
The Dynamics of Runge–Kutta Methods

Julyan H. E. Cartwright & Oreste Piro ∗

School of Mathematical Sciences
Queen Mary and Westfield College

University of London
Mile End Road
London E1 4NS

U.K.

Int. J. Bifurcation and Chaos, 2, 427–449, 1992

The first step in investigating the dynamics of a continuous-time

system described by an ordinary differential equation is to integrate

to obtain trajectories. In this paper, we attempt to elucidate the dy-

namics of the most commonly used family of numerical integration

schemes, Runge–Kutta methods, by the application of the techniques

of dynamical systems theory to the maps produced in the numerical

analysis.

∗A CONICET (Consejo Nacional de Investigaciones Cientificas y Técnicas de Argentina)
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1. Introduction

N
UMERICAL solution of ordinary differential equations is the most

important technique in continuous time dynamics. Since most or-

dinary differential equations are not soluble analytically, numer-

ical integration is the only way to obtain information about the trajectory.

Many different methods have been proposed and used in an attempt to

solve accurately various types of ordinary differential equations. However

there are a handful of methods known and used universally (i.e., Runge–

Kutta, Adams–Bashforth–Moulton and Backward Differentiation Formulae

methods). All these discretize the differential system to produce a differ-

ence equation or map. The methods obtain different maps from the same

differential equation, but they have the same aim; that the dynamics of

the map should correspond closely to the dynamics of the differential equa-

tion. From the Runge–Kutta family of algorithms come arguably the most

well-known and used methods for numerical integration (see, for example,

Henrici [1962], Gear [1971], Lambert [1973], Stetter [1973], Chua & Lin
[1975], Hall & Watt [1976], Butcher [1987], Press et al. [1988], Parker &

Chua [1989], or Lambert [1991]). Thus we choose to look at Runge–Kutta

methods to investigate what pitfalls there may be in the integration of non-

linear and chaotic systems.

We examine here the initial-value problem; the conditions on the solu-

tion of the differential equation are all specified at the start of the trajectory

— they are initial conditions. This is in contrast to other problems where

conditions are specified both at the start and at the end of the trajectory,

when we would have a (two-point) boundary-value problem.

Problems involving ordinary differential equations can always be re-

duced to a system of first-order ordinary differential equations by intro-

ducing new variables which are usually made to be derivatives of the orig-

inal variables. Thus for generality, we consider the non-autonomous initial

value problem
y′ = f(x, y),
y(a) = α, a 6 x,

(1)

where y′ represents dy/dx. This can be either a single equation (x, y) ∈
(R, C) or, more generally, a coupled system of equations (x, y) ∈ (R, C

m)
(often, we will have y ∈ R

m):

1y′ = 1f(x, 1y, 2y, . . . , my)
2y′ = 2f(x, 1y, 2y, . . . , my)

...
...

my′ = mf(x, 1y, 2y, . . . , my). (2)

The variable x often represents time. Almost all numerical methods for the

initial value problem are addressed to solving it in the above form.1

1We use the unorthodox notation m+1
y etc. to avoid any confusion with the iterates of a

map.
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A non-autonomous system y′ = f(x, y) can always be transformed into

an autonomous system y′ = f(y) of dimension one higher by letting x ≡
m+1y, so that we add the equation m+1y′ = 1 to the system and m+1y(a) = a
to the initial conditions. In this case, however, we will have unbounded

solutions since m+1y → ∞ as x → ∞. This can be prevented for non-

autonomous systems that are periodic in x by identifying planes of constant
m+1y separated by one period, so that the system is put onto a cylinder. We

are usually interested in one of the two cases above: either an autonomous

system, or a non-autonomous system that is periodic in x. In these cases,

we can define the concepts of the limit sets of the system and their associ-

ated basins of attraction which are so useful in dynamics.

It is known that sufficient conditions for a unique, continuous, differ-

entiable function y(x) to exist as a solution to this problem are that f(x, y)
be defined and continuous and satisfy a Lipschitz condition in y in R =
[a, b] × (−∞,∞)m. The Lipschitz condition is that

‖f(x, y) − f(x, ỹ)‖ 6 L‖y − ỹ‖, ∀(x, y), (x, ỹ) ∈ (R, C
m). (3)

Here L is the Lipschitz constant which must exist for the condition to be

satisfied. We shall always assume that such a unique solution exists.

Our aim is to investigate how well Runge–Kutta methods do at mod-

elling ordinary differential equations by looking at the resulting maps as

dynamical systems. Chaos in numerical analysis has been investigated

before: the midpoint method in the papers by Yamaguti & Ushiki [1981]

and Ushiki [1982], the Euler method by Gardini et al. [1987], the Eu-

ler method and the Heun method by Peitgen & Richter [1986], and the

Adams–Bashforth–Moulton methods in a paper by Prüfer [1985]. These

studies dealt with the chaotic dynamics of the maps produced in their own

right, without relating them to the original differential equations.

In recent papers by Iserles [1990] and Yee et al. [1991], the connection

is examined between a map and the differential equation that it models.

Other studies by Kloeden & Lorenz [1986], and Beyn [1987a; 1987b], con-

centrate on showing how the limit sets of the map are related to those of

the ordinary differential equations. Sauer & Yorke [1991] use shadowing

theory to find orbits of the map which are shadowed by trajectories of the

differential equation.

We bring together here all the strands in these different papers, and

extend the examination of the connection between the map and the differ-

ential equation from our viewpoint as dynamicists. This topic has begun

to catch the awareness of the scientific community lately (see for example

Stewart [1992]), and several of the papers we discuss appeared after the

initial submission of this work; we have included comments on them in

this revised version.
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2. Derivation of Runge–Kutta methods

R
UNGE–KUTTA methods compute approximations Yi to yi = y(xi),
with initial values Y0 = y0 = α, where xi = a + ih, i ∈ Z

+, using the

Taylor series expansion

yn+1 = yn + hy′n +
1

2
h2y′′n + · · · + 1

p!
hpy(p)

n + O(hp+1) (4)

so if we term f(xn, yn) = fn etc. :

yn+1 = yn + hfn +
1

2
h2
(

df

dx

)

n

+ · · · + 1

p!
hp

(

dp−1f

dxp−1

)

n

+ O(hp+1). (5)

h is a non-negative real constant called the step length of the method.

To obtain a q-stage Runge–Kutta method (q function evaluations per

step) we let

Yn+1 = Yn + hφ(xn, Yn;h), (6)

where

φ(xn, Yn;h) =
q
∑

i=1

ωiki, (7)

so that

Yn+1 = Yn + h
q
∑

i=1

ωiki, (8)

with

ki = f



xn + hαi, Yn + h
i−1
∑

j=1

βijkj



 (9)

and α1 = 0 for an explicit method, or

ki = f



xn + hαi, Yn + h
q
∑

j=1

βijkj



 (10)

for an implicit method. For an explicit method, Eq.(9) can be solved for

each ki in turn, but for an implicit method, Eq.(10) requires the solution

of a nonlinear system of kis at each step. The set of explicit methods may

be regarded as a subset of the set of implicit methods with βij = 0, j > i.
Explicit methods are obviously more efficient to use, but we shall see that

implicit methods do have advantages in certain circumstances.

For convenience, the coefficients α, β, and ω of the Runge–Kutta method

can be written in the form of a Butcher array:

α B

ωT
(11)

where α = [α1, α2 . . . αq]
T , ω = [ω1, ω2 . . . ωq]

T and B = [βij ].
Runge–Kutta schemes are one-step or self-starting methods; they give

Yn+1 in terms of Yn only, and thus they produce a one-dimensional map
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if they are dealing with a single differential equation. This may be con-

trasted with other popular schemes (the Adams–Bashforth–Moulton and

Backward Differentiation Formulae methods), which are multistep meth-

ods; Yn+k is given in terms of Yn+k−1 down to Yn. Multistep methods give

rise to multi-dimensional maps from single differential equations.

A method is said to have order p if p is the largest integer for which

y(x + h) − y(x) − hφ(x, y(x);h) = O(hp+1). (12)

For a method of order p, we wish to find values for αi, βij and ωi with

1 6 (i, j) 6 p so that Eq.(8) matches the first p + 1 terms in Eq.(4). To

do this we Taylor expand Eq.(8) about (xn, Yn) under the assumption that

Yn = yn, so that all previous values are exact, and compare this with Eq.(4)

in order to equate coefficients.

