magnets). For use as a permanent magnet, the material is first magnetized by placing it in a strong magnetic field. However, once the magnet is removed from the external field it is subject to a demagnetizing H. Thus, it is vitally important that a permanent magnet should possess both a large remanence and a large coercivity.
As will become clear later on, it is generally a good idea for the ferromagnetic materials used to channel magnetic flux around transformer circuits to possess small remanences and small coercivities.

6.9 Boundary conditions for \(B \) and \(H \)

What are the boundary conditions for \(B \) and \(H \) at the interface between two magnetic media? The governing equations for a steady-state situation are

\[
\nabla \cdot \mathbf{B} = 0, \quad (6.68)
\]

and

\[
\nabla \times \mathbf{H} = \mathbf{j}. \quad (6.69)
\]

Integrating Eq. (6.68) over a Gaussian pill-box enclosing part of the interface between the two media gives

\[
B_\perp^2 - B_\perp^1 = 0, \quad (6.70)
\]

where \(B_\perp \) denotes the component of \(\mathbf{B} \) perpendicular to the interface. Integrating Eq. (6.69) around a small loop which straddles the interface yields

\[
H_\parallel^2 - H_\parallel^1 = 0, \quad (6.71)
\]

assuming that there is no true current sheet flowing in the interface. Here, \(H_\parallel \) denotes the component of \(\mathbf{H} \) parallel to the interface. In general, there is a magnetization current sheet flowing at the interface whose density is of amplitude

\[
J_m = \frac{B_\parallel^2 - B_\parallel^1}{\mu_0}. \quad (6.72)
\]

In conclusion, the normal component of the magnetic field and the tangential component of the magnetic intensity are both continuous across any interface between magnetic media.
Consider a ferromagnetic sphere, of uniform permeability μ, placed in a uniform z-directed magnetic field of magnitude B_0. Suppose that the sphere is centred on the origin. In the absence of any true currents, we have $\nabla \times \mathbf{H} = 0$. Hence, we can write $\mathbf{H} = -\nabla \phi_m$. Given that $\nabla \cdot \mathbf{B} = 0$, and $\mathbf{B} = \mu \mathbf{H}$, it follows that $\nabla^2 \phi_m = 0$ in any uniform magnetic medium (or a vacuum). Hence, $\nabla^2 \phi_m = 0$ throughout space. Adopting spherical polar coordinates, (r, θ, φ), aligned along the z-axis, the boundary conditions are that $\phi_m \to -(B_0/\mu_0) r \cos \theta$ at $r \to \infty$, and that ϕ_m is well-behaved at $r = 0$. At the surface of the sphere, $r = a$, the continuity of H_\parallel implies that ϕ_m is continuous. Furthermore, the continuity of $B_\perp = \mu H_\perp$ leads to the matching condition

$$
\mu_0 \left. \frac{\partial \phi_m}{\partial r} \right|_{r=a+} = \mu \left. \frac{\partial \phi_m}{\partial r} \right|_{r=a-}. \tag{6.73}
$$

Let us try separable solutions of the form $r^m \cos \theta$. It is easily demonstrated that such solutions satisfy Laplace’s equation provided that $m = 1$ or $m = -2$. Hence, the most general solution to Laplace’s equation outside the sphere, which satisfies the boundary condition at $r \to \infty$, is

$$
\phi_m(r, \theta) = -(B_0/\mu_0) r \cos \theta + (B_0/\mu_0) \alpha \frac{a^3 \cos \theta}{r^2}. \tag{6.74}
$$

Likewise, the most general solution inside the sphere, which satisfies the boundary condition at $r = 0$, is

$$
\phi_m(r, \theta) = -(B_1/\mu) r \cos \theta. \tag{6.75}
$$

The continuity of ϕ_m at $r = a$ yields

$$
B_0 - B_0 \alpha = (\mu_0/\mu) B_1. \tag{6.76}
$$

Likewise, the matching condition (6.73) gives

$$
B_0 + 2B_0 \alpha = B_1. \tag{6.77}
$$
Hence,

\[\alpha = \frac{\mu - \mu_0}{\mu + 2\mu_0}, \]
\[B_1 = \frac{3\mu B_0}{\mu + 2\mu_0}. \]

Note that the magnetic field inside the sphere is uniform, parallel to the external magnetic field outside the sphere, and of magnitude \(B_1 \). Moreover, \(B_1 > B_0 \), provided that \(\mu > \mu_0 \).

As a final example, consider an electromagnet of the form sketched in Fig. 50. A wire, carrying a current \(I_0 \), is wrapped \(N \) times around a thin toroidal iron core of radius \(a \) and permeability \(\mu \gg \mu_0 \). The core contains a thin gap of width \(d \). What is the magnetic field induced in the gap? Let us neglect any leakage of magnetic field from the core, which is reasonable if \(\mu \gg \mu_0 \). We expect the magnetic field, \(B_c \), and the magnetic intensity, \(H_c \), in the core to be both toroidal and essentially uniform. It is also reasonable to suppose that the magnetic field, \(B_g \), and the magnetic intensity, \(H_g \), in the gap are toroidal and uniform, since \(d \ll a \). We have \(B_c = \mu H_c \) and \(B_g = \mu_0 H_g \). Moreover, since the magnetic field is normal to the interface between the core and the gap, the continuity of \(B_\perp \) implies that

\[B_c = B_g. \]
Thus, the magnetic field-strength in the core is the same as that in the gap. However, the magnetic intensities in the core and the gap are quite different: $H_c = B_c/\mu = B_g/\mu = (\mu_0/\mu) H_g$. Integration of Eq. (6.69) around the torus yields

$$\oint \mathbf{H} \cdot d\mathbf{l} = \int \mathbf{j}_t \cdot d\mathbf{S} = N I. \quad (6.81)$$

Hence,

$$(2\pi a - d) H_c + d H_g = N I. \quad (6.82)$$

It follows that

$$B_g = \frac{N I}{(2\pi a - d)/\mu + d/\mu_0}. \quad (6.83)$$

6.11 Magnetic energy

Consider an electrical conductor. Suppose that a battery with an electromotive field \mathbf{E}' is feeding energy into this conductor. The energy is either dissipated as heat, or is used to generate a magnetic field. Ohm’s law inside the conductor gives

$$\mathbf{j}_t = \sigma (\mathbf{E} + \mathbf{E}'), \quad (6.84)$$

where \mathbf{j}_t is the true current density, σ is the conductivity, and \mathbf{E} is the inductive electric field. Taking the scalar product with \mathbf{j}_t, we obtain

$$\mathbf{E}' \cdot \mathbf{j}_t = \frac{j_t^2}{\sigma} - \mathbf{E} \cdot \mathbf{j}_t. \quad (6.85)$$

The left-hand side of this equation represents the rate at which the battery does work on the conductor. The first term on the right-hand side is the rate of ohmic heating inside the conductor. We tentatively identify the remaining term with the rate at which energy is fed into the magnetic field. If all fields are quasi-stationary (i.e., slowly varying) then the displacement current can be neglected, and the differential form of Ampère’s law reduces to $\nabla \times \mathbf{H} = \mathbf{j}_t$. Substituting this expression into Eq. (6.85), and integrating over all space, we get

$$\int \mathbf{E}' \cdot (\nabla \times \mathbf{H}) d^3\mathbf{r} = \int \frac{(\nabla \times \mathbf{H})^2}{\sigma} d^3\mathbf{r} - \int \mathbf{E} \cdot (\nabla \times \mathbf{H}) d^3\mathbf{r}. \quad (6.86)$$
The last term can be integrated by parts using the vector identity
\[\nabla \cdot (\mathbf{E} \times \mathbf{H}) \equiv \mathbf{H} \cdot (\nabla \times \mathbf{E}) - \mathbf{E} \cdot (\nabla \times \mathbf{H}). \] (6.87)

Gauss’ theorem plus the differential form of Faraday’s law yield
\[\int \mathbf{E} \cdot (\nabla \times \mathbf{H}) \, d^3 r = - \int \mathbf{H} \cdot \frac{\partial \mathbf{B}}{\partial t} \, d^3 r - \int (\mathbf{E} \times \mathbf{H}) \cdot d\mathbf{S}. \] (6.88)

Since \(\mathbf{E} \times \mathbf{H} \) falls off at least as fast as \(1/r^5 \) in electrostatic and quasi-stationary magnetic fields (\(1/r^2 \) comes from electric monopole fields, and \(1/r^3 \) from magnetic dipole fields), the surface integral in the above expression can be neglected. Of course, this is not the case for radiation fields, for which \(\mathbf{E} \) and \(\mathbf{H} \) fall off like \(1/r \). Thus, the constraint of “quasi-stationarity” effectively means that the fields vary sufficiently slowly that any radiation fields can be neglected.

The total power expended by the battery can now be written
\[\int \mathbf{E}' \cdot (\nabla \times \mathbf{H}) \, d^3 r = \int \frac{(\nabla \times \mathbf{H})^2}{\sigma} \, d^3 r + \int \mathbf{H} \cdot \frac{\partial \mathbf{B}}{\partial t} \, d^3 r. \] (6.89)

The first term on the right-hand side has already been identified as the energy loss rate due to ohmic heating. The last term is obviously the rate at which energy is fed into the magnetic field. The variation \(\delta W \) in the magnetic field energy can therefore be written
\[\delta W = \int \mathbf{H} \cdot \delta \mathbf{B} \, d^3 r. \] (6.90)

This result is analogous to the result (6.49) for the variation in the energy of an electrostatic field.

In order to make Eq. (6.90) integrable, we must assume a functional relationship between \(\mathbf{H} \) and \(\mathbf{B} \). For a medium which magnetizes linearly, the integration can be carried out in much the same manner as Eq. (6.52), to give
\[W = \frac{1}{2} \int \mathbf{H} \cdot \mathbf{B} \, d^3 r. \] (6.91)

Thus, the magnetostatic energy density inside a linear magnetic material is given by
\[\mathcal{U} = \frac{1}{2} \mathbf{H} \cdot \mathbf{B}. \] (6.92)
Unfortunately, most interesting magnetic materials, such as ferromagnets, exhibit a nonlinear relationship between \(H \) and \(B \). For such materials, Eq. (6.90) can only be integrated between definite states, and the result, in general, depends on the past history of the sample. For ferromagnets, the integral of Eq. (6.90) has a finite, non-zero value when \(B \) is integrated around a complete magnetization cycle. This cyclic energy loss is given by

\[
\Delta W = \oint \mathbf{H} \cdot d\mathbf{B} \, d^3r.
\]

(6.93)

In other words, the energy expended per unit volume when a magnetic material is carried through a magnetization cycle is equal to the area of its hysteresis loop, as plotted in a graph of \(B \) against \(H \). Thus, it is particularly important to ensure that the magnetic materials used to form transformer cores possess hysteresis loops with comparatively small areas, otherwise the transformers are likely to be extremely lossy.
7 Magnetic induction

7.1 Introduction

In this section, we shall use Maxwell’s equations to investigate magnetic induction and related phenomena.

7.2 Inductance

We have learned about e.m.f., resistance, and capacitance. Let us now investigate inductance. Electrical engineers like to reduce all pieces of electrical apparatus to an equivalent circuit consisting only of e.m.f. sources (e.g., batteries), inductors, capacitors, and resistors. Clearly, once we understand inductors, we shall be ready to apply the laws of electromagnetism to electrical circuits.

Consider two stationary loops of wire, labeled 1 and 2. Let us run a steady current I_1 around the first loop to produce a magnetic field B_1. Some of the field lines of B_1 will pass through the second loop. Let Φ_2 be the flux of B_1 through loop 2:

$$\Phi_2 = \int_{\text{loop 2}} B_1 \cdot dS_2,$$

(7.1)

where dS_2 is a surface element of loop 2. This flux is generally quite difficult to calculate exactly (unless the two loops have a particularly simple geometry). However, we can infer from the Biot-Savart law,

$$B_1(r) = \frac{\mu_0 I_1}{4\pi} \oint_{\text{loop 1}} \frac{dl_1 \times (r - r')}{|r - r'|^3},$$

(7.2)

that the magnitude of B_1 is proportional to the current I_1. This is ultimately a consequence of the linearity of Maxwell’s equations. Here, dl_1 is a line element of loop 1 located at position vector r'. It follows that the flux Φ_2 must also be proportional to I_1. Thus, we can write

$$\Phi_2 = M_{21} I_1,$$

(7.3)
where \(M_{21} \) is the constant of proportionality. This constant is called the \textit{mutual inductance} of the two loops.

Let us write the magnetic field \(B_1 \) in terms of a vector potential \(A_1 \), so that

\[
B_1 = \nabla \times A_1. \tag{7.4}
\]

It follows from Stokes’ theorem that

\[
\Phi_2 = \int_{\text{loop 2}} B_1 \cdot \mathbf{dS}_2 = \int_{\text{loop 2}} \nabla \times A_1 \cdot \mathbf{dS}_2 = \oint_{\text{loop 2}} A_1 \cdot \mathbf{dl}_2, \tag{7.5}
\]

where \(\mathbf{dl}_2 \) is a line element of loop 2. However, we know that

\[
A_1(r) = \frac{\mu_0 I_1}{4\pi} \oint_{\text{loop 1}} \frac{\mathbf{dl}_1}{|r - r'|}. \tag{7.6}
\]

The above equation is just a special case of the more general law,

\[
A_1(r) = \frac{\mu_0}{4\pi} \int_{\text{all space}} \frac{j(r')}{|r - r'|} \mathbf{d^3r}', \tag{7.7}
\]

for \(j(r') = \mathbf{dl}_1 I_1/\mathbf{dl}_1 \mathbf{dA} \) and \(\mathbf{d^3r}' = \mathbf{dl}_1 \mathbf{dA} \), where \(\mathbf{dA} \) is the cross-sectional area of loop 1. Thus,

\[
\Phi_2 = \frac{\mu_0 I_1}{4\pi} \oint_{\text{loop 1}} \oint_{\text{loop 2}} \frac{\mathbf{dl}_1 \cdot \mathbf{dl}_2}{|r - r'|}, \tag{7.8}
\]

where \(r \) is now the position vector of the line element \(\mathbf{dl}_2 \) of loop 2. The above equation implies that

\[
M_{21} = \frac{\mu_0}{4\pi} \oint_{\text{loop 1}} \oint_{\text{loop 2}} \frac{\mathbf{dl}_1 \cdot \mathbf{dl}_2}{|r - r'|}. \tag{7.9}
\]

In fact, mutual inductances are rarely worked out from first principles—it is usually too difficult. However, the above formula tells us two important things. Firstly, the mutual inductance of two loops is a purely \textit{geometric} quantity, having to do with the sizes, shapes, and relative orientations of the loops. Secondly, the integral is unchanged if we switch the roles of loops 1 and 2. In other words,

\[
M_{21} = M_{12}. \tag{7.10}
\]
In fact, we can drop the subscripts, and just call these quantities M. This is a rather surprising result. It implies that no matter what the shapes and relative positions of the two loops, the magnetic flux through loop 2 when we run a current I around loop 1 is \textit{exactly} the same as the flux through loop 1 when we send the same current around loop 2.

We have seen that a current I flowing around some loop, 1, generates a magnetic flux linking some other loop, 2. However, flux is also generated through the first loop. As before, the magnetic field, and, therefore, the flux Φ, is proportional to the current, so we can write

$$\Phi = LI.$$ \hspace{1cm} (7.11)

The constant of proportionality L is called the \textit{self-inductance}. Like M it only depends on the geometry of the loop.

Inductance is measured in S.I. units called henries (H): 1 henry is 1 volt-second per ampere. The henry, like the farad, is a rather unwieldy unit, since most real-life inductors have an inductances of order a micro-henry.

\section*{7.3 Self-inductance}

Consider a long solenoid of length l, and radius r, which has N turns per unit length, and carries a current I. The longitudinal (\textit{i.e.}, directed along the axis of the solenoid) magnetic field within the solenoid is approximately uniform, and is given by

$$B = \mu_0 NI.$$ \hspace{1cm} (7.12)

This result is easily obtained by integrating Ampère’s law over a rectangular loop whose long sides run parallel to the axis of the solenoid, one inside the solenoid, and the other outside, and whose short sides run perpendicular to the axis. The magnetic flux though each turn of the loop is $B \pi r^2 = \mu_0 NI \pi r^2$. The total flux through the solenoid wire, which has Nl turns, is

$$\Phi = Nl \mu_0 NI \pi r^2.$$ \hspace{1cm} (7.13)
Thus, the self-inductance of the solenoid is

\[L = \frac{\Phi}{I} = \mu_0 N^2 \pi r^2 l. \]

(7.14)

Note that the self-inductance only depends on geometric quantities such as the number of turns per unit length of the solenoid, and the cross-sectional area of the turns.

Suppose that the current \(I \) flowing through the solenoid changes. We have to assume that the change is sufficiently slow that we can neglect the displacement current, and retardation effects, in our calculations. This implies that the typical time-scale of the change must be much longer than the time for a light-ray to traverse the circuit. If this is the case, then the above formulae remain valid.

A change in the current implies a change in the magnetic flux linking the solenoid wire, since \(\Phi = LI \). According to Faraday’s law, this change generates an e.m.f. in the wire. By Lenz’s law, the e.m.f. is such as to oppose the change in the current—\(i.e. \), it is a back e.m.f. We can write

\[V = -\frac{d\Phi}{dt} = -L \frac{dI}{dt}, \]

(7.15)

where \(V \) is the generated e.m.f.

Suppose that our solenoid has an electrical resistance \(R \). Let us connect the ends of the solenoid across the terminals of a battery of e.m.f. \(V \). What is going to happen? The equivalent circuit is shown in Fig. 51. The inductance and resistance of the solenoid are represented by a perfect inductor, \(L \), and a perfect resistor, \(R \), connected in series. The voltage drop across the inductor and resistor is equal to the e.m.f. of the battery, \(V \). The voltage drop across the resistor is simply \(IR \), whereas the voltage drop across the inductor (\(i.e. \), the back e.m.f.) is \(L \frac{dI}{dt} \). Here, \(I \) is the current flowing through the solenoid. It follows that

\[V = IR + L \frac{dI}{dt}. \]

(7.16)

This is a differential equation for the current \(I \). We can rearrange it to give

\[\frac{dI}{dt} + \frac{R}{L} I = \frac{V}{L}. \]

(7.17)
The general solution is

\[I(t) = \frac{V}{R} + k \exp\left(-\frac{R \ t}{L}\right). \tag{7.18} \]

The constant \(k \) is fixed by the boundary conditions. Suppose that the battery is connected at time \(t = 0 \), when \(I = 0 \). It follows that \(k = -\frac{V}{R} \), so that

\[I(t) = \frac{V}{R} \left[1 - \exp\left(-\frac{R \ t}{L}\right)\right]. \tag{7.19} \]

This curve is sketched in Fig. 52. It can be seen that, after the battery is connected, the current ramps up, and attains its steady-state value \(\frac{V}{R} \) (which comes from Ohm’s law), on the characteristic time-scale

\[\tau = \frac{L}{R}. \tag{7.20} \]

This time-scale is sometimes called the *time constant* of the circuit, or, somewhat unimaginatively, the *L over R time* of the circuit.

We can now appreciate the significance of self-inductance. The back e.m.f. generated in an inductor, as the current tries to change, effectively prevents the current from rising (or falling) much faster than the \(L/R \) time. This effect is
sometimes advantageous, but often it is a great nuisance. All circuit elements possess some self-inductance, as well as some resistance, and thus have a finite L/R time. This means that when we power up a circuit, the current does not jump up instantaneously to its steady-state value. Instead, the rise is spread out over the L/R time of the circuit. This is a good thing. If the current were to rise instantaneously, then extremely large electric fields would be generated by the sudden jump in the induced magnetic field, leading, inevitably, to breakdown and electric arcing. So, if there were no such thing as self-inductance, then every time you switched an electric circuit on or off there would be a blue flash due to arcing between conductors. Self-inductance can also be a bad thing. Suppose that we possess a fancy power supply, and we wish to use it to send an electric signal down a wire (or transmission line). Of course, the wire or transmission line will possess both resistance and inductance, and will, therefore, have some characteristic L/R time. Suppose that we try to send a square-wave signal down the wire. Since the current in the wire cannot rise or fall faster than the L/R time, the leading and trailing edges of the signal get smoothed out over an L/R time. The typical difference between the signal fed into the wire (upper trace), and that which comes out of the other end (lower trace), is illustrated in Fig. 53. Clearly, there is little point having a fancy power supply unless you also possess
Figure 53: a low inductance wire or transmission line, so that the signal from the power supply can be transmitted to some load device without serious distortion.

7.4 Mutual inductance

Consider, now, two long thin solenoids, one wound on top of the other. The length of each solenoid is \(l \), and the common radius is \(r \). Suppose that the bottom coil has \(N_1 \) turns per unit length, and carries a current \(I_1 \). The magnetic flux passing through each turn of the top coil is \(\mu_0 N_1 I_1 \pi r^2 \), and the total flux linking the top coil is therefore \(\Phi_2 = N_2 l \mu_0 N_1 I_1 \pi r^2 \), where \(N_2 \) is the number of turns per unit length in the top coil. It follows that the mutual inductance of the two coils, defined \(\Phi_2 = M I_1 \), is given by

\[
M = \mu_0 N_1 N_2 \pi r^2 l. \tag{7.21}
\]

Recall that the self-inductance of the bottom coil is

\[
L_1 = \mu_0 N_1^2 \pi r^2 l, \tag{7.22}
\]

and that of the top coil is

\[
L_2 = \mu_0 N_2^2 \pi r^2 l. \tag{7.23}
\]
Hence, the mutual inductance can be written
\[M = \sqrt{L_1 L_2}. \]
(7.24)

Note that this result depends on the assumption that all of the flux produced by one coil passes through the other coil. In reality, some of the flux leaks out, so that the mutual inductance is somewhat less than that given in the above formula. We can write
\[M = k \sqrt{L_1 L_2}, \]
(7.25)
where the constant \(k \) is called the coefficient of coupling, and lies in the range \(0 \leq k \leq 1 \).

Suppose that the two coils have resistances \(R_1 \) and \(R_2 \). If the bottom coil has an instantaneous current \(I_1 \) flowing through it, and a total voltage drop \(V_1 \), then the voltage drop due to its resistance is \(I_1 R_1 \). The voltage drop due to the back e.m.f. generated by the self-inductance of the coil is \(L_1 \frac{dI_1}{dt} \). There is also a back e.m.f. due to inductive coupling with the top coil. We know that the flux through the bottom coil due to the instantaneous current \(I_2 \) flowing in the top coil is
\[\Phi_1 = MI_2. \]
(7.26)
Thus, by Faraday’s law and Lenz’s law, the e.m.f. induced in the bottom coil is
\[V = -M \frac{dI_2}{dt}. \]
(7.27)
The voltage drop across the bottom coil due to its mutual inductance with the top coil is minus this expression. Thus, the circuit equation for the bottom coil is
\[V_1 = R_1 I_1 + L_1 \frac{dI_1}{dt} + M \frac{dI_2}{dt}. \]
(7.28)
Likewise, the circuit equation for the top coil is
\[V_2 = R_2 I_2 + L_2 \frac{dI_2}{dt} + M \frac{dI_1}{dt}. \]
(7.29)
Here, \(V_2 \) is the total voltage drop across the top coil.

Suppose that we suddenly connect a battery of e.m.f. \(V_1 \) to the bottom coil, at time \(t = 0 \). The top coil is assumed to be open-circuited, or connected to
a voltmeter of very high internal resistance, so that \(I_2 = 0 \). What is the e.m.f.
generated in the top coil? Since \(I_2 = 0 \), the circuit equation for the bottom coil is
\[
V_1 = R_1 I_1 + L_1 \frac{dI_1}{dt},
\]
where \(V_1 \) is constant, and \(I_1(t = 0) = 0 \). We have already seen the solution to
this equation:
\[
I_1 = \frac{V_1}{R_1} [1 - \exp(-R_1 t/L_1)].
\]
(7.31)
The circuit equation for the top coil is
\[
V_2 = M \frac{dI_1}{dt},
\]
giving
\[
V_2 = V_1 \frac{M}{L_1} \exp(-R_1 t/L_1).
\]
(7.33)
It follows from Eq. (7.25) that
\[
V_2 = V_1 k \left(\frac{L_2}{L_1} \right) \exp(-R_1 t/L_1).
\]
(7.34)
Since \(L_1/L_2 = N_1^2/N_2^2 \), we obtain
\[
V_2 = V_1 k \left(\frac{N_2}{N_1} \right) \exp(-R_1 t/L_1).
\]
(7.35)
Note that \(V_2(t) \) is discontinuous at \(t = 0 \). This is not a problem, since the resis-
tance of the top circuit is infinite, so there is no discontinuity in the current (and,
hence, in the magnetic field). But, what about the displacement current, which
is proportional to \(\partial E/\partial t \)? Surely, this is discontinuous at \(t = 0 \) (which is clearly
unphysical)? The crucial point, here, is that we have specifically neglected the
displacement current in all of our previous analysis, so it does not make much
sense to start worrying about it now. If we had retained the displacement cur-
rent in our calculations, then we would have found that the voltage in the top
circuit jumps up, at \(t = 0 \), on a time-scale similar to the light traverse time across
the circuit (i.e., the jump is instantaneous to all intents and purposes, but the
displacement current remains finite).
Now,
\[\frac{V_2(t = 0)}{V_1} = k \frac{N_2}{N_1}, \]
(7.36)
so if \(N_2 \gg N_1 \) then the voltage in the bottom circuit is considerably amplified in the top circuit. This effect is the basis for old-fashioned car ignition systems. A large voltage spike is induced in a secondary circuit (connected to a coil with very many turns) whenever the current in a primary circuit (connected to a coil with not so many turns) is either switched on or off. The primary circuit is connected to the car battery (whose e.m.f. is typically 12 volts). The switching is done by a set of points, which are mechanically opened and closed as the engine turns. The large voltage spike induced in the secondary circuit, as the points are either opened or closed, causes a spark to jump across a gap in this circuit. This spark ignites a petrol/air mixture in one of the cylinders. We might think that the optimum configuration is to have only one turn in the primary circuit, and lots of turns in the secondary circuit, so that the ratio \(N_2/N_1 \) is made as large as possible. However, this is not the case. Most of the magnetic field lines generated by a single turn primary coil are likely to miss the secondary coil altogether. This means that the coefficient of coupling \(k \) is small, which reduces the voltage induced in the secondary circuit. Thus, we need a reasonable number of turns in the primary coil in order to localize the induced magnetic field, so that it links effectively with the secondary coil.

7.5 Magnetic energy

Suppose that at \(t = 0 \) a coil of inductance, \(L \), and resistance, \(R \), is connected across the terminals of a battery of e.m.f., \(V \). The circuit equation is
\[V = L \frac{dI}{dt} + RI. \]
(7.37)

The power output of the battery is \(VI \). [Every charge \(q \) that goes around the circuit falls through a potential difference \(qV \). In order to raise it back to the starting potential, so that it can perform another circuit, the battery must do work \(qV \). The work done per unit time (i.e., the power) is \(nqV \), where \(n \) is the number of charges per unit time passing a given point on the circuit. But,
I = nq, so the power output is VI. The total work done by the battery in raising the current in the circuit from zero at time $t = 0$ to I_T at time $t = T$ is

$$W = \int_0^T VI \, dt. \quad (7.38)$$

Using the circuit equation (7.37), we obtain

$$W = L \int_0^T I \frac{dI}{dt} \, dt + R \int_0^T I^2 \, dt, \quad (7.39)$$

giving

$$W = \frac{1}{2} LI_T^2 + R \int_0^T I^2 \, dt. \quad (7.40)$$

The second term on the right-hand side represents the irreversible conversion of electrical energy into heat energy in the resistor. The first term is the amount of energy stored in the inductor at time T. This energy can be recovered after the inductor is disconnected from the battery. Suppose that the battery is disconnected at time T. The circuit equation is now

$$0 = L \frac{dI}{dt} + RI, \quad (7.41)$$

giving

$$I = I_T \exp\left[-\frac{R}{L}(t - T)\right], \quad (7.42)$$

where we have made use of the boundary condition $I(T) = I_T$. Thus, the current decays away exponentially. The energy stored in the inductor is dissipated as heat in the resistor. The total heat energy appearing in the resistor after the battery is disconnected is

$$\int_T^\infty I^2R \, dt = \frac{1}{2} LI_T^2, \quad (7.43)$$

where use has been made of Eq. (7.42). Thus, the heat energy appearing in the resistor is equal to the energy stored in the inductor. This energy is actually stored in the magnetic field generated around the inductor.

Consider, again, our circuit with two coils wound on top of one another. Suppose that each coil is connected to its own battery. The circuit equations are
thus

\[V_1 = R_1 I_1 + L_1 \frac{dI_1}{dt} + M \frac{dI_2}{dt}, \]

\[V_2 = R_2 I_2 + L_2 \frac{dI_2}{dt} + M \frac{dI_1}{dt}, \]

(7.44)

where \(V_1 \) is the e.m.f. of the battery in the first circuit, etc. The work done by the two batteries in increasing the currents in the two circuits, from zero at time 0, to \(I_1 \) and \(I_2 \) at time \(T \), respectively, is

\[W = \int_0^T (V_1 I_1 + V_2 I_2) \, dt \]

\[= \int_0^T (R_1 I_1^2 + R_2 I_2^2) \, dt + \frac{1}{2} L_1 I_1^2 + \frac{1}{2} L_2 I_2^2 \]

\[+ M \int_0^T \left(I_1 \frac{dI_2}{dt} + I_2 \frac{dI_1}{dt} \right) \, dt. \]

(7.45)

Thus,

\[W = \int_0^T (R_1 I_1^2 + R_2 I_2^2) \, dt \]

\[+ \frac{1}{2} L_1 I_1^2 + \frac{1}{2} L_2 I_2^2 + M I_1 I_2. \]

(7.46)

Clearly, the total magnetic energy stored in the two coils is

\[W_B = \frac{1}{2} L_1 I_1^2 + \frac{1}{2} L_2 I_2^2 + M I_1 I_2. \]

(7.47)

Note that the mutual inductance term increases the stored magnetic energy if \(I_1 \) and \(I_2 \) are of the same sign—i.e., if the currents in the two coils flow in the same direction, so that they generate magnetic fields which reinforce one another. Conversely, the mutual inductance term decreases the stored magnetic energy if \(I_1 \) and \(I_2 \) are of the opposite sign. However, the total stored energy can never be negative, otherwise the coils would constitute a power source (a negative stored energy is equivalent to a positive generated energy). Thus,

\[\frac{1}{2} L_1 I_1^2 + \frac{1}{2} L_2 I_2^2 + M I_1 I_2 \geq 0, \]

(7.48)
which can be written
\[
\frac{1}{2} \left(\sqrt{L_1} I_1 + \sqrt{L_2} I_2 \right)^2 - I_1 I_2 (\sqrt{L_1 L_2} - M) \geq 0,
\]
assuming that \(I_1 I_2 < 0 \). It follows that
\[
M \leq \sqrt{L_1 L_2}.
\]

The equality sign corresponds to the situation where all of the flux generated by one coil passes through the other. If some of the flux misses then the inequality sign is appropriate. In fact, the above formula is valid for any two inductively coupled circuits.

We intimated previously that the energy stored in an inductor is actually stored in the surrounding magnetic field. Let us now obtain an explicit formula for the energy stored in a magnetic field. Consider an ideal solenoid. The energy stored in the solenoid when a current \(I \) flows through it is
\[
W = \frac{1}{2} L I^2,
\]
where \(L \) is the self-inductance. We know that
\[
L = \mu_0 N^2 \pi r^2 l,
\]
where \(N \) is the number of turns per unit length of the solenoid, \(r \) the radius, and \(l \) the length. The field inside the solenoid is uniform, with magnitude
\[
B = \mu_0 N I,
\]
and is zero outside the solenoid. Equation (7.51) can be rewritten
\[
W = \frac{B^2}{2 \mu_0} V,
\]
where \(V = \pi r^2 l \) is the volume of the solenoid. The above formula strongly suggests that a magnetic field possesses an energy density
\[
U = \frac{B^2}{2 \mu_0}.
\]
Let us now examine a more general proof of the above formula. Consider a system of \(N \) circuits (labeled \(i = 1 \) to \(N \)), each carrying a current \(I_i \). The magnetic flux through the \(i \)th circuit is written \([cf., \text{Eq. (7.5)}]\)

\[
\Phi_i = \int B \cdot dS = \oint A \cdot dl_i,
\]

where \(B = \nabla \times A \), and \(dS_i \) and \(dl_i \) denote a surface element and a line element of this circuit, respectively. The back e.m.f. induced in the \(i \)th circuit follows from Faraday’s law:

\[
V_i = -\frac{d\Phi_i}{dt}.
\]

The rate of work of the battery which maintains the current \(I_i \) in the \(i \)th circuit against this back e.m.f. is

\[
P_i = I_i \frac{d\Phi_i}{dt}.
\]

Thus, the total work required to raise the currents in the \(N \) circuits from zero at time 0, to \(I_{0i} \) at time \(T \), is

\[
W = \sum_{i=1}^{N} \int_{0}^{T} I_i \frac{d\Phi_i}{dt} \, dt.
\]

The above expression for the work done is, of course, equivalent to the total energy stored in the magnetic field surrounding the various circuits. This energy is independent of the manner in which the currents are set up. Suppose, for the sake of simplicity, that the currents are ramped up linearly, so that

\[
I_i = I_{0i} \frac{t}{T}.
\]

The fluxes are proportional to the currents, so they must also ramp up linearly:

\[
\Phi_i = \Phi_{0i} \frac{t}{T}.
\]

It follows that

\[
W = \sum_{i=1}^{N} \int_{0}^{T} I_{0i} \Phi_{0i} \frac{t}{T^2} \, dt,
\]
7 MAGNETIC INDUCTION 7.5 Magnetic energy

giving

\[W = \frac{1}{2} \sum_{i=1}^{N} I_0 i \Phi_0 i. \] (7.63)

So, if instantaneous currents \(I_i \) flow in the \(N \) circuits, which link instantaneous fluxes \(\Phi_i \), then the instantaneous stored energy is

\[W = \frac{1}{2} \sum_{i=1}^{N} I_i \Phi_i. \] (7.64)

Equations (7.56) and (7.64) imply that

\[W = \frac{1}{2} \sum_{i=1}^{N} I_i \oint A \cdot dl_i. \] (7.65)

It is convenient, at this stage, to replace our \(N \) line currents by \(N \) current distributions of small, but finite, cross-sectional area. Equation (7.65) transforms to

\[W = \frac{1}{2} \int_{V} A \cdot j dV, \] (7.66)

where \(V \) is a volume which contains all of the circuits. Note that for an element of the \(i \)th circuit \(j = I_i \frac{dl_i}{dl_i} A_i \) and \(dV = dl_i A_i \), where \(A_i \) is the cross-sectional area of the circuit. Now, \(\mu_0 j = \nabla \times B \) (we are neglecting the displacement current in this calculation), so

\[W = \frac{1}{2 \mu_0} \int_{V} A \cdot \nabla \times B \ dV. \] (7.67)

According to vector field theory,

\[\nabla \cdot (A \times B) \equiv B \cdot \nabla \times A - A \cdot \nabla \times B, \] (7.68)

which implies that

\[W = \frac{1}{2 \mu_0} \int_{V} [\nabla \cdot (A \times B) + B \cdot \nabla \times A] \ dV. \] (7.69)

Using Gauss’ theorem, and \(B = \nabla \times A \), we obtain

\[W = -\frac{1}{2 \mu_0} \oint_{S} A \times B \cdot dS + \frac{1}{2 \mu_0} \int_{V} B^2 \ dV, \] (7.70)
where S is the bounding surface of V. Let us take this surface to infinity. It is easily demonstrated that the magnetic field generated by a current loop falls off like r^{-3} at large distances. The vector potential falls off like r^{-2}. However, the area of surface S only increases like r^2. It follows that the surface integral is negligible in the limit $r \to \infty$. Thus, the above expression reduces to

$$W = \int_{\text{all space}} \frac{B^2}{2 \mu_0} \, dV. \tag{7.71}$$

Since this expression is valid for any magnetic field whatsoever, we can safely conclude that the energy density of a general magnetic field is given by

$$U = \frac{B^2}{2 \mu_0}. \tag{7.72}$$

Note, also, that the above expression is consistent with the expression (6.92) which we obtained during our investigation of magnetic media.

