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9.5 Runge-Kutta Methods

The Taylor methods in the preceding section have the desirable feature that the F.G.E.
is of order O(hN ), and N can be chosen large so that this error is small. However, the
shortcomings of the Taylor methods are the a priori determination of N and the com-
putation of the higher derivatives, which can be very complicated. Each Runge-Kutta
method is derived from an appropriate Taylor method in such a way that the F.G.E. is of
order O(hN ). A trade-off is made to perform several function evaluations at each step
and eliminate the necessity to compute the higher derivatives. These methods can be
constructed for any order N . The Runge-Kutta method of order N = 4 is most popular.
It is a good choice for common purposes because it is quite accurate, stable, and easy
to program. Most authorities proclaim that it is not necessary to go to a higher-order
method because the increased accuracy is offset by additional computational effort. If
more accuracy is required, then either a smaller step size or an adaptive method should
be used.

The fourth-order Runge-Kutta method (RK4) simulates the accuracy of the Taylor
series method of order N = 4. The method is based on computing yk+1 as follows:

(1) yk+1 = yk + w1k1 + w2k2 + w3k3 + w4k4,

where k1, k2, k3, and k4 have the form

(2)

k1 = h f (tk, yk),

k2 = h f (tk + a1h, yk + b1k1),

k3 = h f (tk + a2h, yk + b2k1 + b3k2),

k4 = h f (tk + a3h, yk + b4k1 + b5k2 + b6k3).

By matching coefficients with those of the Taylor series method of order N = 4 so that
the local truncation error is of order O(h5), Runge and Kutta were able to obtain the
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following system of equations:

(3)

b1 = a1,

b2 + b3 = a2,

b4 + b5 + b6 = a3,

w1 + w2 + w3 + w4 = 1,

w2a1 + w3a2 + w4a3 = 1

2
,

w2a2
1 + w3a2

2 + w4a2
3 =

1

3
,

w2a3
1 + w3a3

2 + w4a3
3 =

1

4
,

w3a1b3 + w4(a1b5 + a2b6) = 1

6
,

w3a1a2b3 + w4a3(a1b5 + a2b6) = 1

8
,

w3a2
1b3 + w4(a

2
1b5 + a2

2b6) = 1

12
,

w4a1b3b6 = 1

24
.

The system involves 11 equations in 13 unknowns. Two additional conditions must be
supplied to solve the system. The most useful choice is

(4) a1 = 1

2
and b2 = 0.

Then the solution for the remaining variables is

(5)
a2 = 1

2
, a3 = 1, b1 = 1

2
, b3 = 1

2
, b4 = 0, b5 = 0, b6 = 1,

w1 = 1

6
, w2 = 1

3
, w3 = 1

3
, w4 = 1

6
.

The values in (4) and (5) are substituted into (2) and (1) to obtain the formula for
the standard Runge-Kutta method of order N = 4, which is stated as follows. Start
with the initial point (t0, y0) and generate the sequence of approximations using

(6) yk+1 = yk + h( f1 + 2 f2 + 2 f3 + f4)

6
,
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where

(7)

f1 = f (tk, yk),

f2 = f

(
tk + h

2
, yk + h

2
f1

)
,

f3 = f

(
tk + h

2
, yk + h

2
f2

)
,

f4 = f (tk + h, yk + h f3).

Discussion about the Method

The complete development of the equations in (7) is beyond the scope of this book and
can be found in advanced texts, but we can get some insights. Consider the graph of
the solution curve y = y(t) over the first subinterval [t0, t1]. The function values in
(7) are approximations for slopes to this curve. Here f1 is the slope at the left, f2 and
f3 are two estimates for the slope in the middle, and f4 is the slope at the right (see
Figure 9.9(a)). The next point (t1, y1) is obtained by integrating the slope function

(8) y(t1)− y(t0) =
∫ t1

t0
f (t, y(t)) dt.

If Simpson’s rule is applied with step size h/2, the approximation to the integral
in (8) is

(9)
∫ t1

t0
f (t, y(t)) dt ≈ h

6
( f (t0, y(t0))+ 4 f (t1/2, y(t1/2))+ f (t1, y(t1))),

where t1/2 is the midpoint of the interval. Three function values are needed; hence we
make the obvious choice f (t0, y (t0)) = f1 and f (t1, y(t1)) ≈ f4. For the value in the
middle we chose the average of f2 and f3:

f (t1/2, y(t1/2)) ≈ f2 + f3

2
.

These values are substituted into (9), which is used in equation (8) to get y1:

(10) y1 = y0 + h

6

(
f1 + 4( f2 + f3)

2
+ f4

)
.