For example, the (unique) first-order explicit method is the well-known

Euler scheme

Yn+1 = Yn + hf(xn, Yn). (13)

Let us derive an explicit method with p = q = 2, that is, a two-stage,

second-order method. From Eq.(5) we have

yn+1 = yn + hfn +
1

2
h2
(

df

dx

)

n

+ O(h3), (14)

so expanding this,

yn+1 = yn + hfn +
1

2
h2
((

∂f

∂x

)

n

+

(

∂f

∂y

)

n

fn

)

+ O(h3). (15)

From Eq.(8), and assuming previous exactness,

Yn+1 = yn + hω1k1 + hω2k2. (16)

We can choose α1 = 0 so

k1 = f (xn, yn) = fn, (17)

k2 = f (xn + hα2, yn + hβ21k1) (18)

= f (xn, yn + hβ21k1) + hα2
∂

∂x
f (xn, yn + hβ21k1) + O(h2) (19)

= fn + hα2

(

∂f

∂x

)

n

+ hβ21

(

∂f

∂y

)

n

fn + O(h2), (20)

and Eq.(16) becomes

Yn+1 = yn + hω1fn + hω2

(

fn + hα2

(

∂f

∂x

)

n

+ hβ21

(

∂f

∂y

)

n

fn

)

+ O(h3). (21)

We can now equate coefficients in Eqs.(15) and (21) to give:

[hfn] : ω1 + ω2 = 1, (22)
[

h2
(

∂f

∂x

)

n

]

: ω2α2 =
1

2
, (23)

[

h2
(

∂f

∂y

)

n

fn

]

: ω2β21 =
1

2
. (24)
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This is a system with three equations in four unknowns, so we can solve

in terms of (say) ω2 to give a one-parameter family of explicit two-stage,

second-order Runge–Kutta methods:

Yn+1 = Yn + h [(1 − ω2)k1 + ω2k2] , (25)

k1 = f (xn, Yn) , (26)

k2 = f

(

xn +
h

2ω2
, Yn +

h

2ω2
k1

)

. (27)

Well-known second-order methods are obtained with ω2 = 1/2, 3/4 and 1.

When ω2 = 0, the equation collapses to the first-order Euler method.

It is easy to see that we could not have obtained a third-order method

with two stages, and in fact it is a general result that an explicit q-stage

method cannot have order greater than q, but this is an upper bound that

is realized only for q 6 4. The minimum number of stages necessary for

an explicit method to attain order p is still an open problem. Calling this

qmin(p), the present knowledge [Butcher, 1987; Lambert, 1991] is:

p 1 2 3 4 5 6 7 8 9 10

qmin(p) 1 2 3 4 6 7 9 11 12 6 qmin 6 17 13 6 qmin 6 17

One can see from the table above the reason why fourth-order methods

are so popular, because after that, one has to add two more stages to

the method to obtain any increase in the order. It is not known exactly

how many stages are required to obtain a ninth-order or tenth-order ex-

plicit method. We only know that somewhere between twelve and seven-

teen stages will give us a ninth-order explicit method, and somewhere be-

tween that number and seventeen stages will give us a tenth-order explicit

method. Nothing is known for explicit methods of order higher than ten. In

contrast to explicit Runge–Kutta methods, it is known that for an implicit

q-stage Runge–Kutta method, the maximum possible order pmax(q) = 2q for

any q. It should be noted that the order of a method can change depend-

ing on whether it is being applied to a single equation or a system, and

depending on whether or not the problem is autonomous (see, for example,

Lambert [1991]).

Derivation of higher-order Runge–Kutta methods using the technique

above is a process involving a large amount of tedious algebraic manipu-

lation which is both time consuming and error prone. Using computer al-

gebra removes the latter problem, but not the former, since finding higher-

order methods involves solving larger and larger coupled systems of poly-

nomial equations. This defeats Maple running on a modern workstation

at q = 5. To overcome this problem a very elegant theory has been devel-

oped by Butcher which enables one to establish the conditions for a Runge–

Kutta method, either explicit or implicit, to have a given order (for example

the conditions given in Eqs.(22)–(24)). We shall merely mention here that

the theory is based on the algebraic concept of rooted trees, and we refer

you to books by Butcher [1987], and Lambert [1991] for further details.2

2A Mathematica package implementing Butcher’s method for obtaining order conditions

is now distributed as standard with version 2 of Mathematica.
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3. Accuracy

T
HERE are two types of error involved in a Runge–Kutta step: round-

off error and truncation error (also known as discretization error).

Round-off error is due to the finite-precision (floating-point) arith-

metic usually used when the method is implemented on a computer. It

depends on the number and type of arithmetical operations used in a step.

Round-off error thus increases in proportion to the total number of integra-

tion steps used, and so prevents one from taking a very small step length.

Normally, round-off error is not considered in the numerical analysis of

the algorithm, since it depends on the computer on which the algorithm

is implemented, and thus is external to the numerical algorithm. Trunca-

tion error is present even with infinite-precision arithmetic, because it is

caused by truncation of the infinite Taylor series to form the algorithm. It

depends on the step size used, the order of the method, and the problem

being solved.

An obvious requirement for a successful numerical algorithm is that it

be possible to make the truncation error involved as small as is desired by

using a sufficiently small step length: this concept is known as convergence.

A method is said to be convergent if

lim
h→0

nh=x−a

Yn = yn. (28)

Notice that nh is kept constant, so that xn is always the same point and a

sequence of approximations Yn converges to the analytic answer yn as the

step length is successively decreased. This is called a fixed-station limit. A

concept closely related to convergence is known as consistency; a method is

said to be consistent (with the initial value problem) if

φ(xn, yn; 0) = f(xn, yn), (29)

where φ(x, y;h) is as defined in Eq.(7). Inserting the consistency condition

of Eq.(29) into Eq.(7) we obtain

q
∑

i=1

ωi = 1 (30)

as the necessary and sufficient condition for Runge–Kutta methods to be

consistent. Looking back at Eq.(22), we can see that we satisfied this con-

dition in deriving the family of second-order explicit methods, and in fact

it turns out to be automatically satisfied when the method has order one or

higher. It is known that consistency is necessary and sufficient for conver-

gence of Runge–Kutta methods, so all Runge–Kutta methods are conver-

gent. We provide a proof of this in Appendix A.1.

The two crucial concepts in the analysis of numerical error are local

error and global error. Local error is the error introduced in a single step

of the integration routine, while global error is the overall error caused by

7



repeated application of the integration formula. It is obviously the global

error that we wish to know about when integrating a trajectory, however

it is not possible to estimate anything other than bounds which are usu-

ally orders of magnitude too large, and so we must content ourselves with

estimating the local error. Local and global error are sometimes defined

to include round-off error and sometimes not. We do not include round-off

error and to avoid any ambiguity we term the local and global error thus

defined local and global truncation error.

Global truncation error at xn+1 is

en+1 = ‖yn+1 − Yn+1‖, (31)

while local truncation error is

Tn+1 = ‖yn+1 − yn − hφ(xn, yn;h)‖. (32)

If we assume that Yn = yn, i.e., no previous truncation errors have occurred,

then Tn+1 = ‖yn+1 − Yn+1‖. So if the previous truncation error is zero,

the local truncation error and the global truncation error are the same.

Comparing Eq.(32) with Eq.(12), we can see that a pth-order method has

local truncation error O(hp+1). We can write Eq.(31) as

en+1 = ‖yn+1 − Yn+1‖ (33)

= ‖yn+1 − Yn − hφ(xn, Yn;h)‖ (34)

6 ‖yn+1 − yn − hφ(xn, yn;h)‖ + ‖yn − Yn‖
+ h‖φ(xn, yn;h) − φ(xn, Yn;h)‖ (35)

6 Tn+1 + en + hLen. (36)

Thus

en 6 (1 + hL)ne0 +
(1 + hL)n − 1

hL
Tn+1 (37)

6

(

(1 + hL)n − 1

L

)

Tn+1

h
, (38)

since e0 = 0. As Tn+1 = O(hp+1), we can now see that the global truncation

error is O(hp).
We can write the local truncation error as

Tn+1 = Ψ(yn)hp+1 + O(hp+2). (39)

The term in hp+1 is the principal local truncation error, and Ψ(yn) is a func-

tion of the elementary differentials of order p + 1, evaluated at yn. Elemen-

tary differentials are the building blocks of the Butcher theory mentioned

earlier. (The coefficients of hp in Eq.(15) are elementary differentials of

order p.)

Practical codes based on Runge–Kutta or other numerical techniques

rely on error estimates to exercise control of the step length in order to

produce good results. This step control to maintain accuracy requirements
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may be based on step doubling, otherwise known as Richardson extrapola-

tion. Each step is taken twice, once with step length h, and then again with

two steps of step length 1
2h. The difference between the two new Y s gives

an estimate of the principal local truncation error of the form

Yn+1 − Ỹn+1

2p+1 − 1
. (40)

A new step length can then be used for the next step to keep the principal

local truncation error within the required bounds. A better technique, be-

cause it is less computationally expensive, is to use a Runge–Kutta method

that has been specially developed to provide an estimate of the principal

local truncation error at each step. This may be done by embedding a

q-stage, pth-order method within a (q + 1)-stage, (p + 1)th-order method.

Runge–Kutta–Merson and Runge–Kutta–Fehlberg are examples of algo-

rithms using this embedding estimate technique. It should however be

noted that the error estimates provided by some of the commonly used

algorithms are not valid when integrating nonlinear equations. For exam-

ple, Runge–Kutta–Merson was constructed for the special case of a linear

differential system with constant coefficients, and the error estimates it

provides are only valid in that rare case. It usually overestimates the er-

ror, which is safe but inefficient, but sometimes it underestimates the error,

which could be disastrous. Thus some care has to be taken to ensure that

the embedding algorithm used will provide suitable error estimates. As

well as varying the step length, some codes based on Runge–Kutta meth-

ods may also change between methods of different orders depending on the

error estimates being obtained. These variable-step, variable-order (VSVO)

Runge–Kutta based codes are at present the last word in numerical inte-

gration.