7.6 Alternating current circuits

Alternating current (AC) circuits are made up of e.m.f. sources and three different types of passive element: resistors, inductors, and capacitors. Resistors satisfy Ohm’s law:

$$V = I \, R, \tag{7.73}$$

where R is the resistance, I the current flowing through the resistor, and V the voltage drop across the resistor (in the direction in which the current flows). Inductors satisfy

$$V = L \frac{dI}{dt}, \tag{7.74}$$

where L is the inductance. Finally, capacitors obey

$$V = \frac{q}{C} = \int_0^t I \, dt / C, \tag{7.75}$$

where C is the capacitance, q is the charge stored on the plate with the most positive potential, and $I = 0$ for $t < 0$. Note that any passive component of a real
electrical circuit can always be represented as a combination of ideal resistors, inductors, and capacitors.

Let us consider the classic LCR circuit, which consists of an inductor, L, a capacitor, C, and a resistor, R, all connected in series with an e.m.f. source, V. The circuit equation is obtained by setting the input voltage V equal to the sum of the voltage drops across the three passive elements in the circuit. Thus,

$$V = IR + L \frac{dI}{dt} + \int_0^t I \, dt / C. \tag{7.76}$$

This is an integro-differential equation which, in general, is quite tricky to solve. Suppose, however, that both the voltage and the current oscillate at some fixed angular frequency ω, so that

$$V(t) = V_0 \exp(i \omega t), \tag{7.77}$$
$$I(t) = I_0 \exp(i \omega t), \tag{7.78}$$

where the physical solution is understood to be the real part of the above expressions. The assumed behaviour of the voltage and current is clearly relevant to electrical circuits powered by the mains voltage (which oscillates at 60 hertz).

Equations (7.76)–(7.78) yield

$$V_0 \exp(i \omega t) = I_0 \exp(i \omega t)R + L i \omega I_0 \exp(i \omega t) + \frac{I_0 \exp(i \omega t)}{i \omega C}, \tag{7.79}$$
giving

$$V_0 = I_0 \left(i \omega L + \frac{1}{i \omega C} + R \right). \tag{7.80}$$

It is helpful to define the impedance of the circuit:

$$Z = \frac{V}{I} = i \omega L + \frac{1}{i \omega C} + R. \tag{7.81}$$

Impedance is a generalization of the concept of resistance. In general, the impedance of an AC circuit is a complex quantity.

The average power output of the e.m.f. source is

$$P = \langle V(t) I(t) \rangle, \tag{7.82}$$
where the average is taken over one period of the oscillation. Let us, first of all, calculate the power using real (rather than complex) voltages and currents. We can write

\[V(t) = |V_0| \cos(\omega t), \]
\[I(t) = |I_0| \cos(\omega t - \theta), \]

(7.83)

(7.84)

where \(\theta \) is the phase-lag of the current with respect to the voltage. It follows that

\[
P = |V_0||I_0| \int_{\omega t=0}^{\omega t=2\pi} \cos(\omega t) \cos(\omega t - \theta) \, \left(\frac{d(\omega t)}{2\pi} \right)
\]

\[
= |V_0||I_0| \int_{\omega t=0}^{\omega t=2\pi} \cos(\omega t) \left[\cos(\omega t) \cos \theta + \sin(\omega t) \sin \theta \right] \, \left(\frac{d(\omega t)}{2\pi} \right),
\]

(7.85)

giving

\[
P = \frac{1}{2} |V_0||I_0| \cos \theta,
\]

(7.86)

since \(\langle \cos(\omega t) \sin(\omega t) \rangle = 0 \) and \(\langle \cos(\omega t) \cos(\omega t) \rangle = 1/2 \). In complex representation, the voltage and the current are written

\[V(t) = |V_0| \exp(i \omega t), \]
\[I(t) = |I_0| \exp[i (\omega t - \theta)]. \]

(7.87)

(7.88)

Note that

\[
\frac{1}{2}(VI^* + V^* I) = |V_0||I_0| \cos \theta.
\]

(7.89)

It follows that

\[
P = \frac{1}{4}(VI^* + V^* I) = \frac{1}{2} \operatorname{Re}(VI^*).
\]

(7.90)

Making use of Eq. (7.81), we find that

\[
P = \frac{1}{2} \operatorname{Re}(Z) |I|^2 = \frac{1}{2} \frac{\operatorname{Re}(Z)|V|^2}{|Z|^2}.
\]

(7.91)

Note that power dissipation is associated with the real part of the impedance. For the special case of an LCR circuit,

\[
P = \frac{1}{2} R |I_0|^2.
\]

(7.92)
It is clear that only the resistor dissipates energy in this circuit. The inductor and the capacitor both store energy, but they eventually return it to the circuit without dissipation.

According to Eq. (7.81), the amplitude of the current which flows in an LCR circuit for a given amplitude of the input voltage is given by

$$|I_0| = \frac{|V_0|}{|Z|} = \frac{|V_0|}{\sqrt{(\omega L - 1/\omega C)^2 + R^2}}.$$ \hspace{1cm} (7.93)

The response of the circuit is clearly resonant, peaking at $\omega = 1/\sqrt{L/C}$, and reaching $1/\sqrt{2}$ of the peak value at $\omega = 1/\sqrt{L/C} \pm R/2L$ (assuming that $R \ll \sqrt{L/C}$). In fact, LCR circuits are used in radio tuners to filter out signals whose frequencies fall outside a given band.

The phase-lag of the current with respect to the voltage is given by

$$\theta = \arg(Z) = \tan^{-1} \left(\frac{\omega L - 1/\omega C}{R} \right).$$ \hspace{1cm} (7.94)

The phase-lag varies from $-\pi/2$ for frequencies significantly below the resonant frequency, to zero at the resonant frequency ($\omega = 1/\sqrt{L/C}$), to $\pi/2$ for frequencies significantly above the resonant frequency.

It is clear that in conventional AC circuits the circuit equation reduces to a simple algebraic equation, and the behaviour of the circuit is summed up by the complex impedance Z. The real part of Z tells us the power dissipated in the circuit, the magnitude of Z gives the ratio of the peak current to the peak voltage, and the argument of Z gives the phase-lag of the current with respect to the voltage.

7.7 Transmission lines

The central assumption made in the analysis of conventional AC circuits is that the voltage (and, hence, the current) has the same phase throughout the circuit. Unfortunately, if the circuit is sufficiently large, or the frequency of oscillation,
\(\omega \), is sufficiently high, then this assumption becomes invalid. The assumption of a constant phase throughout the circuit is reasonable if the wave-length of the oscillation, \(\lambda = 2\pi c / \omega \), is much larger than the dimensions of the circuit. (Here, we assume that signals propagate around electrical circuits at about the velocity of light. This assumption will be justified later on.) This is generally not the case in electrical circuits which are associated with communication. The frequencies in such circuits tend to be very high, and the dimensions are, almost by definition, large. For instance, leased telephone lines (the type you attach computers to) run at 56 kHz. The corresponding wave-length is about 5 km, so the constant-phase approximation clearly breaks down for long-distance calls. Computer networks generally run at about 100 MHz, corresponding to \(\lambda \sim 3 \) m. Thus, the constant-phase approximation also breaks down for most computer networks, since such networks are generally significantly larger than 3 m. It turns out that you need a special sort of wire, called a transmission line, to propagate signals around circuits whose dimensions greatly exceed the wave-length, \(\lambda \). Let us investigate transmission lines.

An idealized transmission line consists of two parallel conductors of uniform cross-sectional area. The conductors possess a capacitance per unit length, \(C \), and an inductance per unit length, \(L \). Suppose that \(x \) measures the position along the line.

Consider the voltage difference between two neighbouring points on the line, located at positions \(x \) and \(x + \delta x \), respectively. The self-inductance of the portion of the line lying between these two points is \(L \delta x \). This small section of the line can be thought of as a conventional inductor, and, therefore, obeys the well-known equation

\[
V(x, t) - V(x + \delta x, t) = L \delta x \frac{\partial I(x, t)}{\partial t},
\]

(7.95)

where \(V(x, t) \) is the voltage difference between the two conductors at position \(x \) and time \(t \), and \(I(x, t) \) is the current flowing in one of the conductors at position \(x \) and time \(t \) [the current flowing in the other conductor is \(-I(x, t) \)]. In the limit \(\delta x \to 0 \), the above equation reduces to

\[
\frac{\partial V}{\partial x} = -L \frac{\partial I}{\partial t}.
\]

(7.96)
Consider the difference in current between two neighbouring points on the line, located at positions \(x \) and \(x + \delta x \), respectively. The capacitance of the portion of the line lying between these two points is \(C \delta x \). This small section of the line can be thought of as a conventional capacitor, and, therefore, obeys the well-known equation

\[
\int_0^t I(x, t) \, dt - \int_0^t I(x + \delta x, t) \, dt = C \delta x \, V(x, t),
\]

(7.97)

where \(t = 0 \) denotes a time at which the charge stored in either of the conductors in the region \(x \) to \(x + \delta x \) is zero. In the limit \(\delta x \to 0 \), the above equation yields

\[
\frac{\partial I}{\partial x} = -C \frac{\partial V}{\partial t}.
\]

(7.98)

Equations (7.96) and (7.98) are generally known as the telegrapher’s equations, since an old fashioned telegraph line can be thought of as a primitive transmission line (telegraph lines consist of a single wire: the other conductor is the Earth.)

Differentiating Eq. (7.96) with respect to \(x \), we obtain

\[
\frac{\partial^2 V}{\partial x^2} = -L \frac{\partial^2 I}{\partial x \, \partial t}.
\]

(7.99)

Differentiating Eq. (7.98) with respect to \(t \) yields

\[
\frac{\partial^2 I}{\partial x \, \partial t} = -C \frac{\partial^2 V}{\partial t^2}.
\]

(7.100)

The above two equations can be combined to give

\[
L \, C \, \frac{\partial^2 V}{\partial t^2} = \frac{\partial^2 V}{\partial x^2}.
\]

(7.101)

This is clearly a wave equation, with wave velocity \(v = 1/\sqrt{L \, C} \). An analogous equation can be written for the current, \(I \).

Consider a transmission line which is connected to a generator at one end \((x = 0) \), and a resistor, \(R \), at the other \((x = l) \). Suppose that the generator outputs a voltage \(V_0 \cos(\omega t) \). If follows that

\[
V(0, t) = V_0 \cos(\omega t).
\]

(7.102)
The solution to the wave equation \((7.101)\), subject to the above boundary condition, is
\[
V(x, t) = V_0 \cos(\omega t - k x),
\]
where \(k = \omega / v\). This clearly corresponds to a wave which propagates from the generator towards the resistor. Equations \((7.96)\) and \((7.103)\) yield
\[
I(x, t) = \frac{V_0}{\sqrt{L/C}} \cos(\omega t - k x).
\]
(7.104)

For self-consistency, the resistor at the end of the line must have a particular value:
\[
R = \frac{V(l, t)}{I(l, t)} = \sqrt{\frac{L}{C}}.
\]
(7.105)

The so-called *input impedance* of the line is defined
\[
Z_{in} = \frac{V(0, t)}{I(0, t)} = \sqrt{\frac{L}{C}}.
\]
(7.106)

Thus, a transmission line terminated by a resistor \(R = \sqrt{L/C}\) acts very much like a conventional resistor \(R = Z_{in}\) in the circuit containing the generator. In fact, the transmission line could be replaced by an effective resistor \(R = Z_{in}\) in the circuit diagram for the generator circuit. The power loss due to this effective resistor corresponds to power which is extracted from the circuit, transmitted down the line, and absorbed by the terminating resistor.

The most commonly occurring type of transmission line is a co-axial cable, which consists of two co-axial cylindrical conductors of radii \(a\) and \(b\) (with \(b > a\)). We have already shown that the capacitance per unit length of such a cable is (see Sect. 5.6)
\[
C = \frac{2\pi \varepsilon_0}{\ln(b/a)}.
\]
(7.107)

Let us now calculate the inductance per unit length. Suppose that the inner conductor carries a current \(I\). According to Ampère’s law, the magnetic field in the region between the conductors is given by
\[
B_\theta = \frac{\mu_0 I}{2\pi r}.
\]
(7.108)
The flux linking unit length of the cable is

\[\Phi = \int_{a}^{b} B_\theta \, dr = \frac{\mu_0}{2\pi} I \ln(b/a). \]

(7.109)

Thus, the self-inductance per unit length is

\[L = \frac{\Phi}{I} = \frac{\mu_0}{2\pi} \ln(b/a). \]

(7.110)

So, the speed of propagation of a wave down a co-axial cable is

\[v = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} = c. \]

(7.111)

Not surprisingly, the wave (which is a type of electromagnetic wave) propagates at the speed of light. The impedance of the cable is given by

\[Z_0 = \sqrt{\frac{L}{C}} = \left(\frac{\mu_0}{4\pi^2 \varepsilon_0} \right)^{1/2} \ln(b/a) = 60 \ln(b/a) \text{ ohms.} \]

(7.112)

If we fill the region between the two cylindrical conductors with a dielectric of dielectric constant \(\varepsilon \), then, according to the discussion in Sect. 6.2, the capacitance per unit length of the transmission line goes up by a factor \(\varepsilon \). However, the dielectric has no effect on magnetic fields, so the inductance per unit length of the line remains unchanged. It follows that the propagation speed of signals down a dielectric filled co-axial cable is

\[v = \frac{1}{\sqrt{LC}} = \frac{c}{\sqrt{\varepsilon}}. \]

(7.113)

As we shall see later, this is simply the propagation velocity of electromagnetic waves through a dielectric medium. The impedance of the cable becomes

\[Z_0 = 60 \frac{\ln(b/a)}{\sqrt{\varepsilon}} \text{ ohms.} \]

(7.114)

We have seen that if a transmission line is terminated by a resistor whose resistance \(R \) matches the impedance \(Z_0 \) of the line then all of the power sent
down the line is absorbed by the resistor. What happens if \(R \neq Z_0 \)? The answer is that some of the power is reflected back down the line. Suppose that the beginning of the line lies at \(x = -l \), and the end of the line is at \(x = 0 \). Let us consider a solution

\[
V(x, t) = V_0 \exp[i (\omega t - k x)] + K V_0 \exp[i (\omega t + k x)].
\]

(7.115)

This corresponds to a voltage wave of amplitude \(V_0 \) which travels down the line, and is reflected at the end of the line, with reflection coefficient \(K \). It is easily demonstrated from the telegrapher’s equations that the corresponding current waveform is

\[
I(x, t) = \frac{V_0}{Z_0} \exp[i (\omega t - k x)] - \frac{K V_0}{Z_0} \exp[i (\omega t + k x)].
\]

(7.116)

Since the line is terminated by a resistance \(R \) at \(x = 0 \), we have, from Ohm’s law,

\[
\frac{V(0, t)}{I(0, t)} = R.
\]

(7.117)

This yields an expression for the coefficient of reflection,

\[
K = \frac{R - Z_0}{R + Z_0}.
\]

(7.118)

The input impedance of the line is given by

\[
Z_{\text{in}} = \frac{V(-l, t)}{I(-l, t)} = Z_0 \frac{R \cos(k l) + i Z_0 \sin(k l)}{Z_0 \cos(k l) + i R \sin(k l)}.
\]

(7.119)

Clearly, if the resistor at the end of the line is properly matched, so that \(R = Z_0 \), then there is no reflection (i.e., \(K = 0 \)), and the input impedance of the line is \(Z_0 \). If the line is short-circuited, so that \(R = 0 \), then there is total reflection at the end of the line (i.e., \(K = -1 \)), and the input impedance becomes

\[
Z_{\text{in}} = i Z_0 \tan(k l).
\]

(7.120)

This impedance is purely imaginary, implying that the transmission line absorbs no net power from the generator circuit. In fact, the line acts rather like a pure inductor or capacitor in the generator circuit (i.e., it can store, but cannot absorb,
energy). If the line is open-circuited, so that $R \to \infty$, then there is again total reflection at the end of the line (i.e., $K = 1$), and the input impedance becomes

$$Z_{\text{in}} = i Z_0 \tan(\kappa l - \pi/2).$$

(7.121)

Thus, the open-circuited line acts like a closed-circuited line which is shorter by one quarter of a wave-length. For the special case where the length of the line is exactly one quarter of a wave-length (i.e., $\kappa l = \pi/2$), we find

$$Z_{\text{in}} = \frac{Z_0^2}{R}.$$

(7.122)

Thus, a quarter-wave line looks like a pure resistor in the generator circuit. Finally, if the length of the line is much less than the wave-length (i.e., $\kappa l \ll 1$) then we enter the constant-phase regime, and $Z_{\text{in}} \approx R$ (i.e., we can forget about the transmission line connecting the terminating resistor to the generator circuit).

Suppose that we wish to build a radio transmitter. We can use a standard half-wave antenna (i.e., an antenna whose length is half the wave-length of the emitted radiation) to emit the radiation. In electrical circuits, such an antenna acts like a resistor of resistance 73 ohms (it is more usual to say that the antenna has an impedance of 73 ohms—see Sect. 9.2). Suppose that we buy a 500 kW generator to supply the power to the antenna. How do we transmit the power from the generator to the antenna? We use a transmission line, of course. (It is clear that if the distance between the generator and the antenna is of order the dimensions of the antenna (i.e., $\lambda/2$) then the constant-phase approximation breaks down, and so we have to use a transmission line.) Since the impedance of the antenna is fixed at 73 ohms, we need to use a 73 ohm transmission line (i.e., $Z_0 = 73$ ohms) to connect the generator to the antenna, otherwise some of the power we send down the line is reflected (i.e., not all of the power output of the generator is converted into radio waves). If we wish to use a co-axial cable to connect the generator to the antenna, then it is clear from Eq. (7.114) that the radii of the inner and outer conductors need to be such that $b/a = 3.38 \exp(\sqrt{c})$.

Suppose, finally, that we upgrade our transmitter to use a full-wave antenna (i.e., an antenna whose length equals the wave-length of the emitted radiation). A full-wave antenna has a different impedance than a half-wave antenna. Does
this mean that we have to rip out our original co-axial cable, and replace it by one whose impedance matches that of the new antenna? Not necessarily. Let Z_0 be the impedance of the co-axial cable, and Z_1 the impedance of the antenna. Suppose that we place a quarter-wave transmission line (i.e., one whose length is one quarter of a wave-length) of characteristic impedance $Z_{1/4} = \sqrt{Z_0 Z_1}$ between the end of the cable and the antenna. According to Eq. (7.122) (with $Z_0 \to \sqrt{Z_0 Z_1}$ and $R \to Z_1$), the input impedance of the quarter-wave line is $Z_{in} = Z_0$, which matches that of the cable. The output impedance matches that of the antenna. Consequently, there is no reflection of the power sent down the cable to the antenna. A quarter-wave line of the appropriate impedance can easily be fabricated from a short length of co-axial cable of the appropriate b/a.
8 Electromagnetic energy and momentum

8.1 Introduction

In this section, we shall demonstrate that Maxwell’s equations conserve both energy and momentum.

8.2 Energy conservation

We have seen that the energy density of an electric field is given by [see Eq. \((5.20)\)]

\[U_E = \frac{\varepsilon_0 E^2}{2}, \quad (8.1) \]

whereas the energy density of a magnetic field satisfies [see Eq. \((7.55)\)]

\[U_B = \frac{B^2}{2 \mu_0}. \quad (8.2) \]

This suggests that the energy density of a general electromagnetic field is

\[U = \frac{\varepsilon_0 E^2}{2} + \frac{B^2}{2 \mu_0}. \quad (8.3) \]

We are now in a position to demonstrate that the classical theory of electromagnetism conserves energy. We have already come across one conservation law in electromagnetism:

\[\frac{\partial \rho}{\partial t} + \nabla \cdot j = 0. \quad (8.4) \]

This is the equation of charge conservation. Integrating over some volume \(V\), bounded by a surface \(S\), and making use of Gauss’ theorem, we obtain

\[-\frac{\partial}{\partial t} \int_V \rho \, dV = \oint_S j \cdot dS. \quad (8.5) \]

In other words, the rate of decrease of the charge contained in volume \(V\) equals the net flux of charge across surface \(S\). This suggests that an energy conservation
law for electromagnetism should have the form

$$ - \frac{\partial}{\partial t} \int_V U \, dV = \int_S \mathbf{u} \cdot d\mathbf{S}. $$

(8.6)

Here, U is the energy density of the electromagnetic field, and \mathbf{u} is the flux of electromagnetic energy (i.e., energy $|\mathbf{u}|$ per unit time, per unit cross-sectional area, passes a given point in the direction of \mathbf{u}). According to the above equation, the rate of decrease of the electromagnetic energy in volume V equals the net flux of electromagnetic energy across surface S.

However, Eq. (8.6) is incomplete, because electromagnetic fields can gain or lose energy by interacting with matter. We need to factor this into our analysis. We saw earlier (see Sect. 5.3) that the rate of heat dissipation per unit volume in a conductor (the so-called ohmic heating rate) is $\mathbf{E} \cdot \mathbf{j}$. This energy is extracted from electromagnetic fields, so the rate of energy loss of the fields in volume V due to interaction with matter is $\int_V \mathbf{E} \cdot \mathbf{j} \, dV$. Thus, Eq. (8.6) generalizes to

$$ - \frac{\partial}{\partial t} \int_V U \, dV = \int_S \mathbf{u} \cdot d\mathbf{S} + \int_V \mathbf{E} \cdot \mathbf{j} \, dV. $$

(8.7)

From Gauss' theorem, the above equation is equivalent to

$$ \frac{\partial U}{\partial t} + \nabla \cdot \mathbf{u} = -\mathbf{E} \cdot \mathbf{j}. $$

(8.8)

Let us now see if we can derive an expression of this form from Maxwell's equations.

We start from the differential form of Ampère’s law (including the displacement current):

$$ \nabla \times \mathbf{B} = \mu_0 \mathbf{j} + \varepsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t}. $$

(8.9)

Dotting this equation with the electric field yields

$$ -\mathbf{E} \cdot \mathbf{j} = -\frac{\mathbf{E} \cdot \nabla \times \mathbf{B}}{\mu_0} + \varepsilon_0 \mathbf{E} \cdot \frac{\partial \mathbf{E}}{\partial t}. $$

(8.10)

This can be rewritten

$$ -\mathbf{E} \cdot \mathbf{j} = -\frac{\mathbf{E} \cdot \nabla \times \mathbf{B}}{\mu_0} + \frac{\partial}{\partial t} \left(\frac{\varepsilon_0 \mathbf{E}^2}{2} \right). $$

(8.11)
Now, from vector field theory
\[\nabla \cdot (\mathbf{E} \times \mathbf{B}) \equiv \mathbf{B} \cdot \nabla \times \mathbf{E} - \mathbf{E} \cdot \nabla \times \mathbf{B}, \] (8.12)
so
\[-\mathbf{E} \cdot \mathbf{j} = \nabla \cdot \left(\frac{\mathbf{E} \times \mathbf{B}}{\mu_0} \right) - \frac{\mathbf{B} \cdot \nabla \times \mathbf{E}}{\mu_0} + \frac{\partial}{\partial t} \left(\frac{\varepsilon_0 E^2}{2} \right). \] (8.13)

The differential form of Faraday’s law yields
\[\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \] (8.14)
so
\[-\mathbf{E} \cdot \mathbf{j} = \nabla \cdot \left(\frac{\mathbf{E} \times \mathbf{B}}{\mu_0} \right) + \frac{1}{\mu_0} \mathbf{B} \cdot \frac{\partial \mathbf{B}}{\partial t} + \frac{\partial}{\partial t} \left(\frac{\varepsilon_0 E^2}{2} \right). \] (8.15)

This can be rewritten
\[-\mathbf{E} \cdot \mathbf{j} = \nabla \cdot \left(\frac{\mathbf{E} \times \mathbf{B}}{\mu_0} \right) + \frac{\partial}{\partial t} \left(\frac{\varepsilon_0 E^2}{2} + \frac{B^2}{2 \mu_0} \right). \] (8.16)

Thus, we obtain the desired conservation law,
\[\frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot \mathbf{u} = -\mathbf{E} \cdot \mathbf{j}, \] (8.17)
where
\[\mathbf{u} = \frac{\varepsilon_0 E^2}{2} + \frac{B^2}{2 \mu_0} \] (8.18)
is the electromagnetic energy density, and
\[\mathbf{u} = \frac{\mathbf{E} \times \mathbf{B}}{\mu_0} \] (8.19)
is the electromagnetic energy flux. The latter quantity is usually called the Poynting flux, after its discoverer.

Let us see whether our expression for the electromagnetic energy flux makes sense. We all know that if we stand in the sun we get hot (especially in Texas!). This occurs because we absorb electromagnetic radiation emitted by the Sun. So, radiation must transport energy. The electric and magnetic fields in electromagnetic radiation are mutually perpendicular, and are also perpendicular to the
direction of propagation \(\hat{k} \) (this is a unit vector). Furthermore, \(B = E/c \). Equation (4.78) can easily be transformed into the following relation between the electric and magnetic fields of an electromagnetic wave:

\[
E \times B = \frac{E^2}{c} \hat{k}.
\] (8.20)

Thus, the Poynting flux for electromagnetic radiation is

\[
u = \frac{E^2}{\mu_0 c} \hat{k} = \varepsilon_0 c E^2 \hat{k}.
\] (8.21)

This expression tells us that electromagnetic waves transport energy along their direction of propagation, which seems to make sense.

The energy density of electromagnetic radiation is

\[
U = \frac{\varepsilon_0 E^2}{2} + \frac{B^2}{2 \mu_0} = \frac{\varepsilon_0 E^2}{2} + \frac{E^2}{2 \mu_0 c^2} = \varepsilon_0 E^2,
\] (8.22)

using \(B = E/c \). Note that the electric and magnetic fields have equal energy densities. Since electromagnetic waves travel at the speed of light, we would expect the energy flux through one square meter in one second to equal the energy contained in a volume of length \(c \) and unit cross-sectional area: \(\text{i.e., } c \text { times the energy density. Thus,}

\[
|\nu| = c U = \varepsilon_0 c E^2,
\] (8.23)

which is in accordance with Eq. (8.21).

In the presence of diamagnetic and magnetic media, starting from Eq. (6.58), we can derive an energy conservation law of the form

\[
\frac{\partial U}{\partial t} + \nabla \cdot \nu = -E \cdot j_t,
\] (8.24)

via analogous steps to those used to derive Eq. (8.17). Here, the electromagnetic energy density is written

\[
U = \frac{1}{2} E \cdot D + \frac{1}{2} B \cdot H,
\] (8.25)
which is consistent with Eq. (8.18). The Poynting flux takes the form

\[\mathbf{u} = \mathbf{E} \times \mathbf{H}, \]

which is consistent with Eq. (8.19). Of course, the above expressions are only valid for linear dielectric and magnetic media.

8.3 Electromagnetic momentum

We have seen that electromagnetic waves carry energy. It turns out that they also carry momentum. Consider the following argument, due to Einstein. Suppose that we have a railroad car of mass \(M \) and length \(L \) which is free to move in one dimension (see Fig. 54). Suppose that electromagnetic radiation of total energy \(E \) is emitted from one end of the car, propagates along the length of the car, and is then absorbed at the other end. The effective mass of this radiation is \(m = E/c^2 \) (from Einstein’s famous relation \(E = mc^2 \)). At first sight, the process described above appears to cause the centre of mass of the system to spontaneously shift.
This violates the law of momentum conservation (assuming the railway car is subject to no external forces). The only way in which the centre of mass of the system can remain stationary is if the railway car moves in the opposite direction to the direction of propagation of the radiation. In fact, if the car moves by a distance x then the centre of mass of the system is the same before and after the radiation pulse provided that

$$Mx = mL = \frac{E}{c^2}L.$$ \hspace{1cm} (8.27)

It is assumed that $m \ll M$ in this derivation.

But, what actually causes the car to move? If the radiation possesses momentum p then the car will recoil with the same momentum as the radiation is emitted. When the radiation hits the other end of the car then the car acquires momentum p in the opposite direction, which stops the motion. The time of flight of the radiation is L/c. So, the distance traveled by a mass M with momentum p in this time is

$$x = vt = \frac{pL}{Mc},$$ \hspace{1cm} (8.28)

giving

$$p = Mx \frac{c}{L} = \frac{E}{c}.$$ \hspace{1cm} (8.29)

Thus, the momentum carried by electromagnetic radiation equals its energy divided by the speed of light. The same result can be obtained from the well-known relativistic formula

$$E^2 = p^2c^2 + m^2c^4$$ \hspace{1cm} (8.30)

relating the energy E, momentum p, and mass m of a particle. According to quantum theory, electromagnetic radiation is made up of massless particles called photons. Thus,

$$p = \frac{E}{c}$$ \hspace{1cm} (8.31)

for individual photons, so the same must be true of electromagnetic radiation as a whole. If follows from Eq. (8.29) that the momentum density g of electromagnetic radiation equals its energy density over c, so

$$g = \frac{U}{c} = \frac{|\mathbf{u}|}{c^2} = \frac{\epsilon_0 E^2}{c}.$$ \hspace{1cm} (8.32)
It is reasonable to suppose that the momentum points along the direction of the energy flow (this is obviously the case for photons), so the vector momentum density (which gives the direction, as well as the magnitude, of the momentum per unit volume) of electromagnetic radiation is

$$ g = \frac{u}{c^2}. $$

Thus, the momentum density equals the energy flux over c^2.

Of course, the electric field associated with an electromagnetic wave oscillates rapidly, which implies that the previous expressions for the energy density, energy flux, and momentum density of electromagnetic radiation are also rapidly oscillating. It is convenient to average over many periods of the oscillation (this average is denoted $\langle \rangle$). Thus,

$$ \langle U \rangle = \frac{\varepsilon_0 E_0^2}{2}, $$

$$ \langle u \rangle = \frac{c \varepsilon_0 E_0^2}{2} \hat{k} = c \langle U \rangle \hat{k}, $$

$$ \langle g \rangle = \frac{\varepsilon_0 E_0^2}{2c} \hat{k} = \frac{\langle U \rangle}{c} \hat{k}, $$

where the factor $1/2$ comes from averaging $\cos^2(\omega t)$. Here, E_0 is the peak amplitude of the electric field associated with the wave.

Since electromagnetic radiation possesses momentum then it must exert a force on bodies which absorb (or emit) radiation. Suppose that a body is placed in a beam of perfectly collimated radiation, which it absorbs completely. The amount of momentum absorbed per unit time, per unit cross-sectional area, is simply the amount of momentum contained in a volume of length c and unit cross-sectional area: i.e., c times the momentum density g. An absorbed momentum per unit time, per unit area, is equivalent to a pressure. In other words, the radiation exerts a pressure cg on the body. Thus, the radiation pressure is given by

$$ p = \frac{\varepsilon_0 E^2}{2} = \langle U \rangle. $$

248
So, the pressure exerted by collimated electromagnetic radiation is equal to its average energy density.

Consider a cavity filled with electromagnetic radiation. What is the radiation pressure exerted on the walls? In this situation, the radiation propagates in all directions with equal probability. Consider radiation propagating at an angle \(\theta \) to the local normal to the wall. The amount of such radiation hitting the wall per unit time, per unit area, is proportional to \(\cos \theta \). Moreover, the component of momentum normal to the wall which the radiation carries is also proportional to \(\cos \theta \). Thus, the pressure exerted on the wall is the same as in Eq. (8.37), except that it is weighted by the average of \(\cos^2 \theta \) over all solid angles, in order to take into account the fact that obliquely propagating radiation exerts a pressure which is \(\cos^2 \theta \) times that of normal radiation. The average of \(\cos^2 \theta \) over all solid angles is \(\frac{1}{3} \), so for isotropic radiation

\[
p = \frac{\langle U \rangle}{3}.
\]

Clearly, the pressure exerted by isotropic radiation is one third of its average energy density.

The power incident on the surface of the Earth due to radiation emitted by the Sun is about 1300 W m\(^{-2}\). So, what is the radiation pressure? Since,

\[
\langle |u| \rangle = c \langle U \rangle = 1300 \text{ W m}^{-2},
\]

then

\[
p = \langle U \rangle \approx 4 \times 10^{-6} \text{ N m}^{-2}.
\]

Here, the radiation is assumed to be perfectly collimated. Thus, the radiation pressure exerted on the Earth is minuscule (one atmosphere equals about 10\(^5\) N m\(^{-2}\)). Nevertheless, this small pressure due to radiation is important in outer space, since it is responsible for continuously sweeping dust particles out of the Solar System. It is quite common for comets to exhibit two separate tails. One (called the gas tail) consists of ionized gas, and is swept along by the solar wind (a stream of charged particles and magnetic field-lines emitted by the Sun). The other (called the dust tail) consists of uncharged dust particles, and is swept radially outward from the Sun by radiation pressure. Two separate tails are observed
8 ELECTROMAGNETIC ENERGY AND MOMENTUM 8.4 Momentum conservation

if the local direction of the solar wind is not radially outward from the Sun (which is quite often the case).

The radiation pressure from sunlight is very weak. However, that produced by laser beams can be enormous (far higher than any conventional pressure which has ever been produced in a laboratory). For instance, the lasers used in Inertial Confinement Fusion (e.g., the NOVA experiment in Lawrence Livermore National Laboratory) typically have energy fluxes of 10^{18} W m$^{-2}$. This translates to a radiation pressure of about 10^4 atmospheres!

8.4 Momentum conservation

It follows from Eqs. (8.19) and (8.33) that the momentum density of electromagnetic fields can be written

$$\mathbf{g} = \epsilon_0 \mathbf{E} \times \mathbf{B}. \quad (8.41)$$

Now, a momentum conservation equation for electromagnetic fields should take the integral form

$$-\frac{\partial}{\partial t} \int_V g_i \, dV = \int_S G_{ij} \, dS_j + \int_V [\rho \mathbf{E} + \mathbf{j} \times \mathbf{B}]_i \, dV. \quad (8.42)$$

Here, i and j run from 1 to 3 (1 corresponds to the x-direction, 2 to the y-direction, and 3 to the z-direction). Moreover, the Einstein summation convention is employed for repeated indices (e.g., $a_j a_j \equiv \mathbf{a} \cdot \mathbf{a}$). Furthermore, the tensor G_{ij} represents the flux of the ith component of electromagnetic momentum in the j-direction. This tensor (a tensor is a direct generalization of a vector with two indices instead of one) is called the momentum flux density. Hence, the above equation states that the rate of loss of electromagnetic momentum in some volume V is equal to the flux of electromagnetic momentum across the bounding surface S plus the rate at which momentum is transferred to matter inside V. The latter rate is, of course, just the net electromagnetic force acting on matter inside V: i.e., the volume integral of the electromagnetic force density, $\rho \mathbf{E} + \mathbf{j} \times \mathbf{B}$. Now, a direct generalization of the divergence theorem states that

$$\int_S G_{ij} \, dS_j \equiv \int_V \frac{\partial G_{ij}}{\partial x_j} \, dV, \quad (8.43)$$
where \(x_1 \equiv x, \ x_2 \equiv y, etc. \) Hence, in differential form, our momentum conservation equation for electromagnetic fields is written

\[
- \frac{\partial}{\partial t} [\varepsilon_0 \mathbf{E} \times \mathbf{B}]_i = \frac{\partial G_{ij}}{\partial x_j} + [\rho \mathbf{E} + \mathbf{j} \times \mathbf{B}]_i. \tag{8.44}
\]

Let us now attempt to derive an equation of this form from Maxwell’s equations.

