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Abstract. We present the results of a high-statistics Monte Carlo simulation of
a phantorn

crystalline (fixed-connectivity) membrane with free boundary. We verify trie existence of
a

fiai

phase by exarnining lattices of size up to 128~. The Harniltonian of the rnodel is trie sum
of

a

simple spnng pair potential, with
no

hard-core repulsion, and beuding energy. The only free

pararneter is the bending ngidity
~.

In-plane elastic constants are non explicitly introduced. We

obtain the rernarkable result thon this simple model dynamically generates the elastic constants

required to stabilize the fiai phase. We present measurements of the size (Flory) exportent v

and the roughness exportent (. We also determine the critical exponents ~ and ~u descnbing
the scale dependence of the bending rigidity (~(q)

mJ

q~~) and trie mduced elastic constants

(À(q)
mJ

~1(q)
~J

q~~ ). Ai bending rigidity ~ =
l-1, we find

v =
0.95(5) (Hausdorlf dimension

dH
=

2 Iv
=

2,1(1)), (
=

0.64(2 and ~u =
0.50(1). These results are consistent with the scaling

relation (
=

(2 + ~u)/4. The additional scaling relation ~ =
2(1- () irnplies ~ =

0.72(4). A

direct measurernent of ~ from the power-law decay of the normal-normal correlation functiou

yields ~ m 0.6 on the 128~ lattice.

1. Introduction

TÉe physics of flexible membranes, two-dimensional surfaces fluctuating m
three dimensions, is

extremely rich, both on the theoretical side, where there is a nice interplay between geometry,

statistical mechanics and field theory, and on the experimental side, where model systems

abound.

The simplest examples of 2-dimensional surfaces are monolayers, or films these are strictly

planar systems. The statistical behaviour of monolayers rails into three distinct universality
classes, depending on the microscopic interactions oi the system. There are crystalline mono-

Iayers, with quasi-long-range translational order and long-range orientational order, hezatic

rnonolayers, with short-range translational order but quasi-long-range orientational order, and

fl~id monolayers, with short-range translational and orieutational order iii.
Physical membranes, 2-dimensional surfaces fluctuating in a 3-dimensional embedding space,

are expected to have an equally rich phase structure. The simplest class oi membranes is the

(*)Author for correspondence (e-mail: bowick@npac,syr.edu)
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crystalline class, in which topological defects, dislocations, and disclinations, are forbidden. At

the discrete level crystalline membranes may be modelled by triangulated surfaces with fixed

local connectivity. In this paper we will be concemed with the properties of a particularly sim-

ple model of a phantom (non self-avoiding) crystalline membrane, with emphasis on a critical

analysis oi the existence and stability oi an ordered flat phase oi the model for sufficiently large
bending rigidity.

Crystalline membranes, aise known as tethered or polymerised membranes, are the raturai

generalization oi linear polymer chains to two dimensions. Polymer chains in a good solvent

crumple into a tractai object with Hausdorff dimension 5/3 (Flory exportent u =
3/5). Crys-

talline membranes with in-plane solid-like elasticity, on the other hand, are predicted to exhibit

quite different physical properties irom their linear counterparts. In particular, they are ex-

pected to have a remarkable low-temperature ordered phase. This ordered, or flat, phase is

characterized by long-range order in the orientation oi surface normais. At high temperature,

or equivalently low bending rigidity, phantom crystalhue membranes will entropically disorder

and crumple. Separatiug these two phases should be a crumpling transition, whose precise

nature for physical membranes is still not iully understood.

Inorganic examples oi crystalline membranes are thin sheets (< 100 À) oi graphite oxide

(GO) in an aqueous suspension [2, 3] and the rag-like structures round in MoS2 (4].
There are also beautiiul biological examples oi crystalline membranes such as the spectrin

skeleton oi red blood cell membranes. This is a two-dimensional triangulated network oi

roughly 70,o00 plaquettes (~ ). Actin oligomers form nodes and spectrin tetramers form links [SI.
Crystalline membranes can also be synthetised in the laboratory by polymerising amphiphillic
monolayers or bilayers. For recent reviews see [6-8].

The existence of an ordered phase in a two-dimensional system is remarkable, given the

Mermin-Wagner theorem. In fact, ii one thinks of surface normais as spins, then the membrane

bending energy is akin to a Heisenberg interaction, and the 2d-Heisenberg model is well kno1A>n

to have no ordered phase. What stabilizes the flot phase in a crystalline membrane? There are

several appealing arguments for the existence of a stable ordered phase in
crystalline membranes

[9]. Dut-of-plane fluctuations oi the membrane are coupled to in-plane "phonon" degrees oi

freedom because of the non-vanishing elastic moduli (shear and compressional) of a polymensed
membrane. Bending of the membrane is inevitably accompanied by an iuternal strétching of

the membrane. Integrating out the phonon degrees of freedom one finds long-range interactions

between Gaussian curvature fluctuations which stabilize a flot phase for sufficiently large bore

bending ngidity [9j. Altematively both the elastic constants and trie bending rigidity pick

up anomalous dimensions in the field theory sense. The bending rigidity receives a stiffening
contribution at large distances ma the phonon coupling. This competes with the usual softening

of bending rigidity seen in
fluid membranes, with the net result being an ultraviolet-stable

fixed point the crumpling transition. From the magnetic point of view membrane models

are constrained spin systems, since the spins must be normal to the underlying surface, and

the constraints are essential to the stability of the ordered phase.
This viewpoint is supported by self-consistent calculations for the renormalization of the

bending rigidity, by large-d calculations, where d is the dimension of the embedding space, and

by e-expansion calculations, where e =
4 D. with the internai dimension D of the membrane

being 2 for physical polymerised membranes.