The fact that codes based on Runge–Kutta methods use estimates of the

principal local truncation error, which is proportional to hp+1, rather than

estimates of the local truncation error, which is O(hp+1), can be significant.

The principal local truncation error is usually large in comparison with

the other parts of the local truncation error, in which case we are justified

in using principal local truncation error estimates to set the step length.

However, this is not always the case, and so one should be wary. The phe-

nomenon of B-convergence [Lambert, 1991] shows that the other elements

in the local truncation error can sometimes overwhelm the principal local

truncation error, and the code could then produce incorrect results without

informing the user.
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4. Absolute Stability

I
F the step length used is too small, excessive computation time and

round-off error result. We should also consider the opposite case, and

ask whether there is any upper bound on step length. Often there is

such a bound, and it is reached when the method becomes numerically

unstable: the numerical solution produced no longer corresponds qualita-

tively with the exact solution because some bifurcation has occurred.

The traditional criterion for ensuring that a numerical method is stable

is called absolute stability. Absolute-stability analysis of Runge–Kutta and

other numerical methods is carried out using the linear model problem

y′ = λy,
y(a) = α, a 6 x,

(41)

where λ is complex. This has the analytical solution

y(x) = αeλ(x−a). (42)

The problem has a stable fixed point at y = 0 for Re(λ) < 0.

For systems of equations we generalize to the problem

y′ = Ay,
y(a) = α, a 6 x,

(43)

where A is a matrix with distinct eigenvalues all lying in the negative half-

plane so that again we have a stable fixed point at y = 0.

We are interested in these linear model problems since they underlie

the theory of the classification of fixed points. Since its eigenvalues are dis-

tinct, A is diagonalizable and we can reduce Eq.(43) to a set of independent

equations of the form of Eq.(41). λi are then the eigenvalues of the Jacobian

matrix. This is why we allow λ to be complex above; higher-dimensional

systems may have complex eigenvalues, so we need to know the behaviour

of the numerical solutions in complex hλ-space.

The region of absolute stability for a method is then the set of values

of h (real and non-negative) and λ (complex) for which Yn → 0 as n → ∞,

i.e., for which the fixed point at the origin is stable. Thus we want the set

of values of h and λ for which |S| 6 1 where S, the stability function, is

the eigenvalue of the Jacobian of the Runge–Kutta map evaluated at the

fixed point. In the case of systems, the modulus of the stability function is

given by the spectral radius of the Jacobian of the Runge–Kutta map (the

absolute value of the largest eigenvalue of the Jacobian) at the fixed point.

For example, let us derive the equation of the region of absolute stability

for the family of Runge–Kutta methods derived earlier and presented in

Eq.(25). Using the linear model problem we have

Yn+1 = Yn + h

[

(1 − ω2)λYn + ω2λ

(

Yn +
h

2ω2
λYn

)]

(44)
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so that
dYn+1

dYn

= 1 + hλ +
(hλ)2

2
, (45)

and the stability function is

S =
dYn+1

dYn

∣

∣

∣

∣

Yn=Yfixed point

(46)

= 1 + hλ +
(hλ)2

2
. (47)

In general, recall that for an explicit method of order p, we wished to

have Eq.(8) matching Eq.(4) up to terms of O(hp). Substituting y′ = fn = λy
and [(dp−1f)/(dxp−1)]n = λpyn into Eq.(5):

yn+1 = yn + hλyn +
1

2
h2λ2yn + · · · + 1

p!
hpλpyn + O(hp+1). (48)

Thus for an explicit p-stage method of order p (which is only possible for

p 6 4), the stability function is

S = 1 + hλ +
(hλ)2

2!
+ · · · + (hλ)p

p!
. (49)

For an explicit q-stage method of order p < q,

S = 1 + hλ +
(hλ)2

2!
+ · · · + (hλ)p

p!
+

q
∑

i=p+1

γi(hλ)i, (50)

where the γis are determined by the particular Runge–Kutta method. In

this case the free parameters may be used to maximize the area of the

absolute-stability region. In practice, however, one does not get large in-

creases in the area by doing this. It is interesting that in the optimal case

p = q, the free parameters do not come into the expression for S, so all opti-

mal methods of a given order will have the same absolute-stability region.

We show the stability boundaries given by |S| = 1 for 1 6 p = q 6 4 in Fig. 1.

Notice that the size of the absolute-stability region increases with the or-

der of the method. Note also that h and λ will always be found as the pair

hλ in this model problem, due to the method of construction of S. It is clear

that for a q-stage method, S is a polynomial of degree q in h. Since |S| → ∞
as |hλ| → ∞, explicit methods all have bounded absolute-stability regions.

Implicit Runge–Kutta methods have absolute-stability regions which can

be unbounded. This is a great advantage in some situations, as we shall

see below.
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Figure 1: The absolute stability regions of explicit p-stage, pth-order

Runge–Kutta methods for 1 6 p 6 4 are plotted in complex hλ-space. The

absolute stability regions are shown in grey. The ordinate and abscissa are

Im(hλ) and Re(hλ) respectively. Notice that the size of the regions increases

with the order of the method.
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5. Nonlinear Absolute Stability

U
SING a linear model problem, the Runge–Kutta map is also linear.

This means that the Runge–Kutta method is bound to have only

one fixed point, as has the model problem. The basin of attraction

is bound to be infinite if the fixed point is attractive, and merely the point

itself otherwise, as in the model problem. This need not be the case with

a nonlinear model problem; a Runge–Kutta method which has a certain

absolute-stability region with the linear model problem could have quite

a different region of stability with a nonlinear problem. The conventional

absolute-stability analysis can be extended to nonlinear model problems as

long as they have a stable fixed point. In this case a nonlinear absolute-

stability test can be carried out in the same way as the linear absolute-

stability test, by finding values of hλ in complex space at which the fixed

point loses stability. For example, let us look at the simplest nonlinear

equation, the logistic equation

y′ = λy(1 − y),
y(a) = α, a 6 x.

(51)

This has the analytical solution

y(x) =
α

α + (1 − α)e−λ(x−a)
. (52)

The problem has a stable fixed point at y = 0 for Re(λ) < 0, and a stable

fixed point at y = 1 for Re(λ) > 0. It turns out that for this nonlinear model

problem, the nonlinear absolute-stability function is the same as Eq.(49)

for the fixed point at y = 0, so that the nonlinear absolute-stability regions

for Runge–Kutta methods of orders one to four for this fixed point are the

same as those shown in Fig. 1. They are merely the reflections of these

regions in the imaginary axis of the hλ-plane for the other fixed point at

y = 1.

The breakdown of stability in the two cases though is very different. In

the linear model problem one merely has a change of stability of a fixed

point. After the fixed point has become unstable, all orbits diverge to infin-

ity, and so integration of the system on a computer rapidly leads to over-

flow. In the case of the nonlinear model problem from the logistic equation,

things are far more interesting. Let us for a moment look at the Euler

method for this problem. One obtains the map

Yn+1 = Yn + hλYn(1 − Yn). (53)

This can be put in the form

zn+1 = z2
n + c (54)

by a linear coordinate transformation zn = −hλYn + (1 + hλ)/2 with c =
(1− (hλ)2)/4. (Any complex quadratic map can be transformed into Eq.(54)
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with a similar linear coordinate transformation.) Now Eq.(54) is immedi-

ately recognizable as giving the Mandelbrot set when iterated with z and

c complex and the initial z value, z0, set to the critical point of the map,

z0 = 0. The Mandelbrot set is then the set of complex c values for which

the z orbit remains bounded. From Julia and Fatou, it is known that the

basin of attraction of any finite attractor will contain the critical point (see,

for example, Devaney [1989]), so the Mandelbrot set catalogues the param-

eter values for which a finite attractor exists. Other initial conditions may

not fall in the basin of attraction of a finite attractor even if one exists;

thus the Mandelbrot set is the maximum region in parameter space for

which orbits can remain bounded. That is to say that using other initial

conditions will lead to subsets of the Mandelbrot set.

The Mandelbrot set for Eq.(53) is shown in Fig. 2. The set itself is shown

in red and the different coloured regions around it indicate the speed of es-

cape to infinity. One can see the two nonlinear absolute-stability regions

mentioned earlier; the circle of radius 1 and centre −1 which contains all

parameter values for which the fixed point at 0 is stable, and the circle of

radius 1 and centre 1 containing the parameter values for which the fixed

point at 1 is stable. These circles map to the cardioid of the well-known

Mandelbrot set of Eq.(54) under the coordinate transformation given above.

The successively smaller circles further along the real axis in both direc-

tions are of periods 2, 4, 8, . . . ; this is the well-known period-doubling

cascade of the logistic map. Off the real axis the largest buds on the main

circles are of period 3. Periods 4 and 5 are the next most prominent. We

can see that the breakdown of nonlinear absolute stability on moving from

inside to outside the main circles will not necessarily immediately lead to

divergence and overflow in the computer. The result will depend on the

point at which hλ crosses the boundary in complex space, but it might well

enter one of the buds surrounding the main circles for which the attractor

has a higher period. The attracting set for initial conditions other than

the critical point (which is Y0 = (1 + hλ)/(2hλ) in these coordinates) is a

subset of the Mandelbrot set since even if hλ lies inside the boundary of

the Mandelbrot set, there is no guarantee that the orbit will converge to an

attractor other than infinity, because the basin boundaries of the attractors

are finite. The basin boundary at the point hλ is known as the Julia set of

hλ.