Maxwell’s equations are written:

\[
\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}, \tag{8.45}
\]
\[
\nabla \cdot \mathbf{B} = 0, \tag{8.46}
\]
\[
\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \tag{8.47}
\]
\[
\nabla \times \mathbf{B} = \mu_0 \mathbf{j} + \varepsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t}. \tag{8.48}
\]

We can cross Eq. (8.48) divided by \(\mu_0 \) with \(\mathbf{B} \), and rearrange, to give

\[
- \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \times \mathbf{B} = \frac{\mathbf{B} \times (\nabla \times \mathbf{B})}{\mu_0} - \mathbf{j} \times \mathbf{B}. \tag{8.49}
\]

Next, let us cross \(\mathbf{E} \) with Eq. (8.47) times \(\varepsilon_0 \), rearrange, and add the result to the above equation. We obtain

\[
- \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \times \mathbf{B} - \varepsilon_0 \mathbf{E} \times \frac{\partial \mathbf{B}}{\partial t} = \varepsilon_0 \mathbf{E} \times (\nabla \times \mathbf{E}) + \frac{\mathbf{B} \times (\nabla \times \mathbf{B})}{\mu_0} + \mathbf{j} \times \mathbf{B}. \tag{8.50}
\]

Next, making use of Eqs. (8.45) and (8.46), we get

\[
- \frac{\partial}{\partial t} [\varepsilon_0 \mathbf{E} \times \mathbf{B}] = \varepsilon_0 \mathbf{E} \times (\nabla \times \mathbf{E}) + \frac{\mathbf{B} \times (\nabla \times \mathbf{B})}{\mu_0} - \varepsilon_0 (\nabla \cdot \mathbf{E}) \mathbf{E} - \frac{1}{\mu_0} (\nabla \cdot \mathbf{B}) \mathbf{B} + \rho \mathbf{E} + \mathbf{j} \times \mathbf{B}. \tag{8.51}
\]

Now, from vector field theory,

\[
\nabla (E^2/2) \equiv \mathbf{E} \times (\nabla \times \mathbf{E}) + (\mathbf{E} \cdot \nabla)\mathbf{E}, \tag{8.52}
\]
with a similar equation for B. Hence, Eq. (8.51) takes the form

$$\begin{align*}
- \frac{\partial}{\partial t} \left[\varepsilon_0 \mathbf{E} \times \mathbf{B} \right] &= \varepsilon_0 \left[\nabla (\mathbf{E}^2/2) - (\nabla \cdot \mathbf{E}) \mathbf{E} - (\mathbf{E} \cdot \nabla) \mathbf{E} \right] \\
&\quad + \frac{1}{\mu_0} \left[\nabla (\mathbf{B}^2/2) - (\nabla \cdot \mathbf{B}) \mathbf{B} - (\mathbf{B} \cdot \nabla) \mathbf{B} \right] \\
&\quad + \rho \mathbf{E} + \mathbf{j} \times \mathbf{B}.
\end{align*}$$

(8.53)

Finally, when written in terms of components, the above equation becomes

$$\begin{align*}
- \frac{\partial}{\partial t} [\varepsilon_0 \mathbf{E} \times \mathbf{B}]_i &= \frac{\partial}{\partial x_j} \left[\varepsilon_0 E^2 \delta_{ij}/2 - \varepsilon_0 E_i E_j + B^2 \delta_{ij}/2 \mu_0 - B_i B_j/\mu_0 \right] \\
&\quad + [\rho \mathbf{E} + \mathbf{j} \times \mathbf{B}]_i,
\end{align*}$$

(8.54)

since $[(\nabla \cdot \mathbf{E}) \mathbf{E}]_i = (\partial E_j/\partial x_j) E_i$, and $[(\mathbf{E} \cdot \nabla) \mathbf{E}]_i = E_j (\partial E_i/\partial x_j)$. Here, δ_{ij} is a Kronecker delta symbol (i.e., $\delta_{ij} = 1$ if $i = j$, and $\delta_{ij} = 0$ otherwise). Comparing the above equation with Eq. (8.44), we conclude that the momentum flux density tensor of electromagnetic fields takes the form

$$G_{ij} = \varepsilon_0 \left(E^2 \delta_{ij}/2 - E_i E_j \right) + (B^2 \delta_{ij}/2 - B_i B_j)/\mu_0. \quad (8.55)$$

The momentum conservation equation (8.44) is sometimes written

$$[\rho \mathbf{E} + \mathbf{j} \times \mathbf{B}]_i = \frac{\partial T_{ij}}{\partial x_j} - \frac{\partial}{\partial t} [\varepsilon_0 \mathbf{E} \times \mathbf{B}]_i,$$

(8.56)

where

$$T_{ij} = -G_{ij} = \varepsilon_0 \left(E_i E_j - E^2 \delta_{ij}/2 \right) + (B_i B_j - B^2 \delta_{ij}/2)/\mu_0 \quad (8.57)$$

is called the Maxwell stress tensor.
9 Electromagnetic radiation

9.1 Introduction

In this section, we shall use Maxwell’s equations to investigate electromagnetic waves.

9.2 The Hertzian dipole

Consider two small spherical conductors connected by a wire. Suppose that electric charge flows periodically back and forth between the spheres. Let \(q(t) \) be the instantaneous charge on one of the conductors. The system has zero net charge, so the charge on the other conductor is \(-q(t)\). Let

\[
q(t) = q_0 \sin(\omega t). \tag{9.1}
\]

We expect the oscillating current flowing in the wire connecting the two spheres to generate electromagnetic radiation (see Sect. 4.11). Let us consider the simple case in which the length of the wire is small compared to the wave-length of the emitted radiation. If this is the case, then the current \(I \) flowing between the conductors has the same phase along the whole length of the wire. It follows that

\[
I(t) = \frac{dq}{dt} = I_0 \cos(\omega t), \tag{9.2}
\]

where \(I_0 = \omega q_0 \). This type of antenna is called a Hertzian dipole, after the German physicist Heinrich Hertz.

The magnetic vector potential generated by a current distribution \(j(r) \) is given by the well-known formula (see Sect. 4.12)

\[
A(r, t) = \frac{\mu_0}{4\pi} \int \frac{[j]}{|r - r'|} d^3r', \tag{9.3}
\]

where

\[
[f] = f(r', t - |r - r'|/c). \tag{9.4}
\]
Suppose that the wire is aligned along the z-axis, and extends from \(z = -l/2 \) to \(z = l/2 \). For a wire of negligible thickness, we can replace \(j(r', t - |r - r'|/c) \, d^3r' \) by \(I(r', t - |r - r'|/c) \, dz' \hat{z} \). Thus, \(A(r, t) = A_z(r, t) \hat{z} \), and

\[
A_z(r, t) = \frac{\mu_0}{4\pi} \int_{-l/2}^{l/2} \frac{I(z', t - |r - z'|/c)}{|r - z'|} \, dz'.
\] (9.5)

In the region \(r \gg l \),

\[
|r - z'| \simeq r,
\] (9.6)

and

\[
t - |r - z'|/c \simeq t - r/c.
\] (9.7)

The maximum error in the latter approximation is \(\Delta t \sim l/c \). This error (which is a time) must be much less than a period of oscillation of the emitted radiation, otherwise the phase of the radiation will be wrong. So

\[
\frac{l}{c} \ll \frac{2\pi}{\omega},
\] (9.8)

which implies that \(l \ll \lambda \), where \(\lambda = 2\pi c/\omega \) is the wave-length of the emitted radiation. However, we have already assumed that the length of the wire \(l \) is much less than the wave-length of the radiation, so the above inequality is automatically satisfied. Thus, in the far field region, \(r \gg l \), we can write

\[
A_z(r, t) \simeq \frac{\mu_0}{4\pi} \int_{-l/2}^{l/2} \frac{I(z', t - r/c)}{r} \, dz'.
\] (9.9)

This integral is easy to perform, since the current is uniform along the length of the wire. So,

\[
A_z(r, t) \simeq \frac{\mu_0 l \, I(t - r/c)}{4\pi r}.
\] (9.10)

The scalar potential is most conveniently evaluated using the Lorentz gauge condition (see Sect. 4.12)

\[
\nabla \cdot A = -\varepsilon_0 \mu_0 \frac{\partial \phi}{\partial t}.
\] (9.11)

Now,

\[
\nabla \cdot A = \frac{\partial A_z}{\partial z} \simeq \frac{\mu_0}{4\pi} \frac{l \, I(t - r/c)}{\partial t} \left(-\frac{z}{r^2 c} \right) + O \left(\frac{1}{r^2} \right)
\] (9.12)
to leading order in r^{-1}. Thus,

$$\phi(r, t) \simeq \frac{l}{4\pi \epsilon_0 c r} \frac{z I(t - r/c)}{r}.$$ \hspace{1cm} (9.13)

Given the vector and scalar potentials, Eqs. (9.10) and (9.13), respectively, we can evaluate the associated electric and magnetic fields using (see Sect. 4.12)

$$E = -\frac{\partial A}{\partial t} - \nabla \phi,$$ \hspace{1cm} (9.14)

$$B = \nabla \times A.$$ \hspace{1cm} (9.15)

Note that we are only interested in radiation fields, which fall off like r^{-1} with increasing distance from the source. It is easily demonstrated that

$$E \simeq -\frac{\omega l I_0}{4\pi \epsilon_0 c^2} \sin \theta \frac{\sin[\omega(t - r/c)]}{r} \hat{\theta},$$ \hspace{1cm} (9.16)

and

$$B \simeq -\frac{\omega l I_0}{4\pi \epsilon_0 c^3} \sin \theta \frac{\sin[\omega(t - r/c)]}{r} \hat{\phi}.$$ \hspace{1cm} (9.17)

Here, (r, θ, φ) are standard spherical polar coordinates aligned along the z-axis. The above expressions for the far field (i.e., $r \gg \lambda$) electromagnetic fields generated by a localized oscillating current are also easily derived from Eqs. (4.183) and (4.184). Note that the fields are symmetric in the azimuthal angle φ. There is no radiation along the axis of the oscillating dipole (i.e., $\theta = 0$), and the maximum emission is in the plane perpendicular to this axis (i.e., $\theta = \pi/2$).

The average power crossing a spherical surface S (whose radius is much greater than λ) is

$$P_{rad} = \oint_S \langle \mathbf{u} \rangle \cdot d\mathbf{S},$$ \hspace{1cm} (9.18)

where the average is over a single period of oscillation of the wave, and the Poynting flux is given by (see Sect. 8.2)

$$\mathbf{u} = \frac{\mathbf{E} \times \mathbf{B}}{\mu_0} = \frac{\omega^2 l^2 I_0^2}{16\pi^2 \epsilon_0 c^3} \sin^2[\omega(t - r/c)] \frac{\sin^2 \theta}{r^2} \hat{r}.$$ \hspace{1cm} (9.19)
It follows that

\[
\langle u \rangle = \frac{\omega^2 l^2 I_0^2}{32\pi^2 \varepsilon_0 c^3} \frac{\sin^2 \theta}{r^2} \hat{r}.
\]

(9.20)

Note that the energy flux is radially outwards from the source. The total power flux across \(S\) is given by

\[
P_{\text{rad}} = \frac{\omega^2 l^2 I_0^2}{32\pi^2 \varepsilon_0 c^3} \int_0^{2\pi} \int_0^{\pi} \frac{\sin^2 \theta}{r^2} r^2 \sin \theta \, d\theta.
\]

(9.21)

Thus,

\[
P_{\text{rad}} = \frac{\omega^2 l^2 I_0^2}{12\pi \varepsilon_0 c^3}.
\]

(9.22)

The total flux is independent of the radius of \(S\), as is to be expected if energy is conserved.

Recall that for a resistor of resistance \(R\) the average ohmic heating power is

\[
P_{\text{heat}} = \langle I^2 R \rangle = \frac{1}{2} I_0^2 R,
\]

(9.23)

assuming that \(I = I_0 \cos(\omega t)\). It is convenient to define the radiation resistance of a Hertzian dipole antenna:

\[
R_{\text{rad}} = \frac{P_{\text{rad}}}{I_0^2/2},
\]

(9.24)

so that

\[
R_{\text{rad}} = \frac{2\pi}{3 \varepsilon_0 c} \left(\frac{1}{\lambda} \right)^2,
\]

(9.25)

where \(\lambda = 2\pi c/\omega\) is the wave-length of the radiation. In fact,

\[
R_{\text{rad}} = 789 \left(\frac{1}{\lambda} \right)^2 \text{ ohms}.
\]

(9.26)

In the theory of electrical circuits, an antenna is conventionally represented as a resistor whose resistance is equal to the characteristic radiation resistance of the antenna plus its real resistance. The power loss \(I_0^2 R_{\text{rad}}/2\) associated with the radiation resistance is due to the emission of electromagnetic radiation. The power loss \(I_0^2 R/2\) associated with the real resistance is due to ohmic heating of the antenna.
Note that the formula (9.26) is only valid for \(l \ll \lambda \). This suggests that \(R_{\text{rad}} \ll R \) for most Hertzian dipole antennas: \textit{i.e.}, the radiated power is swamped by the ohmic losses. Thus, antennas whose lengths are much less than that of the emitted radiation tend to be extremely inefficient. In fact, it is necessary to have \(l \sim \lambda \) in order to obtain an efficient antenna. The simplest practical antenna is the \textit{half-wave antenna}, for which \(l = \lambda / 2 \). This can be analyzed as a series of Hertzian dipole antennas stacked on top of one another, each slightly out of phase with its neighbours. The characteristic radiation resistance of a half-wave antenna is

\[
R_{\text{rad}} = \frac{2.44}{4\pi \varepsilon_0 c} = 73 \text{ ohms.} \tag{9.27}
\]

Antennas can also be used to receive electromagnetic radiation. The incoming wave induces a voltage in the antenna, which can be detected in an electrical circuit connected to the antenna. In fact, this process is equivalent to the emission of electromagnetic waves by the antenna viewed in reverse. It is easily demonstrated that antennas most readily detect electromagnetic radiation incident from those directions in which they preferentially emit radiation. Thus, a Hertzian dipole antenna is unable to detect radiation incident along its axis, and most efficiently detects radiation incident in the plane perpendicular to this axis. In the theory of electrical circuits, a receiving antenna is represented as a voltage source in series with a resistor. The voltage source, \(V_0 \cos(\omega t) \), represents the voltage induced in the antenna by the incoming wave. The resistor, \(R_{\text{rad}} \), represents the power re-radiated by the antenna (here, the real resistance of the antenna is neglected). Let us represent the detector circuit as a single load resistor \(R_{\text{load}} \), connected in series with the antenna. The question is: how can we choose \(R_{\text{load}} \) so that the maximum power is extracted from the wave and transmitted to the load resistor? According to Ohm’s law:

\[
V_0 \cos(\omega t) = I_0 \cos(\omega t) (R_{\text{rad}} + R_{\text{load}}), \tag{9.28}
\]

where \(I = I_0 \cos(\omega t) \) is the current induced in the circuit.

The power input to the circuit is

\[
P_{\text{in}} = \langle VI \rangle = \frac{V_0^2}{2 (R_{\text{rad}} + R_{\text{load}})}. \tag{9.29}
\]
The power transferred to the load is

\[
P_{\text{load}} = \langle I^2 R_{\text{load}} \rangle = \frac{R_{\text{load}} V_0^2}{2 (R_{\text{rad}} + R_{\text{load}})^2}.
\]
(9.30)

The power re-radiated by the antenna is

\[
P_{\text{rad}} = \langle I^2 R_{\text{rad}} \rangle = \frac{R_{\text{rad}} V_0^2}{2 (R_{\text{rad}} + R_{\text{load}})^2}.
\]
(9.31)

Note that \(P_{\text{in}} = P_{\text{load}} + P_{\text{rad}} \). The maximum power transfer to the load occurs when

\[
\frac{\partial P_{\text{load}}}{\partial R_{\text{load}}} = \frac{V_0^2}{2} \left[\frac{R_{\text{rad}} - R_{\text{load}}}{(R_{\text{rad}} + R_{\text{load}})^3} \right] = 0.
\]
(9.32)

Thus, the maximum transfer rate corresponds to

\[R_{\text{load}} = R_{\text{rad}}. \]
(9.33)

In other words, the resistance of the load circuit must match the radiation resistance of the antenna. For this optimum case,

\[P_{\text{load}} = P_{\text{rad}} = \frac{V_0^2}{8 R_{\text{rad}}} = \frac{P_{\text{in}}}{2}. \]
(9.34)

So, in the optimum case half of the power absorbed by the antenna is immediately re-radiated. Clearly, an antenna which is receiving electromagnetic radiation is also emitting it. This is how the BBC catch people who do not pay their television license fee in England. They have vans which can detect the radiation emitted by a TV aerial whilst it is in use (they can even tell which channel you are watching!).

For a Hertzian dipole antenna interacting with an incoming wave whose electric field has an amplitude \(E_0 \), we expect

\[V_0 = E_0 l. \]
(9.35)

Here, we have used the fact that the wavelength of the radiation is much longer than the length of the antenna. We have also assumed that the antenna is properly aligned (\(i.e., \) the radiation is incident perpendicular to the axis of the antenna). The Poynting flux of the incoming wave is [see Eq. (8.35)]

\[\langle u_{\text{in}} \rangle = \frac{\varepsilon_0 c E_0^2}{2}, \]
(9.36)
whereas the power transferred to a properly matched detector circuit is

$$P_{\text{load}} = \frac{E_0^2 l}{8 R_{\text{rad}}}. \quad (9.37)$$

Consider an idealized antenna in which all incoming radiation incident on some area A_{eff} is absorbed, and then magically transferred to the detector circuit, with no re-radiation. Suppose that the power absorbed from the idealized antenna matches that absorbed from the real antenna. This implies that

$$P_{\text{load}} = \langle \psi_{\text{in}} \rangle A_{\text{eff}}. \quad (9.38)$$

The quantity A_{eff} is called the effective area of the antenna: it is the area of the idealized antenna which absorbs as much net power from the incoming wave as the actual antenna. Thus,

$$P_{\text{load}} = \frac{E_0^2 l}{8 R_{\text{rad}}} = \frac{\varepsilon_0 c E_0^2}{2} A_{\text{eff}}, \quad (9.39)$$

giving

$$A_{\text{eff}} = \frac{l^2}{4 \varepsilon_0 c R_{\text{rad}}} = \frac{3}{8\pi} \lambda^2. \quad (9.40)$$

It is clear that the effective area of a Hertzian dipole antenna is of order the wave-length squared of the incoming radiation.

For a properly aligned half-wave antenna,

$$A_{\text{eff}} = 0.13 \lambda^2. \quad (9.41)$$

Thus, the antenna, which is essentially one-dimensional with length $\lambda/2$, acts as if it is two-dimensional, with width 0.26λ, as far as its absorption of incoming electromagnetic radiation is concerned.

9.3 Electric dipole radiation

In the previous section, we examined the radiation emitted by a short electric dipole of oscillating dipole moment

$$\mathbf{p}(t) = p_0 \sin(\omega t) \hat{z}, \quad (9.42)$$
where \(p_0 = q_0 l = I_0 l / \omega \). We found that, in the far field, the mean electromagnetic energy flux takes the form [see Eq. (9.20)]

\[
\langle u \rangle = \frac{\omega^4 p_0^2}{32 \pi^2 \epsilon_0 c^3} \sin^2 \theta \frac{1}{r^2} \hat{r}, \tag{9.43}
\]

assuming that the dipole is centered on the origin of our spherical polar coordinate system. The mean power radiated into the element of solid angle \(d\Omega = \sin \theta \, d\theta \, d\varphi \), centered on the angular coordinates \((\theta, \varphi)\), is

\[
dP = \langle u(r, \theta, \varphi) \rangle \cdot \hat{r} \, r^2 \, d\Omega. \tag{9.44}
\]

Hence, the differential power radiated into this element of solid angle is simply

\[
\frac{dP}{d\Omega} = \frac{\omega^4 p_0^2}{32 \pi^2 \epsilon_0 c^3} \sin^2 \theta. \tag{9.45}
\]

This formula completely specifies the radiation pattern of an oscillating electric dipole (provided that the dipole is much shorter in length than the wave-length of the emitted radiation). Of course, the power radiated into a given element of solid angle is independent of \(r \), otherwise energy would not be conserved. Finally, the total radiated power is the integral of \(dP / d\Omega \) over all solid angles.

9.4 Thompson scattering

Consider a plane electromagnetic wave of angular frequency \(\omega \) interacting with a free electron of mass \(m_e \) and charge \(-e\). Suppose that the wave is polarized such that its associated electric field is parallel to the \(z \)-axis: \(i.e., \)

\[
E = E_0 \sin(\omega \, t) \, \hat{z}. \tag{9.46}
\]

Recall, from Sect. 4.7, that as long as the electron remains non-relativistic, the force exerted on it by the electromagnetic wave comes predominantly from the associated electric field. Hence, the electron’s equation of motion can be written

\[
m_e \frac{d^2 z}{dt^2} = -e \, E_0 \, \sin(\omega \, t), \tag{9.47}
\]

260
which can be solved to give
\[z = \frac{e E_0}{m_e \omega^2} \sin(\omega t). \]
(9.48)

So, in response to the wave, the electron oscillates backward and forward in the direction of the wave electric field. It follows that the electron can be thought of as a sort of oscillating electric dipole, with dipole moment
\[p = -e z \hat{z} = -p_0 \sin(\omega t) \hat{z}, \]
(9.49)

where \(p_0 = \frac{e^2 E_0}{(m_e \omega^2)}. \) (For the moment, let us not worry about the positively charged component of the dipole.) Now, we know that an oscillating electric dipole emits electromagnetic radiation. Hence, it follows that a free electron placed in the path of a plane electromagnetic wave will radiate. To be more exact, the electron scatters electromagnetic radiation from the wave, since the radiation emitted by the electron is not necessarily in the same direction as the wave, and any energy radiated by the electron is ultimately extracted from the wave. This type of scattering is called Thompson scattering.

It follows from Eq. (9.45) that the differential power scattered from a plane electromagnetic wave by a free electron into solid angle \(\text{d} \Omega \) takes the form
\[\frac{\text{d}P}{\text{d}\Omega} = \frac{e^4 E_0^2}{32\pi^2 \epsilon_0 c^3 m_e^2} \sin^2 \theta. \]
(9.50)

Now, the mean energy flux of the incident electromagnetic wave is written
\[|\langle \mathbf{u} \rangle| = \frac{c \epsilon_0 E_0^2}{2}. \]
(9.51)

It is helpful to introduce a quantity called the differential scattering cross-section. This is defined
\[\frac{\text{d}\sigma}{\text{d}\Omega} = \frac{\text{d}P/\text{d}\Omega}{|\langle \mathbf{u} \rangle|}, \]
(9.52)

and has units of area over solid angle. Somewhat figuratively, we can think of the electron as offering a target of area \(\text{d}\sigma/\text{d}\Omega \) to the incident wave. Any wave energy which falls on this target is scattered into the solid angle \(\text{d}\Omega \). Likewise, we can also define the total scattering cross-section,
\[\sigma = \int \frac{\text{d}\sigma}{\text{d}\Omega} \text{d}\Omega, \]
(9.53)
which has units of area. Again, the electron effectively offers a target of area \(\sigma \) to the incident wave. Any wave energy which falls on this target is scattered in some direction or other. It follows from Eqs. (9.50) and (9.51) that the differential scattering cross-section for Thompson scattering is

\[
\frac{d\sigma}{d\Omega} = r_e^2 \sin^2 \theta,
\]

(9.54)

where the characteristic length

\[
r_e = \frac{e^2}{4\pi \epsilon_0 m_e c^2} = 2.82 \times 10^{-15} \text{ m}
\]

(9.55)

is called the \textit{classical electron radius}. An electron effectively acts like it has a spatial extent \(r_e \) as far as its interaction with electromagnetic radiation is concerned. As is easily demonstrated, the total Thompson scattering cross-section is

\[
\sigma_T = \frac{8 \pi}{3} r_e^2 = 6.65 \times 10^{-29} \text{ m}^2.
\]

(9.56)

Note that both the differential and the total Thompson scattering cross-sections are completely \textit{independent} of the frequency (or wave-length) of the incident radiation.

A scattering cross-section of \(10^{-29} \text{ m}^2 \) does not sound like much. Nevertheless, Thompson scattering is one of the most important types of scattering in the Universe. Consider the Sun. It turns out that the mean mass density of the Sun is similar to that of water: \textit{i.e.}, about \(10^3 \text{ kg m}^{-3} \). Hence, assuming that the Sun is made up predominantly of ionized hydrogen, the mean number density of electrons in the Sun (which, of course, is the same as the number density of protons) is approximately \(n_e \sim 10^3 / m_p \sim 10^{30} \text{ m}^{-3} \), where \(m_p \sim 10^{-27} \text{ kg} \) is the mass of a proton. Let us consider how far, on average, a photon in the Sun travels before being scattered by free electrons. If we think of an individual photon as sweeping out a cylinder of cross-sectional area \(\sigma_T \), then the photon will travel an average length \(l \), such that a cylinder of area \(\sigma_T \) and length \(l \) contains about one free electron, before being scattered. Hence, \(\sigma_T l n_e \sim 1 \), or

\[
l \sim \frac{1}{n_e \sigma_T} \sim 1 \text{ cm}.
\]

(9.57)
Given that the radius of the Sun is approximately 10^9 m, it is clear that solar photons are very strongly scattered by free electrons. In fact, it can easily be demonstrated that it takes a photon emitted in the solar core many thousands of years to fight its way to the surface because of Thompson scattering.

After the “Big Bang”, when the Universe was very hot, it consisted predominantly of ionized hydrogen (and dark matter), and was consequently opaque to electromagnetic radiation, due to Thompson scattering. However, as the Universe expanded, it also cooled, and eventually became sufficiently cold (when the mean temperature was about 1000° C) for any free protons and electrons to combine to form molecular hydrogen. It turns out that molecular hydrogen does not scatter radiation anything like as effectively as free electrons (see the next section). Hence, as soon as the Universe became filled with molecular hydrogen, it effectively became transparent to radiation. Indeed, the so-called cosmic microwave background is the remnant of radiation which was last scattered when the Universe was filled with ionized hydrogen (i.e., when it was about 1000° C). Astronomers can gain a great deal of information about the conditions in the early Universe by studying this radiation.

Incidentally, it is clear from Eqs. (9.55) and (9.56) that the scattering cross-section of a free particle of charge q and mass m is proportional to q^4/m^2. It follows that the scattering of electromagnetic radiation by free electrons is generally very much stronger than the scattering by free protons (assuming that the number densities of both species are similar).

9.5 Rayleigh scattering

Let us now consider the scattering of electromagnetic radiation by neutral atoms. For instance, consider a hydrogen atom. The atom consists of a light electron and a massive proton. As we have seen, the electron scatters radiation much more strongly than the proton, so let us concentrate on the response of the electron to an incident electromagnetic wave. Suppose that the wave electric field is again polarized in the z-direction, and is given by Eq (9.46). We can approximate the
electron’s equation of motion as

\[m_e \frac{d^2 z}{dt^2} = -m_e \omega_0^2 z - e E_0 \sin(\omega t). \]
(9.58)

Here, the second term on the right-hand side represents the perturbing force due to the electromagnetic wave, whereas the first term represents the (linearized) force of electrostatic attraction between the electron and the proton. Indeed, we are very crudely modeling our hydrogen atom as a simple harmonic oscillator of natural frequency \(\omega_0 \). We can think of \(\omega_0 \) as the typical frequency of electromagnetic radiation emitted by the atom after it is transiently disturbed. In other words, in our model, \(\omega_0 \) should match the frequency of one of the spectral lines of hydrogen. More generally, we can extend the above model to deal with just about any type of atom, provided that we set \(\omega_0 \) to the frequency of a spectral line.

We can easily solve Eq. (9.58) to give

\[z = \frac{e E_0}{m_e (\omega^2 - \omega_0^2)} \sin(\omega t). \]
(9.59)

Hence, the dipole moment of the electron takes the form

\[p = -p_0 \sin(\omega t) \hat{z}, \]

where

\[p_0 = \frac{e^2 E_0}{m_e (\omega^2 - \omega_0^2)}. \]
(9.60)

It follows, by analogy with the analysis in the previous section, that the differential and total scattering cross-sections of our model atom take the form

\[\frac{d\sigma}{d\Omega} = \frac{\omega^4}{(\omega^2 - \omega_0^2)^2} r_e^2 \sin^2 \theta, \]

and

\[\sigma = \frac{\omega^4}{(\omega^2 - \omega_0^2)^2} \sigma_T, \]
(9.62)

respectively.

In the limit in which the frequency of the incident radiation is much greater than the natural frequency of the atom, Eqs. (9.61) and (9.62) reduce to the previously obtained expressions for scattering by a free electron. In other words, an
electron in an atom acts very much like a free electron as far as high frequency radiation is concerned. In the opposite limit, in which the frequency of the incident radiation is much less than the natural frequency of the atom, Eqs. (9.61) and (9.62) yield

\[
\frac{d\sigma}{d\Omega} = \left(\frac{\omega}{\omega_0} \right)^4 r_e^2 \sin^2 \theta, \tag{9.63}
\]

and

\[
\sigma = \left(\frac{\omega}{\omega_0} \right)^4 \sigma_T, \tag{9.64}
\]

respectively. This type of scattering is called Rayleigh scattering. There are two features of Rayleigh scattering which are worth noting. First of all, it is much weaker than Thompson scattering (since \(\omega \ll \omega_0 \)). Secondly, unlike Thompson scattering, it is highly frequency dependent. Indeed, it is clear, from the above formulae, that high frequency (short wave-length) radiation is scattered far more effectively than low frequency (long wave-length) radiation.

The most common example of Rayleigh scattering is the scattering of visible radiation from the Sun by neutral atoms (mostly Nitrogen and Oxygen) in the upper atmosphere. The frequency of visible radiation is much less than the typical emission frequencies of a Nitrogen or Oxygen atom (which lie in the ultra-violet band), so it is certainly the case that \(\omega \ll \omega_0 \). When the Sun is low in the sky, radiation from it has to traverse a comparatively long path through the atmosphere before reaching us. Under these circumstances, the scattering of direct solar light by neutral atoms in the atmosphere becomes noticeable (it is not noticeable when the Sun is high in the sky, and radiation from it consequently only has to traverse a relatively short path through the atmosphere before reaching us). According to Eq. (9.64), blue light is scattered slightly more strongly than red light (since blue light has a slightly higher frequency than red light). Hence, when the Sun is low in the sky, it appears less bright, due to atmospheric scattering. However, it also appears redder than normal, because more blue light than red light is scattered out of the solar light-rays, leaving an excess of red light. Likewise, when we look up at the sky, it does not appear black (like the sky on the Moon) because of light from solar radiation which grazes the atmosphere being scattered downward towards the surface of the Earth. Again, since blue light is scattered more
effectively than red light, there is an excess of blue light scattered downward, and so the sky appears blue.

Light from the Sun is unpolarized. However, when it is scattered it becomes polarized, because light is scattered preferentially in some directions rather than others. Consider a light-ray from the Sun which grazes the Earth’s atmosphere. The light-ray contains light which is polarized such that the electric field is vertical to the ground, and light which is polarized such that the electric field is horizontal to the ground (and perpendicular to the path of the light-ray), in equal amounts. However, due to the \(\sin^2 \theta \) factor in the dipole emission formula (9.45) (where, in this case, \(\theta \) is the angle between the direction of the wave electric field and the direction of scattering), very little light is scattered downward from the vertically polarized light compared to the horizontally polarized light. Moreover, the light scattered from the horizontally polarized light is such that its electric field is preferentially perpendicular, rather than parallel, to the direction of propagation of the solar light-ray (i.e., the direction to the Sun). Consequently, the blue light from the sky is preferentially polarized in a direction perpendicular to the direction to the Sun.

9.6 Propagation in a dielectric medium

Consider the propagation of an electromagnetic wave through a uniform dielectric medium of dielectric constant \(\epsilon \). According to Eqs. (6.8) and (6.10), the dipole moment per unit volume induced in the medium by the wave electric field \(\mathbf{E} \) is

\[
\mathbf{P} = \varepsilon_0 (\epsilon - 1) \mathbf{E}.
\]

(9.65)

There are no free charges or free currents in the medium. There is also no bound charge density (since the medium is uniform), and no magnetization current density (since the medium is non-magnetic). However, there is a polarization current due to the time-variation of the induced dipole moment per unit volume. According to Eq. (6.57), this current is given by

\[
\mathbf{j} = \frac{\partial \mathbf{P}}{\partial t}.
\]

(9.66)
Hence, Maxwell’s equations take the form

\[\nabla \cdot \mathbf{E} = 0, \] \hspace{1cm} (9.67)
\[\nabla \cdot \mathbf{B} = 0, \] \hspace{1cm} (9.68)
\[\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \] \hspace{1cm} (9.69)
\[\nabla \times \mathbf{B} = \mu_0 \mathbf{j} + \varepsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t}. \] \hspace{1cm} (9.70)

According to Eqs. (9.65) and (9.66), the last of the above equations can be rewritten

\[\nabla \times \mathbf{B} = \varepsilon_0 \mu_0 (\varepsilon - 1) \frac{\partial \mathbf{E}}{\partial t} + \varepsilon_0 \mu_0 \frac{\partial \mathbf{E}}{c^2 \partial t} = \varepsilon \frac{\partial \mathbf{E}}{\partial t}, \] \hspace{1cm} (9.71)

since \(c = (\varepsilon_0 \mu_0)^{-1/2} \). Thus, Maxwell’s equations for the propagation of electromagnetic waves through a dielectric medium are the same as Maxwell’s equations for the propagation of waves through a vacuum (see Sect. 4.7), except that \(c \rightarrow c/n \), where

\[n = \sqrt{\varepsilon} \] \hspace{1cm} (9.72)

is called the refractive index of the medium in question. Hence, we conclude that electromagnetic waves propagate through a dielectric medium slower than through a vacuum by a factor \(n \) (assuming, of course, that \(n > 1 \)). This conclusion (which was reached long before Maxwell’s equations were invented) is the basis of all geometric optics involving refraction.

9.7 Dielectric constant of a gaseous medium

In Sect. 9.5, we discussed a rather crude model of an atom interacting with an electromagnetic wave. According to this model, the dipole moment \(\mathbf{p} \) of the atom induced by the wave electric field \(\mathbf{E} \) is given by

\[\mathbf{p} = \frac{e^2}{m_e (\omega_0^2 - \omega^2)} \mathbf{E}, \] \hspace{1cm} (9.73)

where \(\omega_0 \) is the natural frequency of the atom (i.e., the frequency of one of the atom’s spectral lines), and \(\omega \) the frequency of the incident radiation. Suppose
that there are n atoms per unit volume. It follows that the induced dipole moment per unit volume of the assemblage of atoms takes the form

$$\mathbf{P} = \frac{n e^2}{m_e (\omega_0^2 - \omega^2)} \mathbf{E}.$$ \hfill (9.74)

Finally, a comparison with Eq. (9.65) yields the following expression for the dielectric constant of the collection of atoms,

$$\varepsilon = 1 + \frac{n e^2}{\varepsilon_0 m_e (\omega_0^2 - \omega^2)}.$$ \hfill (9.75)

The above formula works fairly well for dilute gases, although it is, of course, necessary to sum over all species and all important spectral lines.

Note that, in general, the dielectric “constant” of a gaseous medium (as far as electromagnetic radiation is concerned) is a function of the wave frequency, ω. Since the effective wave speed through the medium is $c/\sqrt{\varepsilon}$, it follows that waves of different frequencies traveling through a gaseous medium do so at different speeds. This phenomenon is called dispersion, since it can be shown to cause short wave-pulses to spread out as they propagate through the medium. At low frequencies ($\omega \ll \omega_0$), however, our expression for ε becomes frequency independent, so there is no dispersion of low frequency waves by a gaseous medium.

9.8 Dielectric constant of a plasma

A plasma is very similar to a gaseous medium, except that the electrons are free: i.e., there is no restoring force due to nearby atomic nuclii. Hence, we can obtain an expression for the dielectric constant of a plasma from Eq. (9.75) by setting ω_0 to zero, and n to the number density of electrons, n_e. We obtain

$$\varepsilon = 1 - \frac{\omega_p^2}{\omega^2},$$ \hfill (9.76)

where the characteristic frequency

$$\omega_p = \sqrt{\frac{n_e e^2}{\varepsilon_0 m_e}}.$$ \hfill (9.77)
is called the plasma frequency. We can immediately see that formula (9.76) is problematic. For frequencies above the plasma frequency, the dielectric constant of a plasma is less than unity. Hence, the refractive index \(n = \sqrt{\varepsilon} \) is also less than unity. This would seem to imply that high frequency electromagnetic waves can propagate through a plasma with a velocity \(c/n \) which is greater than the velocity of light in a vacuum. Does this violate the principles of relativity? On the other hand, for frequencies below the plasma frequency, the dielectric constant is negative, which would seem to imply that the refractive index \(n = \sqrt{\varepsilon} \) is imaginary. How should we interpret this?

Consider an infinite plane-wave, of frequency, \(\omega \), greater than the plasma frequency, propagating through a plasma. Suppose that the wave electric field takes the form

\[
E = E_0 e^{i(kx - \omega t)} \hat{z},
\]

where it is understood that the physical electric field is the real part of the above expression. A peak or trough of the above wave travels at the so-called phase velocity, which is given by

\[
\nu_p = \frac{\omega}{k}.
\]

Now, we have also seen that the phase velocity of electromagnetic waves in a dielectric medium is \(\nu_p = c/n = c/\sqrt{\varepsilon} \), so

\[
\omega^2 = \frac{k^2 c^2}{\varepsilon}.
\]

It follows from Eq. (9.76) that

\[
\omega^2 = k^2 c^2 + \omega_p^2
\]

in a plasma. The above type of expression, which effectively determines the wave frequency, \(\omega \), as a function of the wave-number, \(k \), for the medium in question, is called a dispersion relation (since, amongst other things, it determines how fast wave-pulses disperse in the medium). According to the above dispersion relation, the phase velocity of high frequency waves propagating through a plasma is given by

\[
\nu_p = \frac{c}{\sqrt{1 - \omega_p^2/\omega^2}},
\]
which is indeed greater than c. However, the theory of relativity does not forbid this. What the theory of relativity says is that information cannot travel at a velocity greater than c. And the peaks and troughs of an infinite plane-wave, such as (9.78), do not carry any information.

