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I. INTRODUCTION TO STATISTICAL MECHANICS

For additional information on the non-Monte Carlo part of this handout see Thermal Physics by Kittel and Kroemer.

In equilibrium statistical mechanics we consider the behavior of a system in equilibrium with its surroundings (a
“heatbath”). Its energy is not exactly fixed because it can exchange energy with the bath, and the state of the system
is not fixed. Statistical mechanics tells us that the system has a certain probability that the system can be in any of
the states. The probability of being in state |n〉 with energy En is given by the “Boltzmann distribution”

P (n) =
1

Z
e−En/kBT , (1)

where T is the absolute temperature and kB is called Boltzmann’s constant. The normalizing factor Z, given by

Z =
∑

`

e−E`/kBT , (2)

is called the “partition function”. The partition function provides a convenient link between the microscopic picture
involving the states and energy levels and the macroscopic (or thermodynamic) picture since the free energy of the
system, F , is related to it by

F = −kBT ln Z. (3)

One calculates observable quantities as averages over states with the Boltzmann weight. The average of A say,
(which could be the energy or the magnetization) is given by

〈A〉 =
∑

n

P (n)An =

∑

n Ane−En/kBT

∑

` e−E`/kBT
, (4)

where An is value of A in state-n (to be precise it is the quantum mechanical expectation value 〈n|A|n〉).

II. A TOY MODEL

In order to illustrate the Monte Carlo method it is useful to have a simple example where things can be worked
out explicitly. A good model to take is the Ising model of magnetism. The magnetic moment (spin) of an individual
atom can be one of two possibilities: ↑ (“up”) and ↓ (“down”). It is convenient to assign a numerical value to these
two states by a variable Si (for site i) which takes value +1 in the up state and −1 in the down state, i.e.

Si =

{

+1 (↑)
−1 (↓) (5)

There are N spins, Si, i = 1, 2, · · · , N and we are interested in the situation where N is large. The total number
of states is clearly 2N , which is enormous if N is large. In general, and not just for this model, it is true that the
number of states grows exponentially with the number of degrees of freedom in the problem. This will turn out to be
important.

For example, in a solid N might be of order Avogadro’s number, 6 × 1026. Two to this number is so large that
it is essentially impossible to visualize it. Even if we are interested in smaller sizes, then to enumerate all the states
on a PC would take more than the age of the universe (about 4 × 1017 seconds) for N greater than about 80, not a
very large number. Clearly, then, enumerating all the states is not feasible for large N . If we are going to determine
averages in Eq. (4) numerically we need to do a sampling of some (small) fraction of the states. How to do this
sampling is the topic of this handout.
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The total magnetization of the system M is given by

M =

N
∑

i=1

Si. (6)

For now we will forget about the energy of the states and the Boltzmann distribution, and just average giving equal
weight to all states. Later on we will put in the Boltzmann factor.

We would like to know how many states have a particular value of the magnetization M . First of all we note that
the largest value of M is N and, and the least is −N . We can get an idea of the typical value of M by calculating
averages of M and M2 (giving equal weight to all states as mentioned above). Now

〈M〉 =
∑

i

〈Si〉 = 0 (7)

since Si takes values ±1 and so, giving equal weight to these two possibilities, we have

〈Si〉 = 0 (8)

〈S2
i 〉 = 1. (9)

The average of M2 is given by

〈M2〉 =
∑

i,j

〈SiSj〉. (10)

Now if i 6= j the average is zero since the four possibilities for SiSj

Si = +1, Sj = +1, SiSj = +1 probability 1/4 (11)

Si = −1, Sj = +1, SiSj = −1 probability 1/4 (12)

Si = +1, Sj = −1, SiSj = −1 probability 1/4 (13)

Si = −1, Sj = −1, SiSj = +1 probability 1/4 (14)

average to zero. However, if i = j then 〈S2
i 〉 = 1 (see Eq. (9)) and so Eq. (10) gives

〈M2〉 = N, (15)

which means that 〈M2〉1/2 = N1/2. Hence a typical value of M is of order N1/2, which is very much less than the
maximum value, of N .

One can easily write down the total number of states with a given M . If there are N/2 + k states with spin up and
N/2− k states with spin down, then

M = 2k. (16)

Furthermore, the number of states with a given value of the spin inbalance factor k is equal to the number of ways
arranging the up spins (say) among the N sites. This is given by the binomial coefficient

g(N, k) =
N !

(

N
2 + k

)

!
(

N
2 − k

)

!
. (17)

For example, for N = 6 we have

k M g(n, k)

−3 −6 1

−2 −4 6

−1 −2 15

0 0 20

1 2 15

2 4 6

3 6 1

(18)
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The distribution is clearly symmetric, and peaked about zero. From the central limit theorem we expect it to
become Gaussian for large N and, from Eq. (15), have a width of order

√
N . This is indeed the case. Taking the log

of g(N, k), i.e.

ln g(N, k) = ln(N !)− ln

[(

N

2
+ k

)

!