Here we start to see the big difference between this model problem and

the previous linear one. We have finite basins of attraction in this nonlinear

problem, so to arrive at the required fixed point solution, not only must one

use a sufficiently small step length, but one must also be within the Julia

set at that value of hλ. That is not all; it is possible for the Runge–Kutta

map of an autonomous problem to have a set of fixed points that is larger

than the set of fixed points of the differential equation [Iserles, 1990; Yee

et al., 1991]. This is obvious for an explicit method if in y′ = f(y), f(y) is a

polynomial, since the Runge–Kutta map will be a higher-degree polynomial

than f(y) due to the construction of the Runge–Kutta method, and so must

have more fixed points. In fact, the fixed-point set of the Runge–Kutta map

14



Figure 2: The Mandelbrot set for the map Yn+1 = Yn + hλYn(1 − Yn), which

arises from applying the Euler method to the logistic equation, is shown

in red. The different coloured regions surrounding it indicate the speed of

escape to infinity at that point of complex hλ-space. The two large circles

in this Mandelbrot set map to the prominent cardioid seen in the normal

parameterization zn+1 = z2
n + c of the Mandelbrot set.
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contains the fixed-point set of the differential equation as a subset. If ∆ is

a fixed point of y′ = f(y) then f(∆) = 0. The Runge–Kutta map

Yn+1 = Yn + h
q
∑

i=1

ωiki (55)

has fixed points given by

φ =
q
∑

i=1

ωiki = 0, (56)

where

ki = f



Yn + h
i−1
∑

j=1

βijkj



 (57)

for an explicit method. Now if Yn = ∆, k1 = f(∆) = 0 and ki = f(∆) = 0 for

all i. For an implicit method

ki = f



Yn + h
q
∑

j=1

βijkj



 , (58)

so if Yn = ∆, ki = 0 for all i is again a solution. Thus φ = 0 and so the fixed

points of the differential equation are also fixed points of the map, but they

are not necessarily the only fixed points of the map.

The Euler method is an exception: since the Euler map is Yn+1 =
Yn + hf(Yn), the fixed points will be given by f(Yn) = 0, like those of the

differential equation. Iserles [1990] terms methods like the Euler method,

for which the fixed-point sets of the differential equation and the map are

the same, regular methods. He gives an example of an implicit two-stage

method that is regular. The commonly-used Runge–Kutta schemes are not

implicit and are not regular, so additional ghost fixed points occur in the

map that are not present in the differential equation. For instance, con-

sider the integration of the logistic equation with a second-order explicit

method. In this case, the fixed points of the differential equation are given

by a quadratic

λYn(1 − Yn) = 0, (59)

and those of the Runge–Kutta method are given by a quartic

1

ω2
Yn(1 − Yn)

(

2hλYn − hλ − 4ω2 −
√

h2λ2 + 16ω2(ω2 − 1)

)

×
(

2hλYn − hλ − 4ω2 +
√

h2λ2 + 16ω2(ω2 − 1)

)

= 0. (60)

Thus we get two extra fixed points, and it turns out that one of these ghost

fixed points remains stable as the step length tends to zero. In Fig. 3 we

show the ghost fixed points plotted against hλ and ω2 with all variables

real. Notice that the ghost roots are dependent on the step length and the

Runge–Kutta parameter whereas the real roots are not.
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Figure 3: (a) & (b). The two ghost fixed points of two-stage explicit Runge–

Kutta maps of the logistic equation are shown as functions of hλ and the

Runge-Kutta parameter ω2. Notice that they tend to infinity as h → 0, and

that they are in general dependent on hλ and ω2, whereas the real fixed

points of the logistic equation, 0 and 1, are independent of these parame-

ters.
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Figure 4: Nonlinear absolute-stability regions of the four fixed points of the

two-stage, second-order explicit Runge–Kutta method with ω2 = 1 applied

to the logistic equation are plotted in complex hλ-space. The absolute sta-

bility regions are shown in grey. The ordinate and abscissa are Im(hλ) and

Re(hλ) respectively. The two absolute-stability regions from the real fixed

points of the logistic equation, the large single regions, are independent of

ω2, but those of the ghost fixed points, the two disconnected circles, are not,

so we have chosen ω2 = 1 here. The absolute-stability regions of the real

and ghost fixed points overlap in some areas. In these cases, which fixed

point is found depends on the initial conditions.
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Since consistency tells us that φ(Yn; 0) = f(Yn), we know that there

must, for an irregular method, be fewer fixed points when the step length is

zero than when it is nonzero. One can ask what happens to the ghost fixed

points as the step length tends to zero. Figure 3 shows that in this case the

ghost fixed points tend to infinity as the step length decreases. In Fig. 4

we show the nonlinear absolute-stability regions of all four fixed points for

the Runge–Kutta method with ω2 = 1. (It is interesting that whereas the

two absolute-stability regions of the real fixed points are independent of

ω2, the two regions of the ghost fixed points are not; we choose ω2 = 1 as

our example.) The union of these four regions is the part of the Mandelbrot

set for this map in which iterates tend to a fixed point. In addition to

these regions, the Mandelbrot set will have further regions where periodic

orbits of period greater than one are stable, similar to the buds off the most

prominent circles in the Mandelbrot set shown in Fig. 2.

In Fig. 5, we show a bifurcation diagram for a fourth-order Runge–

Kutta scheme integrating the logistic equation. What we are doing here

is just looking along the real axis of the Mandelbrot set for this case; we

are keeping hλ real. The complete Mandelbrot set would be much more

difficult to compute than the quadratic case of Fig. 2, since one would have

to follow fifteen critical points. One can however say that it would have the

fourth-order absolute-stability region of Fig. 1 and its mirror image in the

imaginary axis as subsets, in a similar fashion to the circles of Fig. 2. The

map is a sextodecic (sixteenth degree) polynomial in Yn, but one can see

that period doubling leading to chaos and eventually escape to infinity oc-

curs along the real axis in a similar way to the cascade in the logistic map.

Since the fourth-order absolute-stability regions are larger than the first-

order ones, the behaviour remains stable up to larger step lengths here

than in the logistic-map case.

For another example of the appearance of ghost fixed points, we inte-

grate the equation y′ = cos y, which has real fixed points at y = (2m+1)π/2
where m is an integer, with a second-order explicit Runge–Kutta method.

In addition to the real fixed points, we also get ghost fixed points which are

the roots of

1 − ω2 + ω2

cos

(

Yn +
h

2ω2
cos Yn

)

cos Yn

= 0. (61)

We plot a pair of these ghost fixed points against h and ω2 in Fig. 6. The

ghost fixed points, which are stable, come together and coalesce at a nonzero

h. At smaller values of h, the ghost fixed points are imaginary even when

the other variables are real. The pattern shown in Fig. 6 is repeated peri-

odically in Yn and for all values of ω2. (There are no ghost fixed points for

ω2 = 0, since in this case we have the first-order Euler method.)

Although ghost fixed points have been known about for some time [Ya-

maguti & Ushiki, 1981; Ushiki, 1982; Prüfer, 1985], it is only recently that

it has been appreciated that, in some cases, they exist for all step lengths,

i.e., at step lengths below the linear absolute-stability boundary [Yee et al.,

1991]. Thus we can see that irregularity in the numerical method can be
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Figure 5: Bifurcation diagram for the well-known fourth-order Runge–

Kutta method (often called the Runge–Kutta Method), applied to the model

problem y′ = λy(1 − y), the logistic equation, with y(0) = 1/2. Notice that

the first bifurcation occurs at hλ = 2.78. Comparing this with the picture

for p = 4 in Fig. 1, and remembering that the nonlinear absolute-stability

regions for the logistic equation are the same as the linear regions of Fig. 1,

we conclude that this first bifurcation, a transcritical bifurcation where the

real fixed point at 1 and a ghost fixed point meet and exchange stability, oc-

curs as hλ crosses the absolute-stability boundary. At higher values of hλ,

we see the panoply of period-doubling bifurcations leading to chaos and

finally escape to infinity.

20



-101234

Y

-2
-1

0
1

2

ω

0

1

2

3

4

h

-101234

Y

-2
-1

0
1

2

ω

0

1

2

3

4

h

Figure 6: The ghost fixed points of two-stage explicit Runge–Kutta maps of

y′ = cos y are shown here as a function of the step length h, and the Runge–

Kutta parameter ω2. They coalesce and disappear at a nonzero value of

h. Below this limit the ghost fixed points are imaginary. This picture is

repeated periodically in Yn. The ghost fixed points disappear for ω2 = 0,

when we have the regular first-order Euler method.
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a serious problem. Convergence, because it is a limit concept, ties the dy-

namics of the map from the numerical method only loosely to that of the

differential equation, leaving room for major differences to occur. These

differences manifest themselves in ghost fixed points. As we have seen,

the ghost fixed points must disappear when the step length is zero, but

they may be present for all nonzero step lengths. They can be stable for

arbitrarily small step lengths, in which case a trajectory may converge to

a fixed point which does not exist in the original system. Even if they

are unstable, they still greatly affect the dynamics of the discrete system

compared to the continuous original. The difference between linear and

nonlinear absolute-stability regions is that basin boundaries are infinite in

the linear case, but finite in the nonlinear case. Thus convergence to the

fixed point is guaranteed if hλ is within the linear absolute-stability region,

whereas this is not true in the nonlinear case since, in addition, Y0 must be

inside the Julia set.
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6. Stiff Problems

O
FTEN, accuracy requirements that set a bound on the local trun-

cation error keep the step length well within the region of stability.