We now need to consider how we could transmit information through a plasma (or any other dielectric medium) by means of electromagnetic waves. The easiest way would be to send a series of short discrete wave-pulses through the plasma, so that we could encode information in a sort of Morse code. We can build up a wave-pulse from a suitable superposition of infinite plane-waves of different frequencies and wave-lengths: e.g.,

$$E_z(x, t) = \int F(k) e^{i\phi(k)} dk,$$ \hspace{1cm} (9.83)

where $\phi(k) = k x - \omega(k) t$, and $\omega(k)$ is determined from the dispersion relation (9.81). Now, it turns out that a relatively short wave-pulse can only be built up from a superposition of plane-waves with a relatively wide range of different k values. Hence, for a short wave-pulse, the integrand in the above formula consists of the product of a fairly slowly varying function, $F(k)$, and a rapidly oscillating function, $\exp[i \phi(k)]$. The latter function is rapidly oscillating because the phase $\phi(k)$ varies very rapidly with k, relative to $F(k)$. We expect the net result of integrating the product of a slowly varying function and rapidly oscillating function to be small, since the oscillations will generally average to zero. It follows that the integral (9.83) is dominated by those regions of k-space for which $\phi(k)$ varies least rapidly with k. Hence, the peak of the wave-pulse most likely corresponds to a maximum or minimum of $\phi(k)$: i.e.,

$$\frac{d\phi}{dk} = x - \frac{d\omega}{dk} t = 0.$$ \hspace{1cm} (9.84)

Thus, we infer that the velocity of the wave-pulse (which corresponds to the velocity of the peak) is given by

$$v_g = \frac{d\omega}{dk}.$$ \hspace{1cm} (9.85)

This velocity is called the group velocity, and is different to the phase velocity in dispersive media, for which ω is not directly proportional to k. (Of course,
in a vacuum, $\omega = k c$, and both the phase and group velocities are equal to c.)

The upshot of the above discussion is that information (i.e., an individual wave-pulse) travels through a dispersive media at the group velocity, rather than the phase velocity. Hence, relativity demands that the group velocity, rather than the phase velocity, must always be less than c.

What is the group velocity for high frequency waves propagating through a plasma? Well, differentiation of the dispersion relation (9.81) yields

$$\frac{\omega}{k} \frac{d\omega}{dk} = \nu_p \nu_g = c^2. $$

(9.86)

Hence, it follows from Eq. (9.82) that

$$\nu_g = c \sqrt{1 - \frac{\omega_p^2}{\omega^2}}, $$

(9.87)

which is less than c. We thus conclude that the dispersion relation (9.81) is indeed consistent with relativity.

Let us now consider the propagation of low frequency electromagnetic waves through a plasma. We can see, from Eqs. (9.82) and (9.87), that when the wave frequency, ω, falls below the plasma frequency, ω_p, both the phase and group velocities become imaginary. This indicates that the wave attenuates as it propagates. Consider, for instance, a plane-wave of frequency $\omega < \omega_p$. According to the dispersion relation (9.81), the associated wave-number is given by

$$k = i \sqrt{\omega_p^2 - \omega^2} / c = i |k|. $$

(9.88)

Hence, the wave electric field takes the form

$$E_z = E_0 e^{i(|k|x - \omega t)} = E_0 e^{-|k|x} e^{-i \omega t}. $$

(9.89)

Indeed, it can be seen that for $\omega < \omega_p$ electromagnetic waves in a plasma take the form of decaying standing waves, rather than traveling waves. We conclude that an electromagnetic wave, of frequency less than the plasma frequency, which is incident on a plasma will not propagate through the plasma. Instead, it will be totally reflected.
We can be sure that the incident wave is reflected by the plasma, rather than absorbed, by considering the energy flux of the wave in the plasma. It is easily demonstrated that the energy flux of an electromagnetic wave can be written

\[\mathbf{u} = \frac{\mathbf{E} \times \mathbf{B}}{\mu_0} = \frac{\mathbf{E}^2}{\mu_0 \omega} \mathbf{k}. \] (9.90)

For a wave with a real frequency and a complex \(\mathbf{k} \)-vector, the above formula generalizes to

\[\mathbf{u} = \frac{|\mathbf{E}|^2}{\mu_0 \omega} \text{Re}(\mathbf{k}). \] (9.91)

However, according to Eq. (9.88), the \(\mathbf{k} \)-vector for a low frequency electromagnetic wave in a plasma is purely imaginary. It follows that the associated energy flux is zero. Hence, any low frequency wave which is incident on the plasma must be totally reflected, since if there were any absorption of the wave energy then there would be a net energy flux into the plasma.

The outermost layer of the Earth’s atmosphere consists of a partially ionized zone known as the ionosphere. The plasma frequency in the ionosphere is about 1 MHz, which lies at the upper end of the medium-wave band of radio frequencies. It follows that low frequency radio signals (i.e., all signals in the long-wave band, and most in the medium-wave band) are reflected off the ionosphere. For this reason, such signals can be detected over the horizon. Indeed, long-wave radio signals reflect multiple times off the ionosphere, with very little loss (they also reflect multiple times off the Earth, which is enough of a conductor to act as a mirror for radio waves), and can consequently be detected all over the world. On the other hand, high frequency radio signals (i.e., all signals in the FM band) pass straight through the ionosphere. For this reason, such signals cannot be detected over the horizon, which accounts for the relatively local coverage of FM radio stations. Note, from Eq. (9.77), that the plasma frequency is proportional to the square root of the number density of free electrons. Now, the level of ionization in the ionosphere is maintained by ultra-violet light from the Sun (which effectively knocks electrons out of neutral atoms). Of course, there is no such light at night, and the number density of free electrons in the ionosphere consequently drops as electrons and ions gradually recombine. It follows that the
plasma frequency in the ionosphere also drops at night, giving rise to a marked
deterioration in the reception of distant medium-wave radio stations.

9.9 Faraday rotation

Consider a high frequency electromagnetic wave propagating, along the z-axis,
through a plasma with a longitudinal equilibrium magnetic field, $\mathbf{B} = B_0 \mathbf{\hat{z}}$. The
equation of motion of an individual electron making up the plasma takes the form

$$m_e \frac{d\mathbf{v}}{dt} = -e (\mathbf{E} + B_0 \mathbf{v} \times \mathbf{\hat{z}}), \quad (9.92)$$

where the first term on the right-hand side is due to the wave electric field, and
the second to the equilibrium magnetic field. (As usual, we can neglect the wave
magnetic field, provided that the electron motion remains non-relativistic.) Of
course, $\mathbf{v} = d\mathbf{r}/dt$, where \mathbf{r} is the electron displacement from its equilibrium
position. Suppose that all perturbed quantities vary with time like $\exp(-i \omega t)$,
where ω is the wave frequency. It follows that

$$m_e \omega^2 x = e (E_x - i \omega B_0 y), \quad (9.93)$$
$$m_e \omega^2 y = e (E_y + i \omega B_0 x). \quad (9.94)$$

It is helpful to define

$$s_\pm = x \pm i y, \quad (9.95)$$
$$E_\pm = E_x \pm i E_y. \quad (9.96)$$

Using these new variables, Eqs. (9.93) and (9.94) can be rewritten

$$m_e \omega^2 s_\pm = e (E_\pm \mp \omega B_0 s_\pm), \quad (9.97)$$

which can be solved to give

$$s_\pm = \frac{e E_\pm}{m_e \omega (\omega \pm \Omega)}, \quad (9.98)$$
where \(\Omega = eB_0/m_e \) is the so-called cyclotron frequency (i.e., the characteristic gyration frequency of free electrons in the equilibrium magnetic field—see Sect. 3.7).

In terms of \(s_{\pm} \), the electron displacement can be written
\[
\mathbf{r} = s_+ e^{i(k_+ z - \omega t)} \mathbf{e}_+ + s_- e^{i(k_- z - \omega t)} \mathbf{e}_- ,
\]
(9.99)
where
\[
\mathbf{e}_\pm = \frac{1}{2} (\hat{x} \mp i \hat{y}) .
\]
(9.100)
Likewise, in terms of \(E_{\pm} \), the wave electric field takes the form
\[
\mathbf{E} = E_+ e^{i(k_+ z - \omega t)} \mathbf{e}_+ + E_- e^{i(k_- z - \omega t)} \mathbf{e}_- .
\]
(9.101)

Obviously, the actual displacement and electric field are the \textit{real parts} of the above expressions. It follows from Eq. (9.101) that \(E_+ \) corresponds to a constant amplitude electric field which rotates \textit{anti-clockwise} in the \(x\)-\(y \) plane (looking down the \(z \)-axis) as the wave propagates in the \(+z \)-direction, whereas \(E_- \) corresponds to a constant amplitude electric field which rotates \textit{clockwise}. The former type of wave is termed \textit{right-hand circularly polarized}, whereas the latter is termed \textit{left-hand circularly polarized}. Note also that \(s_+ \) and \(s_- \) correspond to \textit{circular} electron motion in opposite senses. With these insights, we conclude that Eq. (9.98) indicates that individual electrons in the plasma have a slightly different response to right- and left-hand circularly polarized waves in the presence of a longitudinal magnetic field.

Following the analysis of Sect. 9.7, we can deduce from Eq. (9.98) that the dielectric constant of the plasma for right- and left-hand circularly polarized waves is
\[
e_\pm = 1 - \frac{\omega_p^2}{\omega (\omega \pm \Omega)} ,
\]
(9.102)
respectively. Hence, according to Eq. (9.80), the dispersion relation for right- and left-hand circularly polarized waves becomes
\[
k_{\pm}^2 c^2 = \omega^2 \left[1 - \frac{\omega_p^2}{\omega (\omega \pm \Omega)} \right] ,
\]
(9.103)
respectively. In the limit $\omega \gg \omega_p, \Omega$, we obtain

$$k_{\pm} \simeq k \pm \Delta k, \quad (9.104)$$

where $k = \omega [1 - (1/2) \omega_p^2/\omega^2]/c$ and $\Delta k = (1/2) (\omega_p^2/\omega^2) \Omega/c$. In other words, in a magnetized plasma, right- and left-hand circularly polarized waves of the same frequency have slightly different wave-numbers.

Let us now consider the propagation of a linearly polarized electromagnetic wave through the plasma. Such a wave can be constructed via a superposition of right- and left-hand circularly polarized waves of equal amplitudes. So, the wave electric field can be written

$$\textbf{E} = E_0 \left[e^{i(k_{+} z - \omega t)} \textbf{e}_+ + e^{i(k_{-} z - \omega t)} \textbf{e}_- \right]. \quad (9.105)$$

It can easily be seen that at $z = 0$ the wave electric field is aligned along the x-axis. If right- and left-hand circularly polarized waves of the same frequency have the same wave-number ($i.e.,$ if $k_{+} = k_{-}$) then the wave electric field will continue to be aligned along the x-axis as the wave propagates in the $+z$-direction: $i.e.,$ we will have a standard linearly polarized wave. However, we have just demonstrated that, in the presence of a longitudinal magnetic field, the wave-numbers k_{+} and k_{-} are slightly different. What effect does this have on the polarization of the wave?

Taking the real part of Eq. (9.105), and making use of Eq. (9.104), and some standard trigonometrical identities, we obtain

$$\textbf{E} = E_0 \left[\cos(k_{+} z - \omega t) \cos(\Delta k z), \cos(k_{-} z - \omega t) \sin(\Delta k z), 0 \right]. \quad (9.106)$$

The polarization angle of the wave (which is a convenient measure of its plane of polarization) is given by

$$\varphi = \tan^{-1}(E_y/E_x) = \Delta k z. \quad (9.107)$$

Thus, we conclude that in the presence of a longitudinal magnetic field the polarization angle rotates as as the wave propagates through the plasma. This effect is known as Faraday rotation. It is clear, from the above expression, that the rate of advance of the polarization angle with distance travelled by the wave is given by

$$\frac{d\varphi}{dz} = \Delta k = \frac{\omega_p^2 \Omega}{2 \omega^2 c} = \frac{e^3}{2 \varepsilon_0 m_e^2 c} \frac{n_e B_0}{\omega^2}. \quad (9.108)$$
Hence, a linearly polarized electromagnetic wave which propagates through a plasma with a (slowly) varying electron number density, \(n_e(z) \), and longitudinal magnetic field, \(B_0(z) \), has its plane of polarization rotated through a total angle

\[
\Delta \varphi = \varphi - \varphi_0 = \frac{e^3}{2 \varepsilon_0 m_e^2 c} \frac{1}{\omega^2} \int n_e(z) B_0(z) \, dz. \tag{9.109}
\]

Note the very strong inverse variation of \(\Delta \varphi \) with \(\omega \).

Pulsars are rapidly rotating neutron stars which emit regular blips of highly polarized radio waves. Hundreds of such objects have been found in our galaxy since the first was discovered in 1967. By measuring the variation of the angle of polarization, \(\varphi \), of radio emission from a pulsar with frequency, \(\omega \), astronomers can effectively determine the line integral of \(n_e B_0 \) along the straight-line joining the pulsar to the Earth using formula (9.109). Here, \(n_e \) is the number density of free electrons in the interstellar medium, whereas \(B_0 \) is the parallel component of the galactic magnetic field. Obviously, in order to achieve this, astronomers must make the reasonable assumption that the radiation was emitted by the pulsar with a common angle of polarization, \(\varphi_0 \), over a wide range of different frequencies. By fitting Eq. (9.109) to the data, and then extrapolating to large \(\omega \), it is then possible to determine \(\varphi_0 \), and, hence, the amount, \(\Delta \varphi(\omega) \), through which the polarization angle of the radiation has rotated, at a given frequency, during its passage to Earth.

9.10 Propagation in a conductor

Consider the propagation of an electromagnetic wave through a conducting medium which obeys Ohm’s law:

\[
j = \sigma \mathbf{E}. \tag{9.110}
\]

Here, \(\sigma \) is the conductivity of the medium in question. Maxwell’s equations for the wave take the form:

\[
\nabla \cdot \mathbf{E} = 0, \tag{9.111}
\]

\[
\nabla \cdot \mathbf{B} = 0, \tag{9.112}
\]
\[\nabla \times E = -\frac{\partial B}{\partial t}, \]
\[\nabla \times B = \mu_0 j + \varepsilon \varepsilon_0 \mu_0 \frac{\partial E}{\partial t}, \]
where \(\varepsilon \) is the dielectric constant of the medium. It follows, from the above equations, that

\[\nabla \times \nabla \times E = -\nabla^2 E = -\frac{\partial}{\partial t} \left[\mu_0 \sigma E + \varepsilon \varepsilon_0 \mu_0 \frac{\partial E}{\partial t} \right]. \]

Looking for a wave-like solution of the form

\[E = E_0 e^{i(kz - \omega t)}, \]
we obtain the dispersion relation

\[k^2 = \mu_0 \omega (\varepsilon \varepsilon_0 \omega + i \sigma). \]

Consider a “poor” conductor for which \(\sigma \ll \varepsilon \varepsilon_0 \omega \). In this limit, the dispersion relation (9.117) yields

\[k \approx n \frac{\omega}{c} + i \frac{\sigma}{2} \sqrt{\frac{\mu_0}{\varepsilon \varepsilon_0}}, \]
where \(n = \sqrt{\varepsilon} \) is the refractive index. Substitution into Eq. (9.116) gives

\[E = E_0 e^{-z/d} e^{i(k_r z - \omega t)}, \]
where

\[d = \frac{2}{\sigma} \sqrt{\frac{\varepsilon \varepsilon_0}{\mu_0}}, \]
and \(k_r = n \omega/c \). Thus, we conclude that the amplitude of an electromagnetic wave propagating through a conductor decays exponentially on some length-scale, \(d \), which is termed the skin-depth. Note, from Eq. (9.120), that the skin-depth for a poor conductor is independent of the frequency of the wave. Note, also, that \(k_r d \gg 1 \) for a poor conductor, indicating that the wave penetrates many wave-lengths into the conductor before decaying away.
Consider a “good” conductor for which $\sigma \gg \epsilon \epsilon_0 \omega$. In this limit, the dispersion relation (9.117) yields

$$k \simeq \sqrt{i \mu_0 \sigma \omega}. \quad (9.121)$$

Substitution into Eq. (9.116) again gives Eq. (9.119), with

$$d = \frac{1}{k_r} = \sqrt{\frac{2}{\mu_0 \sigma \omega}}. \quad (9.122)$$

It can be seen that the skin-depth for a good conductor decreases with increasing wave frequency. The fact that $k_r d = 1$ indicates that the wave only penetrates a few wave-lengths into the conductor before decaying away.

Now the power per unit volume dissipated via ohmic heating in a conducting medium takes the form

$$P = \mathbf{j} \cdot \mathbf{E} = \sigma \mathbf{E}^2. \quad (9.123)$$

Consider an electromagnetic wave of the form (9.119). The mean power dissipated per unit area in the region $z > 0$ is written

$$\langle P \rangle = \frac{1}{2} \int_0^\infty \sigma E_0^2 e^{-2z/d} \, dz = \frac{d \sigma}{4} E_0^2 = \frac{d}{\mu_0 \omega} E_0^2, \quad (9.124)$$

for a good conductor. Now, according to Eq. (9.91), the mean electromagnetic power flux into the region $z > 0$ takes the form

$$\langle \mathbf{u} \rangle = \left. \frac{\mathbf{E} \times \mathbf{B} \cdot \mathbf{\hat{z}}}{\mu_0} \right|_{z=0} = \frac{1}{2} \frac{\mathbf{E}_0^2 k_r}{\mu_0 \omega} = \frac{d \sigma}{8 \mu_0 \omega} E_0^2. \quad (9.125)$$

It is clear, from a comparison of the previous two equations, that all of the wave energy which flows into the region $z > 0$ is dissipated via ohmic heating. We thus conclude that the attenuation of an electromagnetic wave propagating through a conductor is a direct consequence of ohmic power losses.

Consider a typical metallic conductor such as copper, whose electrical conductivity at room temperature is about 6×10^7 (\(\Omega \text{ m}\))$^{-1}$. Copper, therefore, acts as a good conductor for all electromagnetic waves of frequency below about 10^{18} Hz. The skin-depth in copper for such waves is thus

$$d = \sqrt{\frac{2}{\mu_0 \sigma \omega}} \simeq \frac{6}{\sqrt{\omega \text{(Hz)}}} \text{ cm}. \quad (9.126)$$
It follows that the skin-depth is about 6 cm at 1 Hz, but only about 2 mm at 1 kHz. This gives rise to the so-called skin-effect in copper wires, by which an oscillating electromagnetic signal of increasing frequency, transmitted along such a wire, is confined to an increasingly narrow layer (whose thickness is of order the skin-depth) on the surface of the wire.

The conductivity of sea water is only about $\sigma \approx 5 \, (\Omega \, \text{m})^{-1}$. However, this is still sufficiently high for sea water to act as a good conductor for all radio frequency electromagnetic waves (i.e., $\omega < 10^9$ Hz). The skin-depth at 1 MHz ($\lambda \approx 2$ km) is about 0.2 m, whereas that at 1 kHz ($\lambda \approx 2000$ km) is still only about 7 m. This obviously poses quite severe restrictions for radio communication with submerged submarines. Either the submarines have to come quite close to the surface to communicate (which is dangerous), or the communication must be performed with extremely low frequency (ELF) waves (i.e., $f < 100$ Hz). Unfortunately, such waves have very large wave-lengths ($\lambda > 20,000$ km), which means that they can only be efficiently generated by extremely large antennas.

9.11 Dielectric constant of a collisional plasma

We have now investigated electromagnetic wave propagation through two different media possessing free electrons: plasmas (see Sect. 9.8), and ohmic conductors (see Sect. 9.10). In the first case, we obtained the dispersion relation (9.81), whereas in the second we obtained the quite different dispersion relation (9.117). This leads us, quite naturally, to ask what the essential distinction is between the response of free electrons in a plasma to an electromagnetic wave, and that of free electrons in an ohmic conductor. It turns out that the main distinction is the relative strength of electron-ion collisions.

In the presence of electron-ion collisions, we can model the equation of motion of an individual electron in a plasma or a conductor as

$$ m_e \frac{dv}{dt} + m_e v v = -e E, \quad (9.127) $$

where E is the wave electric field. The collision term (i.e., the second term on the left-hand side) takes the form of a drag force proportional to $-v$. In the
absence of the wave electric field, this force damps out any electron motion on the typical time-scale ν^{-1}. Since, in reality, an electron loses virtually all of its directed momentum during a collision with a much more massive ion, we can regard ν as the effective electron-ion collision frequency.

Assuming the usual $\exp(-i\omega t)$ time-dependence of perturbed quantities, we can solve Eq. (9.127) to give

$$\mathbf{v} = -i\omega \mathbf{r} = -\frac{i\omega e \mathbf{E}}{m_e \omega (\omega + i\nu)}.$$ \hspace{1cm} (9.128)

Hence, the perturbed current density can be written

$$\mathbf{j} = -e n_e \mathbf{v} = \frac{in_e e^2 \mathbf{E}}{m_e (\omega + i\nu)},$$ \hspace{1cm} (9.129)

where n_e is the number density of free electrons. It follows that the effective conductivity of the medium takes the form

$$\sigma = \frac{\mathbf{j}}{\mathbf{E}} = \frac{in_e e^2}{m_e (\omega + i\nu)}.$$ \hspace{1cm} (9.130)

Now, the mean rate of ohmic heating per unit volume in the medium is written

$$\langle P \rangle = \frac{1}{2} \text{Re}(\sigma) E_0^2,$$ \hspace{1cm} (9.131)

where E_0 is the amplitude of the wave electric field. Note that only the real part of σ contributes to ohmic heating, because the perturbed current must be in phase with the wave electric field in order for there to be a net heating effect. An imaginary σ gives a perturbed current which is in phase quadrature with the wave electric field. In this case, there is zero net transfer of power between the wave and the plasma over a wave period. We can see from Eq. (9.130) that in the limit in which the wave frequency is much larger than the collision frequency (i.e., $\omega \gg \nu$), the effective conductivity of the medium becomes purely imaginary:

$$\sigma \approx \frac{in_e e^2}{m_e \omega}.$$ \hspace{1cm} (9.132)
In this limit, there is no loss of wave energy due to ohmic heating, and the medium acts like a conventional plasma. In the opposite limit, in which the wave frequency is much less than the collision frequency \(\omega \ll \nu \), the effective conductivity becomes purely real:

\[
\sigma \simeq \frac{n_e e^2}{m_e \nu}.
\]

(9.133)

In this limit, ohmic heating losses are significant, and the medium acts like a conventional ohmic conductor.

Following the analysis of Sect. 9.7, we can derive the following dispersion relation from Eq. (9.128):

\[
k^2 c^2 = \omega^2 - \frac{\omega_p^2 \omega}{\omega + i \nu}.
\]

(9.134)

It can be seen that, in the limit \(\omega \gg \nu \), the above dispersion relation reduces to the dispersion relation (9.81) for a conventional (\textit{i.e.}, collisionless) plasma. In the opposite limit, we obtain

\[
k^2 = \frac{\omega^2}{c^2} + i \frac{\omega_p^2 \omega}{\nu c^2} = \mu_0 \omega (\varepsilon_0 \omega + i \sigma).
\]

(9.135)

where use has been made of Eq (9.133). Of course, the above dispersion relation is identical to the dispersion relation (9.117) (with \(\varepsilon = 1 \)) which we previously derived for an ohmic conductor.

Our main conclusion from this subsection is that the dispersion relation (9.134) can be used to describe electromagnetic wave propagation through both a collisional plasma and an ohmic conductor. We can also deduce that in the low frequency limit, \(\omega \ll \nu \), a collisional plasma acts very much like an ohmic conductor, whereas in the high frequency limit, \(\omega \gg \nu \), an ohmic conductor acts very much like a collisionless plasma.

9.12 Reflection at a dielectric boundary

An electromagnetic wave of real (positive) frequency \(\omega \) can be written

\[
\mathbf{E}(\mathbf{r}, t) = \mathbf{E}_0 e^{i(kr - \omega t)},
\]

(9.136)
9 ELECTROMAGNETIC RADIATION

9.12 Reflection at a dielectric boundary

The wave-vector, \mathbf{k}, indicates the direction of propagation of the wave, and also its phase-velocity, v, via

$$v = \frac{\omega}{k}. \quad (9.138)$$

Since the wave is transverse in nature, we must have $\mathbf{E}_0 \cdot \mathbf{k} = \mathbf{B}_0 \cdot \mathbf{k} = 0$. Finally, the familiar Maxwell equation

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \quad (9.139)$$

leads us to the following relation between the constant vectors \mathbf{E}_0 and \mathbf{B}_0:

$$\mathbf{B}_0 = \frac{\mathbf{k} \times \mathbf{E}_0}{v}. \quad (9.140)$$

Here, $\mathbf{\hat{k}} = \mathbf{k}/k$ is a unit vector pointing in the direction of wave propagation.

Suppose that the plane $z = 0$ forms the boundary between two different dielectric media. Let medium 1, of refractive index n_1, occupy the region $z < 0$, whilst medium 2, of refractive index n_2, occupies the region $z > 0$. Let us investigate what happens when an electromagnetic wave is incident on this boundary from medium 1.
9 ELECTROMAGNETIC RADIATION 9.12 Reflection at a dielectric boundary

Consider, first of all, the simple case of incidence normal to the boundary (see Fig. 55). In this case, \(\hat{k} = +\hat{z} \) for the incident and transmitted waves, and \(\hat{k} = -\hat{z} \) for the reflected wave. Without loss of generality, we can assume that the incident wave is polarized in the \(x \)-direction. Hence, using Eq. (9.140), the incident wave can be written

\[
E(z, t) = E_i e^{i(k_1 z - \omega t)} \hat{x},
\]

(9.141)

\[
B(z, t) = \frac{E_i}{v_1} e^{i(k_1 z - \omega t)} \hat{y},
\]

(9.142)

where \(v_1 = c/n_1 \) is the phase-velocity in medium 1, and \(k_1 = \omega/v_1 \). Likewise, the reflected wave takes the form

\[
E(z, t) = E_r e^{i(-k_1 z - \omega t)} \hat{x},
\]

(9.143)

\[
B(z, t) = -\frac{E_r}{v_1} e^{i(-k_1 z - \omega t)} \hat{y}.
\]

(9.144)

Finally, the transmitted wave can be written

\[
E(z, t) = E_t e^{i(k_2 z - \omega t)} \hat{x},
\]

(9.145)

\[
B(z, t) = \frac{E_t}{v_2} e^{i(k_2 z - \omega t)} \hat{y},
\]

(9.146)

where \(v_2 = c/n_2 \) is the phase-velocity in medium 2, and \(k_2 = \omega/v_2 \).

For the case of normal incidence, the electric and magnetic components of all three waves are parallel to the boundary between the two dielectric media. Hence, the appropriate boundary conditions to apply at \(z = 0 \) are

\[
E_\parallel_1 = E_\parallel_2,
\]

(9.147)

\[
B_\parallel_1 = B_\parallel_2.
\]

(9.148)

The latter condition derives from the general boundary condition \(H_\parallel_1 = H_\parallel_2 \), and the fact that \(B = \mu_0 H \) in both media (which are assumed to be non-magnetic).

Application of the boundary condition (9.147) yields

\[
E_i + E_r = E_t.
\]

(9.149)
Likewise, application of the boundary condition (9.148) gives

\[
\frac{E_i - E_r}{v_1} = \frac{E_t}{v_2},
\]

(9.150)

or

\[
E_i - E_r = \frac{v_1}{v_2} E_t = \frac{n_2}{n_1} E_t,
\]

(9.151)

since \(v_1/v_2 = n_2/n_1\). Equations (9.149) and (9.151) can be solved to give

\[
E_r = \left(\frac{n_1 - n_2}{n_1 + n_2} \right) E_i, \quad (9.152)
\]

\[
E_t = \left(\frac{2n_1}{n_1 + n_2} \right) E_t. \quad (9.153)
\]

Thus, we have determined the amplitudes of the reflected and transmitted waves in terms of the amplitude of the incident wave.

It can be seen, first of all, that if \(n_1 = n_2\) then \(E_r = 0\) and \(E_t = E_i\). In other words, if the two media have the same indices of refraction then there is no reflection at the boundary between them, and the transmitted wave is consequently equal in amplitude to the incident wave. On the other hand, if \(n_1 \neq n_2\) then there is some reflection at the boundary. Indeed, the amplitude of the reflected wave is roughly proportional to the difference between \(n_1\) and \(n_2\). This has important practical consequences. We can only see a clean pane of glass in a window because some of the light incident at an air/glass boundary is reflected, due to the different refractive indices of air and glass. As is well-known, it is a lot more difficult to see glass when it is submerged in water. This is because the refractive indices of glass and water are quite similar, and so there is very little reflection of light incident on a water/glass boundary.

According to Eq. (9.152), \(E_r/E_i < 0\) when \(n_2 > n_1\). The negative sign indicates a 180° phase-shift of the reflected wave, with respect to the incident wave. We conclude that there is a 180° phase-shift of the reflected wave, relative to the incident wave, on reflection from a boundary with a medium of greater refractive index. Conversely, there is no phase-shift on reflection from a boundary with a medium of lesser refractive index.
The mean electromagnetic energy flux, or *intensity*, in the z-direction is simply
\[
I = \langle E \times B \cdot \hat{z} \rangle = \frac{E_0 B_0}{2 \mu_0} = \frac{E_0^2}{2 \mu_0 v}.
\] (9.154)

The *coefficient of reflection*, \(R \), is defined as the ratio of the intensities of the reflected and incident waves:
\[
R = \frac{I_r}{I_i} = \left(\frac{E_r}{E_i} \right)^2.
\] (9.155)

Likewise, the *coefficient of transmission*, \(T \), is the ratio of the intensities of the transmitted and incident waves:
\[
T = \frac{I_t}{I_i} = \frac{v_1}{v_2} \left(\frac{E_t}{E_i} \right)^2 = \frac{n_2}{n_1} \left(\frac{E_t}{E_i} \right)^2.
\] (9.156)

Equations (9.152), (9.153), (9.155), and (9.156) yield
\[
R = \left(\frac{n_1 - n_2}{n_1 + n_2} \right)^2,
\] (9.157)
\[
T = \frac{n_2}{n_1} \left(\frac{2 n_1}{n_1 + n_2} \right)^2.
\] (9.158)

Note that \(R + T = 1 \). In other words, any wave energy which is not reflected at the boundary is transmitted, and *vice versa*.

Let us now consider the case of incidence *oblique* to the boundary (see Fig. 56). Suppose that the incident wave subtends an angle \(\theta_i \) with the normal to the boundary, whereas the reflected and transmitted waves subtend angles \(\theta_r \) and \(\theta_t \), respectively.

The incident wave can be written
\[
E(r, t) = E_i e^{i(k_i r - \omega t)},
\] (9.159)
\[
B(r, t) = B_i e^{i(k_i r - \omega t)},
\] (9.160)

with analogous expressions for the reflected and transmitted waves. Since, in the case of oblique incidence, the electric and magnetic components of the wave
fields are no longer necessarily parallel to the boundary, the boundary conditions (9.147) and (9.148) at \(z = 0 \) must be supplemented by the additional boundary conditions

\[
\begin{align*}
\varepsilon_1 E_{\perp 1} &= \varepsilon_2 E_{\perp 2}, \\
B_{\perp 1} &= B_{\perp 2}.
\end{align*}
\]

Equation (9.161) derives from the general boundary condition \(D_{\perp 1} = D_{\perp 2} \).

It follows from Eqs. (9.148) and (9.162) that both components of the magnetic field are continuous at the boundary. Hence, we can write

\[
\begin{align*}
B_t e^{i(k_t \cdot r - \omega t)} + B_r e^{i(k_r \cdot r - \omega t)} &= B_t e^{i(k_t \cdot r - \omega t)}
\end{align*}
\]

at \(z = 0 \). Given that \(B_t, B_r, \) and \(B_t \) are constant vectors, the only way in which the above equation can be satisfied for all values of \(x \) and \(y \) is if

\[
\begin{align*}
k_t \cdot r &= k_r \cdot r = k_t \cdot r
\end{align*}
\]

throughout the \(z = 0 \) plane. This, in turn, implies that

\[
\begin{align*}
k_{ix} &= k_{rx} = k_{tx}
\end{align*}
\]

and

\[
\begin{align*}
k_{iy} &= k_{ry} = k_{ty}.
\end{align*}
\]
It immediately follows that if \(k_{iy} = 0 \) then \(k_{ry} = k_{ty} = 0 \). In other words, if the incident wave lies in the \(x-z \) plane then the reflected and transmitted waves also lie in the \(x-z \) plane. Another way of putting this is that the incident, reflected, and transmitted waves all lie in the same plane, know as the plane of incidence. This, of course, is one of the laws of geometric optics. From now on, we shall assume that the plane of incidence is the \(x-z \) plane.

Now, \(k_i = k_r = \omega / \nu_1 \) and \(k_t = \omega / \nu_2 \). Moreover,

\[
\sin \theta_i = \frac{k_{xi}}{k_i},
\]

(9.167)

with similar expressions for \(\theta_r \) and \(\theta_t \). Hence, according to Eq. (9.165),

\[
\sin \theta_r = \sin \theta_i,
\]

(9.168)

which implies that \(\theta_r = \theta_i \). Moreover,

\[
\frac{\sin \theta_t}{\sin \theta_i} = \frac{\nu_2}{\nu_1} = \frac{n_1}{n_2}.
\]

(9.169)

Of course, the above expressions correspond to the law of reflection and Snell’s law of refraction, respectively.

For the case of oblique incidence, we need to consider two independent wave polarizations separately. The first polarization has all the wave electric fields perpendicular to the plane of incidence, whilst the second has all the wave magnetic fields perpendicular to the plane of incidence.

Let us consider the first wave polarization. We can write unit vectors in the directions of propagation of the incident, reflected, and transmitted waveslikso:

\[
\hat{k}_i = (\sin \theta_i, 0, \cos \theta_i),
\]

(9.170)

\[
\hat{k}_r = (\sin \theta_i, 0, -\cos \theta_i),
\]

(9.171)

\[
\hat{k}_t = (\sin \theta_t, 0, \cos \theta_t).
\]

(9.172)

The constant vectors associated with the incident wave are written

\[
E_i = E_i \hat{y},
\]

(9.173)

\[
B_i = \frac{E_i}{\nu_1} (-\cos \theta_i, 0, \sin \theta_i),
\]

(9.174)
where use has been made of Eq. (9.140). Likewise, the constant vectors associated with the reflected and transmitted waves are

\[\mathbf{E}_r = \mathbf{E}_r \hat{y}, \]
\[\mathbf{B}_r = \frac{\mathbf{E}_r}{v_1} (\cos \theta_i, 0, \sin \theta_i), \]
\[\mathbf{E}_t = \mathbf{E}_t \hat{y}, \]
\[\mathbf{B}_t = \frac{\mathbf{E}_t}{v_2} (-\cos \theta_t, 0, \sin \theta_t), \]

respectively.

Now, the boundary condition (9.147) yields \(E_{y1} = E_{y2}, \) or

\[E_i + E_r = E_t. \]
(9.179)

Likewise, the boundary condition (9.162) gives \(B_{z1} = B_{z2}, \) or

\[(E_i + E_r) \frac{\sin \theta_i}{v_1} = E_t \frac{\sin \theta_t}{v_2}. \]
(9.180)

However, using Snell’s law, (9.169), the above expression reduces to Eq. (9.179). Finally, the boundary condition (9.148) yields \(B_{x1} = B_{x2}, \) or

\[(E_i - E_r) \frac{\cos \theta_i}{v_1} = E_t \frac{\cos \theta_t}{v_2}. \]
(9.181)

It is convenient to define the parameters

\[\alpha = \frac{\cos \theta_t}{\cos \theta_i}, \]
(9.182)

and

\[\beta = \frac{v_1}{v_2} = \frac{n_2}{n_1}, \]
(9.183)

Equations (9.179) and (9.181) can be solved in terms of these parameters to give

\[E_r = \left(\frac{1 - \alpha \beta}{1 + \alpha \beta} \right) E_i, \]
(9.184)

\[E_t = \left(\frac{2}{1 + \alpha \beta} \right) E_i. \]
(9.185)
These relations are known as Fresnel equations.

The wave intensity in the z-direction is given by

$$I_z = \frac{\langle \mathbf{E} \times \mathbf{B} \cdot \hat{z} \rangle}{\mu_0} = \frac{E_0 B_0 \cos \theta}{2 \mu_0} = \frac{E_0^2 \cos \theta}{2 \mu_0 v}. \quad (9.186)$$

Hence, the coefficient of reflection is written

$$R = \left(\frac{E_r}{E_i} \right)^2 = \left(\frac{1 - \alpha \beta}{1 + \alpha \beta} \right)^2, \quad (9.187)$$

whereas the coefficient of transmission takes the form

$$T = \frac{\cos \theta_t \nu_1}{\cos \theta_i \nu_2} \left(\frac{E_t}{E_i} \right)^2 = \alpha \beta \left(\frac{2}{1 + \alpha \beta} \right)^2. \quad (9.188)$$

Note that it is again the case that $R + T = 1$.