]

− ln

[(

N

2
− k

)

!

]

, (19)

and using Stirling’s approximation

ln N ! ' N ln N −N + 1

2
ln(2πN), (20)

which is valid for large N , one finds, after a bit of algebra, that

g(N, k) = 2N

√

2

πN
exp

(−2k2

N

)

, (21)

for large N . As expected, this is a Gaussian with zero mean and a width of order
√

N . Summing over all k,

∫ ∞

−∞

g(N, k) dk = 2N , (22)

correctly gives the total number of states as 2N . Note that we have replaced the discrete sum by an integral, which
is valid for large N since the integrand only changes slowly when k is increased by unity, and extended the range of
integration from ±N/2 to ±∞, which produces negligible error for large N because g(N, k) is tiny for |k| > N/2. (In

fact it is tiny for k À
√

N/2, which is much less than N/2.)
Eq. (21) clearly gives 〈k〉 = 0 (since g(N, k) is an even function of k) and we also find from standard properties of

Gaussian integrals that

〈k2〉 =

∫∞

−∞
g(N, k) k2 dk

∫∞

−∞
g(N, k) dk

=
N

4
, (23)

which implies 〈M2〉 = N , in agreement with Eq. (15).
It is now useful to consider the magnetization per spin

m =
M

N
=

2k

N
=

1

N

N
∑

i=1

Si . (24)

The largest possible value of m is 1, and yet we see from Eqs. (21) and (24) that for large N the overwhelming majority

of states have m very close to zero, more precisely within of order 1/
√

N of zero. This result will be important in
developing a Monte Carlo method, since it shows that states generated randomly must have m very close to zero.
For large N you would have to generate a huge number of configurations at random to find even one which had m
significantly different from zero.
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Now we need to make the problem a bit less trivial by putting in an expression for the energy. The simplest case,
for which the model is still easily exactly solvable, is to include a magnetic field, h. The Hamiltonian (energy) is then
given by

H = −h
∑

i

Si = −hM. (25)

Hence the Boltzmann weight of a state of magnetization M is proportional to exp(βhM) = exp(Nβhm), where we
use the conventional notation

β =
1

kBT
. (26)

Hence individual states with a larger m have a larger Boltzmann weight than those with smaller m. Because the
energy is proportional to N , the Boltzmann factor varies hugely depending on the value of m. However, the number
of states is sharply peaked near m = 0 and so decreases with increasing m (for m > 0).

Hence we need to consider the total Boltzmann weight of all states with a given magnetization per spin m which
is a product of two factors: (a) the number of states with that value of m, Eq.(21) with k = Nm/2, and (b) and the
Boltzmann factor exp(Nβhm). It follows that the probability P (m) that the system has magnetization per spin m is
given by

P (m) ∝ exp

[

−N

(

m2

2
− βhm

)]

. (27)

This has a maximum at m = m? where

m? = βh. (28)

Note that the maximum arises because P (m) is a product of exp(−Nm2/2), which decreases rapidly as m increases,
and exp(Nβhm) which increases rapidly as m increases, see the figure.

−1 0 1

exp(Nmh/T)

(enlarged)

mm*

exp(−Nm /2)

Product, P(m)

2

P (m) is sharply peaked at m? as we can see by expanding Eq. (27) up to second order in δm = m−m?:

P (m) = P (m?) exp(−Nδm2/2), (29)

This shows that the width of P (m) is of order 1/
√

N , and so all the states that a large system visits (in equilibrium)
in a field h have magnetization very close to m?.

To summarize we have seen for our simple model, the Ising model in which the energy comes entirely from the
external field, that



5

1. At T = ∞, which corresponds to equal weighting of all states, a large system only visits states with m close to
zero, the left hand peak in the above figure.

2. At finite T , a large system only visits states which have m close to m? = βh, the middle peak in the above
figure.

It turns out that analogous results hold much more generally. In particular, at infinite temperature the states
visited by the system will have energy close to a certain value (corresponding to the energy where most of the states
lie) but at a finite temperature the system will visit states with energy in the vicinity of a different value.

III. MONTE CARLO TECHNIQUES

For additional information on this section see A Guide to Monte Carlo Simulations in Statistical Physics
by David Landau and Kurt Binder, or the first 4 pages of the article on Monte Carlo on my web site
http://bartok.ucsc.edu/peter/converge.pdf.