When this is not the case, and maximum step length is dictated by

the boundary of the stability region, the problem is said to be stiff.

Traditionally, a linear stiff system of size n was defined by

Re(λi) < 0, 1 6 i 6 n, (62)

with

max
16i6n

|Re(λi)| ≫ min
16i6n

|Re(λi)|. (63)

The stiffness ratio R provided a measure of stiffness:

R =
max
16i6n

|Re(λi)|

min
16i6n

|Re(λi)|
. (64)

λi are the eigenvalues of the Jacobian of the system. By this definition, a

stiff problem has a stable fixed point with eigenvalues of greatly different

magnitudes. Remember that large negative eigenvalues correspond to fast-

decaying transients eλx in the solution. (Large positive eigenvalues may

also lie outside the region of absolute stability, but traditionally we are not

so interested in them, because the solution is exponentially growing here

anyway.) This definition of stiffness is not valid for nonlinear systems. It

is based on the linear model problem in Eq.(43), and the eigenvalues λi

above pertain to a linear system. One should note that the stiffness ratio

is often not a good measure of stiffness even in linear systems, since if the

minimum eigenvalue is zero, the problem has infinite stiffness ratio, but

may not be stiff at all if the other eigenvalues are of moderate size.

We shall adopt a verbal definition of stiffness, valid for both linear and

nonlinear problems, that is similar to Lambert’s [Lambert, 1991]:

If a numerical method is forced to use, in a certain interval of

integration, a step length which is excessively small in relation

to the smoothness3 of the exact solution in that interval, then

the problem is said to be stiff in that interval.

Unlike the linear definition of stiffness, our definition allows a single

equation, not just a system of equations, to be stiff. It also allows a problem

to be stiff ‘in parts’: a nonlinear problem may start off nonstiff and become

stiff, or vice versa. It may even have alternating stiff and nonstiff intervals.

As an example of a linear stiff problem, consider the equation

y′′ − 1001y′ + 1000y = 0. (65)

3n.b. The word ‘smoothness’ is used here in its intuitive, nontechnical sense.
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We can write this as y′ = Ay where

A =

(

0 1
−1000 −1001

)

, (66)

so the eigenvalues are λ1 = −1 and λ2 = −1000. The equation has solution

y = Ae−x + Be−1000x, (67)

so we would expect to be able to use a large step length after the e−1000x

transient term had become insignificant in size, but in fact the presence

of the large negative eigenvalue λ2 prevents this, since hλ2 would then lie

outside the absolute-stability region. With appropriate initial conditions,

one could even remove the e−1000x term from the solution entirely, but this

would not change the fact that step length is dictated here by the size of

hλ2; one would still have to use a very small step length throughout the

calculation.

Now let us look at a nonlinear stiff problem. Take the equation

y′ = λy + g′(x) − λg(x). (68)

This has solution

y = Aeλx + g(x). (69)

Here the size of hλ controls stability, so if g(x) is a fairly smooth function

and λ is large, we have stiffness. Again we can even remove the transient

Aeλx term by setting y0 = g(x0) so that A = 0, but if λ is large we still have

a stiff problem, even though λ does not appear in the solution. For example

(from Lambert [1991]), choosing g(x) = 10 − (10 + x)e−x and y0 = 0, we

have a problem whose solution is y = 10 − (10 + x)e−x, i.e., not involving λ.

However, hλ is still controlling the stability of the numerical integration.

With this nonlinear problem, we have started to move beyond absolute-

stability theory. If we had chosen g(x) so that the problem did not have

a fixed-point solution, but some other fairly smooth motion (for example

g(x) = sinx), we would still have a stiff problem, but would no longer be

able to analyze it using absolute stability. This is the case with the next

example.

In Fig. 7, we show the results of integrating the van der Pol equation

y′′ − λ(1 − y2)y′ + y = 0 (70)

using a variable-step fourth-order Runge–Kutta code, for the cases λ = 1
and λ = 100. We have requested the same bound on the principal local

truncation error estimate in both cases. We can see from the far greater

number of steps needed in the latter case, that at large λ the van der Pol

equation becomes very stiff. At these large λ values, the equation describes

a relaxation oscillator. These have fast and slow states in their cycle which

characterizes the ‘jerky’ motion displayed in Fig. 7. Chaotic systems can

also be stiff, as we can see if we introduce forcing into the van der Pol

equation:

y′′ − λ(1 − y2)y′ + y = A cos ωx. (71)
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Figure 7: Results of numerical integration of the van der Pol equation y′′ −
λ(1−y2)y′+y = 0 with λ = 1 and λ = 100 using a variable-step fourth-order

Runge-Kutta method. Each step is represented by a cross. The far greater

number of steps taken in the latter case, despite the greater smoothness

of the computed solution, shows the presence of stiffness. The steps are so

small at λ = 100 that the individual crosses merge to form a continuous

broad line on the graph.
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Figure 8: Results of numerical integration of the forced van der Pol equa-

tion y′′ − λ(1 − y2)y′ + y = A cos ωx with λ = 100, A = 10, and ω = 1 using

a variable-step fourth-order Runge-Kutta method, with each step repre-

sented by a cross. It is obviously stiff, since as in the λ = 100 case in Fig. 7,

the steps are so small that they have merged together in the picture. The

chaotic nature of the forced van der Pol equation is not apparent at this

timescale; the manifestation of chaos in this system lies in the random se-

lection of one of two possible periods for each relaxation oscillation, so this

picture, which shows only part of one cycle, cannot display chaos.
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This forced van der Pol equation exhibits chaotic behaviour (see, for exam-

ple, Tomita [1986], Thompson & Stewart [1986], or Jackson [1989]) and is

also stiff, as can be seen in Fig. 8. The presence of fast and slow time scales

in a problem is a characteristic of stiffness. Stiff problems are not mere

curiosities, but are common in dynamics and elsewhere [Aiken, 1985].

When integrating a stiff problem with a variable-step Runge–Kutta

code, the initial step length chosen, which often causes the method to be

at or near numerical instability, generally leads to a large local truncation

error estimate. This then causes the routine to reduce the step length, of-

ten substantially, until the principal local truncation error is brought back

within its prescribed bound. The routine then integrates the problem suc-

cessfully, but uses a far greater number of steps than seems reasonable,

given the smoothness of the solution. Because of this, round-off error and

computation time are a problem when using conventional techniques to

integrate stiff problems.

It would seem to be especially desirable then, for methods of integra-

tion for stiff problems, that the method be stable for all step lengths for

the parameter values where the original system is stable. For example,

the linear model problem Eq.(41) is stable for Re(λ) < 0, so the numerical

method should be stable for all h for Re(λ) < 0 i.e., the absolute-stability

region should be the left half-plane. The concept of A-stability was intro-

duced for this reason. A method is A-stable if its linear absolute-stability

region contains the whole of the left half-plane. This being the case, a

numerical method integrating the linear model problem will converge to

the fixed point for all values of λ that the model problem itself does, and

for all values of h. A-stability is a very severe requirement for a numeri-

cal method: we already know that explicit Runge–Kutta methods cannot

fulfill this requirement since their absolute-stability regions are finite. It

is known, however, that some implicit Runge–Kutta methods are A-stable
[Butcher, 1987; Lambert, 1991]. The drawback with implicit methods is

that at each step a system of nonlinear equations must be solved. This is

usually achieved using a Newton–Raphson algorithm, but at the expense

of many more function evaluations than are necessary in the explicit case.

Consequently, implicit Runge–Kutta methods are uneconomical compared

to rival methods for integrating stiff problems. Usually, stiff problems are

instead solved using Backward Differentiation Formulae (also known as

Gear) methods. A-stability is not quite what we required above however,

since it is based on linear absolute stability, and also because it allows

regions in addition to the left half-plane to be in the absolute-stability re-

gion, so that the numerical method may give a convergent solution when

the exact solution is diverging. Better then is what has been called pre-

cise A-stability, which holds that the absolute-stability region should be

just the left half-plane. Precise A-stability though is still based on linear

absolute-stability theory.
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7. A Nonlinear Stability Theory

I
N the past few years numerical analysts have come to realize that lin-

ear stability theory cannot be applied to nonlinear systems. One cannot

say that the Jacobian represents the local behaviour of the solutions ex-

cept at a fixed point. This had not previously been appreciated in numerical

analysis, and there was a tendency to believe that looking at the Jacobian

at one point as a constant, the solutions nearby would behave like the lin-

earized system produced from this ‘frozen’ Jacobian. Numerical analysts

have now recognized the failings of linear stability theory when applied to

nonlinear systems, and have constructed a new theory of nonlinear stabil-

ity.