Let us now consider the second wave polarization. In this case, the constant vectors associated with the incident, reflected, and transmitted waves are written

$$\mathbf{E}_i = E_i (\cos \theta_i, 0, -\sin \theta_i), \quad (9.189)$$

$$\mathbf{B}_i = \frac{E_i}{\nu_1} \hat{y}, \quad (9.190)$$

and

$$\mathbf{E}_r = E_r (\cos \theta_i, 0, \sin \theta_i), \quad (9.191)$$

$$\mathbf{B}_r = -\frac{E_r}{\nu_1} \hat{y}, \quad (9.192)$$

and

$$\mathbf{E}_t = E_t (\cos \theta_t, 0, -\sin \theta_t), \quad (9.193)$$

$$\mathbf{B}_t = \frac{E_t}{\nu_2} \hat{y}, \quad (9.194)$$

respectively. The boundary condition (9.148) yields $B_{y1} = B_{y2}$, or

$$\frac{E_i - E_r}{\nu_1} = \frac{E_t}{\nu_2}. \quad (9.195)$$
Likewise, the boundary condition (9.147) gives $E_{x1} = E_{x2}$, or

$$ (E_i + E_r) \cos \theta_i = E_t \cos \theta_t. \tag{9.196} $$

Finally, the boundary condition (9.161) yields $\varepsilon_1 E_{z1} = \varepsilon_2 E_{z2}$, or

$$ \varepsilon_1 (E_i - E_r) \sin \theta_i = \varepsilon_2 E_i \sin \theta_t. \tag{9.197} $$

Making use of Snell’s law, and the fact that $\varepsilon = n^2$, the above expression reduces to Eq. (9.195).

Solving Eqs. (9.165) and (9.196), we obtain

$$ E_r = \left(\frac{\alpha - \beta}{\alpha + \beta} \right) E_i, \tag{9.198} $$

$$ E_t = \left(\frac{2}{\alpha + \beta} \right) E_i. \tag{9.199} $$

The associated coefficients of reflection and transmission take the form

$$ R = \left(\frac{\alpha - \beta}{\alpha + \beta} \right)^2, \tag{9.200} $$

$$ T = \alpha \beta \left(\frac{2}{\alpha + \beta} \right)^2, \tag{9.201} $$

respectively. As usual, $R + T = 1$.

Note that at oblique incidence the Fresnel equations, (9.184) and (9.185), for the wave polarization in which the electric field is parallel to the boundary are different to the Fresnel equations, (9.198) and (9.199), for the wave polarization in which the magnetic field is parallel to the boundary. This implies that the coefficients of reflection and transmission for these two wave polarizations are, in general, different.

Figure 57 shows the coefficients of reflection (solid curves) and transmission (dashed curves) for oblique incidence from air ($n_1 = 1.0$) to glass ($n_2 = 1.5$). The left-hand panel shows the wave polarization for which the electric field is parallel to the boundary, whereas the right-hand panel shows the wave polarization for which the magnetic field is parallel to the boundary. In general, it can be seen
that the coefficient of reflection rises, and the coefficient of transmission falls, as the angle of incidence increases. Note, however, that for the second wave polarization there is a particular angle of incidence, known as the Brewster angle, at which the reflected intensity is zero. There is no similar behaviour for the first wave polarization.

It follows from Eq. (9.198) that the Brewster angle corresponds to the condition

\[\alpha = \beta, \quad (9.202) \]

or

\[\beta^2 = \frac{\cos^2 \theta_t}{\cos^2 \theta_i} = \frac{1 - \sin^2 \theta_t}{1 - \sin^2 \theta_i} = \frac{1 - \sin^2 \theta_i/\beta^2}{1 - \sin^2 \theta_i}, \quad (9.203) \]

where use has been made of Snell’s law. The above expression reduces to

\[\sin \theta_i = \frac{\beta}{\sqrt{1 + \beta^2}}, \quad (9.204) \]

or \(\tan \theta_i = \beta = n_2/n_1 \). Hence, the Brewster angle satisfies

\[\theta_B = \tan^{-1}\left(\frac{n_2}{n_1}\right). \quad (9.205) \]
If unpolarized light is incident on an air/glass (say) boundary at the Brewster angle then the reflected beam is 100% plane polarized.

9.13 Wave-guides

A wave-guide is a hollow conducting pipe, of uniform cross-section, used to transport high frequency electromagnetic waves (generally, in the microwave band) from one point to another. The main advantage of wave-guides is their relatively low level of radiation losses (since the electric and magnetic fields are completely enclosed by a conducting wall) compared to transmission lines.

Consider a vacuum-filled wave-guide which runs parallel to the z-axis. An electromagnetic wave trapped inside the wave-guide satisfies Maxwell’s equations for free space:

\[
\begin{align*}
\nabla \cdot \mathbf{E} &= 0, \quad (9.206) \\
\nabla \cdot \mathbf{B} &= 0, \quad (9.207) \\
\n\nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t}, \quad (9.208) \\
\n\nabla \times \mathbf{B} &= \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}. \quad (9.209)
\end{align*}
\]

Let $\partial / \partial t \equiv -i \omega$, and $\partial / \partial z \equiv i k$, where ω is the wave frequency, and k the wave-number parallel to the axis of the wave-guide. It follows that

\[
\begin{align*}
\frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + i k E_z &= 0, \\
\frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} + i k B_z &= 0, \\

i \omega B_x &= \frac{\partial E_z}{\partial y} - i k E_y, \quad (9.212) \\

i \omega B_y &= -\frac{\partial E_z}{\partial x} + i k E_x, \quad (9.213) \\

i \omega B_z &= \frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y}. \quad (9.214)
\end{align*}
\]
\[i \frac{\omega}{c^2} E_x = -\frac{\partial B_z}{\partial y} + i k B_y, \quad (9.215) \]

\[i \frac{\omega}{c^2} E_y = \frac{\partial B_z}{\partial x} - i k B_x, \quad (9.216) \]

\[i \frac{\omega}{c^2} E_z = -\frac{\partial B_y}{\partial x} + \frac{\partial B_x}{\partial y}. \quad (9.217) \]

Equations (9.213) and (9.215) yield

\[E_x = i \left(\omega \frac{\partial B_z}{\partial y} + k \frac{\partial E_z}{\partial x} \right) \left(\frac{\omega^2}{c^2} - k^2 \right)^{-1}, \quad (9.218) \]

and

\[B_y = i \left(\omega \frac{\partial E_z}{\partial x} + k \frac{\partial B_z}{\partial y} \right) \left(\frac{\omega^2}{c^2} - k^2 \right)^{-1}. \quad (9.219) \]

Likewise, Eqs. (9.212) and (9.216) yield

\[E_y = i \left(-\omega \frac{\partial B_z}{\partial x} + k \frac{\partial E_z}{\partial y} \right) \left(\frac{\omega^2}{c^2} - k^2 \right)^{-1}, \quad (9.220) \]

and

\[B_x = i \left(-\omega \frac{\partial E_z}{\partial y} + k \frac{\partial B_z}{\partial x} \right) \left(\frac{\omega^2}{c^2} - k^2 \right)^{-1}. \quad (9.221) \]

These equations can be combined to give

\[E_t = i (\omega \nabla B_z \times \hat{z} + k \nabla E_z) \left(\frac{\omega^2}{c^2} - k^2 \right)^{-1}, \quad (9.222) \]

\[B_t = i \left(-\frac{\omega}{c^2} \nabla E_z \times \hat{z} + k \nabla B_z \right) \left(\frac{\omega^2}{c^2} - k^2 \right)^{-1}. \quad (9.223) \]

Here, \(E_t \) and \(B_t \) are the transverse electric and magnetic fields: \(i.e. \), the electric and magnetic fields in the \(x-y \) plane. It is clear, from Eqs. (9.222) and (9.223), that the transverse fields are fully determined once the longitudinal fields, \(E_z \) and \(B_z \), are known.
Substitution of Eqs. (9.222) and (9.223) into Eqs. (9.214) and (9.217) yields the equations satisfied by the longitudinal fields:

\[
\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) E_z + \left(\frac{\omega^2}{c^2} - k^2 \right) E_z = 0, \tag{9.224}
\]

\[
\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) B_z + \left(\frac{\omega^2}{c^2} - k^2 \right) B_z = 0. \tag{9.225}
\]

The remaining equations, (9.210) and (9.211), are automatically satisfied provided Eqs. (9.222)–(9.225) are satisfied.

We expect \(E = B = 0 \) inside the walls of the wave-guide, assuming that they are perfectly conducting. Hence, the appropriate boundary conditions at the walls are

\[
E_{||} = 0, \tag{9.226}
\]

\[
B_{\perp} = 0. \tag{9.227}
\]

It follows, by inspection of Eqs. (9.222) and (9.223), that these boundary conditions are satisfied provided

\[
E_z = 0, \tag{9.228}
\]

\[
\hat{n} \cdot \nabla B_z = 0, \tag{9.229}
\]

at the walls. Here, \(\hat{n} \) is the normal vector to the walls. Hence, the electromagnetic fields inside the wave-guide are fully specified by solving Eqs. (9.224) and (9.225), subject to the boundary conditions (9.228) and (9.229), respectively.

Equations (9.224) and (9.225) support two independent types of solution. The first type has \(E_z = 0 \), and is consequently called a transverse electric, or TE, mode. Conversely, the second type has \(B_z = 0 \), and is called a transverse magnetic, or TM, mode.

Consider the specific example of a rectangular wave-guide, with conducting walls at \(x = 0, a \), and \(y = 0, b \). For a TE mode, the longitudinal magnetic field can be written

\[
B_z(x, y) = B_0 \cos(k_x x) \cos(k_y y), \tag{9.230}
\]
The boundary condition (9.229) requires that \(\partial B_z / \partial x = 0 \) at \(x = 0, a, \) and \(\partial B_z / \partial y = 0 \) at \(y = 0, b. \) It follows that
\[
\begin{align*}
 k_x &= \frac{n \pi}{a}, \\
 k_y &= \frac{m \pi}{b},
\end{align*}
\]
(9.231) (9.232)
where \(n = 0, 1, 2, \ldots, \) and \(m = 0, 1, 2, \ldots. \) Clearly, there are many different kinds of TE mode, corresponding to the many different choices of \(m \) and \(n. \) Let us refer to a mode corresponding to a particular choice of \(m, n \) as a \(\text{TE}_{mn} \) mode. Note, however, that there is no \(\text{TE}_{00} \) mode, since \(B_z(x, y) \) is uniform in this case. According to Eq. (9.225), the dispersion relation for the \(\text{TE}_{mn} \) mode is given by
\[
k^2 c^2 = \omega^2 - \omega_{mn}^2;
\]
(9.233)
where
\[
\omega_{mn} = c \pi \sqrt{\frac{n^2}{a^2} + \frac{m^2}{b^2}}.
\]
(9.234)

According to the dispersion relation (9.233), \(k \) is imaginary for \(\omega < \omega_{mn}. \) In other words, for wave frequencies below \(\omega_{mn}, \) the \(\text{TE}_{mn} \) mode fails to propagate down the wave-guide, and is instead attenuated. Hence, \(\omega_{mn} \) is termed the cut-off frequency for the \(\text{TE}_{mn} \) mode. Assuming that \(a > b, \) the TE mode with the lowest cut-off frequency is the \(\text{TE}_{10} \) mode, where
\[
\omega_{10} = \frac{c \pi}{a}.
\]
(9.235)

For frequencies above the cut-off frequency, the phase-velocity of the \(\text{TE}_{mn} \) mode is given by
\[
\nu_p = \frac{\omega}{k} = \frac{c}{\sqrt{1 - \omega_{mn}^2/\omega^2}},
\]
(9.236)
which is greater than \(c. \) However, the group-velocity takes the form
\[
\nu_g = \frac{d\omega}{dk} = c \sqrt{1 - \omega_{mn}^2/\omega^2},
\]
(9.237)
which is always less than \(c. \) Of course, energy is transmitted down the wave-guide at the group-velocity, rather than the phase-velocity. Note that the group-velocity goes to zero as the wave frequency approaches the cut-off frequency.
For a TM mode, the longitudinal electric field can be written

\[E_z(x, y) = E_0 \sin(k_x x) \sin(k_y y), \quad (9.238) \]

The boundary condition (9.228) requires that \(E_z = 0 \) at \(x = 0, a \), and \(y = 0, b \). It follows that

\[
k_x = \frac{n \pi}{a}, \quad (9.239)
\]
\[
k_y = \frac{m \pi}{b}, \quad (9.240)
\]

where \(n = 1, 2, \cdots \), and \(m = 1, 2, \cdots \). The dispersion relation for the TM_{mn} mode is also given by Eq. (9.233). Hence, Eqs. (9.236) and (9.237) also apply to TM modes. However, the TM mode with the lowest cut-off frequency is the TM_{11} mode, where

\[
\omega_{11} = c \pi \sqrt{\frac{1}{a^2} + \frac{1}{b^2}} > \omega_{10}. \quad (9.241)
\]

It follows that the mode with the lowest cut-off frequency is always a TE mode.

There is, in principle, a third type of mode which can propagate down a waveguide. This third mode type is characterized by \(E_z = B_z = 0 \), and is consequently called a transverse electromagnetic, or TEM, mode. It is easily seen, from an inspection of Eqs. (9.212)–(9.217), that a TEM mode satisfies

\[
\omega^2 = k^2 c^2, \quad (9.242)
\]

and

\[
E_t = -\nabla \phi, \quad (9.243)
\]
\[
B_t = c^{-1} \nabla \phi \times \hat{z}, \quad (9.244)
\]

where \(\phi(x, y) \) satisfies

\[
\nabla^2 \phi = 0. \quad (9.245)
\]

The boundary conditions (9.228) and (9.229) imply that

\[
\phi = \text{constant} \quad (9.246)
\]
at the walls. However, there is no non-trivial solution of Eqs. (9.245) and (9.246) for a conventional wave-guide. In other words, conventional wave-guides do not support TEM modes. In fact, it turns out that only wave-guides with central conductors support TEM modes. Consider, for instance, a co-axial wave-guide in which the electric and magnetic fields are trapped between two parallel concentric cylindrical conductors of radius a and b (with $b > a$). In this case, $\phi = \phi(r)$, and Eq. (9.245) reduces to

$$\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \phi}{\partial r} \right) = 0,$$

where r is a standard cylindrical polar coordinate. The boundary condition (9.246) is automatically satisfied at $r = a$ and $r = b$. The above equation has the following non-trivial solution:

$$\phi(r) = \phi_b \ln(r/b).$$

Note, however, that the inner conductor must be present, otherwise $\phi \to \infty$ as $r \to 0$, which is unphysical. According to the dispersion relation (9.242), TEM modes have no cut-off frequency, and have the phase-velocity (and group-velocity) c. Indeed, this type of mode is the same as that supported by a transmission line (see Sect. 7.7).
10 Relativity and electromagnetism

10.1 Introduction

In this section, we shall discuss Maxwell’s equations in the light of Einstein’s special theory of relativity.

10.2 The relativity principle

Physical phenomena are conventionally described relative to some frame of reference which allows us to define fundamental quantities such as position and time. Of course, there are very many different ways of choosing a reference frame, but it is generally convenient to restrict our choice to the set of rigid inertial frames.

A classical rigid reference frame is the imagined extension of a rigid body. For instance, the Earth determines a rigid frame throughout all space, consisting of all those points which remain rigidly at rest relative to the Earth, and to each other. We can associate an orthogonal Cartesian coordinate system with such a frame, by choosing three mutually orthogonal planes within it, and measuring x, y, and z as perpendicular distances from these planes. A time coordinate must also be defined, in order that the system can be used to specify events. A rigid frame, endowed with such properties, is called a Cartesian frame. The description given above presupposes that the underlying geometry of space is Euclidean, which is reasonable provided that gravitational effects are negligible (we shall assume that this is the case). An inertial frame is a Cartesian frame in which free particles move without acceleration, in accordance with Newton’s first law of motion. There are an infinite number of different inertial frames, moving with some constant velocity with respect to one another.

The key to understanding special relativity is Einstein’s relativity principle, which states that:

All inertial frames are totally equivalent for the performance of all physical experiments.
In other words, it is impossible to perform a physical experiment which differentiates in any fundamental sense between different inertial frames. By definition, Newton’s laws of motion take the same form in all inertial frames. Einstein generalized this result in his special theory of relativity by asserting that all laws of physics take the same form in all inertial frames.

Consider a wave-like disturbance. In general, such a disturbance propagates at a fixed velocity with respect to the medium in which the disturbance takes place. For instance, sound waves (at S.T.P) propagate at 343 meters per second with respect to air. So, in the inertial frame in which air is stationary, sound waves appear to propagate at 343 meters per second. Sound waves appear to propagate at a different velocity any inertial frame which is moving with respect to the air. However, this does not violate the relativity principle, since if the air were stationary in the second frame then sound waves would appear to propagate at 343 meters per second in this frame as well. In other words, exactly the same experiment (e.g., the determination of the speed of sound relative to stationary air) performed in two different inertial frames of reference yields exactly the same result, in accordance with the relativity principle.

Consider, now, a wave-like disturbance which is self-regenerating, and does not require a medium through which to propagate. The most well-known example of such a disturbance is a light wave. Another example is a gravity wave. According to electromagnetic theory, the speed of propagation of a light wave through a vacuum is

$$ c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} = 2.99729 \times 10^8 \text{ meters per second,} \tag{10.1} $$

where ε_0 and μ_0 are physical constants which can be evaluated by performing two simple experiments which involve measuring the force of attraction between two fixed charges and two fixed parallel current carrying wires. According to the relativity principle, these experiments must yield the same values for ε_0 and μ_0 in all inertial frames. Thus, the speed of light must be the same in all inertial frames. In fact, any disturbance which does not require a medium to propagate through must appear to travel at the same velocity in all inertial frames, otherwise we could differentiate inertial frames using the apparent propagation speed of the
10 RELATIVITY AND ELECTROMAGNETISM

10.3 The Lorentz transformation

Consider two Cartesian frames $S(x, y, z, t)$ and $S'(x', y', z', t')$ in the standard configuration, in which S' moves in the x-direction of S with uniform velocity v, and the corresponding axes of S and S' remain parallel throughout the motion, having coincided at $t = t' = 0$. It is assumed that the same units of distance and time are adopted in both frames. Suppose that an event (e.g., the flashing of a light-bulb, or the collision of two point particles) has coordinates (x, y, z, t) relative to S, and (x', y', z', t') relative to S'. The “common sense” relationship between these two sets of coordinates is given by the Galilean transformation:

$$x' = x - vt, \quad (10.2)$$
$$y' = y, \quad (10.3)$$
$$z' = z, \quad (10.4)$$
$$t' = t. \quad (10.5)$$

This transformation is tried and tested, and provides a very accurate description of our everyday experience. Nevertheless, it must be wrong! Consider a light wave which propagates along the x-axis in S with velocity c. According to the Galilean transformation, the apparent speed of propagation in S' is $c - v$, which violates the relativity principle. Can we construct a new transformation which makes the velocity of light invariant between different inertial frames, in accordance with the relativity principle, but reduces to the Galilean transformation at low velocities, in accordance with our everyday experience?

Consider an event P, and a neighbouring event Q, whose coordinates differ by dx, dy, dz, dt in S, and by dx', dy', dz', dt' in S'. Suppose that at the event P a flash of light is emitted, and that Q is an event in which some particle in space is illuminated by the flash. In accordance with the laws of light-propagation, and the invariance of the velocity of light between different inertial frames, an
observer in \(S \) will find that
\[
dx^2 + dy^2 + dz^2 - c^2 dt^2 = 0 \tag{10.6}
\]
for \(dt > 0 \), and an observer in \(S' \) will find that
\[
dx'^2 + dy'^2 + dz'^2 - c^2 dt'^2 = 0 \tag{10.7}
\]
for \(dt' > 0 \). Any event near \(P \) whose coordinates satisfy either (10.6) or (10.7) is illuminated by the flash from \(P \), and, therefore, its coordinates must satisfy both (10.6) and (10.7). Now, no matter what form the transformation between coordinates in the two inertial frames takes, the transformation between differentials at any fixed event \(P \) is linear and homogeneous. In other words, if
\[
x' = F(x, y, z, t), \tag{10.8}
\]
where \(F \) is a general function, then
\[
dx' = \frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial y} dy + \frac{\partial F}{\partial z} dz + \frac{\partial F}{\partial t} dt. \tag{10.9}
\]
It follows that
\[
dx'^2 + dy'^2 + dz'^2 - c^2 dt'^2 = a dx^2 + b dy^2 + c dz^2 + d dt^2 + g dx dt + h dy dt
+k dz dt + l dy dz + m dx dz + n dx dy, \tag{10.10}
\]
where \(a, b, c, \text{ etc.} \) are functions of \(x, y, z, \text{ and } t \). We know that the right-hand side of the above expression vanishes for all real values of the differentials which satisfy Eq. (10.6). It follows that the right-hand side is a multiple of the quadratic in Eq. (10.6): i.e.,
\[
dx'^2 + dy'^2 + dz'^2 - c^2 dt'^2 = K (dx^2 + dy^2 + dz^2 - c^2 dt^2), \tag{10.11}
\]
where \(K \) is a function of \(x, y, z, \text{ and } t \). [We can prove this by substituting into Eq. (10.10) the following obvious zeros of the quadratic in Eq. (10.6): \((\pm 1, 0, 0, 1), (0, \pm 1, 0, 1), (0, 0, \pm 1, 1), (0, 1/\sqrt{2}, 1/\sqrt{2}, 1), (1/\sqrt{2}, 0, 1/\sqrt{2}, 1), (1/\sqrt{2}, 1/\sqrt{2}, 0, 1)\): and solving the resulting conditions on the coefficients.] Note that \(K \) at \(P \) is also independent of the choice of standard coordinates in \(S \) and \(S' \). Since the frames are Euclidian, the values of \(dx^2 + dy^2 + dz^2 \) and \(dx'^2 + dy'^2 + dz'^2 \) relevant to \(P \)
and \(Q \) are independent of the choice of axes. Furthermore, the values of \(dt^2 \) and \(dt'^2 \) are independent of the choice of the origins of time. Thus, without affecting the value of \(K \) at \(P \), we can choose coordinates such that \(P = (0, 0, 0, 0) \) in both \(S \) and \(S' \). Since the orientations of the axes in \(S \) and \(S' \) are, at present, arbitrary, and since inertial frames are isotropic, the relation of \(S \) and \(S' \) relative to each other, to the event \(P \), and to the locus of possible events \(Q \), is now completely symmetric. Thus, we can write
\[
\begin{align*}
\end{align*}
\]
and
\[
\begin{align*}
\end{align*}
\]
in addition to Eq. (10.11). It follows that \(K = \pm 1 \). \(K = -1 \) can be dismissed immediately, since the intervals \(dx^2 + dy^2 + dz^2 - c^2 dt^2 \) and \(dx'^2 + dy'^2 + dz'^2 - c^2 dt'^2 \) must coincide exactly when there is no motion of \(S' \) relative to \(S \). Thus,
\[
\begin{align*}
\end{align*}
\]
Equation (10.13) implies that the transformation equations between primed and unprimed coordinates must be linear. The proof of this statement is postponed until Sect. 10.7.

The linearity of the transformation allows the coordinate axes in the two frames to be orientated so as to give the standard configuration mentioned earlier. Consider a fixed plane in \(S \) with the equation \(lx + my + nz + p = 0 \). In \(S' \), this becomes (say) \(l (a_1 x' + b_1 y' + c_1 z' + d_1 t' + e_1) + m (a_2 x' + \ldots) + n (a_3 x' + \ldots) + p = 0 \), which represents a moving plane unless \(l d_1 + m d_2 + n d_3 = 0 \). That is, unless the normal vector to the plane in \(S \), \((l, m, n)\), is perpendicular to the vector \((d_1, d_2, d_3)\). All such planes intersect in lines which are fixed in both \(S \) and \(S' \), and which are parallel to the vector \((d_1, d_2, d_3)\) in \(S \). These lines must correspond to the direction of relative motion of the frames. By symmetry, two such frames which are orthogonal in \(S \) must also be orthogonal in \(S' \). This allows the choice of two common coordinate planes.

Under a linear transformation, the finite coordinate differences satisfy the same transformation equations as the differentials. It follows from Eq. (10.13), assuming that the events \((0, 0, 0, 0)\) coincide in both frames, that for any event with coordinates \((x, y, z, t)\) in \(S \) and \((x', y', z', t')\) in \(S' \), the following relation holds:
\[
\begin{align*}
\end{align*}
\]
By hypothesis, the coordinate planes $y = 0$ and $y' = 0$ coincide permanently. Thus, $y = 0$ must imply $y' = 0$, which suggests that

$$y' = A\, y,$$

(10.15)

where A is a constant. We can reverse the directions of the x- and z-axes in S and S', which has the effect of interchanging the roles of these frames. This procedure does not affect Eq. (10.15), but by symmetry we also have

$$y = A\, y'.$$

(10.16)

It is clear that $A = \pm 1$. The negative sign can again be dismissed, since $y = y'$ when there is no motion between S and S'. The argument for z is similar. Thus, we have

$$y' = y,$$

(10.17)

$$z' = z,$$

(10.18)

as in the Galilean transformation.

Equations (10.14), (10.17) and (10.18) yield

$$x^2 - c^2 t^2 = x'^2 - c^2 t'^2.$$

(10.19)

Since, $x' = 0$ must imply $x = v\, t$, we can write

$$x' = B\, (x - v\, t),$$

(10.20)

where B is a constant (possibly depending on v). It follows from the previous two equations that

$$t' = C\, x + D\, t,$$

(10.21)

where C and D are constants (possibly depending on v). Substituting Eqs. (10.20) and (10.21) into Eq. (10.19), and comparing the coefficients of x^2, $x\, t$, and t^2, we obtain

$$B = D = \frac{1}{\pm(1-v^2/c^2)^{1/2}},$$

(10.22)

$$C = \frac{-v/c^2}{\pm(1-v^2/c^2)^{1/2}}.$$
We must choose the positive sign in order to ensure that \(x' \rightarrow x \) as \(v/c \rightarrow 0 \). Thus, collecting our results, the transformation between coordinates in \(S \) and \(S'_0 \) is given by

\[
\begin{align*}
 x' &= \frac{x - vt}{(1 - v^2/c^2)^{1/2}}, \\
 y' &= y, \\
 z' &= z, \\
 t' &= \frac{t - vx/c^2}{(1 - v^2/c^2)^{1/2}}.
\end{align*}
\]

(10.24)-(10.27)

This is the famous Lorentz transformation. It ensures that the velocity of light is invariant between different inertial frames, and also reduces to the more familiar Galilean transform in the limit \(v \ll c \). We can solve Eqs. (10.24)-(10.27) for \(x \), \(y \), \(z \), and \(t \), to obtain the inverse Lorentz transformation:

\[
\begin{align*}
 x &= \frac{x' + v t'}{(1 - v^2/c^2)^{1/2}}, \\
 y &= y', \\
 z &= z', \\
 t &= \frac{t' + vx'/c^2}{(1 - v^2/c^2)^{1/2}}.
\end{align*}
\]

(10.28)-(10.31)

Not surprisingly, the inverse transformation is equivalent to a Lorentz transformation in which the velocity of the moving frame is \(-v\) along the \(x\)-axis, instead of \(+v\).

10.4 Transformation of velocities

Consider two frames, \(S \) and \(S'_0 \), in the standard configuration. Let \(\mathbf{u} \) be the velocity of a particle in \(S \). What is the particle’s velocity in \(S'_0 \)? The components of \(\mathbf{u} \) are

\[
 u_1 = \frac{dx}{dt},
\]

(10.32)
\[u_2 = \frac{dy}{dt}, \quad (10.33) \]
\[u_3 = \frac{dz}{dt}. \quad (10.34) \]

Similarly, the components of \(u' \) are

\[u'_1 = \frac{dx'}{dt'}, \quad (10.35) \]
\[u'_2 = \frac{dy'}{dt'}, \quad (10.36) \]
\[u'_3 = \frac{dz'}{dt'}. \quad (10.37) \]

Now we can write Eqs. (10.24)–(10.27) in the form
\[dx' = \gamma (dx - v dt), \quad dy' = dy, \quad dz' = dz, \quad \text{and} \quad dt' = \gamma (dt - v dx/c^2), \]
where
\[\gamma = (1 - v^2/c^2)^{-1/2} \quad (10.38) \]
is the well-known Lorentz factor. If we substitute these differentials into Eqs. (10.32)–(10.34), and make use of Eqs. (10.35)–(10.37), we obtain the transformation rules

\[u'_1 = \frac{u_1 - v}{1 - u_1 v/c^2}, \quad (10.39) \]
\[u'_2 = \frac{u_2}{\gamma (1 - u_1 v/c^2)}, \quad (10.40) \]
\[u'_3 = \frac{u_3}{\gamma (1 - u_1 v/c^2)}. \quad (10.41) \]

As in the transformation of coordinates, we can obtain the inverse transform by interchanging primed and unprimed symbols, and replacing \(+v\) with \(-v\). Thus,

\[u_1 = \frac{u'_1 + v}{1 + u'_1 v/c^2}, \quad (10.42) \]
\[u_2 = \frac{u'_2}{\gamma (1 + u'_1 v/c^2)}, \quad (10.43) \]
\[u_3 = \frac{u'_3}{\gamma (1 + u'_1 v/c^2)}. \quad (10.44) \]
Equations (10.42)–(10.44) can be regarded as giving the resultant, \(\mathbf{u} = (u_1, u_2, u_3) \), of two velocities, \(\mathbf{v} = (v, 0, 0) \) and \(\mathbf{u}' = (u'_1, u'_2, u'_3) \), and are therefore usually referred to as the relativistic velocity addition formulae. The following relation between the magnitudes \(u = (u_1^2 + u_2^2 + u_3^2)^{1/2} \) and \(u' = (u'_1^2 + u'_2^2 + u'_3^2)^{1/2} \) of the velocities is easily demonstrated:

\[
c^2 - u^2 = \frac{c^2 (c^2 - u'^2) (c^2 - v^2)}{c^2 + u'_1 v}.
\]

(10.45)

If \(u' < c \) and \(v < c \) then the right-hand side is positive, implying that \(u < c \). In other words, the resultant of two subluminal velocities is another subluminal velocity. It is evident that a particle can never attain the velocity of light relative to a given inertial frame, no matter how many subluminal velocity increments it is given. It follows that no inertial frame can ever appear to propagate with a superluminal velocity with respect to any other inertial frame (since we can track a given inertial frame using a particle which remains at rest at the origin of that frame).

According to Eq. (10.45), if \(u' = c \) then \(u = c \), no matter what value \(v \) takes: \(i.e. \), the velocity of light is invariant between different inertial frames. Note that the Lorentz transform only allows one such invariant velocity [\(i.e. \), the velocity \(c \) which appears in Eqs. (10.24)–(10.27)]. Einstein’s relativity principle tells us that any disturbance which propagates through a vacuum must appear to propagate at the same velocity in all inertial frames. It is now evident that all such disturbances must propagate at the velocity \(c \). It follows immediately that all electromagnetic waves must propagate through the vacuum with this velocity, irrespective of their wavelength. In other words, it is impossible for there to be any dispersion of electromagnetic waves propagating through a vacuum. Furthermore, gravity waves must also propagate with the velocity \(c \).

The Lorentz transformation implies that the velocities of propagation of all physical effects are limited by \(c \) in deterministic physics. Consider a general process by which an event \(P \) causes an event \(Q \) at a velocity \(\mathbf{u} > c \) in some frame \(S \). In other words, information about the event \(P \) appears to propagate to the event \(Q \) with a superluminal velocity. Let us choose coordinates such that these two events occur on the \(x \)-axis with (finite) time and distance separations \(\Delta t > 0 \)
and $\Delta x > 0$, respectively. The time separation in some other inertial frame S' is given by [see Eq. (10.27)]

$$\Delta t' = \gamma (\Delta t - v \Delta x/c^2) = \gamma \Delta t (1 - v U/c^2).$$

(10.46)

Thus, for sufficiently large $v < c$ we obtain $\Delta t' < 0$: i.e., there exist inertial frames in which cause and effect appear to be reversed. Of course, this is impossible in deterministic physics. It follows, therefore, that information can never appear to propagate with a superluminal velocity in any inertial frame, otherwise causality would be violated.

10.5 Tensors

It is now convenient to briefly review the mathematics of tensors. Tensors are of primary importance in connection with coordinate transforms. They serve to isolate intrinsic geometric and physical properties from those that merely depend on coordinates.

A tensor of rank r in an n-dimensional space possesses n^r components which are, in general, functions of position in that space. A tensor of rank zero has one component, A, and is called a scalar. A tensor of rank one has n components, (A_1, A_2, \cdots, A_n), and is called a vector. A tensor of rank two has n^2 components, which can be exhibited in matrix format. Unfortunately, there is no convenient way of exhibiting a higher rank tensor. Consequently, tensors are usually represented by a typical component: e.g., the tensor A_{ijk} (rank 3), or the tensor A_{ijkl} (rank 4), etc. The suffixes i, j, k, \cdots are always understood to range from 1 to n.

For reasons which will become apparent later on, we shall represent tensor components using both superscripts and subscripts. Thus, a typical tensor might look like A^{ij} (rank 2), or B^i_j (rank 2), etc. It is convenient to adopt the Einstein summation convention. Namely, if any suffix appears twice in a given term, once as a subscript and once as a superscript, a summation over that suffix (from 1 to n) is implied.

To distinguish between various different coordinate systems, we shall use primed and multiply primed suffixes. A first system of coordinates (x^1, x^2, \cdots, x^n) can
then be denoted by \(x^i \), a second system \((x^1', x^2', \cdots, x^n')\) by \(x^i' \), etc. Similarly, the general components of a tensor in various coordinate systems are distinguished by their suffixes. Thus, the components of some third rank tensor are denoted \(A_{ijk} \) in the \(x^i \) system, by \(A_{i'j'k'} \) in the \(x^i' \) system, etc.

When making a coordinate transformation from one set of coordinates, \(x^i \), to another, \(x^i' \), it is assumed that the transformation is non-singular. In other words, the equations which express the \(x^i' \) in terms of the \(x^i \) can be inverted to express the \(x^i \) in terms of the \(x^i' \). It is also assumed that the functions specifying a transformation are differentiable. It is convenient to write

\[
\frac{\partial x^i'}{\partial x^i} = p_{i'}^i, \quad (10.47)
\]
\[
\frac{\partial x^i}{\partial x^i'} = p_i^{i'}. \quad (10.48)
\]

Note that

\[
p_{i'}^i p_i^{i'} = \delta_j^i, \quad (10.49)
\]

by the chain rule, where \(\delta_j^i \) (the *Kronecker delta*) equals 1 or 0 when \(i = j \) or \(i \neq j \), respectively.

The formal definition of a tensor is as follows:

1. An entity having components \(A_{ij\ldots k} \) in the \(x^i \) system and \(A_{i'j'\ldots k'} \) in the \(x^i' \) system is said to behave as a *covariant tensor* under the transformation \(x^i \to x^i' \) if

\[
A_{i'j'\ldots k'} = A_{ij\ldots k} p_i^{i'} p_j^{j'} \cdots p_k^{k'}. \quad (10.50)
\]

2. Similarly, \(A^{ij\ldots k} \) is said to behave as a *contravariant tensor* under \(x^i \to x^i' \) if

\[
A^{i'j'\ldots k'} = A^{ij\ldots k} p_i^i p_j^j \cdots p_k^k. \quad (10.51)
\]

3. Finally, \(A^{i\ldots j}_{k\ldots l} \) is said to behave as a *mixed tensor* (contravariant in \(i \cdots j \) and covariant in \(k \cdots l \)) under \(x^i \to x^i' \) if

\[
A^{i'j'\ldots l'}_{k'\ldots l'} = A^{i\ldots j}_{k\ldots l} p_i^{i'} p_j^{j'} \cdots p_k^{k'} \cdots p_l^{l'}. \quad (10.52)
\]
When an entity is described as a tensor it is generally understood that it behaves as a tensor under all non-singular differentiable transformations of the relevant coordinates. An entity which only behaves as a tensor under a certain subgroup of non-singular differentiable coordinate transformations is called a **qualified tensor**, because its name is conventionally qualified by an adjective recalling the subgroup in question. For instance, an entity which only exhibits tensor behaviour under Lorentz transformations is called a *Lorentz tensor*, or, more commonly, a *4-tensor*.