The example in the previous section is very simple. Each spin is independent of other spins. One can make the
model a much richer model for magnetism by including interactions between nearby sites. We suppose that the spins
are on a lattice, which could be simple cubic lattice in three-dimensions, a square lattice in two-dimensions, or a chain
in one-dimension, and the energy depends on the relative orientation of neighboring pairs, i.e.

H = −J
∑

〈i,j〉

SiSj − h
∑

i

Si, (30)

where J is the interaction strength and the sum 〈i, j〉 is over nearest neighbor pairs. If J > 0 the spin prefer to align
parallel at low temperature, and such a system is said to be “ferromagnetic”. If J < 0 neighboring spins prefer to
point in opposite directions at low temperature, and such systems are said to be “antiferromagnetic”.

In general, the problem is now highly non-trivial. Only in one-dimension is there a fairly simple exact solution. In
two dimensions, some quantities like the energy and magnetization in zero field can be calculated with monumental
effort, while in in three dimensions there are no exact solutions.

In two and three dimensions there is a transition at a finite temperature Tc where the spins align spontaneously
even in the absence of an external field h. If J > 0 the spins align parallel and give rise to a state with a macroscopic
magnetization. This is then a very simple model for the magnetism of iron. The magnetization per spin m increases
as T goes below Tc and, in this model, tends to unity as T → 0. This is shown in the figure.

T

m
1

Tc

In one dimension there is no transition at a finite T , though at T = 0 all the spins are aligned so one often talks
about a transition at zero temperature.

Since there are no exact solutions in three dimensions, it is useful to be able to simulate models like the Ising model
numerically. In particular we would like to calculate averages as in Eq. (4). As we’ve said, except for very small N ,
there are too many states to enumerate them all, so we need to do some sort of “random” sampling. However, we can’t
do truly random sampling, which we used earlier in the class for Monte Carlo integration, because, as discussed in
the previous section, the vast majority of states generated do not have the correct energy for the (finite) temperature
being considered.
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The usual technique is to generate states with the Boltzmann probability distribution itself. Assuming for the moment
that we can do this, then our estimate for 〈A〉 in Eq. (4) is

〈A〉 ' 1

Mmeas

Mmeas
∑

`=1

A`, (31)

where Mmeas is the number of “measurements” done on quantity A. Note that we give equal weight to all the
generated states and the Boltzmann factor does not appear explicitly, though it is present implicitly because the
states are generated with the Boltzmann probability.

In order to generate states with the Boltzmann weight we use an iterative procedure. Starting from an initial state
“0”, which may not be a state with the correct energy for the temperature being considered, we generate states 1, 2, 3
etc. such that eventually, states are generated with the Boltzmann distribution for that temperature. It is convenient
to think of this sequence as representing the state of the system at successive “times” t.

Suppose the system is in state ` with energy E` at time t. What will the state be at time t + 1? The procedure is
to choose a new trial state m, with energy Em, which typically differs from ` by flipping a single spin. The state at
time t + 1 is then taken to be m with a certain probability w`→m (discussed below), and otherwise the system stays
in the old state `. We start the system off in some initial state `0 say,

P`(0) = δ`,`0 , (32)

and require that, at long times, the P`(t) equal the equilibrium, Boltzmann, distribution P eq
` :

lim
t→∞

P`(t) = P eq
` . (33)

Let’s see how, with an appropriate choice of the w, this method will eventually generate states with a Boltzmann
distribution. We consider the equation, known as the Master Equation, which tells us how the probability for the
system to be in the different states changes with time. If P`(t) is the probability that the system is in state ` at time
t, then the master equation is

P`(t + 1)− P`(t) =
∑

m6=`

(Pm(t)wm→` − P`(t)w`→m) . (34)

The first term on the RHS describes transitions into state l from state m at time t + 1, which increases Pl, and the
second describes transitions out of l into m.

Clearly a necessary condition for Eq. (33) to be valid is that if the distribution is in equilibrium at time t then it
remains the equilibrium distribution at time t + 1. From Eq. (34), this requires

∑

m6=`

(P eq
m (t)wm→` − P eq

` (t)w`→m) = 0. (35)

For convenience, we usually require that each term in the sum vanish separately, which leads to the important detailed
balance condition

w`→m

wm→`
=

P eq
m

P eq
`

= exp(−β(Em − E`)). (36)

The detailed balance condition does not determine the w uniquely, only the ratio of w for a transition to that for
the inverse transition. A common choice which satisfies detailed balance is the Metropolis updating probability:

w`→m =

{

exp(−β∆E) if ∆E > 0

1 otherwise, (Metropolis probability)
(37)

where ∆E = Em−El is the energy change in going from state ` to state m. It is easy to see that Eq. (36) is satisfied
because if the change in energy is positive for one of the transitions it must be negative for the inverse transition.
If ∆E = 0 precisely then w`→m = wm→` = 1 = exp(−β∆E) so things still work out. Physically the Metropolis
updating rule means that we always accept the move if the system gains energy (∆E < 0), but, if ∆E > 0, we only
accept the move with a probability which is less than unity and which decreases as ∆E increases. Intuitively this
clearly means there is a greater likelihood of the system being in states of lower energy.
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Another common choice is the “heatbath” probability, where, irrespective of the sign of ∆E, one flips the spin with
probability

w`→m =
1

1 + exp(β∆E)
(Heat bath probability). (38)

This satsifies detailed balance because f(x) = exp(−x)f(−x) with f(x) = (exp(x) + 1)−1.
If the detailed balance condition is satisfied then, once the system has reached equilibrium, it will stay in equilibrium.