The theory looks at systems that have a property termed contractivity;

if y(x) and ỹ(x) are any two solutions of the system y′ = f(x, y) satisfying

different initial conditions, then if

‖y(x2) − ỹ(x2)‖ 6 ‖y(x1) − ỹ(x1)‖ (72)

for all x1, x2 where a 6 x1 6 x2 6 b, the system is said to be contractive. An

analogous definition may be framed for a discrete system; if

‖Yn+1 − Ỹn+1‖ 6 ‖Yn − Ỹn‖, (73)

the discrete system is said to be contractive. Now we must define another

property of the system which numerical analysts have termed dissipativ-

ity. Since we have already used this word in dynamics, we shall call this

new property NA-dissipativity (numerico-analytic dissipativity). The sys-

tem y′ = f(x, y) is said to be NA-dissipative in [a, b] if

〈f(x, y) − f(x, ỹ), y − ỹ〉 6 0, (74)

where 〈·, ·〉 is an inner product, holds for all y, ỹ in Mx and for a 6 x 6 b,
where Mx is the domain of f(x, y) regarded as a function of y. NA-

dissipativity can be shown to imply contractivity. We needed to define

NA-dissipativity because we can obtain a usable test for it; a system is

NA-dissipative if

µ [J ] 6 0, (75)

where µ [J ] is the logarithmic norm of the Jacobian J = ∂f/∂y. If σi,

i = 1 . . . m are the eigenvalues of 1
2

(

J + JT
)

, Eq.(75) can be shown to be

equivalent to

max
i

σi 6 0. (76)

We now have a practical sufficient condition for contractivity.

We further define: if a Runge–Kutta method applied with any step

length to a NA-dissipative autonomous system is contractive, then the

method is said to be B-stable. If we have the same situation with a nonau-

tonomous system, then the method is said to be BN-stable. A sufficient con-

dition for both of these properties is given by algebraic stability. A Runge–

Kutta method is said to be algebraically stable if Ω = diag(ω1, ω2 . . . ωq) and
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M = ΩB + BT Ω − ωωT are both nonnegative definite. B and ω here come

from Eq.(11), the Butcher array of the Runge–Kutta method. Algebraic

stability implies A-stability, but the reverse is not true.

Let us look at this theory from a dynamics viewpoint. The problem

is that contractivity is a very severe requirement to impose; in fact it pre-

cludes the possibility of chaos occurring in the system. Is is easy to see that

this must be so, since chaos demands that neighbouring trajectories be di-

vergent, whereas contractivity demands that they be convergent. We show

in Appendix A.2 that contractivity is sufficient to give nonpositive Lya-

punov exponents; positive Lyapunov exponents are a necessary condition

for chaos to occur. Unfortunately then, one can only investigate the stabil-

ity of contractive, nonchaotic systems with the nonlinear stability theory

as it stands. However, as we have remarked previously, practical numeri-

cal codes do not use any stability theory to evaluate their accuracy, so this

is a theoretical, rather than a practical, problem. It should be pointed out

that what numerical analysts call dissipativity, what we have termed NA-

dissipativity, is a much stronger requirement even than strict dissipativity

(∇.f < 0) in dynamics. The latter merely requires that
∑

i λi < 0, whereas

the former insists that maxi λi 6 0 (λi being the Lyapunov exponents of the

system).
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8. Towards a Comprehensive Stability Theory

W
E are still seeking a comprehensive nonlinear stability theory.

The theory of the previous section deals only with the special

case of contractive systems. Nonlinear absolute stability shows

that regularity in the numerical method is obviously a good thing, but

it is only concerned with fixed-point behaviour. Other studies have been

made on the link between the fixed points in the differential equation and

those in the map produced by the numerical analysis. Stetter [1973] has

shown that hyperbolic stable fixed points in the continuous system remain

as hyperbolic stable fixed points in the discrete system for sufficiently small

step lengths. Beyn [1987b] shows that hyperbolic unstable fixed points are

also correctly represented in the discrete system for sufficiently small step

lengths, and that the local stable and unstable manifolds converge to those

of the continuous system in the limit as the step length tends to zero. We

need to look at other sorts of asymptotic behaviour apart from fixed points:

invariant circles (limit cycles) and strange attractors.

Peitgen & Richter [1986] use two different Runge–Kutta methods, the

Euler method and the two-stage, second-order Heun method, to discretize

the Lotka–Volterra equations

1y′ = 1y − 1y 2y,
2y′ = −2y + 1y 2y. (77)

This system has a centre-type (elliptic) fixed point at (1, 1) surrounded by

an infinity of invariant circles filling that quadrant of the plane. Instead of

this continuum of invariant circles, Runge–Kutta maps of this system have

an unstable fixed point with only one attracting invariant circle around

it. (Fig. 51 in Peitgen & Richter [1986] is incorrect in showing the Euler

method as having all orbits tending to infinity at any step length.) Peit-

gen and Richter describe more interesting dynamics occurring in the Heun

method. For small step lengths, there is just the unstable fixed point and

the attracting invariant circle. As the step length is increased, the invari-

ant circle comes into resonance with various periodic orbits and is even-

tually transformed into a strange attractor. They also observe periodic

orbits remote from the invariant circle and coexisting with it. Discretiz-

ing the nongeneric situation of a continuum of invariant circles that occurs

in the Lotka–Volterra equations leads to a restoration of genericity; we

arrive at the structurally stable configuration of just one invariant circle

around the fixed point. The periodic orbits described on and remote from

the invariant circle, and the transition to chaos that occurs, are consis-

tent with investigations of one-parameter families of maps embedded in a

two-parameter family which has a Hopf bifurcation [Aronson et al., 1983;

Arrowsmith et al., 1993]. Gardini et al. [1987] study the Euler map of a

three-dimensional version of the Lotka–Volterra system, in which they find

Hopf bifurcations and a transition to strange attractors following a similar

pattern to the two-dimensional case.
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In the previous example, we have seen that a non-structurally-stable

configuration of invariant circles in a system of ordinary differential equa-

tions collapses to a system with one invariant circle under the discretiza-

tion imposed. Beyn [1987a] shows that for a continuous system with a

hyperbolic invariant circle, the invariant circle is retained in the discretiza-

tion if the step length is small enough. He demonstrates that the continu-

ous and discrete invariant circles run out of phase. The relative phase shift

per revolution depends on the step length, and the global error oscillates

as the discrete and continuous systems move into and out of phase. Beyn

gives examples of integrating systems that have invariant circles with the

Euler method and with a fourth-order Runge–Kutta method. He shows

that when the step length is increased, the invariant circles in the discrete

system are transformed in the former case into a strange attractor, and in

the latter, into a stable fixed point via a Hopf bifurcation.

The work reviewed in the previous paragraphs shows that under cer-

tain reasonable conditions, the numerical method can correctly reproduce

different kinds of limit sets that are present in the differential equation.

The conditions include asking that the behaviour in the continuous system

be structurally stable. This condition is not satisfied for the Lotka–Volterra

example above, which is why the numerical methods used do not correctly

reproduce the behaviour of that system.

The problem with discretization, however, is that it introduces new

limit-set behaviour in addition to that already existing in the continuous

system. This is highlighted by the work of Kloeden & Lorenz [1986] who

show that if a continuous system has a stable attracting set then, for suffi-

ciently small step lengths, the discrete system has an attracting set which

contains the continuous one. (An attracting set need not contain a dense

orbit, which is what distinguishes it from an attractor.) In particular, this

is shown by the demonstration that the fixed-point set of the continuous

system is a subset of the fixed-point set of the discrete system, with extra

ghost fixed points appearing in the discretization.

In general, a discretized dynamical system may possess fixed points,

invariant circles, and strange attractors which are either fewer in num-

ber, or are entirely absent in the continuous system from which it arose.

For instance, strange attractors are generic in systems of dimensionality

three or more. Discretizing a system with a strange attractor will lead to

a strange attractor. The question then to be asked is whether the proper-

ties of the discrete strange attractor are similar to those of the continuous

one. Discretizing a system without a strange attractor may also lead to a

strange attractor. If a structurally-stable feature is present in the contin-

uous system, it will also be found in the discrete version, but the converse

is not true. Note that non-structurally-stable behaviour will not in general

persist under the perturbation of the system introduced by discretization.