When this formula is simplified, it is seen to be equation (6) with k = 0. The graph
for the integral in (9) is shown in Figure 9.9(b).
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y

t

m1 = f1

m2 = f3

m3 = f4

m4 = f4
(t0, y0)

y = y(t) (t1, y(t1))

t0 t1/2 t1

(a) Predicted slopes mj to the

   solution curve y = y(t)      

z

t

(t0, f1)
(t1/2, f2)

(t1/2, f3)
(t1, f4)

t0 t1/2 t1

(b) Integral approximation:

h
6

y(t1)  − y0 =      ( f1 + 2f2 + 2f3 + f4)

Figure 9.9 The graphs y = y(t) and z = f (t, y(t)) in the discussion of the Runge-Kutta
method of order N = 4.

Step Size versus Error

The error term for Simpson’s rule with step size h/2 is

(11) −y(4)(c1)
h5

2880
.

If the only error at each step is that given in (11), after M steps the accumulated error
for the RK4 method would be

(12) −
M∑

k=1

y(4)(ck)
h5

2880
≈ b − a

5760
y(4)(c)h4 ≈ O(h4).

The next theorem states the relationship between F.G.E. and step size. It is used
to give us an idea of how much computing effort must be done when using the RK4
method.

Theorem 9.7 (Precision of the Runge-Kutta Method). Assume that y(t) is the
solution to the I.V.P. If y(t) ∈ C5[t0, b] and {(tk, yk)}Mk=0 is the sequence of approxi-
mations generated by the Runge-Kutta method of order 4, then

(13)
|ek | = |y(tk)− yk | = O(h4),

|εk+1| = |y(tk+1)− yk − hTN (tk, yk)| = O(h5).
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In particular, the F.G.E. at the end of the interval will satisfy

(14) E(y(b), h) = |y(b)− yM | = O(h4).

Examples 9.10 and 9.11 illustrate Theorem 9.7. If approximations are computed
using the step sizes h and h/2, we should have

(15) E(y(b), h) ≈ Ch4

for the larger step size, and

(16) E

(
y(b),

h

2

)
≈ C

h4

16
= 1

16
Ch4 ≈ 1

16
E(y(b), h).

Hence the idea in Theorem 9.7 is that if the step size in the RK4 method is reduced by
a factor of 1

2 we can expect that the overall F.G.E. will be reduced by a factor of 1
16 .

Example 9.10. Use the RK4 method to solve the I.V.P. y′ = (t − y)/2 on [0, 3] with
y(0) = 1. Compare solutions for h = 1, 1

2 , 1
4 , and 1

8 .
Table 9.8 gives the solution values at selected abscissas. For the step size h = 0.25, a

sample calculation is

f1 = 0.0− 1.0

2
= −0.5,

f2 = 0.125− (1+ 0.25(0.5)(−0.5))

2
= −0.40625,

f3 = 0.125− (1+ 0.25(0.5)(−0.40625))

2
= −0.4121094,

f4 = 0.25− (1+ 0.25(−0.4121094))

2
= −0.3234863,

y1 = 1.0+ 0.25

(−0.5+ 2(−0.40625)+ 2(−0.4121094)− 0.3234863

6

)
= 0.8974915. �

Example 9.11. Compare the F.G.E. when the RK4 method is used to solve y′ = (t− y)/2
over [0, 3] with y(0) = 1 using step sizes 1, 1

2 , 1
4 , and 1

8 .
Table 9.9 gives the F.G.E. for the various step sizes and shows that the error in the

approximation to y(3) decreases by about 1
16 when the step size is reduced by a factor

of 1/2.

E(y(3), h) = y(3)− yM = O(h4) ≈ Ch4 where C = −0.000614. �

A comparison of Examples 9.10 and 9.11 and Examples 9.8 and 9.9 shows what is
meant by the statement “The RK4 method simulates the Taylor series method of order
N = 4.” For these examples, the two methods generate identical solution sets {(tk, yk)}



494 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

Table 9.8 Comparison of the RK4 Solutions with Different Step Sizes for y′ = (t − y)/2
over [0, 3] with y(0) = 1

yk

tk h = 1 h = 1
2 h = 1

4 h = 1
8 y(tk) Exact

0 1.0 1.0 1.0 1.0 1.0
0.125 0.9432392 0.9432392
0.25 0.8974915 0.8974908 0.8974917
0.375 0.8620874 0.8620874
0.50 0.8364258 0.8364037 0.8364024 0.8364023
0.75 0.8118696 0.8118679 0.8118678
1.00 0.8203125 0.8196285 0.8195940 0.8195921 0.8195920
1.50 0.9171423 0.9171021 0.9170998 0.9170997
2.00 1.1045125 1.1036826 1.1036408 1.1036385 1.1036383
2.50 1.3595575 1.3595168 1.3595145 1.3595144
3.00 1.6701860 1.6694308 1.6693928 1.6693906 1.6693905

Table 9.9 Relation between Step Size and F.G.E. for the RK4 Solutions to
y′ = (t − y)/2 over [0, 3] with y(0) = 1

Step
size, h

Number of
steps, M

Approximation
to y(3), yM

F.G.E.
Error at t = 3,

y(3)− yM

O(h4) ≈ Ch4

where
C = −0.000614

1 3 1.6701860 −0.0007955 −0.0006140

1
2 6 1.6694308 −0.0000403 −0.0000384

1
4 12 1.6693928 −0.0000023 −0.0000024

1
8 24 1.6693906 −0.0000001 −0.0000001

over the given interval. The advantage of the RK4 method is obvious; no formulas for
the higher derivatives need to be computed nor do they have to be in the program.