However, it is also necessary to show that the system will converge to equilibrium starting from some arbitrary initial
distribution like Eq. (32). Most of the proofs of this are quite mathematical. However, a simple proof is given in the
article on my web site quoted above. Convergence occurs for an algorithm satsifying detailed balance provided, in
addition, it is “ergodic”, which means that starting from any state one can get to any other state in a finite number
of moves. Physically ergodicity means that the system won’t get trapped in just part of the configuration space. Here
we will just assume that convergence occurs if the detailed balance condition is satisfied.

We can now describe how to implement a Monte Carlo simulation for the Ising model:

1. The basic unit of Monte Carlo time is the “sweep” which involves going through the lattice (usually sequentially
though sometimes a random sequence is used) and flipping each spin in turn with the probability in Eq. (37)
or Eq (38). To implement this, compute the energy ∆E to flip the spin at site i, generate a random number r
with a uniform distribution between 0 and 1, and flip Si if

r < exp(−β∆E) (Metropolis) (39)

r (1 + exp(β∆E)) < 1 (Heat bath). (40)

Note that ∆E only involves the orientation of spins which are neighbors of site i.

2. Since the system is not initially in equilibrium, perform Mdrop initial sweeps during which no measurements are
made, in order to equilibrate it.

3. Then perform Mrun sweeps during which measurements are carried out. One might do a measurement after
every sweep, in which case the number of measurements Mmeas is equal to Mrun, or possibly only after every
few sweeps, in which case Mmeas < Mrun. Averages are then given by Eq. (31).

This type of sampling, in which we don’t choose points completely at random but choose them predominantly in
the important region of configuration space, is called importance sampling. It was introduced into statistical physics
by Metropolis et al. (1953).

As usual we need to estimate error bars. This is not as simple in our earlier class discussion of error bars in Monte
Carlo integrals. There we used the fact that the different data was statistically independent. (Remember that two
random variables X and Y are statistically independent if 〈X Y 〉 = 〈X〉〈Y 〉.) In that case, if we have M estimates
Xα, α = 1, 2, · · · ,M , the final estimate Xest for the average of X and its error bar ε are given by

Xest =
1

M

M
∑

α=1

Xα, (41)

ε =
σ√

M − 1
, (42)

where

σ2 =
1

M

(

M
∑

α=1

X2
α

)

−X2
est, (43)

is the variance of the M values Xα. However, the relationship (42) between σ and the error ε is only true for statistically
independent data. For our Monte Carlo simulations there will be a correlation between X(t0) and X(t0 + t) up some
time τ called the relaxation time. (We measure time in units of a sweep from now on.) Roughly speaking, we should

get ε from σ in Eq. (42) by dividing by
√

M/τ rather than by
√

M (forgetting about the usually unimportant factor
of −1).

In order to estimate the error bar from the simulation we need to have statistically independent data. This is
usually obtained by “binning”. We divide our Mmeas measurements for X say into n groups or “bins”. The number
of sweeps corresponding to each bin is Mrun/n. If this is much larger than τ there won’t be much correlation between
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averages obtained from different bins. (Only a small amount due to the data at the end of one bin being correlated
with that at the beginning of the next bin.) Hence we estimate the error bar from Eqs. (41)–(43) in which Xα refers
to the average from a bin, and M = n, the number of bins.

Knowing how many sweeps to include in a bin requires an estimate of τ . For the purposes of the homework assign-
ment for Physics 242 students, this is not essential and any plausible assumption will do. However, for professional
work one could compute

C(t0, t0 + t) = 〈X(t0)X(t0 + t)〉 −X2
est, (44)

where the average here is taken over different values of the starting time, t0, in a given run. The “time-dependent
correlation function” C(t0, t0 + t) will tend to zero for t > τ .

An alternative approach to getting the error bar is to do n completely independent runs, starting from different
initial states `0 and with different seeds for the random numbers. The data from the different runs will certainly be
uncorrelated. A small disadvantage with this approach is that equilibration, i.e. the initial Mdrop sweeps, has to be
done separately for each run, which is a bit wasteful.