Shadowing theory was first used to demonstrate that an orbit of a

floating-point map produced by a computer using real arithmetic can be

shadowed by a real orbit of the exact map [Hammel et al., 1988]. More

recently it has been shown that an orbit of a floating-point map can be
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shadowed by a real trajectory of an ordinary differential equation [Sauer &

Yorke, 1991]. In the former case, we are investigating the effect of round-off

error, in the latter case, global error. The last result would seem to contra-

dict what has been stated before about the defects of numerical methods;

in fact, it does not. The reason is that although shadowing theory is able to

put a bound on the global error, it is only possible to do this if the numerical

method satisfies

‖Yn+1 − g(Yn)‖ < δ ∀n. (78)

This is a form of local error where Yn+1 is a point on the numerical orbit and

g(Yn) is the exact time-h map applied to the previous point on the numerical

orbit. Compare this with our definition of local truncation error in Eq.(32),

which instead takes the difference between a point on the orbit of the exact

time-h map and the numerical method applied to the previous point on

the exact orbit. It is not possible to get a good bound on δ with Runge–

Kutta methods, but it is possible with the direct Taylor series method. (The

pth order Taylor series method is just the Taylor series truncated at that

order.) The disadvantage of the Taylor series method is that one has to do

a lot of differentiation. However, if one can satisfy this bound, and another

condition which is basically an assumption of hyperbolicity, then an orbit

is
√

δ-shadowed by an orbit of the exact time-h map:

‖yn − Yn‖ <
√

δ ∀n. (79)

Comparing this with Eq.(31), we can see that it is giving us a bound on

the global error in the method. Sauer & Yorke [1991], as an example, apply

this shadowing method to prove that a chaotic numerical orbit of the forced,

damped pendulum is shadowed by a chaotic real trajectory.
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9. Symplectic Methods for Hamiltonian Systems

I
T is now well known that numerical methods such as the ordinary

Runge–Kutta methods are not ideal for integrating Hamiltonian sys-

tems, because Hamiltonian systems are not generic in the set of all dy-

namical systems, in the sense that they are not structurally stable against

non-Hamiltonian perturbations. The numerical approximation to a Hamil-

tonian system obtained from an ordinary numerical method does introduce

a non-Hamiltonian perturbation. This means that a Hamiltonian system

integrated using an ordinary numerical method will become a dissipative

(non-Hamiltonian) system, with completely different long-term behaviour,

since dissipative systems have attractors and Hamiltonian systems do not.

This problem has led to the introduction of methods of symplectic in-

tegration for Hamiltonian systems, which do preserve the features of the

Hamiltonian structure by arranging that each step of the integration be a

canonical or symplectic transformation [Menyuk, 1984; Feng, 1986; Sanz-

Serna & Vadillo, 1987; Itoh & Abe, 1988; Lasagni, 1988; Sanz-Serna, 1988;

Channell & Scovel, 1990; Forest & Ruth, 1990; MacKay, 1990; Yoshida,

1990; Auerbach & Friedmann, 1991; Candy & Rozmus, 1991; Feng & Qin,

1991; Miller, 1991; Marsden et al., 1991; Sanz-Serna & Abia, 1991; Maclach-

lan & Atela, 1992].

A symplectic transformation satisfies

MT JM = J, (80)

where M is the Jacobian of the map for the integration step, and J is the

matrix
(

0 I
−I 0

)

, (81)

with I being the identity matrix. Preservation of the symplectic form is

equivalent to preservation of the Poisson bracket operation, and Louiville’s

theorem is a consequence of it.

Many different symplectic algorithms have been developed and dis-

cussed, and many of them are Runge–Kutta methods [Lasagni, 1988; Sanz-

Serna, 1988; Channell & Scovel, 1990; Forest & Ruth, 1990; Yoshida, 1990;

Candy & Rozmus, 1991; Sanz-Serna & Abia, 1991; Maclachlan & Atela,

1992]. Explicit symplectic Runge–Kutta methods have been introduced for

separable Hamiltonians of the form H(p, q) = T (p) + V (q). Fourth-order

explicit symplectic Runge–Kutta methods for this case are discussed by

Candy & Rozmus [1991], Forest & Ruth [1990], and Maclachlan & Atela
[1992], and sixth-order and eighth-order methods are developed by Yoshida
[1990]. In the special separable case where T (p) = p2/2, and we have

a Hamiltonian of potential form, even more accurate methods of fourth-

order and fifth-order have been developed by Maclachlan & Atela [1992].

No explicit symplectic Runge–Kutta methods exist for general Hamiltoni-

ans which are not separable. Lasagni [1988] and Sanz-Serna [1988] both

discovered that the implicit Gauss–Legendre Runge–Kutta methods are
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symplectic. Maclachlan & Atela [1992] find these Gauss–Legendre Runge–

Kutta methods to be optimal for general Hamiltonians. Thus symplectic

integration proves to be a situation where implicit Runge–Kutta methods

find a use, despite the computational penalty involved in implementing

them compared to explicit methods.

A positive experience with practical use of these methods in a problem

from cosmology has been reported by Santillan Iturres et al. [1992]. They

have used the methods described by Channell & Scovel [1990] to integrate

a rather complex Hamiltonian, discovering a structure (suspected to be

there from nonnumerical arguments) which nonsymplectic methods were

unable to reveal.

Although symplectic methods of integration are undoubtedly to be pre-

ferred in dealing with Hamiltonian systems, it should not be supposed

that they solve all the difficulties of integrating them; they are not per-

fect. Channell & Scovel [1990] give examples of local structure introduced

by the discretization. For another example, integration of an integrable

Hamiltonian system, where the solution of Newton’s equations is reducible

to the solution of a set of simultaneous equations, followed by integration

over single variables, and trajectories lie on invariant tori, will cause a non-

integrable perturbation to the system. For a small perturbation, however,

such as we should get from a good symplectic integrator, the KAM theorem

tells us that most of the invariant tori will survive. Nevertheless, the dy-

namical behaviour of the symplectic map is qualitatively different to that

of the original system, since in addition to invariant tori, the symplectic

map will possess island chains surrounded by stochastic layers. Thus the

numerical method perturbing the nongeneric integrable system restores

genericity.

There is a more important reason why care is needed in integrating

Hamiltonian systems, even with symplectic maps, and that is the lack of

energy conservation in the map. It would seem to be an obvious goal for a

Hamiltonian integration method both to preserve the symplectic structure

and to conserve the energy, but it has been shown that this is in general

impossible, because the symplectic map with step length h would then have

to be the exact time-h map of the original Hamiltonian. Thus a symplec-

tic map which only approximates a Hamiltonian cannot conserve energy
[Zhong & Marsden, 1988; MacKay, 1990; Marsden et al., 1991]. Algorithms

have been given which are energy conserving at the expense of not being

symplectic, but for most applications retaining the Hamiltonian structure

is more important than energy conservation. Marsden et al. [1991] men-

tion an example where using an energy-conserving algorithm to integrate

the equations of motion of a rod which can both rotate and vibrate leads to

the absurd conclusion that rotation will virtually cease almost immediately

in favour of vibration.

In fact, the symplectic map with step length h is the exact time-h map

of a time-dependent Hamiltonian Ĥ(p, q, t) with period h, and is near to

the time-h map of the original Hamiltonian H(p, q), so that the quantity

‖H − Ĥ‖, which is measuring energy conservation, is a good guide to the
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accuracy of the method. In many cases, the lack of energy conservation is

not too much of a problem, because if the system is close to being integrable,

and has less than two degrees of freedom, there will be invariant tori in

the symplectic map which the orbits cannot cross, and so the energy can

only undergo bounded oscillations. This is in contrast to integrating the

same system with a nonsymplectic method, where there would be no bound

on the energy, which could then increase without limit. This is a major

advantage of symplectic methods. However, consider a system which has

two degrees of freedom. The phase space of the symplectic map is extended

compared to that of the original system, so that an N -degree-of-freedom

system becomes an (N + 1)-degree-of-freedom map. (The extra degree of

freedom comes from t and Ĥ.) Now in the case where N = 2, the original

system, if it were near integrable, would have two-dimensional invariant

tori acting as boundaries to motion in the three-dimensional energy shell,

but in the map the extra degree of freedom would mean that the three-

dimensional invariant tori here would no longer be boundaries to motion in

the five-dimensional energy shell, so Arnold diffusion would occur. This is a

major qualitative difference between the original system and the numerical

approximation. It has been shown to occur for two coupled pendulums by

Maclachlan & Atela [1992], and proves that symplectic methods should

not blindly be relied upon to provide predictions of long-time behaviour for

Hamiltonian systems.

There is a further point about symplectic maps that affects all numer-

ical methods using floating-point arithmetic, and that is round-off error.

Round-off error is a particular problem for Hamiltonian systems, because

it introduces non-Hamiltonian perturbations despite the use of symplec-

tic integrators. The fact that symplectic methods do produce behaviour

that looks Hamiltonian shows that the non-Hamiltonian perturbations are

much smaller than those introduced by nonsymplectic methods. However,

it is shown by Earn & Tremaine [1992] that round-off error does adversely

affect the long-term behaviour of Hamiltonian maps like the standard map,

by introducing dissipation. To iterate the map they instead use integer

arithmetic with Hamiltonian maps on a lattice that they construct to be

better and better approximations to the original map as the lattice spacing

is decreased. They show that these lattice maps are superior to floating-

point maps for Hamiltonian systems. Possibly a combination of the tech-

niques of symplectic methods and lattice maps may lead to the numeri-

cal integration of Hamiltonian systems being possible without any non-

Hamiltonian perturbations.
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10. Conclusions

R
UNGE–KUTTA integration schemes should be applied to nonlin-

ear systems with knowledge of the caveats involved. The absolute-

stability boundaries may be very different from the linear case, so a

linear stability analysis may well be misleading. A problem may occur if a

reduction in step length happens to take one outside the absolute-stability

region due to the shape of the boundary. In this case, the usual step-control

schemes would have disastrous results on the problem, as step-length re-

duction in an attempt to increase accuracy would have the opposite effect.

Even inside the absolute-stability boundary, all may not be well due to

the existence of stable ghost fixed points in many problems. Since basin

boundaries are finite, starting too far from the real solution may land one

in the basin of attraction of a ghost fixed point. Contrary to expectation,

this incorrect behaviour is not prevented by insisting that the method be

convergent.