It is not easy to determine the accuracy to which a Runge-Kutta solution has been
computed. We could estimate the size of y(4)(c) and use formula (12). Another way
is to repeat the algorithm using a smaller step size and compare results. A third way is
to adaptively determine the step size, which is done in Program 9.5. In Section 9.6 we
will see how to change the step size for a multistep method.
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Runge-Kutta Methods of Order N = 2
The second-order Runge-Kutta method (denoted RK2) simulates the accuracy of the
Taylor series method of order 2. Although this method is not as good to use as the
RK4 method, its proof is easier to understand and illustrates the principles involved.
To start, we write down the Taylor series formula for y(t + h):

(17) y(t + h) = y(t)+ hy′(t)+ 1

2
h2 y′′(t)+ CT h3 + · · · ,

where CT is a constant involving the third derivative of y(t) and the other terms in the
series involve powers of h j for j > 3.

The derivatives y′(t) and y′′(t) in equation (17) must be expressed in terms of
f (t, y) and its partial derivatives. Recall that

(18) y′(t) = f (t, y).

The chain rule for differentiating a function of two variables can be used to differ-
entiate (18) with respect to t , and the result is

y′′(t) = ft (t, y)+ fy(t, y)y′(t).

Using (18), this can be written

(19) y′′(t) = ft (t, y)+ fy(t, y) f (t, y).

The derivatives (18) and (19) are substituted in (17) to give the Taylor expression
for y(t + h):

y(t + h) = y(t)+ h f (t, y)+ 1

2
h2 ft (t, y)

+ 1

2
h2 fy(t, y) f (t, y)+ CT h3 + · · · .

(20)

Now consider the Runge-Kutta method of order N = 2, which uses a linear com-
bination of two function values to express y(t + h):

(21) y(t + h) = y(t)+ Ah f0 + Bh f1,

where

(22)
f0 = f (t, y),

f1 = f (t + Ph, y + Qh f0).

Next the Taylor polynomial approximation for a function of two independent vari-
ables is used to expand f (t, y) (see the Exercises). This gives the following represen-
tation for f1:

(23) f1 = f (t, y)+ Ph ft (t, y)+ Qh fy(t, y) f (t, y)+ CP h2 + · · · ,
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where CP involves the second-order partial derivatives of f (t, y). Then (23) is used
in (21) to get the RK2 expression for y(t + h):

y(t + h) = y(t)+ (A + B)h f (t, y)+ B Ph2 ft (t, y)

+ B Qh2 fy(t, y) f (t, y)+ BCP h3 + · · · .(24)

A comparison of similar terms in equations (20) and (24) will produce the follow-
ing conclusions:

h f (t, y) = (A + B)h f (t, y) implies that 1 = A + B,

1

2
h2 ft (t, y) = B Ph2 ft (t, y) implies that

1

2
= B P ,

1

2
h2 fy(t, y) f (t, y) = B Qh2 fy(t, y) f (t, y) implies that

1

2
= B Q.

Hence, if we require that A, B, P , and Q satisfy the relations

(25) A + B = 1 B P = 1

2
B Q = 1

2
,

then the RK2 method in (24) will have the same order of accuracy as the Taylor’s
method in (20).

Since there are only three equations in four unknowns, the system of equations (25)
is underdetermined, and we are permitted to choose one of the coefficients. There are
several special choices that have been studied in the literature; we mention two of them.

Case (i): Choose A = 1
2 . This choice leads to B = 1

2 , P = 1, and Q = 1. If
equation (21) is written with these parameters, the formula is

(26) y(t + h) = y(t)+ h

2
( f (t, y)+ f (t + h, y + h f (t, y))).

When this scheme is used to generate {(tk, yk)}, the result is Heun’s method.
Case (ii): Choose A = 0. This choice leads to B = 1, P = 1

2 , and Q = 1
2 . If

equation (21) is written with these parameters, the formula is

(27) y(t + h) = y(t)+ h f

(
t + h

2
, y + h

2
f (t, y)

)
.

When this scheme is used to generate {(tk, yk)}, it is called the modified Euler-Cauchy
method.
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