When applied to a tensor of rank zero (a scalar), the above definitions imply that \(A' = A \). Thus, a scalar is a function of position only, and is independent of the coordinate system. A scalar is often termed an **invariant**.

The main theorem of tensor calculus is as follows:

If two tensors of the same type are equal in one coordinate system, then they are equal in all coordinate systems.

The simplest example of a contravariant vector (tensor of rank one) is provided by the differentials of the coordinates, \(dx^i \), since

\[
dx^{i'} = \frac{\partial x^{i'}}{\partial x^i} dx^i = dx^i p^i_{i'}.
\]

The coordinates themselves do not behave as tensors under all coordinate transformations. However, since they transform like their differentials under linear homogeneous coordinate transformations, they do behave as tensors under such transformations.

The simplest example of a covariant vector is provided by the gradient of a function of position \(\phi = \phi(x^1, \ldots, x^n) \), since if we write

\[
\phi_i = \frac{\partial \phi}{\partial x^i},
\]

then we have

\[
\phi_{i'} = \frac{\partial \phi}{\partial x^{i'}} = \frac{\partial \phi}{\partial x^i} \frac{\partial x^i}{\partial x^{i'}} = \phi_i p^i_{i'}.
\]
An important example of a mixed second-rank tensor is provided by the Kronecker delta introduced previously, since
\[
\delta^i_j p^i_{j'} = p^i_{j'} p^j_i = \delta^i_{j'}.
\]
(10.56)

Tensors of the same type can be added or subtracted to form new tensors. Thus, if \(A_{ij} \) and \(B_{ij} \) are tensors, then \(C_{ij} = A_{ij} \pm B_{ij} \) is a tensor of the same type. Note that the sum of tensors at different points in space is not a tensor if the \(p \)'s are position dependent. However, under linear coordinate transformations the \(p \)'s are constant, so the sum of tensors at different points behaves as a tensor under this particular type of coordinate transformation.

If \(A^{ij} \) and \(B_{ijk} \) are tensors, then \(C^{ij}_{klm} = A^{ij}B_{klm} \) is a tensor of the type indicated by the suffixes. The process illustrated by this example is called outer multiplication of tensors.

Tensors can also be combined by inner multiplication, which implies at least one dummy suffix link. Thus, \(C^i_{kl} = A^{ij}B_{ikl} \) and \(C_k = A^{ij}B_{ijk} \) are tensors of the type indicated by the suffixes.

Finally, tensors can be formed by contraction from tensors of higher rank. Thus, if \(A^{ij}_{klm} \) is a tensor then \(C^i_{kl} = A^{ij}_{ikl} \) and \(C_k = A^{ij}_{kij} \) are tensors of the type indicated by the suffixes. The most important type of contraction occurs when no free suffixes remain: the result is a scalar. Thus, \(A^i_i \) is a scalar provided that \(A^i_i \) is a tensor.

Although we cannot usefully divide tensors, one by another, an entity like \(C^{ij} \) in the equation \(A^i = C^{ij}B_i \), where \(A^i \) and \(B_i \) are tensors, can be formally regarded as the quotient of \(A^i \) and \(B_i \). This gives the name to a particularly useful rule for recognizing tensors, the quotient rule. This rule states that if a set of components, when combined by a given type of multiplication with all tensors of a given type yields a tensor, then the set is itself a tensor. In other words, if the product \(A^i = C^{ij}B_j \) transforms like a tensor for all tensors \(B_i \) then it follows that \(C^{ij} \) is a tensor.
Let
\[
\frac{\partial A_{i\cdots j}}{\partial x^m} = A_{k\cdots l,m}^{i\cdots j}.
\] (10.57)
Then if \(A_{i\cdots j}^{k\cdots l} \) is a tensor, differentiation of the general tensor transformation (10.52) yields
\[
A_{i'\cdots j',m'}^{k'\cdots l'} = A_{k'\cdots l',m'}^{i'\cdots j'} p_i^{i'} \cdots p_j^{k'} \cdots p_l^{l'} p_m^{m'} + P_1 + P_2 + \cdots,
\] (10.58)
where \(P_1, P_2, \text{ etc.} \), are terms involving derivatives of the \(p \)'s. Clearly, \(A_{i\cdots j}^{k\cdots l} \) is not a tensor under a general coordinate transformation. However, under a linear coordinate transformation (\(p \)'s constant) \(A_{i'\cdots j',m'}^{k'\cdots l'} \) behaves as a tensor of the type indicated by the suffixes, since the \(P_1, P_2, \text{ etc.} \), all vanish. Similarly, all higher partial derivatives,
\[
A_{k\cdots l, mn}^{i\cdots j} = \frac{\partial A_{k\cdots l}^{i\cdots j}}{\partial x^m \partial x^n}
\] (10.59)
etc., also behave as tensors under linear transformations. Each partial differentiation has the effect of adding a new covariant suffix.

So far, the space to which the coordinates \(x^i \) refer has been without structure. We can impose a structure on it by defining the distance between all pairs of neighbouring points by means of a metric,
\[
ds^2 = g_{ij} \, dx^i \, dx^j,
\] (10.60)
where the \(g_{ij} \) are functions of position. We can assume that \(g_{ij} = g_{ji} \) without loss of generality. The above metric is analogous to, but more general than, the metric of Euclidian \(n \)-space, \(ds^2 = (dx^1)^2 + (dx^2)^2 + \cdots + (dx^n)^2 \). A space whose structure is determined by a metric of the type (10.60) is called Riemannian. Since \(ds^2 \) is invariant, it follows from a simple extension of the quotient rule that \(g_{ij} \) must be a tensor. It is called the metric tensor.

The elements of the inverse of the matrix \(g_{ij} \) are denoted by \(g^{ij} \). These elements are uniquely defined by the equations
\[
g^{ij} g_{jk} = \delta^i_k.
\] (10.61)
It is easily seen that the \(g^{ij} \) constitute the elements of a contravariant tensor. This tensor is said to be conjugate to \(g_{ij} \). The conjugate metric tensor is symmetric \((i.e., \, g^{ij} = g^{ji})\) just like the metric tensor itself.
The tensors g_{ij} and g^{ij} allow us to introduce the important operations of \textit{raising} and \textit{lowering suffixes}. These operations consist of forming inner products of a given tensor with g_{ij} or g^{ij}. For example, given a contravariant vector A^i, we define its covariant components A_i by the equation

$$A_i = g_{ij} A^j. \quad (10.62)$$

Conversely, given a covariant vector B_i, we can define its contravariant components B^i by the equation

$$B^i = g^{ij} B_j. \quad (10.63)$$

More generally, we can raise or lower any or all of the free suffixes of any given tensor. Thus, if A_{ij} is a tensor we define A_{ij} by the equation

$$A_{ij} = g_{ip} A_{pj}. \quad (10.64)$$

Note that once the operations of raising and lowering suffixes has been defined, the order of raised suffixes relative to lowered suffixes becomes significant.

By analogy with Euclidean space, we define the \textit{squared magnitude} $(A)^2$ of a vector A^i with respect to the metric $g_{ij} \, dx^i \, dx^j$ by the equation

$$(A)^2 = g_{ij} A^i A^j = A_i A^i. \quad (10.65)$$

A vector A^i termed a \textit{null vector} if $(A)^2 = 0$. Two vectors A^i and B^i are said to be \textit{orthogonal} if their inner product vanishes: \textit{i.e.}, if

$$g_{ij} A^i B^j = A_i B^i = A^i B_i = 0. \quad (10.66)$$

Finally, let us consider differentiation with respect to an invariant distance, s. The vector dx^i/ds is a contravariant tensor, since

$$\frac{dx^i}{ds} = \frac{\partial x^i}{\partial x^i} \frac{dx^i}{ds} = \frac{dx^i}{ds} p^i_i. \quad (10.67)$$

The derivative $d(A^{i\cdots j\cdots l})/ds$ of some tensor with respect to s is not, in general, a tensor, since

$$\frac{d(A^{i\cdots j\cdots l})}{ds} = A^{i\cdots j\cdots l,m} \frac{dx^m}{ds}, \quad (10.68)$$
and, as we have seen, the first factor on the right-hand side is not generally a tensor. However, under linear transformations it behaves as a tensor, so under linear transformations the derivative of a tensor with respect to an invariant distance behaves as a tensor of the same type.

10.6 The physical significance of tensors

In this course, we shall only concern ourselves with coordinate transformations which transform an inertial frame into another inertial frame. This limits us to four classes of transformations: displacements of the coordinate axes, rotations of the coordinate axes, parity reversals (\(i.e., x, y, z \rightarrow -x, -y, -z\)), and Lorentz transformations.

One of the central tenets of physics is that experiments should be reproducible. In other words, if somebody performs a physical experiment today, and obtains a certain result, then somebody else performing the same experiment next week ought to obtain the same result, within the experimental errors. Presumably, in performing these hypothetical experiments, both experimentalists find it necessary to set up a coordinate frame. Usually, these two frames do not coincide. After all, the experiments are, in general, performed in different places and at different times. Also, the two experimentalists are likely to orientate their coordinate axes differently. Nevertheless, we still expect both experiments to yield the same result. What exactly do we mean by this statement? We do not mean that both experimentalists will obtain the same numbers when they measure something. For instance, the numbers used to denote the position of a point (\(i.e., the coordinates of the point\)) are, in general, different in different coordinate frames. What we do expect is that any physically significant interrelation between physical quantities (\(i.e., position, velocity, etc.\)) which appears to hold in the coordinate system of the first experimentalist will also appear to hold in the coordinate system of the second experimentalist. We usually refer to such interrelationships as laws of physics. So, what we are really saying is that the laws of physics do not depend on our choice of coordinate system. In particular, if a law of physics is true in one coordinate system then it is automatically true in every other coordinate system,
subject to the proviso that both coordinate systems are inertial.

Recall that tensors are geometric objects which possess the property that if a certain interrelationship holds between various tensors in one particular coordinate system, then the same interrelationship holds in any other coordinate system which is related to the first system by a certain class of transformations. It follows that the laws of physics are expressible as interrelationships between tensors. In special relativity, the laws of physics are only required to exhibit tensor behaviour under transformations between different inertial frames: i.e., translations, rotations, and Lorentz transformations. Parity inversion is a special type of transformation, and will be dealt with later on. In general relativity, the laws of physics are required to exhibit tensor behaviour under all non-singular coordinate transformations.

10.7 Space-time

In special relativity, we are only allowed to use inertial frames to assign coordinates to events. There are many different types of inertial frames. However, it is convenient to adhere to those with standard coordinates. That is, spatial coordinates which are right-handed rectilinear Cartesians based on a standard unit of length, and time-scales based on a standard unit of time. We shall continue to assume that we are employing standard coordinates. However, from now on, we shall make no assumptions about the relative configuration of the two sets of spatial axes, and the origins of time, when dealing with two inertial frames. Thus, the most general transformation between two inertial frames consists of a Lorentz transformation in the standard configuration plus a translation (this includes a translation in time) and a rotation of the coordinate axes. The resulting transformation is called a general Lorentz transformation, as opposed to a Lorentz transformation in the standard configuration, which will henceforth be termed a standard Lorentz transformation.

In Sect. 10.3, we proved quite generally that corresponding differentials in two inertial frames S and S' satisfy the relation

$$dx^2 + dy^2 + dz^2 - c^2 dt^2 = dx'^2 + dy'^2 + dz'^2 - c^2 dt'^2.$$ (10.69)
Thus, we expect this relation to remain invariant under a general Lorentz transformation. Since such a transformation is *linear*, it follows that

\[
(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2 - c^2 (t_2 - t_1)^2 = \\
(x'_2 - x'_1)^2 + (y'_2 - y'_1)^2 + (z'_2 - z'_1)^2 - c^2 (t'_2 - t'_1)^2,
\]

where \((x_1, y_1, z_1, t_1)\) and \((x_2, y_2, z_2, t_2)\) are the coordinates of any two events in \(S\), and the primed symbols denote the corresponding coordinates in \(S'\). It is convenient to write

\[
- dx^2 - dy^2 - dz^2 + c^2 dt^2 = ds^2, \tag{10.71}
\]

and

\[
- (x_2 - x_1)^2 - (y_2 - y_1)^2 - (z_2 - z_1)^2 + c^2(t_2 - t_1)^2 = s^2. \tag{10.72}
\]

The differential \(ds\), or the finite number \(s\), defined by these equations is called the *interval* between the corresponding events. Equations \((10.71)\) and \((10.72)\) express the fact that the interval between two events is invariant, in the sense that it has the same value in all inertial frames. In other words, the interval between two events is invariant under a general Lorentz transformation.

Let us consider entities defined in terms of four variables,

\[
x^1 = x, \quad x^2 = y, \quad x^3 = z, \quad x^4 = c t, \tag{10.73}
\]

and which transform as tensors under a general Lorentz transformation. From now on, such entities will be referred to as *4-tensors*.

Tensor analysis cannot proceed very far without the introduction of a non-singular tensor \(g_{ij}\), the so-called *fundamental tensor*, which is used to define the operations of raising and lowering suffixes. The fundamental tensor is usually introduced using a metric \(ds^2 = g_{ij} dx^i dx^j\), where \(ds^2\) is a differential invariant. We have already come across such an invariant, namely

\[
\begin{align*}
 ds^2 &= -dx^2 - dy^2 - dz^2 + c^2 dt^2 \\
 &= -(dx^1)^2 - (dx^2)^2 - (dx^3)^2 + (dx^4)^2 \\
 &= g_{\mu\nu} dx^\mu dx^\nu,
\end{align*}
\]

\(10.74\)
where μ, ν run from 1 to 4. Note that the use of Greek suffixes is conventional in 4-tensor theory. Roman suffixes are reserved for tensors in three-dimensional Euclidian space, so-called 3-tensors. The 4-tensor $g_{\mu\nu}$ has the components $g_{11} = g_{22} = g_{33} = -1$, $g_{44} = 1$, and $g_{\mu\nu} = 0$ when $\mu \neq \nu$, in all permissible coordinate frames. From now on, $g_{\mu\nu}$, as defined above, is adopted as the fundamental tensor for 4-tensors. $g_{\mu\nu}$ can be thought of as the metric tensor of the space whose points are the events (x^1, x^2, x^3, x^4). This space is usually referred to as space-time, for obvious reasons. Note that space-time cannot be regarded as a straightforward generalization of Euclidian 3-space to four dimensions, with time as the fourth dimension. The distribution of signs in the metric ensures that the time coordinate x^4 is not on the same footing as the three space coordinates. Thus, space-time has a non-isotropic nature which is quite unlike Euclidian space, with its positive definite metric. According to the relativity principle, all physical laws are expressible as interrelationships between 4-tensors in space-time.

A tensor of rank one is called a 4-vector. We shall also have occasion to use ordinary vectors in three-dimensional Euclidian space. Such vectors are called 3-vectors, and are conventionally represented by boldface symbols. We shall use the Latin suffixes $i, j, k, \text{etc.}$, to denote the components of a 3-vector: these suffixes are understood to range from 1 to 3. Thus, $u = u^i = dx^i/dt$ denotes a velocity vector. For 3-vectors, we shall use the notation $u^i = u_i$ interchangeably: i.e., the level of the suffix has no physical significance.

When tensor transformations from one frame to another actually have to be computed, we shall usually find it possible to choose coordinates in the standard configuration, so that the standard Lorentz transform applies. Under such a transformation, any contravariant 4-vector, T^μ, transforms according to the same scheme as the difference in coordinates $x'^\mu_2 - x'^\mu_1$ between two points in space-time. It follows that

$$T^1' = \gamma (T^1 - \beta T^4), \quad (10.75)$$
$$T^2' = T^2, \quad (10.76)$$
$$T^3' = T^3, \quad (10.77)$$
$$T^4' = \gamma (T^4 - \beta T^1), \quad (10.78)$$
where \(\beta = v/c \). Higher rank 4-tensors transform according to the rules \(10.50\)–\(10.52\). The transformation coefficients take the form

\[
p^{\mu'}_{\mu} = \begin{pmatrix}
+\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & +\gamma \\
\end{pmatrix},
\]

\[
p^{\mu}_{\mu'} = \begin{pmatrix}
+\gamma & 0 & 0 & +\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
+\gamma \beta & 0 & 0 & +\gamma \\
\end{pmatrix}.
\]

Often the first three components of a 4-vector coincide with the components of a 3-vector. For example, the \(x^1, x^2, x^3\) in \(R^\mu = (x^1, x^2, x^3, x^4)\) are the components of \(\mathbf{r}\), the position 3-vector of the point at which the event occurs. In such cases, we adopt the notation exemplified by \(R^\mu = (\mathbf{r}, c t)\). The covariant form of such a vector is simply \(R^\mu = (-\mathbf{r}, c t)\). The squared magnitude of the vector is \((R)^2 = R^\mu R^\mu = -r^2 + c^2 t^2\). The inner product \(g_{\mu\nu} R^\mu Q^\nu = R^\mu Q^\mu\) of \(R^\mu\) with a similar vector \(Q^\mu = (q, k)\) is given by \(R^\mu Q^\mu = -\mathbf{r} \cdot \mathbf{q} + c t k\). The vectors \(R^\mu\) and \(Q^\mu\) are said to be orthogonal if \(R^\mu Q^\mu = 0\).

Since a general Lorentz transformation is a linear transformation, the partial derivative of a 4-tensor is also a 4-tensor:

\[
\frac{\partial A^{\nu\sigma}}{\partial x^\mu} = A^{\nu\sigma,\mu}.
\]

Clearly, a general 4-tensor acquires an extra covariant index after partial differentiation with respect to the contravariant coordinate \(x^\mu\). It is helpful to define a covariant derivative operator

\[
\partial^\mu \equiv \frac{\partial}{\partial x^\mu} = \left(\nabla, \frac{1}{c} \frac{\partial}{\partial t}\right),
\]

where

\[
\partial^\mu A^{\nu\sigma} \equiv A^{\nu\sigma,\mu}.
\]

317
There is a corresponding contravariant derivative operator

\[\partial^\mu \equiv \frac{\partial}{\partial x_\mu} = \left(-\nabla, \frac{1}{c} \frac{\partial}{\partial t} \right), \tag{10.84} \]

where

\[\partial^\mu A^{\nu\sigma} \equiv g^{\mu\tau} A^{\nu\sigma,\tau}. \tag{10.85} \]

The 4-divergence of a 4-vector, \(A^\mu = (A, A^0) \), is the invariant

\[\partial^\mu A_\mu = \partial_\mu A^\mu = \nabla \cdot A + \frac{1}{c} \frac{\partial A^0}{\partial t}. \tag{10.86} \]

The four-dimensional Laplacian operator, or \(d'Alembertian \), is equivalent to the invariant contraction

\[\Box \equiv \partial_\mu \partial^\mu = -\nabla^2 + \frac{1}{c^2} \frac{\partial^2}{\partial t^2}. \tag{10.87} \]

Recall that we still need to prove (from Sect. 10.3) that the invariance of the differential metric,

\[ds^2 = dx'{}^2 + dy'{}^2 + dz'{}^2 - c^2 dt'{}^2 = dx^2 + dy^2 + dz^2 - c^2 dt^2, \tag{10.88} \]

between two general inertial frames implies that the coordinate transformation between such frames is necessarily linear. To put it another way, we need to demonstrate that a transformation which transforms a metric \(g_{\mu\nu} \ dx^\mu \ dx^\nu \) with constant coefficients into a metric \(g'_{\mu'\nu'} \ dx'^\mu \ dx'^\nu \) with constant coefficients must be linear. Now

\[g_{\mu\nu} = g_{\mu'\nu'} p^{\mu'}_\mu p^{\nu'}_\nu. \tag{10.89} \]

Differentiating with respect to \(x^\sigma \), we get

\[g_{\mu'\nu'} p^{\mu'}_\mu p^{\nu'}_\nu + g_{\mu'\nu'} p^{\mu'}_\mu p^{\nu'}_\nu = 0, \tag{10.90} \]

where

\[p^{\mu'}_{\mu\sigma} = \frac{\partial p^{\mu'}_\mu}{\partial x^\sigma} = \frac{\partial^2 x^{\mu'}}{\partial x^\mu \partial x^\sigma} = p^{\mu'}_{\sigma\mu}, \tag{10.91} \]

etc. Interchanging the indices \(\mu \) and \(\sigma \) yields

\[g_{\mu'\nu'} p^{\mu'}_\mu p^{\nu'}_\nu + g_{\mu'\nu'} p^{\mu'}_\mu p^{\nu'}_\nu = 0. \tag{10.92} \]
Interchanging the indices ν and σ gives
\[g_{\mu'\nu'} p^{\mu'}_{\sigma} p^{\nu'}_{\nu} + g_{\mu'\nu'} p^{\mu'}_{\mu} p^{\nu'}_{\sigma} = 0, \] (10.93)
where the indices μ' and ν' have been interchanged in the first term. It follows from Eqs. (10.90), (10.92), and (10.93) that
\[g_{\mu'\nu'} p^{\mu'}_{\mu} p^{\nu'}_{\nu} = 0. \] (10.94)
Multiplication by $p^{\nu'}_{\sigma}$ yields
\[g_{\mu'\nu'} p^{\mu'}_{\mu} p^{\nu'}_{\nu} p^{\nu'}_{\sigma} = g_{\mu'\nu'} p^{\nu'}_{\mu} = 0. \] (10.95)
Finally, multiplication by $g^{\nu'\sigma'}$ gives
\[g_{\mu'\sigma'} g^{\nu'\sigma'} p^{\mu'}_{\mu} = p^{\nu'}_{\sigma} = 0. \] (10.96)
This proves that the coefficients $p^{\nu'}_{\mu}$ are constants, and, hence, that the transformation is linear.

10.8 Proper time

It is often helpful to write the invariant differential interval ds^2 in the form
\[ds^2 = c^2 d\tau^2. \] (10.97)
The quantity $d\tau$ is called the proper time. It follows that
\[d\tau^2 = -\frac{dx^2 + dy^2 + dz^2}{c^2} + dt^2. \] (10.98)
Consider a series of events on the world-line of some material particle. If the particle has speed u then
\[d\tau^2 = dt^2 \left[-\frac{dx^2 + dy^2 + dz^2}{c^2 dt^2} + 1 \right] = dt^2 \left(1 - \frac{u^2}{c^2} \right), \] (10.99)
implying that
\[\frac{dt}{d\tau} = \gamma(u). \] (10.100)
It is clear that $dt = d\tau$ in the particle’s rest frame. Thus, $d\tau$ corresponds to the time difference between two neighbouring events on the particle’s world-line, as measured by a clock attached to the particle (hence, the name *proper time*). According to Eq. (10.100), the particle’s clock appears to run slow, by a factor $\gamma(u)$, in an inertial frame in which the particle is moving with velocity u. This is the celebrated *time dilation* effect.

Let us consider how a small 4-dimensional volume element in space-time transforms under a general Lorentz transformation. We have

$$d^4x' = J d^4x,$$ \hspace{1cm} (10.101)

where

$$J = \frac{\partial (x^1', x^2', x^3', x^4')} {\partial (x^1, x^2, x^3, x^4')}$$ \hspace{1cm} (10.102)

is the Jacobian of the transformation: *i.e.*, the determinant of the transformation matrix $p^\mu_{\nu'}$. A general Lorentz transformation is made up of a standard Lorentz transformation plus a displacement and a rotation. Thus, the transformation matrix is the *product* of that for a standard Lorentz transformation, a translation, and a rotation. It follows that the Jacobian of a general Lorentz transformation is the product of that for a standard Lorentz transformation, a translation, and a rotation. It is well-known that the Jacobian of the latter two transformations is unity, since they are both volume preserving transformations which do not affect time. Likewise, it is easily seen [*e.g.*, by taking the determinant of the transformation matrix (10.79)] that the Jacobian of a standard Lorentz transformation is also unity. It follows that

$$d^4x' = d^4x$$ \hspace{1cm} (10.103)

for a general Lorentz transformation. In other words, a general Lorentz transformation preserves the volume of space-time. Since time is dilated by a factor γ in a moving frame, the volume of space-time can only be preserved if the volume of ordinary 3-space is reduced by the same factor. As is well-known, this is achieved by *length contraction* along the direction of motion by a factor γ.

10.9 4-velocity and 4-acceleration

We have seen that the quantity \(\frac{dx^\mu}{ds}\) transforms as a 4-vector under a general Lorentz transformation [see Eq. (10.67)]. Since \(ds \propto d\tau\) it follows that

\[
U^\mu = \frac{dx^\mu}{d\tau}
\]

(10.104)

also transforms as a 4-vector. This quantity is known as the 4-velocity. Likewise, the quantity

\[
A^\mu = \frac{d^2x^\mu}{d\tau^2} = \frac{dU^\mu}{d\tau}
\]

(10.105)

is a 4-vector, and is called the 4-acceleration.

For events along the world-line of a particle traveling with 3-velocity \(u\), we have

\[
U^\mu = \frac{dx^\mu}{d\tau} = \frac{dx^\mu}{dt} \frac{dt}{d\tau} = \gamma(u)(u, c),
\]

(10.106)

where use has been made of Eq. (10.100). This gives the relationship between a particle's 3-velocity and its 4-velocity. The relationship between the 3-acceleration and the 4-acceleration is less straightforward. We have

\[
A^\mu = \frac{dU^\mu}{d\tau} = \gamma \frac{dU^\mu}{dt} = \gamma \frac{d}{dt}(\gamma u, \gamma c) = \gamma \left(\frac{d\gamma}{dt} u + \gamma a, \frac{d\gamma}{dt} c \right),
\]

(10.107)

where \(a = \frac{du}{dt}\) is the 3-acceleration. In the rest frame of the particle, \(U^\mu = (0, c)\) and \(A^\mu = (a, 0)\). It follows that

\[
U_\mu A^\mu = 0
\]

(10.108)

(note that \(U_\mu A^\mu\) is an invariant quantity). In other words, the 4-acceleration of a particle is always orthogonal to its 4-velocity.

10.10 The current density 4-vector

Let us now consider the laws of electromagnetism. We wish to demonstrate that these laws are compatible with the relativity principle. In order to achieve this, it
is necessary for us to make an assumption about the transformation properties of electric charge. The assumption we shall make, which is well substantiated experimentally, is that charge, unlike mass, is invariant. That is, the charge carried by a given particle has the same measure in all inertial frames. In particular, the charge carried by a particle does not vary with the particle’s velocity.

Let us suppose, following Lorentz, that all charge is made up of elementary particles, each carrying the invariant amount e. Suppose that n is the number density of such charges at some given point and time, moving with velocity u, as observed in a frame S. Let n_0 be the number density of charges in the frame S_0 in which the charges are momentarily at rest. As is well-known, a volume of measure V in S has measure $\gamma(u) V$ in S_0 (because of length contraction). Since observers in both frames must agree on how many particles are contained in the volume, and, hence, on how much charge it contains, it follows that $n = \gamma(u) n_0$. If $\rho = e n$ and $\rho_0 = e n_0$ are the charge densities in S and S_0, respectively, then

$$\rho = \gamma(u) \rho_0.$$

The quantity ρ_0 is called the proper density, and is obviously Lorentz invariant.

Suppose that x^μ are the coordinates of the moving charge in S. The current density 4-vector is constructed as follows:

$$J^\mu = \rho_0 \frac{d x^\mu}{d \tau} = \rho_0 U^\mu.$$

Thus,

$$J^\mu = \rho_0 \gamma(u) (u, c) = (j, \rho c),$$

where $j = \rho u$ is the current density 3-vector. Clearly, charge density and current density transform as the time-like and space-like components of the same 4-vector.

Consider the invariant 4-divergence of J^μ:

$$\partial_\mu J^\mu = \nabla \cdot j + \frac{\partial \rho}{\partial t}.$$

We know that one of the caveats of Maxwell’s equations is the charge conservation law

$$\frac{\partial \rho}{\partial t} + \nabla \cdot j = 0.$$
It is clear that this expression can be rewritten in the manifestly Lorentz invariant form

$$\partial_\mu J^\mu = 0.$$ \hspace{1cm} (10.114)

This equation tells us that there are no net sources or sinks of electric charge in nature: \emph{i.e.}, electric charge is neither created nor destroyed.

10.11 The potential 4-vector

There are many ways of writing the laws of electromagnetism. However, the most obviously Lorentz invariant way is to write them in terms of the vector and scalar potentials (see Sect. 4.6). When written in this fashion, Maxwell’s equations reduce to

$$\left(-\nabla^2 + \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) \phi = \frac{\rho}{\varepsilon_0},$$ \hspace{1cm} (10.115)

$$\left(-\nabla^2 + \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) A = \frac{\mu_0 \mathbf{j}}{\varepsilon_0},$$ \hspace{1cm} (10.116)

where ϕ is the scalar potential, and A the vector potential. Note that the differential operator appearing in these equations is the Lorentz invariant d’Alembertian, defined in Eq. (10.87). Thus, the above pair of equations can be rewritten in the form

$$\Box \phi = \frac{\rho c}{c \varepsilon_0},$$ \hspace{1cm} (10.117)

$$\Box c A = \frac{j}{c \varepsilon_0}.$$ \hspace{1cm} (10.118)

Maxwell’s equations can be written in Lorentz invariant form provided that the entity

$$\Phi^\mu = \left(c A, \phi\right)$$ \hspace{1cm} (10.119)

transforms as a contravariant 4-vector. This entity is known as the \emph{potential 4-vector}. It follows from Eqs. (10.111), (10.115), and (10.116) that

$$\Box \Phi^\mu = \frac{J^\mu}{c \varepsilon_0}.$$ \hspace{1cm} (10.120)
Thus, the field equations which govern classical electromagnetism can all be summed up in a single 4-vector equation.

10.12 Gauge invariance

The electric and magnetic fields are obtained from the vector and scalar potentials according to the prescription (see Sect. 4.3)

\[
\mathbf{E} = -\nabla \phi - \frac{\partial \mathbf{A}}{\partial t},
\]

\[
\mathbf{B} = \nabla \times \mathbf{A}.
\]

These fields are important, because they determine the electromagnetic forces exerted on charged particles. Note that the above prescription does not uniquely determine the two potentials. It is possible to make the following transformation, known as a **gauge transformation**, which leaves the fields unaltered (see Sect. 4.4):

\[
\phi \rightarrow \phi + \frac{\partial \psi}{\partial t},
\]

\[
\mathbf{A} \rightarrow \mathbf{A} - \nabla \psi,
\]

where \(\psi(r, t)\) is a general scalar field. It is necessary to adopt some form of convention, generally known as a **gauge condition**, to fully specify the two potentials. In fact, there is only one gauge condition which is consistent with Eqs. (10.114). This is the **Lorentz gauge condition**,

\[
\frac{1}{c^2} \frac{\partial \phi}{\partial t} + \nabla \cdot \mathbf{A} = 0.
\]

Note that this condition can be written in the Lorentz invariant form

\[
\partial_\mu \Phi^\mu = 0.
\]

This implies that if the Lorentz gauge holds in one particular inertial frame then it automatically holds in all other inertial frames. A general gauge transformation can be written

\[
\Phi^\mu \rightarrow \Phi^\mu + c \partial^\mu \psi.
\]
Note that even after the Lorentz gauge has been adopted, the potentials are undetermined to a gauge transformation using a scalar field, ψ, which satisfies the sourceless wave equation

$$\Box \psi = 0.$$ \hspace{1cm} (10.128)

However, if we adopt sensible boundary conditions in both space and time then the only solution to the above equation is $\psi = 0$.

10.13 Retarded potentials

We already know the solutions to Eqs. (10.117) and (10.118). They take the form (see Sect. 4.9)

$$\phi(r, t) = \frac{1}{4\pi\epsilon_0} \int \frac{[\rho(r')]}{|r - r'|} \, dV',$$ \hspace{1cm} (10.129)

$$A(r, t) = \frac{\mu_0}{4\pi} \int \frac{[j(r')]}{|r - r'|} \, dV'.$$ \hspace{1cm} (10.130)

The above equations can be combined to form the solution of the 4-vector wave equation (10.120),

$$\Phi^\mu = \frac{1}{4\pi\epsilon_0 c} \int \frac{[J^\mu]}{r} \, dV.$$ \hspace{1cm} (10.131)

Here, the components of the 4-potential are evaluated at some event P in spacetime, r is the distance of the volume element dV from P, and the square brackets indicate that the 4-current is to be evaluated at the retarded time: *i.e.*, at a time r/c before P.

But, does the right-hand side of Eq. (10.131) really transform as a contravariant 4-vector? This is not a trivial question, since volume integrals in 3-space are not, in general, Lorentz invariant due to the length contraction effect. However, the integral in Eq. (10.131) is not a straightforward volume integral, because the integrand is evaluated at the retarded time. In fact, the integral is best regarded as an integral over events in space-time. The events which enter the integral are those which intersect a spherical light wave launched from the event P and evolved backwards in time. In other words, the events occur before the event P,
and have zero interval with respect to P. It is clear that observers in all inertial frames will, at least, agree on which events are to be included in the integral, since both the interval between events, and the absolute order in which events occur, are invariant under a general Lorentz transformation.

We shall now demonstrate that all observers obtain the same value of dV/r for each elementary contribution to the integral. Suppose that S and S' are two inertial frames in the standard configuration. Let unprimed and primed symbols denote corresponding quantities in S and S', respectively. Let us assign coordinates $(0, 0, 0, 0)$ to P, and (x, y, z, ct) to the retarded event Q for which r and dV are evaluated. Using the standard Lorentz transformation, (10.24)–(10.27), the fact that the interval between events P and Q is zero, and the fact that both t and t' are negative, we obtain

$$r' = -c t' = -c \gamma \left(t - \frac{v x}{c^2} \right), \quad (10.132)$$

where v is the relative velocity between frames S' and S, γ is the Lorentz factor, and $r = \sqrt{x^2 + y^2 + z^2}$, etc. It follows that

$$r' = r \gamma \left(-\frac{c t}{r} + \frac{v x}{c r} \right) = r \gamma \left(1 + \frac{v}{c} \cos \theta \right), \quad (10.133)$$

where θ is the angle (in 3-space) subtended between the line PQ and the x-axis.

We now know the transformation for r. What about the transformation for dV? We might be tempted to set $dV' = \gamma dV$, according to the usual length contraction rule. However, this is incorrect. The contraction by a factor γ only applies if the whole of the volume is measured at the same time, which is not the case in the present problem. Now, the dimensions of dV along the y- and z-axes are the same in both S and S', according to Eqs. (10.24)–(10.27). For the x-dimension these equations give $dx' = \gamma (dx - v dt)$. The extremities of dx are measured at times differing by dt, where

$$dt = -\frac{dr}{c} = -\frac{dx}{c} \cos \theta. \quad (10.134)$$

Thus,

$$dx' = \gamma \left(1 + \frac{v}{c} \cos \theta \right) dx, \quad (10.135)$$
It follows from Eqs. (10.133) and (10.136) that \(\frac{dV'}{r'} = \frac{dV}{r} \). This result will clearly remain valid even when \(S \) and \(S' \) are not in the standard configuration.

Thus, \(\frac{dV}{r} \) is an invariant and, therefore, \([J^\mu]\) \(\frac{dV}{r} \) is a contravariant 4-vector. For linear transformations, such as a general Lorentz transformation, the result of adding 4-tensors evaluated at different 4-points is itself a 4-tensor. It follows that the right-hand side of Eq. (10.131) is indeed a contravariant 4-vector. Thus, this 4-vector equation can be properly regarded as the solution to the 4-vector wave equation (10.120).

10.14 Tensors and pseudo-tensors

The totally antisymmetric fourth rank tensor is defined

\[
e^{\alpha\beta\gamma\delta} = \begin{cases}
+1 & \text{for } \alpha, \beta, \gamma, \delta \text{ any even permutation of } 1, 2, 3, 4 \\
-1 & \text{for } \alpha, \beta, \gamma, \delta \text{ any odd permutation of } 1, 2, 3, 4 \\
0 & \text{otherwise}
\end{cases}
\]

(10.137)

The components of this tensor are invariant under a general Lorentz transformation, since

\[
e^{\alpha\beta\gamma\delta} p_\alpha^{'} p_\beta^{'} p_\gamma^{'} p_\delta^{'} = e^{\alpha'\beta'\gamma'\delta'} |p_\mu^{'}| = e^{\alpha'\beta'\gamma'\delta'},
\]

(10.138)

where \(|p_\mu^{'}|\) denotes the determinant of the transformation matrix, or the Jacobian of the transformation, which we have already established is unity for a general Lorentz transformation. We can also define a totally antisymmetric third rank tensor \(e^{ijk} \) which stands in the same relation to 3-space as \(e^{\alpha\beta\gamma\delta} \) does to spacetime. It is easily demonstrated that the elements of \(e^{ijk} \) are invariant under a general translation or rotation of the coordinate axes. The totally antisymmetric third rank tensor is used to define the cross product of two 3-vectors,

\[
(a \times b)^i = e^{ijk} a_j b_k,
\]

(10.139)
and the curl of a 3-vector field,

\[(\nabla \times \mathbf{A})^i = \epsilon^{ijk} \frac{\partial A_k}{\partial x^j}.\]

The following two rules are often useful in deriving vector identities

\[
\epsilon^{ijk} \epsilon_{iab} = \delta^i_a \delta^k_b - \delta^i_b \delta^k_a, \quad (10.141)
\]

\[
\epsilon^{ijk} \epsilon_{ijb} = 2 \delta^k_b. \quad (10.142)
\]

Up to now, we have restricted ourselves to three basic types of coordinate transformation: namely, translations, rotations, and standard Lorentz transformations. An arbitrary combination of these three transformations constitutes a general Lorentz transformation. Let us now extend our investigations to include a fourth type of transformation known as a parity inversion: i.e., \(x, y, z \rightarrow -x, -y, -z\). A reflection is a combination of a parity inversion and a rotation. As is easily demonstrated, the Jacobian of a parity inversion is \(-1\), unlike a translation, rotation, or standard Lorentz transformation, which all possess Jacobians of \(+1\).