Stiffness needs a new and better definition for nonlinear systems. We

have provided a verbal description, but a mathematical definition is still

lacking. There is a lot of scope to investigate further the interaction be-

tween stiffness and chaos. Explicit Runge–Kutta schemes should not be

used for stiff problems, due to their inefficiency: Backward Differentiation

Formulae methods, or possibly implicit Runge–Kutta methods, should be

used instead.

Dynamics is not only interested in problems with fixed point solutions,

but also in periodic and chaotic behaviour. This is something that has not

in the past been fully appreciated by some workers in numerical analysis

who have tended to concentrate on obtaining results, such as those of non-

linear stability theory, that require properties like contractivity which are

too restrictive for most dynamical systems.

There are results that tie the limit set of the Runge–Kutta map to that

of the ordinary differential equation from which it came, but they are not

as powerful as those which relate the dynamics of Poincaré maps to their

differential equations. Structurally-stable behaviour in the ordinary dif-

ferential equation is correctly portrayed in the Runge–Kutta map, but ad-

ditional limit-set behaviour may be found in the map that is not present

in the differential equation. Nonhyperbolic behaviour will probably not be

correctly represented by the Runge–Kutta method.

Shadowing theory offers hope that it will be possible to produce numer-

ical methods with built-in proofs of correctness of the orbits they produce,

at least for hyperbolic orbits. However, it does not seem to be possible to do

this with Runge–Kutta methods, and the Taylor series method, for which

it is possible, has some severe disadvantages. More research needs to be

done in this area.

Hamiltonian systems should be integrated with symplectic Runge–

Kutta methods so that dissipative perturbations are not introduced. Even

using symplectic integration, Hamiltonian systems still need to be han-

dled with care. As in dissipative systems, nongeneric behaviour like inte-
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grability will not be reproduced in the numerical method. A more general

problem is that approximate symplectic integrators cannot conserve en-

ergy. Round-off error is more of a problem for symplectic integration than

in other cases, because it introduces dissipative perturbations to the sys-

tem that one is trying to avoid.

A lot more work is needed on predicting the stability and accuracy of

methods for integrating nonlinear and chaotic systems. At present, we

must make do with Runge–Kutta and other methods, but be wary of the

results they are giving us—caveat emptor!
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A.1. Convergence of Runge–Kutta methods

T
O prove that consistency is necessary and sufficient for convergence

of Runge–Kutta methods, we follow Henrici [1962]. Let g(x, y) =
φ(x, y; 0) satisfy a Lipschitz condition as in Eq.(3) so that u′ = g(x, u)

with u(a) = α has a unique solution u(x). Using the mean value theorem:

un+1 − un = u(xn + h) − u(xn) (82)

= hu′(xn + θh), θ ∈ [0, 1] (83)

= hg(xn + θh, u(xn + θh)). (84)

Now define U0 = α and Un+1 = Un + hφ(xn, Un;h). Let en = ‖un − Un‖ then

en+1 = ‖un+1 − Un+1‖ (85)

= ‖un + hg(xn + θh, u(xn + θh)) − Un − hφ(xn, Un;h)‖ (86)

6 en + h (‖g(xn + θh, u(xn + θh)) − φ(xn, Un;h)‖) . (87)

We can write the part in parentheses as

‖g(xn + θh, u(xn + θh)) − φ(xn, Un;h)‖ =

‖g(xn + θh, u(xn + θh)) − g(xn, un)

+ φ(xn, un; 0) − φ(xn, un;h)

+ φ(xn, un;h) − φ(xn, Un;h)‖. (88)

Let

χ(h) = max
x∈[a,b]
θ∈[0,1]

‖g(x + θh, u(x + θh)) − g(x, u)‖ (89)

and

ζ(h) = max
x∈[a,b]

‖φ(x, u; 0) − φ(x, u;h)‖. (90)

If φ(x, y;h) is continuous and satisfies a Lipschitz condition, then

‖φ(xn, un;h) − φ(xn, Un;h)‖ 6 L‖un − Un‖. (91)

Thus

en+1 6 en + h(χ(h) + ζ(h) + Len) (92)

6 (1 + hL)en + h(χ(h) + ζ(h)), (93)

and so, since 1 + hL and h(χ(h) + ζ(h)) are both positive,

en 6 (1 + hL)ne0 +
(1 + hL)n − 1

hL
h(χ(h) + ζ(h)). (94)

Now u0 = U0 so e0 = 0. Thus

en 6
(1 + hL)n − 1

L
(χ(h) + ζ(h)). (95)
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We now look at the fixed-station limit as in Eq.(28):

lim
h→0

nh=x−a

en 6 lim
h→0

nh=x−a

(1 + hL)n − 1

L
(χ(h) + ζ(h)). (96)

Since g(x, y) is continuous,

lim
h→0

nh=x−a

χ(h) = 0. (97)

For the same reason

lim
h→0

nh=x−a

ζ(h) = 0. (98)

Thus we obtain

lim
h→0

nh=x−a

en = 0, (99)

which shows that consistency is sufficient for convergence since if f(x, y) =
g(x, y) then u(x) = y(x). To establish its necessity, let us assume that the

method is convergent but that g(x, y) 6= f(x, y) at some point (x, y). There

exists an α such that y(w), the solution of the initial value problem, passes

through (x, y). Un as defined above then converges in the limit to y(w),
and also, as we proved above, to u(w). If u(x) 6= y(x), then immediately

there is a contradiction. Otherwise, if u(x) = y(x) then u′(x) = y′(x) where

u′(x) = g(x, y) and y′(x) = f(x, y), but g(x, y) 6= f(x, y) which is again a

contradiction. Thus we have proved that consistency is necessary and suf-

ficient for convergence, and it follows from Eq.(30) that all Runge–Kutta

methods are convergent.

A.2. Contractivity and Lyapunov Exponents

A.2(A). Continuous systems

The Lyapunov exponents of y(x0) are defined for continuous systems by

λi = lim
x→∞

1

x
ln |mi(x)|, i = 1, . . . ,m (100)

whenever this limit exists. Here mi(x) are the eigenvalues of Φx(y(x0), x0),
where Φ comes from the variational equation

dΦx(x0, y0)

dx
= JΦx(x0, y0), (101)

where J is the Jacobian matrix. One can show (see, for example, Parker &

Chua [1989]) that a perturbation grows as

δy(x) = Φx(y(x0), x0)δy(x0). (102)
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Taking the norm of both sides,

‖δy(x)‖ = ‖Φx(y(x0), x0)δy(x0)‖ (103)

6 ‖Φx(y(x0), x0)‖‖δy(x0)‖. (104)

Now the perturbation δy(x0) = y(x0) − ỹ(x0) and δy(x) = y(x) − ỹ(x) so

‖y(x) − ỹ(x)‖ 6 ‖Φx(y(x0), x0)‖‖y(x0) − ỹ(x0)‖. (105)

We can see from Eq.(72) that contractivity is asking that ‖Φx(y(x0), x0)‖ 6

1. From properties of the matrix norm, we know that

|mi(x)| 6 ‖Φx(y(x0), x0)‖, (106)

so contractivity is equivalent to |mi(x)| 6 1, or (1/x) ln |mi(x)| 6 0. Thus

from Eq.(100), contractivity is sufficient to give nonpositive Lyapunov ex-

ponents and thence regular motion. (Note that the reverse is not necessar-

ily true.)

A.2(B). Discrete systems

The Lyapunov exponents of Y0 are defined for discrete systems by

λi = lim
n→∞

1

n
ln |mi(n)|, i = i, . . . ,m, (107)

whenever this limit exists. Here mi(n) are the eigenvalues of

{

n
∏

i=1

J(xn−i, Yn−i)

} 1
n

(108)

where J is the Jacobian matrix. One can show (see, for example, Parker &

Chua [1989]) that a perturbation grows as

δYn+1 = J(xn, Yn)δYn. (109)

Taking the norm of both sides,

‖δYn+1‖ = ‖J(xn, Yn)δYn‖ (110)

6 ‖J(xn, Yn)‖‖δYn‖. (111)

Now the perturbation δYn = Yn − Ỹn and δYn+1 = Yn+1 − Ỹn+1 so

‖Yn+1 − Ỹn+1‖ 6 ‖J(xn, Yn)‖‖Yn − Ỹn‖. (112)

We can see from Eq.(73) that contractivity is asking that ‖J(xn, Yn)‖ 6 1.

From properties of the matrix norm, we know that if ‖J(xn, Yn)‖ 6 1 then

∥

∥

∥

∥

∥

∥

{

n
∏

i=1

J(xn−i, Yn−i)

} 1
n

∥

∥

∥

∥

∥

∥

6 1 (113)
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and

|mi(n)| 6

∥

∥

∥

∥

∥

∥

{

n
∏

i=1

J(xn−i, Yn−i)

} 1
n

∥

∥

∥

∥

∥

∥

, (114)

so contractivity is equivalent to |mi(n)| 6 1, or (1/n) ln |mi(n)| 6 0. Thus

from Eq.(107), contractivity is sufficient to give nonpositive Lyapunov ex-

ponents and thence regular motion. (Note that the reverse is not necessar-

ily true.)
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