The prototype of all 3-vectors is the difference in coordinates between two points in space, \(\mathbf{r}\). Likewise, the prototype of all 4-vectors is the difference in coordinates between two events in space-time, \(R^\mu = (\mathbf{r}, c t)\). It is not difficult to appreciate that both of these objects are invariant under a parity transformation (in the sense that they correspond to the same geometric object before and after the transformation). It follows that any 3- or 4-tensor which is directly related to \(\mathbf{r}\) and \(R^\mu\), respectively, is also invariant under a parity inversion. Such tensors include the distance between two points in 3-space, the interval between two points in space-time, 3-velocity, 3-acceleration, 4-velocity, 4-acceleration, and the metric tensor. Tensors which exhibit tensor behaviour under translations, rotations, special Lorentz transformations, and are invariant under parity inversions, are termed proper tensors, or sometimes polar tensors. Since electric charge is clearly invariant under such transformations (i.e., it is a proper scalar), it follows that 3-current and 4-current are proper vectors. It is also clear from Eq. \((10.120)\) that the scalar potential, the vector potential, and the potential 4-vector, are proper tensors.
It follows from Eq. (10.137) that $\epsilon^{\alpha\beta\gamma\delta} \rightarrow -\epsilon^{\alpha\beta\gamma\delta}$ under a parity inversion. Tensors such as this, which exhibit tensor behaviour under translations, rotations, and special Lorentz transformations, but are not invariant under parity inversions (in the sense that they correspond to different geometric objects before and after the transformation), are called pseudo-tensors, or sometimes axial tensors. Equations (10.139) and (10.140) imply that the cross product of two proper vectors is a pseudo-vector, and the curl of a proper vector field is a pseudo-vector field.

One particularly simple way of performing a parity transformation is to exchange positive and negative numbers on the three Cartesian axes. A proper vector is unaffected by such a procedure (i.e., its magnitude and direction are the same before and after). On the other hand, a pseudo-vector ends up pointing in the opposite direction after the axes are renumbered.

What is the fundamental difference between proper tensors and pseudo-tensors? The answer is that all pseudo-tensors are defined according to a handedness convention. For instance, the cross product between two vectors is conventionally defined according to a right-hand rule. The only reason for this is that the majority of human beings are right-handed. Presumably, if the opposite were true then cross products etc. would be defined according to a left-hand rule, and would, therefore, take minus their conventional values. The totally antisymmetric tensor is the prototype pseudo-tensor, and is, of course, conventionally defined with respect to a right-handed spatial coordinate system. A parity inversion converts left into right, and vice versa, and, thereby, effectively swaps left- and right-handed conventions.

The use of conventions in physics is perfectly acceptable provided that we recognize that they are conventions, and are consistent in our use of them. It follows that laws of physics cannot contain mixtures of tensors and pseudo-tensors, otherwise they would depend our choice of handedness convention.\(^3\)

\(^3\)Here, we are assuming that the laws of physics do not possess an intrinsic handedness. This is certainly the case for mechanics and electromagnetism. However, the weak interaction does possess an intrinsic handedness: i.e., it is fundamentally different in a parity inverted universe. So, the equations governing the weak interaction do actually contain mixtures of tensors and pseudo-tensors.
Let us now consider electric and magnetic fields. We know that

\[
\mathbf{E} = -\nabla \phi - \frac{\partial \mathbf{A}}{\partial t},
\]

(10.143)

\[
\mathbf{B} = \nabla \times \mathbf{A}.
\]

(10.144)

We have already seen that the scalar and the vector potential are proper scalars and vectors, respectively. It follows that \(\mathbf{E}\) is a proper vector, but that \(\mathbf{B}\) is a pseudo-vector (since it is the curl of a proper vector). In order to fully appreciate the difference between electric and magnetic fields, let us consider a thought experiment first proposed by Richard Feynman. Suppose that we are in radio contact with a race of aliens, and are trying to explain to them our system of physics. Suppose, further, that the aliens live sufficiently far away from us that there are no common objects which we both can see. The question is this: could we unambiguously explain to these aliens our concepts of electric and magnetic fields? We could certainly explain electric and magnetic lines of force. The former are the paths of charged particles (assuming that the particles are subject only to electric fields), and the latter can be mapped out using small test magnets. We could also explain how we put arrows on electric lines of force to convert them into electric field-lines: the arrows run from positive charges (\textit{i.e.}, charges with the same sign as atomic nuclei) to negative charges. This explanation is unambiguous provided that our aliens live in a matter (rather than an anti-matter) dominated part of the Universe. But, could we explain how we put arrows on magnetic lines of force in order to convert them into magnetic field-lines? The answer is, no. By definition, magnetic field-lines emerge from the North poles of permanent magnets and converge on the corresponding South poles. The definition of the North pole of a magnet is simply that it possesses the same magnetic polarity as the South (geographic) pole of the Earth. This is obviously a convention. In fact, we could redefine magnetic field-lines to run from the South poles to the North poles of magnets without significantly altering our laws of physics (we would just have to replace \(\mathbf{B}\) by \(-\mathbf{B}\) in all our equations). In a parity inverted Universe, a North pole becomes a South pole, and \textit{vice versa}, so it is hardly surprising that \(\mathbf{B} \rightarrow -\mathbf{B}\).
10.15 The electromagnetic field tensor

Let us now investigate whether we can write the components of the electric and magnetic fields as the components of some proper 4-tensor. There is an obvious problem here. How can we identify the components of the magnetic field, which is a pseudo-vector, with any of the components of a proper-4-tensor? The former components transform differently under parity inversion than the latter components. Consider a proper-3-tensor whose covariant components are written B_{ik}, and which is antisymmetric:

$$B_{ij} = -B_{ji}. \quad (10.145)$$

This immediately implies that all of the diagonal components of the tensor are zero. In fact, there are only three independent non-zero components of such a tensor. Could we, perhaps, use these components to represent the components of a pseudo-3-vector? Let us write

$$B^i = \frac{1}{2} \epsilon^{ijk} B_{jk}. \quad (10.146)$$

It is clear that B^i transforms as a contravariant pseudo-3-vector. It is easily seen that

$$B^{ij} = B_{ij} = \begin{pmatrix} 0 & B_z & -B_y \\ -B_z & 0 & B_x \\ B_y & -B_x & 0 \end{pmatrix}, \quad (10.147)$$

where $B^1 = B_1 \equiv B_x, etc.$ In this manner, we can actually write the components of a pseudo-3-vector as the components of an antisymmetric proper-3-tensor. In particular, we can write the components of the magnetic field B in terms of an antisymmetric proper magnetic field 3-tensor which we shall denote B_{ij}.

Let us now examine Eqs. (10.143) and (10.144) more carefully. Recall that $\Phi_\mu = (-c A, \phi)$ and $\partial_\mu = (\nabla, c^{-1} \partial/\partial t)$. It follows that we can write Eq. (10.143) in the form

$$E_i = -\partial_i \Phi_4 + \partial_4 \Phi_i. \quad (10.148)$$

Likewise, Eq. (10.144) can be written

$$c B^i = \frac{1}{2} \epsilon^{ijk} c B_{jk} = -\epsilon^{ijk} \partial_j \Phi_k. \quad (10.149)$$
Let us multiply this expression by ϵ_{iab}, making use of the identity
\[\epsilon_{iab} \epsilon^{ijk} = \delta^j_a \delta^k_b - \delta^i_b \delta^k_a. \] (10.150)
We obtain
\[\frac{c}{2} (B_{ab} - B_{ba}) = -\partial_a \Phi_b + \partial_b \Phi_a, \] (10.151)
or
\[c B_{ij} = -\partial_i \Phi_j + \partial_j \Phi_i, \] (10.152)
since $B_{ij} = -B_{ji}$.

Let us define a proper-4-tensor whose covariant components are given by
\[F_{\mu\nu} = \partial_\mu \Phi_\nu - \partial_\nu \Phi_\mu. \] (10.153)
It is clear that this tensor is antisymmetric:
\[F_{\mu\nu} = -F_{\nu\mu}. \] (10.154)
This implies that the tensor only possesses six independent non-zero components. Maybe it can be used to specify the components of E and B?

Equations (10.148) and (10.153) yield
\[F_{4i} = \partial_4 \Phi_i - \partial_i \Phi_4 = E_i. \] (10.155)
Likewise, Eqs. (10.152) and (10.153) imply that
\[F_{ij} = \partial_i \Phi_j - \partial_j \Phi_i = -c B_{ij}. \] (10.156)
Thus,
\[F_{i4} = -F_{4i} = -E_i, \] (10.157)
\[F_{ij} = -F_{ji} = -c B_{ij}. \] (10.158)
In other words, the completely space-like components of the tensor specify the components of the magnetic field, whereas the hybrid space and time-like components specify the components of the electric field. The covariant components
of the tensor can be written

\[
F_{\mu\nu} = \begin{pmatrix}
0 & -c B_z & +c B_y & -E_x \\
+c B_z & 0 & -c B_x & -E_y \\
-c B_y & +c B_x & 0 & -E_z \\
+E_x & +E_y & +E_z & 0
\end{pmatrix}.
\] (10.159)

Not surprisingly, \(F_{\mu\nu}\) is usually called the electromagnetic field tensor. The above expression, which appears in all standard textbooks, is very misleading. Taken at face value, it is simply wrong! We cannot form a proper-4-tensor from the components of a proper-3-vector and a pseudo-3-vector. The expression only makes sense if we interpret \(B_x\) (say) as representing the component \(B_{23}\) of the proper magnetic field 3-tensor \(B_{ij}\).

The contravariant components of the electromagnetic field tensor are given by

\[
F^{i4} = -F^{4i} = +E^i, \quad (10.160)
\]
\[
F^{ij} = -F^{ji} = -c B^{ij}, \quad (10.161)
\]
or

\[
F^{\mu\nu} = \begin{pmatrix}
0 & -c B_z & +c B_y & +E_x \\
+c B_z & 0 & -c B_x & +E_y \\
-c B_y & +c B_x & 0 & +E_z \\
+E_x & +E_y & +E_z & 0
\end{pmatrix}.
\] (10.162)

Let us now consider two of Maxwell’s equations:

\[
\nabla \cdot E = \frac{\rho}{\varepsilon_0}, \quad (10.163)
\]
\[
\nabla \times B = \mu_0 \left(j + \varepsilon_0 \frac{\partial E}{\partial t} \right). \quad (10.164)
\]

Recall that the 4-current is defined \(J^\mu = (j, \rho c)\). The first of these equations can be written

\[
\partial_i E^i = \partial_i F^{i4} + \partial_4 F^{44} = \frac{J^4}{c \varepsilon_0}.
\] (10.165)
since $F^{44} = 0$. The second of these equations takes the form

$$
\epsilon^{ijk} \partial_j (c B_k) - \partial_4 E^i = \epsilon^{ijk} \partial_j (1/2 \epsilon_{kab} c B^{ab}) + \partial_4 F^{4i} = \frac{J^i}{c \epsilon_0}.
$$

(10.166)

Making use of Eq. (10.150), the above expression reduces to

$$
\frac{1}{2} \partial_j (c B^{ij} - c B^{ji}) + \partial_4 F^{4i} = \partial_4 F^{ii} + \partial_4 F^{4i} = \frac{J^i}{c \epsilon_0}.
$$

(10.167)

Equations (10.165) and (10.167) can be combined to give

$$
\partial_4 F^{ii} = \frac{J^i}{c \epsilon_0}.
$$

(10.168)

This equation is consistent with the equation of charge continuity, $\partial_\mu J^\mu = 0$, because of the antisymmetry of the electromagnetic field tensor.

10.16 The dual electromagnetic field tensor

We have seen that it is possible to write the components of the electric and magnetic fields as the components of a proper-4-tensor. Is it also possible to write the components of these fields as the components of some pseudo-4-tensor? It is obvious that we cannot identify the components of some pseudo-4-tensor? It is obvious that we cannot identify the components of a proper-3-vector E with any of the components of a pseudo-tensor. However, we can represent the components of E in terms of those of an antisymmetric pseudo-3-tensor E_{ij} by writing

$$
E^i = \frac{1}{2} \epsilon^{ijk} E_{jk}.
$$

(10.169)

It is easily demonstrated that

$$
E^{ij} = E_{ij} = \begin{pmatrix}
0 & E_z & -E_y \\
-E_z & 0 & E_x \\
E_y & -E_x & 0
\end{pmatrix},
$$

(10.170)

in a right-handed coordinate system.
Consider the dual electromagnetic field tensor, $G^{\mu\nu}$, which is defined

$$G^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\rho\beta} F_{\rho\beta}.$$ \hfill (10.171)

This tensor is clearly an antisymmetric pseudo-4-tensor. We have

$$G^{4i} = \frac{1}{2} \epsilon^{4ijk} F_{jk} = -\frac{1}{2} \epsilon^{ijk4} F_{jk} = \frac{1}{2} \epsilon^{ijk} c B_{jk} = c B^i,$$ \hfill (10.172)

plus

$$G^{ij} = \frac{1}{2} (\epsilon^{ijk4} F_{k4} + \epsilon^{ij4k} F_{4k}) = \epsilon^{ijk} F_{k4},$$ \hfill (10.173)

where use has been made of $F_{\mu\nu} = -F_{\nu\mu}$. The above expression yields

$$G^{ij} = -\epsilon^{ijk} E_k = -\frac{1}{2} \epsilon^{ijk} \epsilon_{kab} E^{ab} = -E^{ij}.$$ \hfill (10.174)

It follows that

$$G^{i4} = -G^{4i} = -c B^i,$$ \hfill (10.175)
$$G^{ij} = -G^{ji} = -E^{ij},$$ \hfill (10.176)

or

$$G^{\mu\nu} = \begin{pmatrix}
0 & -E_z & +E_y & -c B_x \\
+ E_z & 0 & -E_x & -c B_y \\
- E_y & + E_x & 0 & -c B_z \\
+ c B_x & + c B_y & + c B_z & 0
\end{pmatrix}. \hfill (10.177)$$

The above expression is, again, slightly misleading, since E_x stands for the component E^{23} of the pseudo-3-tensor E^{ij}, and not for an element of the proper-3-vector E. Of course, in this case, B_x really does represent the first element of the pseudo-3-vector B. Note that the elements of $G^{\mu\nu}$ are obtained from those of $F^{\mu\nu}$ by making the transformation $c B^{ij} \rightarrow E^{ij}$ and $E^i \rightarrow -c B^i$.

The covariant elements of the dual electromagnetic field tensor are given by

$$G_{i4} = -G^{4i} = +cB_i,$$ \hfill (10.178)
$$G_{ij} = -G^{ji} = -E_{ij},$$ \hfill (10.179)
or

$$G_{\mu\nu} = \begin{pmatrix}
0 & -E_z & +E_y & +c B_x \\
+E_z & 0 & -E_x & +c B_y \\
-E_y & +E_x & 0 & +c B_z \\
-c B_x & -c B_y & -c B_z & 0
\end{pmatrix}. \tag{10.180}$$

The elements of $G_{\mu\nu}$ are obtained from those of $F_{\mu\nu}$ by making the transformation $c B_{ij} \rightarrow E_{ij}$ and $E_i \rightarrow -c B_i$.

Let us now consider the two Maxwell equations

$$\nabla \cdot \mathbf{B} = 0, \tag{10.181}$$
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}. \tag{10.182}$$

The first of these equations can be written

$$-\partial_i (c B^i) = \partial_i G^{i4} + \partial_4 G^{44} = 0, \tag{10.183}$$

since $G^{44} = 0$. The second equation takes the form

$$\varepsilon^{ijk} \partial_j E_k = \varepsilon^{ijk} \partial_j (1/2 \varepsilon_{kab} E^{ab}) = \partial_j E^{ij} = -\partial_4 (c B^i), \tag{10.184}$$

or

$$\partial_j G^{ji} + \partial_4 G^{4i} = 0. \tag{10.185}$$

Equations (10.183) and (10.185) can be combined to give

$$\partial_\mu G^{\mu\nu} = 0. \tag{10.186}$$

Thus, we conclude that Maxwell’s equations for the electromagnetic fields are equivalent to the following pair of 4-tensor equations:

$$\partial_\mu F^{\mu\nu} = \frac{J^\nu}{c \varepsilon_0}, \tag{10.187}$$
$$\partial_\mu G^{\mu\nu} = 0. \tag{10.188}$$

It is obvious from the form of these equations that the laws of electromagnetism are invariant under translations, rotations, special Lorentz transformations, parity inversions, or any combination of these transformations.
The electromagnetic field tensor transforms according to the standard rule
\[F^{' \mu \nu} = F^{\mu \nu} p^\prime_\mu p^\prime_\nu. \] (10.189)
This easily yields the celebrated rules for transforming electromagnetic fields:
\[E'_\parallel = E_\parallel, \] (10.190)
\[B'_\parallel = B_\parallel, \] (10.191)
\[E'_\perp = \gamma (E_\perp + v \times B), \] (10.192)
\[B'_\perp = \gamma (B_\perp - v \times E/c^2), \] (10.193)
where \(v \) is the relative velocity between the primed and unprimed frames, and the perpendicular and parallel directions are, respectively, perpendicular and parallel to \(v \).

At this stage, we may conveniently note two important invariants of the electromagnetic field. They are
\[\frac{1}{2} F_{\mu \nu} F^{\mu \nu} = c^2 B^2 - E^2, \] (10.194)
and
\[\frac{1}{4} G_{\mu \nu} F^{\mu \nu} = c E \cdot B. \] (10.195)
The first of these quantities is a proper-scalar, and the second a pseudo-scalar.

Potential due to a moving charge

Suppose that a particle carrying a charge \(e \) moves with uniform velocity \(u \) through a frame \(S \). Let us evaluate the vector potential, \(A \), and the scalar potential, \(\phi \), due to this charge at a given event \(P \) in \(S \).

Let us choose coordinates in \(S \) so that \(P = (0, 0, 0, 0) \) and \(u = (u, 0, 0) \). Let \(S' \) be that frame in the standard configuration with respect to \(S \) in which the charge
is (permanently) at rest at (say) the point \((x', y', z')\). In \(S'\), the potential at \(P\) is the usual potential due to a stationary charge,

\[
\begin{align*}
A' &= 0, \\
\phi' &= \frac{e}{4\pi \varepsilon_0 r'},
\end{align*}
\]

(10.196)

(10.197)

where \(r' = \sqrt{x'^2 + y'^2 + z'^2}\). Let us now transform these equations directly into the frame \(S\). Since \(A^\mu = (c A, \phi)\) is a contravariant 4-vector, its components transform according to the standard rules (10.75)–(10.78). Thus,

\[
\begin{align*}
c A_1 &= \gamma \left(c A'_1 + \frac{u}{c} \phi' \right) = \frac{\gamma u e}{4\pi \varepsilon_0 c r'}, \\
c A_2 &= c A'_2 = 0, \\
c A_3 &= c A'_3 = 0, \\
\phi &= \gamma \left(\phi' + \frac{u}{c} A'_1 \right) = \frac{\gamma e}{4\pi \varepsilon_0 r'},
\end{align*}
\]

(10.198)

(10.199)

(10.200)

(10.201)

since \(\beta = -u/c\) in this case. It remains to express the quantity \(r'\) in terms of quantities measured in \(S\). The most physically meaningful way of doing this is to express \(r'\) in terms of \textit{retarded} values in \(S\). Consider the retarded event at the charge for which, by definition, \(r' = -c t'\) and \(r = -c t\). Using the standard Lorentz transformation, (10.24)–(10.27), we find that

\[
r' = -c t' = -c \gamma (t - u x/c^2) = r \gamma (1 + u_r/c),
\]

(10.202)

where \(u_r = u x/r = r \cdot u / r\) denotes the radial velocity of the change in \(S\). We can now rewrite Eqs. (10.198)–(10.201) in the form

\[
\begin{align*}
A &= \frac{\mu_0 e}{4\pi} \left[\frac{u}{r + r \cdot u / c} \right], \\
\phi &= \frac{e}{4\pi \varepsilon_0} \left[\frac{1}{r + r \cdot u / c} \right],
\end{align*}
\]

(10.203)

(10.204)

where the square brackets, as usual, indicate that the enclosed quantities must be retarded. For a uniformly moving charge, the retardation of \(u\) is, of course, superfluous. However, since

\[
\Phi^\mu = \frac{1}{4\pi \varepsilon_0 c} \int \frac{[J^\mu]}{r} \, dV,
\]

(10.205)
it is clear that the potentials depend only on the (retarded) velocity of the charge, and not on its acceleration. Consequently, the expressions (10.203) and (10.204) give the correct potentials for an arbitrarily moving charge. They are known as the Liénard-Wiechert potentials.

10.19 Fields due to a moving charge

Although the fields generated by a uniformly moving charge can be calculated from the expressions (10.203) and (10.204) for the potentials, it is simpler to calculate them from first principles.

Let a charge \(e\), whose position vector at time \(t = 0\) is \(r\), move with uniform velocity \(u\) in a frame \(S\) whose x-axis has been chosen in the direction of \(u\). We require to find the field strengths \(E\) and \(B\) at the event \(P = (0, 0, 0, 0)\). Let \(S'\) be that frame in standard configuration with \(S\) in which the charge is permanently at rest. In \(S'\), the field is given by

\[
\begin{align*}
B' &= 0, \\
E' &= -\frac{e}{4\pi \varepsilon_0} \frac{r'}{r'^3}.
\end{align*}
\]

This field must now be transformed into the frame \(S\). The direct method, using Eqs. (10.190)–(10.193), is somewhat simpler here, but we shall use a somewhat indirect method because of its intrinsic interest.

In order to express Eq. (10.206) and (10.207) in tensor form, we need the electromagnetic field tensor \(F^{\mu\nu}\) on the left-hand side, and the position 4-vector \(R^\mu = (r, ct)\) and the scalar \(e/(4\pi \varepsilon_0 r'^3)\) on the right-hand side. (We regard \(r'\) as an invariant for all observers.) To get a vanishing magnetic field in \(S'\), we multiply on the right by the 4-velocity \(U^\mu = \gamma(u)(u, c)\), thus tentatively arriving at the equation

\[
F^{\mu\nu} = \frac{e}{4\pi \varepsilon_0 c r'^3} U^\mu R^\nu.
\]

Recall that \(F^{4i} = -E^i\) and \(F^{ij} = -c B^{ij}\). However, this equation cannot be correct, because the antisymmetric tensor \(F^{\mu\nu}\) can only be equated to another antisym-
metric tensor. Consequently, let us try

$$ F_{\mu\nu} = \frac{e}{4\pi \varepsilon_0 c r^3} (U^\mu R^\nu - U^\nu R^\mu). \quad (10.209) $$

This is found to give the correct field at \(P \) in \(S' \), as long as \(R^\mu \) refers to any event whatsoever at the charge. It only remains to interpret (10.209) in \(S \). It is convenient to choose for \(R \) that event at the charge at which \(t = 0 \) (not the retarded event). Thus,

$$ F^{jk} = -c B^{jk} = \frac{e}{4\pi \varepsilon_0 c r^3} \gamma(u) (u^j r^k - u^k r^j), \quad (10.210) $$

giving

$$ B_i = \frac{1}{2} \epsilon_{ijk} B^{jk} = -\frac{\mu_0 e}{4\pi r^3} \gamma(u) \epsilon_{ijk} u^j r^k, \quad (10.211) $$
or

$$ B = -\frac{\mu_0 e \gamma}{4\pi r^3} u \times r. \quad (10.212) $$

Likewise,

$$ F^{4i} = -E^i = \frac{e \gamma}{4\pi \varepsilon_0 r^3} r^i, \quad (10.213) $$
or

$$ E = -\frac{e \gamma}{4\pi \varepsilon_0 r^3} r. \quad (10.214) $$

Lastly, we must find an expression for \(r^3 \) in terms of quantities measured in \(S \) at time \(t = 0 \). If \(t' \) is the corresponding time in \(S' \) at the charge, we have

$$ r'^2 = r^2 + c^2 t'^2 = r^2 + \frac{\gamma^2 u^2 x^2}{c^2} = r^2 \left(1 + \frac{\gamma^2 u^2 x^2}{c^2} \right). \quad (10.215) $$

Thus,

$$ E = -\frac{e}{4\pi \varepsilon_0 r^3 (1 + u^2 \gamma^2/c^2)^{3/2}} \gamma \frac{\gamma}{c^2} \frac{r}{u^2} \times \frac{1}{c^2} u \times E, \quad (10.216) $$

Note that \(E \) acts in line with the point which the charge occupies at the instant of measurement, despite the fact that, owing to the finite speed of propagation of all
physical effects, the behaviour of the charge during a finite period before that instant can no longer affect the measurement. Note also that, unlike Eqs. (10.203) and (10.204), the above expressions for the fields are not valid for an arbitrarily moving charge, not can they be made valid by merely using retarded values. For whereas acceleration does not affect the potentials, it does affect the fields, which involve the derivatives of the potential.

For low velocities, \(u/c \to 0 \), Eqs. (10.216) and (10.217) reduce to the well-known Coulomb and Biot-Savart fields. However, at high velocities, \(\gamma(u) \gg 1 \), the fields exhibit some interesting behaviour. The peak electric field, which occurs at the point of closest approach of the charge to the observation point, becomes equal to \(\gamma \) times its non-relativistic value. However, the duration of appreciable field strength at the point \(P \) is decreased. A measure of the time interval over which the field is appreciable is

\[
\Delta t \sim \frac{b}{\gamma c},
\]

where \(b \) is the distance of closest approach (assuming \(\gamma \gg 1 \)). As \(\gamma \) increases, the peak field increases in proportion, but its duration goes in the inverse proportion. The time integral of the field is independent of \(\gamma \). As \(\gamma \to \infty \), the observer at \(P \) sees electric and magnetic fields which are indistinguishable from the fields of a pulse of plane polarized radiation propagating in the \(x \)-direction. The direction of polarization is along the radius vector pointing towards the particle’s actual position at the time of observation.

10.20 Relativistic particle dynamics

Consider a particle which, in its instantaneous rest frame \(S_0 \), has mass \(m_0 \) and constant acceleration in the \(x \)-direction \(a_0 \). Let us transform to a frame \(S \), in the standard configuration with respect to \(S_0 \), in which the particle’s instantaneous velocity is \(u \). What is the value of \(a \), the particle’s instantaneous \(x \)-acceleration, in \(S \)?

The easiest way in which to answer this question is to consider the acceleration
4-vector [see Eq. (10.107)]

\[A^\mu = \gamma \left(\frac{d\gamma}{dt} u + \gamma a, c \frac{d\gamma}{dt} \right). \]

Using the standard transformation, (10.75)–(10.78), for 4-vectors, we obtain

\[a_0 = \gamma^3 a, \]

\[\frac{d\gamma}{dt} = \frac{u a_0}{c^2}. \]

Equation (10.220) can be written

\[f = m_0 \gamma^3 \frac{du}{dt}, \]

where \(f = m_0 a_0 \) is the constant force (in the \(x \)-direction) acting on the particle in \(S_0 \).

Equation (10.222) is equivalent to

\[f = \frac{d(m u)}{dt}, \]

where

\[m = \gamma m_0. \]

Thus, we can account for the ever decreasing acceleration of a particle subject to a constant force [see Eq. (10.220)] by supposing that the inertial mass of the particle increases with its velocity according to the rule (10.224). Henceforth, \(m_0 \) is termed the rest mass, and \(m \) the inertial mass.

The rate of increase of the particle’s energy \(E \) satisfies

\[\frac{dE}{dt} = f u = m_0 \gamma^3 u \frac{du}{dt}. \]

This equation can be written

\[\frac{dE}{dt} = \frac{d(m c^2)}{dt}, \]

\[342 \]
which can be integrated to yield Einstein’s famous formula

\[E = mc^2. \] (10.227)

The 3-momentum of a particle is defined

\[p = m u, \] (10.228)

where \(u \) is its 3-velocity. Thus, by analogy with Eq. (10.223), Newton’s law of motion can be written

\[f = \frac{dp}{dt}, \] (10.229)

where \(f \) is the 3-force acting on the particle.

The 4-momentum of a particle is defined

\[P^\mu = m_0 U^\mu = \gamma m_0 (u, c) = (p, E/c), \] (10.230)

where \(U^\mu \) is its 4-velocity. The 4-force acting on the particle obeys

\[F^\mu = \frac{dP^\mu}{d\tau} = m_0 A^\mu, \] (10.231)

where \(A^\mu \) is its 4-acceleration. It is easily demonstrated that

\[F^\mu = \gamma \left(f, c \frac{dm}{dt} \right) = \gamma \left(f, \frac{f \cdot u}{c} \right), \] (10.232)

since

\[\frac{dE}{dt} = f \cdot u. \] (10.233)

10.21 The force on a moving charge

The electromagnetic 3-force acting on a charge \(e \) moving with 3-velocity \(u \) is given by the well-known formula

\[f = e (E + u \times B). \] (10.234)
When written in component form this expression becomes

\[f_i = e \left(E_i + \epsilon_{ijk} u^j B^k \right), \quad (10.235) \]

or

\[f_i = e \left(E_i + B_{ij} u^j \right), \quad (10.236) \]

where use has been made of Eq. (10.147).

Recall that the components of the \(E \) and \(B \) fields can be written in terms of an antisymmetric electromagnetic field tensor \(\mathbf{F} \) via

\[F_{i4} = -F_{4i} = -E_i, \quad (10.237) \]
\[F_{ij} = -F_{ji} = -c B_{ij}. \quad (10.238) \]

Equation (10.236) can be written

\[f_i = \frac{-e}{\gamma c} (F_{i4} U^4 + F_{ij} U^j), \quad (10.239) \]

where \(U^\mu = \gamma (u, c) \) is the particle’s 4-velocity. It is easily demonstrated that

\[\frac{\mathbf{f} \cdot \mathbf{u}}{c} = \frac{e}{c} \mathbf{E} \cdot \mathbf{u} = \frac{e}{c} E_i u^i = \frac{e}{\gamma c} (F_{4i} U^i + F_{44} U^4). \quad (10.240) \]

Thus, the 4-force acting on the particle,

\[\mathbf{F}_\mu = \gamma \left(-\mathbf{f}, \frac{\mathbf{f} \cdot \mathbf{u}}{c} \right), \quad (10.241) \]

can be written in the form

\[\mathbf{F}_\mu = \frac{e}{c} \mathbf{F}_{\mu\nu} U^\nu. \quad (10.242) \]

The skew symmetry of the electromagnetic field tensor ensures that

\[\mathbf{F}_\mu U^\mu = \frac{e}{c} \mathbf{F}_{\mu\nu} U^\mu U^\nu = 0. \quad (10.243) \]

This is an important result, since it ensures that electromagnetic fields do not change the rest mass of charged particles. In order to appreciate this, let us assume that the rest mass \(m_0 \) is not a constant. Since

\[\mathbf{F}_\mu = \frac{d(m_0 U_\mu)}{d\tau} = m_0 A_\mu + \frac{dm_0}{d\tau} U_\mu, \quad (10.244) \]
we can use the standard results $U_\mu U^\mu = c^2$ and $\Lambda_\mu U^\mu = 0$ to give
\[F_\mu U^\mu = c^2 \frac{d m_0}{d \tau}. \]
(10.245)

Thus, if rest mass is to remain an invariant, it is imperative that all laws of physics predict 4-forces acting on particles which are orthogonal to the particles’ 4-velocities. The laws of electromagnetism pass this test.

10.22 The electromagnetic energy tensor

Consider a continuous volume distribution of charged matter in the presence of an electromagnetic field. Let there be n_0 particles per unit proper volume (unit volume determined in the local rest frame), each carrying a charge e. Consider an inertial frame in which the 3-velocity field of the particles is u. The number density of the particles in this frame is $n = \gamma(u) n_0$. The charge density and the 3-current due to the particles are $\rho = e \, n$ and $j = e \, n \, u$, respectively. Multiplying Eq. (10.242) by the proper number density of particles, n_0, we obtain an expression
\[f_\mu = c^{-1} F_{\mu \nu} J^\nu \]
(10.246)

for the 4-force f_μ acting on unit proper volume of the distribution due to the ambient electromagnetic fields. Here, we have made use of the definition $J^\mu = e \, n_0 \, U^\mu$. It is easily demonstrated, using some of the results obtained in the previous section, that
\[f^\mu = \left(\rho \, E + j \times B, \frac{E \cdot j}{c} \right). \]
(10.247)

The above expression remains valid when there are many charge species (e.g., electrons and ions) possessing different number density and 3-velocity fields. The 4-vector f^μ is usually called the Lorentz force density.

We know that Maxwell’s equations reduce to
\[\partial_\mu F^{\mu \nu} = \frac{J^\nu}{c \, \varepsilon_0}, \]
(10.248)
\[\partial_\mu G^{\mu \nu} = 0, \]
(10.249)
where $F^{\mu\nu}$ is the electromagnetic field tensor, and $G^{\mu\nu}$ is its dual. As is easily verified, Eq. (10.249) can also be written in the form

$$\partial_\mu F_{\nu\sigma} + \partial_\nu F_{\sigma\mu} + \partial_\sigma F_{\mu\nu} = 0.$$ \hspace{1cm} (10.250)

Equations (10.246) and (10.248) can be combined to give

$$f_\nu = \varepsilon_0 F_{\nu\sigma} \partial_\mu F^{\mu\sigma}.$$ \hspace{1cm} (10.251)

This expression can also be written

$$f_\nu = \varepsilon_0 \left[\partial_\mu (F^{\mu\sigma} F_{\nu\sigma}) - F^{\mu\sigma} \partial_\mu F_{\nu\sigma} \right].$$ \hspace{1cm} (10.252)

Now,

$$F^{\mu\sigma} \partial_\mu F_{\nu\sigma} = \frac{1}{2} F^{\mu\sigma} (\partial_\mu F_{\nu\sigma} + \partial_\sigma F_{\mu\nu}),$$ \hspace{1cm} (10.253)

where use has been made of the antisymmetry of the electromagnetic field tensor. It follows from Eq. (10.250) that

$$F^{\mu\sigma} \partial_\mu F_{\nu\sigma} = -\frac{1}{2} F^{\mu\sigma} \partial_\nu F_{\sigma\mu} = \frac{1}{4} \partial_\nu (F^{\mu\sigma} F_{\mu\sigma}).$$ \hspace{1cm} (10.254)

Thus,

$$f_\nu = \varepsilon_0 \left[\partial_\mu (F^{\mu\sigma} F_{\nu\sigma}) - \frac{1}{4} \partial_\nu (F^{\mu\sigma} F_{\mu\sigma}) \right].$$ \hspace{1cm} (10.255)

The above expression can also be written

$$f_\nu = -\partial_\nu T^{\mu\nu},$$ \hspace{1cm} (10.256)

where

$$T^{\mu\nu} = \varepsilon_0 \left[F^{\mu\sigma} F_{\nu\sigma} + \frac{1}{4} \delta^{\mu}_\nu (F^{\rho\sigma} F_{\rho\sigma}) \right]$$ \hspace{1cm} (10.257)

is called the electromagnetic energy tensor. Note that $T^{\mu\nu}$ is a proper-4-tensor. It follows from Eqs. (10.159), (10.162), and (10.194) that

$$T^i_\ j = \varepsilon_0 E^i E_j + \frac{B^i B_j}{\mu_0} - \delta^i_j \left(\frac{\varepsilon_0 E^k E_k + \frac{B^k B_k}{\mu_0}}{c^2} \right),$$ \hspace{1cm} (10.258)

$$T^i_\ 4 = -T^4_\ i = \frac{\varepsilon_0 E^i E_k B_k}{\mu_0 c},$$ \hspace{1cm} (10.259)

$$T^4_\ 4 = \frac{1}{2} \left(\frac{\varepsilon_0 E^k E_k + \frac{B^k B_k}{\mu_0}}{c^2} \right).$$ \hspace{1cm} (10.260)
Equation (10.256) can also be written

$$ f^\nu = -\partial_\mu T^{\mu\nu}, \tag{10.261} $$

where $T^{\mu\nu}$ is a symmetric tensor whose elements are

$$ T^{ij} = -\varepsilon_0 E^i E^j - \frac{B^i B^j}{\mu_0} + \delta^{ij} \frac{1}{2} \left(\varepsilon_0 E^2 + \frac{B^2}{\mu_0} \right), \tag{10.262} $$

$$ T^{i4} = T^{4i} = \frac{(E \times B)^i}{\mu_0 c}, \tag{10.263} $$

$$ T^{44} = \frac{1}{2} \left(\varepsilon_0 E^2 + \frac{B^2}{\mu_0} \right). \tag{10.264} $$

Consider the time-like component of Eq. (10.261). It follows from Eq. (10.247) that

$$ \frac{E \cdot j}{c} = -\partial_i T^{i4} - \partial_4 T^{44}. \tag{10.265} $$

This equation can be rearranged to give

$$ \frac{\partial U}{\partial t} + \nabla \cdot u = -E \cdot j, \tag{10.266} $$

where $U = T^{44}$ and $u^i = c T^{i4}$, so that

$$ U = \frac{\varepsilon_0 E^2}{2} + \frac{B^2}{2 \mu_0}, \tag{10.267} $$

and

$$ u = \frac{E \times B}{\mu_0}. \tag{10.268} $$

The right-hand side of Eq. (10.266) represents the rate per unit volume at which energy is transferred from the electromagnetic field to charged particles. It is clear, therefore, that Eq. (10.266) is an energy conservation equation for the electromagnetic field (see Sect. 8.2). The proper-3-scalar U can be identified as the energy density of the electromagnetic field, whereas the proper-3-vector u is the energy flux due to the electromagnetic field: i.e., the Poynting flux.
Consider the space-like components of Eq. (10.261). It is easily demonstrated that these reduce to
\[
\frac{\partial g^i}{\partial t} + \nabla \cdot G = -\rho E - j \times B, \tag{10.269}
\]
where \(G^{ij} = T^{ij}\) and \(g^i = T^{4i}/c\), or
\[
G^{ij} = -\varepsilon_0 E^i E^j - \frac{B^i B^j}{\mu_0} + \delta^{ij} \frac{1}{2} \left(\varepsilon_0 E^2 + \frac{B^2}{\mu_0} \right), \tag{10.270}
\]
and
\[
g = \frac{u}{c^2} = \varepsilon_0 E \times B. \tag{10.271}
\]
Equation (10.269) is basically a momentum conservation equation for the electromagnetic field (see Sect. 8.4). The right-hand side represents the rate per unit volume at which momentum is transferred from the electromagnetic field to charged particles. The symmetric proper-3-tensor \(G^{ij}\) specifies the flux of electromagnetic momentum parallel to the \(i\)th axis crossing a surface normal to the \(j\)th axis. The proper-3-vector \(g\) represents the momentum density of the electromagnetic field. It is clear that the energy conservation law (10.266) and the momentum conservation law (10.269) can be combined together to give the relativistically invariant energy-momentum conservation law (10.261).

10.23 Accelerated charges

Let us calculate the electric and magnetic fields observed at position \(x^i\) and time \(t\) due to a charge \(e\) whose retarded position and time are \(x^{i'}\) and \(t'\), respectively. From now on \((x^i, t)\) is termed the field point and \((x^{i'}, t')\) is termed the source point. It is assumed that we are given the retarded position of the charge as a function of its retarded time: \(i.e., x^{i'}(t')\). The retarded velocity and acceleration of the charge are
\[
u^i = \frac{dx^{i'}}{dt'}, \tag{10.272}
\]
and
\[
\dot{u}^i = \frac{du^i}{dt'}. \tag{10.273}
\]
respectively. The radius vector \(r \) is defined to extend from the retarded position of the charge to the field point, so that \(r^i = x^i - x'^i \). (Note that this is the opposite convention to that adopted in Sects. 10.18 and 10.19). It follows that

\[
\frac{d \mathbf{r}}{dt'} = -u.
\]

(10.274)

The field and the source point variables are connected by the retardation condition

\[
r(x^i, x'^i) = \left[(x^i - x'^i) (x_i - x_i') \right]^{1/2} = c (t - t').
\]

(10.275)

The potentials generated by the charge are given by the Liénard-Wiechert formulae

\[
A(x^i, t) = \frac{\mu_0 e u}{4\pi s},
\]

\[
\phi(x^i, t) = \frac{e}{4\pi\varepsilon_0 s},
\]

where \(s = r - r \cdot u/c \) is a function both of the field point and the source point variables. Recall that the Liénard-Wiechert potentials are valid for accelerating, as well as uniformly moving, charges.

The fields \(E \) and \(B \) are derived from the potentials in the usual manner:

\[
E = -\nabla \phi - \frac{\partial A}{\partial t},
\]

\[
B = \nabla \times A.
\]

(10.278)

(10.279)

However, the components of the gradient operator \(\nabla \) are partial derivatives at constant time, \(t \), and not at constant time, \(t' \). Partial differentiation with respect to the \(x^i \) compares the potentials at neighbouring points at the same time, but these potential signals originate from the charge at different retarded times. Similarly, the partial derivative with respect to \(t \) implies constant \(x^i \), and, hence, refers to the comparison of the potentials at a given field point over an interval of time during which the retarded coordinates of the source have changed. Since we only know the time variation of the particle’s retarded position with respect to \(t' \) we must transform \(\partial / \partial t \bigg|_{x^i} \) and \(\partial / \partial x^i \bigg|_t \) to expressions involving \(\partial / \partial t' \bigg|_{x^i} \) and \(\partial / \partial x^i \bigg|_{t'} \).
Now, since x^i is assumed to be given as a function of t', we have

$$r(x^i, x^i(t')) \equiv r(x^i, t') = c(t - t'), \quad (10.280)$$

which is a functional relationship between x^i, t, and t'. Note that

$$\left(\frac{\partial r}{\partial t'} \right)_{x^i} = -\frac{r \cdot u}{r}. \quad (10.281)$$

It follows that

$$\frac{\partial r}{\partial t} = c \left(1 - \frac{\partial t'}{\partial t} \right) = \frac{\partial r}{\partial t'} \frac{\partial t'}{\partial t} = -\frac{r \cdot u}{r} \frac{\partial t'}{\partial t}, \quad (10.282)$$

where all differentiation is at constant x^i. Thus,

$$\frac{\partial t'}{\partial t} = \frac{1}{1 - \frac{r \cdot u}{rc}} = \frac{r}{s}, \quad (10.283)$$

giving

$$\frac{\partial}{\partial t} = \frac{r}{s} \frac{\partial}{\partial t'}. \quad (10.284)$$

Similarly,

$$\nabla r = -c \nabla t' = \nabla' r + \frac{\partial r}{\partial t'} \nabla t' = \frac{r}{r} - \frac{r \cdot u}{r} \nabla t', \quad (10.285)$$

where ∇' denotes differentiation with respect to x^i at constant t'. It follows that

$$\nabla t' = -\frac{r}{sc}, \quad (10.286)$$

so that

$$\nabla = \nabla' - \frac{r}{sc} \frac{\partial}{\partial t'}. \quad (10.287)$$

Equation (10.278) yields

$$\frac{4\pi \varepsilon_0}{e} E = \frac{\nabla s}{s^2} - \frac{\partial}{\partial t} \frac{u}{sc^2}, \quad (10.288)$$

or

$$\frac{4\pi \varepsilon_0}{e} E = \frac{\nabla' s}{s^2} - \frac{r}{s^3 c} \frac{\partial s}{\partial t'} - \frac{r}{s^2 c^2} \hat{u} + \frac{r u}{s^3 c^2} \frac{\partial s}{\partial t'}. \quad (10.289)$$
However,
\[\nabla' s = \frac{r}{r} - \frac{u}{c}, \]
(10.290)
and
\[\frac{\partial s}{\partial t'} = \frac{\partial r}{\partial t'} - \frac{r \cdot \dot{u}}{c} + \frac{u \cdot u}{c} = -\frac{r}{r} - \frac{r}{c} + \frac{u^2}{c}. \]
(10.291)
Thus,
\[\frac{4\pi \varepsilon_0}{e} E = -\frac{1}{s^2 r} \left(r - \frac{r u}{c} \right) - \frac{1}{s^3 c} \left(r - \frac{r u}{c} \right) \left(\frac{r \cdot u}{r} - \frac{u^2}{c} + \frac{r \cdot \dot{u}}{c} \right) - \frac{r}{s^2 c^2} \dot{u}, \]
(10.292)
which reduces to
\[\frac{4\pi \varepsilon_0}{e} E = \frac{1}{s^3} \left(r - \frac{r u}{c} \right) \left(1 - \frac{u^2}{c^2} \right) + \frac{1}{s^3 c^2} \left(r \times \left(\left(r - \frac{r u}{c} \right) \times \dot{u} \right) \right). \]
(10.293)

Similarly,
\[\frac{4\pi}{\mu_0 e} B = \nabla \times \frac{u}{s} = -\frac{\nabla' s \times u}{s^2} - \frac{r}{s c} \times \left(\frac{\dot{u}}{s} - \frac{u}{s^2} \frac{\partial s}{\partial t'} \right), \]
(10.294)
or
\[\frac{4\pi}{\mu_0 e} B = -\frac{r \times u}{s^2 r} - \frac{r}{s c} \times \left[\frac{\dot{u}}{s} + \frac{u}{s^2} \left(\frac{r \cdot u}{r} + \frac{r \cdot \dot{u}}{c} - \frac{u^2}{c} \right) \right], \]
(10.295)
which reduces to
\[\frac{4\pi}{\mu_0 e} B = \frac{u \times r}{s^3} \left(1 - \frac{u^2}{c^2} \right) + \frac{1}{s^3 c} \frac{r}{r \times \left(\left(r - \frac{r u}{c} \right) \times \dot{u} \right) \right). \]
(10.296)

A comparison of Eqs. (10.293) and (10.296) yields
\[B = \frac{r \times E}{r c}. \]
(10.297)
Thus, the magnetic field is always perpendicular to \(E \) and the \textit{retarded} radius vector \(r \). Note that all terms appearing in the above formulae are retarded.

The electric field is composed of two separate parts. The first term in Eq. (10.293) varies as \(1/r^2 \) for large distances from the charge. We can think of \(r_u = r - r u/c \)
as the virtual present radius vector: i.e., the radius vector directed from the position the charge would occupy at time t if it had continued with uniform velocity from its retarded position to the field point. In terms of r_u, the $1/r^2$ field is simply

$$E_{\text{induction}} = \frac{e}{4\pi \epsilon_0} \frac{1 - u^2/c^2}{s^3} r_u. \quad (10.298)$$

We can rewrite the expression (10.216) for the electric field generated by a uniformly moving charge in the form

$$E = \frac{e}{4\pi \epsilon_0} \frac{1 - u^2/c^2}{r_0^3(1 - u^2/c^2 + u_r^2/c^2)^{3/2}} \cdot r_0, \quad (10.299)$$

where r_0 is the radius vector directed from the present position of the charge at time t to the field point, and $u_r = u \cdot r_0/r_0$. For the case of uniform motion, the relationship between the retarded radius vector r and the actual radius vector r_0 is simply

$$r_0 = r - \frac{r}{c} u. \quad (10.300)$$

It is straightforward to demonstrate that

$$s = r_0 \sqrt{1 - u^2/c^2 + u_r^2/c^2} \quad (10.301)$$

in this case. Thus, the electric field generated by a uniformly moving charge can be written

$$E = \frac{e}{4\pi \epsilon_0} \frac{1 - u^2/c^2}{s^3} r_0. \quad (10.302)$$

Since $r_u = r_0$ for the case of a uniformly moving charge, it is clear that Eq. (10.298) is equivalent to the electric field generated by a uniformly moving charge located at the position the charge would occupy if it had continued with uniform velocity from its retarded position.

The second term in Eq. (10.293),

$$E_{\text{radiation}} = \frac{e}{4\pi \epsilon_0} \frac{r \times (r_u \times \hat{u})}{c^2 s^3}, \quad (10.303)$$

is of order $1/r$, and, therefore, represents a radiation field. Similar considerations hold for the two terms of Eq. (10.296).
10.24 The Larmor formula

Let us transform to the inertial frame in which the charge is instantaneously at rest at the origin at time $t = 0$. In this frame, $u \ll c$, so that $r_u \simeq r$ and $s \simeq r$ for events which are sufficiently close to the origin at $t = 0$ that the retarded charge still appears to travel with a velocity which is small compared to that of light. It follows from the previous section that

$$E_{\text{rad}} \simeq \frac{e}{4\pi \varepsilon_0 c^2} \frac{r \times (r \times \dot{u})}{r^3}, \quad (10.304)$$

$$B_{\text{rad}} \simeq \frac{e}{4\pi \varepsilon_0 c^3} \frac{\dot{u} \times r}{r^2}. \quad (10.305)$$

Let us define spherical polar coordinates whose axis points along the direction of instantaneous acceleration of the charge. It is easily demonstrated that

$$E_\theta \simeq \frac{e}{4\pi \varepsilon_0 c^2} \frac{\sin \theta}{r} \dot{u}, \quad (10.306)$$

$$B_\phi \simeq \frac{e}{4\pi \varepsilon_0 c^3} \frac{\sin \theta}{r} \dot{u}. \quad (10.307)$$

These fields are identical to those of a radiating dipole whose axis is aligned along the direction of instantaneous acceleration (see Sect. 9.2). The Poynting flux is given by

$$\frac{E_\theta B_\phi}{\mu_0} = \frac{e^2}{16\pi^2 \varepsilon_0 c^3} \frac{\sin^2 \theta}{r^2} \dot{u}^2. \quad (10.308)$$

We can integrate this expression to obtain the instantaneous power radiated by the charge

$$P = \frac{e^2}{6\pi \varepsilon_0 c^3} \dot{u}^2. \quad (10.309)$$

This is known as Larmor’s formula. Note that zero net momentum is carried off by the fields (10.306) and (10.307).

In order to proceed further, it is necessary to prove two useful theorems. The first theorem states that if a 4-vector field T^μ satisfies

$$\partial_\mu T^\mu = 0, \quad (10.310)$$
and if the components of T^μ are non-zero only in a finite spatial region, then the integral over 3-space,

$$I = \int T^4 \, d^3x,$$

(10.311)

is an invariant. In order to prove this theorem, we need to use the 4-dimensional analog of Gauss’s theorem, which states that

$$\int_V \partial_\mu T^\mu \, d^4x = \oint_S T^\mu \, dS_\mu,$$

(10.312)

where dS_μ is an element of the 3-dimensional surface S bounding the 4-dimensional volume V. The particular volume over which the integration is performed is indicated in Fig. 58. The surfaces A and C are chosen so that the spatial components of T^μ vanish on A and C. This is always possible because it is assumed that the region over which the components of T^μ are non-zero is of finite extent. The surface B is chosen normal to the x^4-axis, whereas the surface D is chosen normal to the $x^{4'}$-axis. Here, the x^μ and the $x^{\mu'}$ are coordinates in two arbitrarily chosen inertial frames. It follows from Eq. (10.312) that

$$\int T^4 \, dS_4 + \int T^{4'} \, dS_{4'} = 0.$$

(10.313)

Here, we have made use of the fact that $T^\mu \, dS_\mu$ is a scalar and, therefore, has the same value in all inertial frames. Since $dS_4 = -d^3x$ and $dS_{4'} = d^3x'$ it follows that $I = \int T^4 \, d^3x$ is an invariant under a Lorentz transformation. Incidentally, the above argument also demonstrates that I is constant in time (just take the limit in which the two inertial frames are identical).

The second theorem is an extension of the first. Suppose that a 4-tensor field $Q^{\mu\nu}$ satisfies

$$\partial_\mu Q^{\mu\nu} = 0,$$

(10.314)

and has components which are only non-zero in a finite spatial region. Let A_μ be a 4-vector whose coefficients do not vary with position in space-time. It follows that $T^\mu = A_\nu \, Q^{\mu\nu}$ satisfies Eq. (10.310). Therefore,

$$I = \int A_\nu \, Q^{4\nu} \, d^3x$$

(10.315)
is an invariant. However, we can write

\[I = A_\mu B^\mu, \quad (10.316) \]

where

\[B^\mu = \int Q^{4\mu} \, d^3x. \quad (10.317) \]

It follows from the quotient rule that if \(A_\mu B^\mu \) is an invariant for arbitrary \(A_\mu \) then \(B^\mu \) must transform as a constant (in time) 4-vector.

These two theorems enable us to convert differential conservation laws into integral conservation laws. For instance, in differential form, the conservation of electrical charge is written

\[\partial_\mu J^\mu = 0. \quad (10.318) \]

However, from Eq. (10.313) this immediately implies that

\[Q = \frac{1}{c} \int J^4 \, d^3x = \int \rho \, d^3x \quad (10.319) \]

is an invariant. In other words, the total electrical charge contained in space is both constant in time, and the same in all inertial frames.
Suppose that \(S \) is the instantaneous rest frame of the charge. Let us consider the electromagnetic energy tensor \(T^{\mu\nu} \) associated with all of the radiation emitted by the charge between times \(t = 0 \) and \(t = dt \). According to Eq. (10.261), this tensor field satisfies

\[
\partial_{\mu} T^{\mu\nu} = 0, \tag{10.320}
\]

apart from a region of space of measure zero in the vicinity of the charge. Furthermore, the region of space over which \(T^{\mu\nu} \) is non-zero is clearly finite, since we are only considering the fields emitted by the charge in a small time interval, and these fields propagate at a finite velocity. Thus, according to the second theorem

\[
P^{\mu} = \frac{1}{c} \int T^{4\mu} \, d^3x \tag{10.321}
\]

is a 4-vector. It follows from Sect. 10.22 that we can write \(P^{\mu} = (dp, dE/c) \), where \(dp \) and \(dE \) are the total momentum and energy carried off by the radiation emitted between times \(t = 0 \) and \(t = dt \), respectively. As we have already mentioned, \(dp = 0 \) in the instantaneous rest frame \(S \). Transforming to an arbitrary inertial frame \(S' \), in which the instantaneous velocity of the charge is \(u \), we obtain

\[
dE' = \gamma(u) (dE + u \, dp^I) = \gamma \, dE. \tag{10.322}
\]

However, the time interval over which the radiation is emitted in \(S' \) is \(dt' = \gamma dt \). Thus, the instantaneous power radiated by the charge,

\[
P' = \frac{dE'}{dt'} = \frac{dE}{dt} = P, \tag{10.323}
\]

is the same in all inertial frames.

We can make use of the fact that the power radiated by an accelerating charge is Lorentz invariant to find a relativistic generalization of the Larmor formula, (10.309), which is valid in all inertial frames. We expect the power emitted by the charge to depend only on its 4-velocity and 4-acceleration. It follows that the Larmor formula can be written in Lorentz invariant form as

\[
P = -\frac{e^2}{6\pi \varepsilon_0 c^3} A_\mu A^\mu, \tag{10.324}
\]
since the 4-acceleration takes the form $A^\mu = (\dot{u}, 0)$ in the instantaneous rest frame. In a general inertial frame,

$$- A_\mu A^\mu = \gamma^2 \left(\frac{d\gamma}{dt} u + \gamma \dot{u} \right)^2 - \gamma^2 c^2 \left(\frac{d\gamma}{dt} \right)^2,$$

where use has been made of Eq. (10.107). Furthermore, it is easily demonstrated that

$$\frac{d\gamma}{dt} = \gamma^3 \frac{u \cdot \dot{u}}{c^2}.$$

It follows, after a little algebra, that the relativistic generalization of Larmor's formula takes the form

$$P = \frac{e^2}{6\pi \epsilon_0 c^3} \gamma^6 \left[u^2 - \frac{(u \times \dot{u})^2}{c^2} \right].$$

10.25 Radiation losses

Radiation losses often determine the maximum achievable energy in a charged particle accelerator. Let us investigate radiation losses in various different types of accelerator device using the relativistic Larmor formula.

For a linear accelerator, the motion is one-dimensional. In this case, it is easily demonstrated that

$$\frac{dp}{dt} = m_0 \gamma^3 \dot{u},$$

where use has been made of Eq. (10.326), and $p = \gamma m_0 u$ is the particle momentum in the direction of acceleration (the x-direction, say). Here, m_0 is the particle rest mass. Thus, Eq. (10.327) yields

$$P = \frac{e^2}{6\pi \epsilon_0 m_0^2 c^3} \left(\frac{dp}{dt} \right)^2.$$

The rate of change of momentum is equal to the force exerted on the particle in the x-direction, which, in turn, equals the change in the energy, E, of the particle per unit distance. Consequently,

$$P = \frac{e^2}{6\pi \epsilon_0 m_0^2 c^3} \left(\frac{dE}{dx} \right)^2.$$
Thus, in a linear accelerator, the radiated power depends on the external force acting on the particle, and not on the actual energy or momentum of the particle. It is obvious, from the above formula, that light particles, such as electrons, are going to radiate a lot more than heavier particles, such as protons. The ratio of the power radiated to the power supplied by the external sources is

\[
\frac{P}{dE/dt} = \frac{e^2}{6\pi \varepsilon_0 m_0^2 c^3} \frac{1}{u} \frac{dE}{dx} \sim \frac{e^2}{6\pi \varepsilon_0 m_0 c^2 m_0 c^2} \frac{1}{m_0 c^2} \frac{dE}{dx},
\]

(10.331)
since \(u \approx c \) for a highly relativistic particle. It is clear, from the above expression, that the radiation losses in an electron linear accelerator are negligible unless the gain in energy is of order \(m_e c^2 = 0.511 \text{ MeV} \) in a distance of \(e^2/(6\pi \varepsilon_0 m_e c^2) = 1.28 \times 10^{-15} \text{ meters} \). That is \(3 \times 10^{14} \text{ MeV/meter} \). Typical energy gains are less than \(10 \text{ MeV/meter} \). It follows, therefore, that radiation losses are completely negligible in linear accelerators, whether for electrons, or for other heavier particles.

The situation is quite different in circular accelerator devices, such as the synchrotron and the betatron. In such machines, the momentum \(p \) changes rapidly in direction as the particle rotates, but the change in energy per revolution is small. Furthermore, the direction of acceleration is always perpendicular to the direction of motion. It follows from Eq. (10.327) that

\[
P = \frac{e^2}{6\pi \varepsilon_0 c^3} \gamma^4 \dot{u}^2 = \frac{e^2}{6\pi \varepsilon_0 c^3} \frac{\gamma^4 u^4}{\rho^2},
\]

(10.332)
where \(\rho \) is the orbit radius. Here, use has been made of the standard result \(\dot{u} = u^2/\rho \) for circular motion. The radiative energy loss per revolution is given by

\[
\delta E = \frac{2\pi \rho}{u} P = \frac{e^2}{3 \varepsilon_0 c^3} \frac{\gamma^4 u^3}{\rho}.
\]

(10.333)
For highly relativistic \((u \approx c) \) electrons, this expression yields

\[
\delta E(\text{MeV}) = 8.85 \times 10^{-2} \frac{[E(\text{GeV})]^4}{\rho(\text{meters})}.
\]

(10.334)
In the first electron synchrotrons, \(\rho \sim 1 \text{ meter} \), \(E_{\text{max}} \sim 0.3 \text{ GeV} \). Hence, \(\delta E_{\text{max}} \sim 1 \text{ keV per revolution} \). This was less than, but not negligible compared to, the energy gain of a few keV per turn. For modern electron synchrotrons, the limitation
on the available radio-frequency power needed to overcome radiation losses becomes a major consideration, as is clear from the \(E^4 \) dependence of the radiated power per turn.

10.26 Angular distribution of radiation

In order to calculate the angular distribution of the energy radiated by an accelerated charge, we must think carefully about what is meant by the rate of radiation of the charge. This quantity is actually the amount of energy lost by the charge in a retarded time interval \(dt' \) during the emission of the signal. Thus,

\[
P(t') = -\frac{dE}{dt'},
\]

where \(E \) is the energy of the charge. The Poynting vector

\[
\frac{\mathbf{E}_{rad} \times \mathbf{B}_{rad}}{\mu_0} = \epsilon_0 c \frac{E_{rad}^2}{r},
\]

where use has been made of \(B_{rad} = (r \times E_{rad})/rc \) [see Eq. (10.297)], represents the energy flux per unit actual time, \(t \). Thus, the energy loss rate of the charge into a given element of solid angle \(d\Omega \) is

\[
\frac{dP(t')}{d\Omega} d\Omega = -\frac{dE(\theta, \phi)}{dt'} d\Omega = \frac{dE(\theta, \phi)}{dt} \frac{dt}{dt'} r^2 d\Omega = \epsilon_0 c \frac{E_{rad}^2}{r} s r^2 d\Omega,
\]

where use has been made of Eq. (10.283). Here, \(\theta \) and \(\phi \) are angular coordinates used to locate the element of solid angle. It follows from Eq. (10.303) that

\[
\frac{dP(t')}{d\Omega} = \frac{e^2 r}{16\pi^2 \epsilon_0 c^3} \frac{[r \times (r \times \mathbf{u})]^2}{s^5}.
\]

Consider the special case in which the direction of acceleration coincides with the direction of motion. Let us define spherical polar coordinates whose axis points along this common direction. It is easily demonstrated that, in this case, the above expression reduces to

\[
\frac{dP(t')}{d\Omega} = \frac{e^2 \mathbf{u}^2}{16\pi^2 \epsilon_0 c^3 [1 - (u/c) \cos \theta]^5}.
\]
In the non-relativistic limit, \(u/c \to 0 \), the radiation pattern has the familiar \(\sin^2 \theta \) dependence of dipole radiation. In particular, the pattern is symmetric in the forward (\(\theta < \pi/2 \)) and backward (\(\theta > \pi/2 \)) directions. However, as \(u/c \to 1 \), the radiation pattern becomes more and more concentrated in the forward direction. The angle \(\theta_{\text{max}} \) for which the intensity is a maximum is

\[
\theta_{\text{max}} = \cos^{-1} \left[\frac{1}{3 u/c} \left(\sqrt{1 + 15 u^2/c^2} - 1 \right) \right].
\] (10.340)

This expression yields \(\theta_{\text{max}} \to \pi/2 \) as \(u/c \to 0 \), and \(\theta_{\text{max}} \to 1/(2 \gamma) \) as \(u/c \to 1 \). Thus, for a highly relativistic charge, the radiation is emitted in a narrow cone whose axis is aligned along the direction of motion. In this case, the angular distribution (10.339) reduces to

\[
\frac{dP(t')}{d\Omega} \approx \frac{2 e^2 \dot{u}^2}{\pi^2 \varepsilon_0 c^3} \frac{\gamma^8 (\gamma \theta)^2}{[1 + (\gamma \theta)^2]^5}.
\] (10.341)

The total power radiated by the charge is obtained by integrating Eq. (10.339) over all solid angles. We obtain

\[
P(t') = \frac{e^2 \dot{u}^2}{8\pi \varepsilon_0 c^3} \int_0^{\pi} \frac{\sin^3 \theta \, d\theta}{[1 - (u/c) \cos \theta]^5} = \frac{e^2 \dot{u}^2}{8\pi \varepsilon_0 c^3} \int_{-1}^{+1} \frac{(1 - \mu^2) \, d\mu}{[1 - (u/c) \mu]^5}.
\] (10.342)

It is easily verified that

\[
\int_{-1}^{+1} \frac{(1 - \mu^2) \, d\mu}{[1 - (u/c) \mu]^5} = \frac{4}{3} \gamma^6.
\] (10.343)

Hence,

\[
P(t') = \frac{e^2}{6\pi \varepsilon_0 c^3} \gamma^6 \dot{u}^2,
\] (10.344)

which agrees with Eq. (10.327), provided that \(u \times \dot{u} = 0 \).

10.27 Synchrotron radiation

Synchrotron radiation (i.e., radiation emitted by a charged particle constrained to follow a circular orbit by a magnetic field) is of particular importance in astrophysics, since much of the observed radio frequency emission from supernova remnants and active galactic nuclei is thought to be of this type.
Consider a charged particle moving in a circle of radius a with constant angular velocity ω_0. Suppose that the orbit lies in the x-y plane. The radius vector pointing from the centre of the orbit to the retarded position of the charge is defined

$$\rho = a (\cos \phi, \sin \phi, 0), \quad (10.345)$$

where $\phi = \omega_0 t'$ is the angle subtended between this vector and the x-axis. The retarded velocity and acceleration of the charge take the form

$$\mathbf{u} = \frac{d\rho}{dt'} = u (-\sin \phi, \cos \phi, 0), \quad (10.346)$$

$$\mathbf{u}^\prime = \frac{d\mathbf{u}}{dt'} = -\dot{u} (\cos \phi, \sin \phi, 0), \quad (10.347)$$

where $u = a \omega_0$ and $\dot{u} = a \omega_0^2$. The observation point is chosen such that the radius vector \mathbf{r}, pointing from the retarded position of the charge to the observation point, is parallel to the y-z plane. Thus, we can write

$$\mathbf{r} = r (0, \sin \alpha, \cos \alpha), \quad (10.348)$$

where α is the angle subtended between this vector and the z-axis. As usual, we define θ as the angle subtended between the retarded radius vector \mathbf{r} and the retired direction of motion of the charge \mathbf{u}. It follows that

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{r}}{u r} = \sin \alpha \cos \phi. \quad (10.349)$$

It is easily seen that

$$\mathbf{u} \cdot \mathbf{r} = -\dot{u} r \sin \alpha \sin \phi. \quad (10.350)$$

A little vector algebra shows that

$$[\mathbf{r} \times (\mathbf{r} \times \mathbf{u})]^2 = -(\mathbf{r} \cdot \mathbf{u})^2 r^2 (1 - u^2/c^2) + \dot{u}^2 r^4 (1 - \mathbf{r} \cdot \mathbf{u}/r c)^2, \quad (10.351)$$

giving

$$[\mathbf{r} \times (\mathbf{r} \times \mathbf{u})]^2 = \dot{u}^2 r^4 \left[\left(1 - \frac{u}{c} \cos \theta \right)^2 - \left(1 - \frac{u^2}{c^2} \right) \tan^2 \phi \cos^2 \theta \right]. \quad (10.352)$$
Making use of Eq. (10.337), we obtain
\[
\frac{dP(t')}{d\Omega} = \frac{e^2 \dot{u}^2}{16\pi^2 \epsilon_0 c^3} \left[1 - \frac{(u/c) \cos \theta)}{[1 - (u/c) \cos \theta]^5} \right]^2 - \frac{(1 - u^2/c^2) \tan^2 \phi \cos^2 \theta}{1 - (u/c) \cos \theta}.
\] (10.353)

It is convenient to write this result in terms of the angles \(\alpha \) and \(\phi \), instead of \(\theta \) and \(\phi \). After a little algebra we obtain
\[
\frac{dP(t')}{d\Omega} = \frac{e^2 \dot{u}^2}{16\pi^2 \epsilon_0 c^3} \left[1 - \frac{(u/c) \cos \alpha + [(u/c) \cos \phi]^2}{[1 - (u/c) \sin \alpha \cos \phi]^5} \right].
\] (10.354)

Let us consider the radiation pattern emitted in the plane of the orbit: \(i.e., \) \(\alpha = \pi/2 \), with \(\cos \phi = \cos \theta \). It is easily seen that
\[
\frac{dP(t')}{d\Omega} = \frac{e^2 \dot{u}^2}{16\pi^2 \epsilon_0 c^3} \left[1 - \frac{[u/c - \cos \theta]^2}{[1 - (u/c) \cos \theta]^5} \right].
\] (10.355)

In the non-relativistic limit, the radiation pattern has a \(\cos^2 \theta \) dependence. Thus, the pattern is like that of dipole radiation where the axis is aligned along the instantaneous direction of acceleration. As the charge becomes more relativistic, the radiation lobe in the forward direction (\(i.e., \) \(0 < \theta < \pi/2 \)) becomes more focused and more intense. Likewise, the radiation lobe in the backward direction (\(i.e., \) \(\pi/2 < \theta < \pi \)) becomes more diffuse. The radiation pattern has zero intensity at the angles
\[
\theta_0 = \cos^{-1}(u/c).
\] (10.356)

These angles demark the boundaries between the two radiation lobes. In the non-relativistic limit, \(\theta_0 = \pm \pi/2 \), so the two lobes are of equal angular extents. In the highly relativistic limit, \(\theta_0 \to \pm 1/\gamma \), so the forward lobe becomes highly concentrated about the forward direction (\(\theta = 0 \)). In the latter limit, Eq. (10.355) reduces to
\[
\frac{dP(t')}{d\Omega} \approx \frac{e^2 \dot{u}^2}{2\pi^2 \epsilon_0 c^3} \gamma^6 \left[1 - (\gamma \theta)^2 \right]^2 \left[1 + (\gamma \theta)^2 \right]^{-5}.
\] (10.357)

Thus, the radiation emitted by a highly relativistic charge is focused into an intense beam, of angular extent \(1/\gamma \), pointing in the instantaneous direction of motion. The maximum intensity of the beam scales like \(\gamma^6 \).
Integration of Eq. (10.354) over all solid angle (using $d\Omega = \sin \alpha \, d\alpha \, d\phi$) yields

$$P(t') = \frac{e^2}{6\pi \epsilon_0 \, c^3} \gamma^4 \, u^2,$$

(10.358)

which agrees with Eq. (10.327), provided that $\mathbf{u} \cdot \dot{\mathbf{u}} = 0$. This expression can also be written

$$\frac{P}{m_0 \, c^2} = \frac{2}{3} \left(\frac{e}{m_0} \right)^2 \frac{r_0}{c} \beta^2 \gamma^4,$$

(10.359)

where $r_0 = e^2/(4\pi \epsilon_0 \, m_0 \, c^2) = 2.82 \times 10^{-15}$ meters is the classical electron radius, m_0 is the rest mass of the charge, and $\beta = \frac{u}{c}$. If the circular motion takes place in an orbit of radius a, perpendicular to a magnetic field \mathbf{B}, then ω_0 satisfies $\omega_0 = e \, B/m_0 \, \gamma$. Thus, the radiated power is

$$\frac{P}{m_0 \, c^2} = \frac{2}{3} \left(\frac{e \, B}{m_0} \right)^2 \frac{r_0}{c} (\beta \, \gamma)^2,$$

(10.360)

and the radiated energy ΔE per revolution is

$$\frac{\Delta E}{m_0 \, c^2} = \frac{4\pi r_0}{3} \frac{a}{\alpha} \beta^3 \gamma^4.$$

(10.361)

Let us consider the frequency distribution of the emitted radiation in the highly relativistic limit. Suppose, for the sake of simplicity, that the observation point lies in the plane of the orbit (i.e., $\alpha = \pi/2$). Since the radiation emitted by the charge is beamed very strongly in the charge’s instantaneous direction of motion, a fixed observer is only going to see radiation (at some later time) when this direction points almost directly towards the point of observation. This occurs once every rotation period, when $\phi \approx 0$, assuming that $\omega_0 > 0$. Note that the point of observation is located many orbit radii away from the centre of the orbit along the positive y-axis. Thus, our observer sees short periodic pulses of radiation from the charge. The repetition frequency of the pulses (in radians per second) is ω_0. Let us calculate the duration of each pulse. Since the radiation emitted by the charge is focused into a narrow beam of angular extent $\Delta \theta \sim 1/\gamma$, our observer only sees radiation from the charge when $\phi \approx \Delta \theta$. Thus, the observed pulse is emitted during a time interval $\Delta t' = \Delta \theta/\omega_0$. However, the pulse is received in a
somewhat shorter time interval

\[\Delta t = \frac{\Delta \theta}{\omega_0} \left(1 - \frac{u}{c} \right), \]

(10.362)

because the charge is slightly closer to the point of observation at the end of the pulse than at the beginning. The above equation reduces to

\[\Delta t \approx \frac{\Delta \theta}{2 \omega_0 \gamma^2} \sim \frac{1}{\omega_0 \gamma^3}, \]

(10.363)

since \(\gamma \gg 1 \) and \(\Delta \theta \sim 1/\gamma \). The width \(\Delta \omega \) of the pulse in frequency space obeys \(\Delta \omega \Delta t \sim 1 \). Hence,

\[\Delta \omega = \gamma^3 \omega_0. \]

(10.364)

In other words, the emitted frequency spectrum contains harmonics up to \(\gamma^3 \) times that of the cyclotron frequency, \(\omega_0 \).