The construction of a discrete formulation oi a crystalline membrane is essential for numerical

simulations, and revealing for comparison with spin systems. In the simplest discretised version

the membrane is modelled by a regular triangular lattice with fi~ed connectivity, embedded in

(~) The 128~ lattice we
sirnulate has 32,766 plaquettes.
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d-dimensional space. Typically the link-lengths oi the lattice are allowed some limited fluctua-

tions. This may be modelled by tethers between hard spheres or by introducing some confining

pair potential with short-range repulsion between modes (monomers). The bending energy is

represented by a ferromagnetic-Iike interaction between the normais to nearest-neighbour "pla-
quettes" [8j.

In the random surface literature, on the other hard, it is more common to consider a simple
Gaussian spring model of the pair potential with vanishing equilibrium spring length. In this

case the minimum link-Iengths are unconstrained. A priori titis model seems to be rather

different from those above; one may worry that it is patliological in some sense. In particular

one may ask ii this model cari ever generate the effective elastic constants which are required

to stabilize a flat phase at large bending rigidity. To illustrate this concem consider the infinite

bending rigidity limit oi the model. In this limit the system becomes planar eut-oi-plane

fluctuations are completely suppressed. Since the pair potential allows it, what prevents aII

modes irom collapsing on each other within the plane oi the membrane itseli? The answer

cari be seen by considering what happens if a mode moves across a bond, or if two modes are

exchanged. In this case the normais to some triangular plaquettes will inevitably be inverted.

This generates a prohibitive bending energy cost and is effectively forbidden. The model thus

dynamically generates a hard-core repulsion (~), and may be thought of as having an effective

equilibrium spring length. In Appendix À we show that small fluctuations about a finite

microscopic equilibrium spring Iength a yield elastic constants proportional to la le)~, where e

is the intrinsic lattice spacing. For e ci a these constants are finite. For the model we consider,

with vanishing microscopic a and finite e, the heuristic arguments above suggest one should

replace a by an effective equilibrium spring length.
Monte Carlo simulations have in fact established strong evidence for a continuous crumpling

transition in the model with a =
0. Most oi the simulations, however, have focused on the

crumpling transition itseli. Not much effort has been made to establish rigorously the exis-

tence and the properties oi the flat phase. In the rest oi this paper we present evidence that

there is indeed a stable flat phase in this remarkably simple model oi a crystalline membrane.

Furthermore we show that the requisite elastic constants are dynamically generated with trie

correct scaling behaviour.

The paper is organised as follows: in Section 2 we discuss the discrete model, the numerical

simulations and the choice of the boundary conditions. In Section 3 we review the evidence for

the crumpling transition. In Section 4 we discuss the Mouge representation of a surface and the

theoretical predictions for asymptotically flat elastic surfaces. We then discuss our numerical

results for the roughness exportent, the phonon fluctuations and the normal-normal correlation

function. In Appendix A we give a calculation of the elastic constants of a discrete soft-ocre

Gaussian model. In Appendix B we discuss of the methods used to measure the geodesic

distance for the correlation function and in Appendix C we describe the parallel algorithm

used to simulate the lattices with largest size.

2. Model

To describe a discrete polymerised surface we arrange N partides (monomers) in a regular

triangulation of a 2-D manifold (see Fig. la). The 2-D surface is then embedded in a d-

dimensional space where it is allowed to fluctuate m ail directions. Each monomer is labelled

by a set of intrinsic coordinates a =
(ai, a2), with respect to a set of orthogonal axes m the

2-D manifold. The position in the d-dimensional embedding space is given by the vector xa.

(~) We thank one
of the referees for informative observations on this point.
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Fig. 1. a) The intrinsic connectivity structure of the mesh. b) The labelling scherne: a, p, r, ~1 are

the intrinsic coordinates while a, b label the triangles.

We wiII treat the case d
=

3.

In general, the Hamiltonian which describes these models has two terms: a pair potential
and a bending energy term,

~
=

7iT + ~B. Il

A commonly studied pair potential in the Iiterature [loi is the tethering potential with hard

core repulsion, given by

7iT
"

~ vll~oE ~OE'l)> 12)

(aa'j

with

cc R < a

V(R)
=

0 a § R § b
,

R
=

[xa xa, (3)

cc R > b

where R is the hnk Iength, a is the hard-core radius and b is the tethenng Iength.
We consider, mstead, a model where the tethering potential is replaced by a simple Gaus-

sian spring potential. The bending energy is the usual ferromagnetic interaction between the

normais to the faces of the membrane, namely

7i
=

~j [xa xa>
~

+ ~
~j (1 na nb) (4)

(aa') (ab)

Here
~ is the bending rigidity, a and b label the faces of the surface and na is the unit normal

to the face a. Bath sums extend over nearest neighbours (see Fig. lb). This action has no

explicit short scale cut-off length or hard-core repulsion. Since there is no self-avoidance it

represents a phantom s~rface. This action was investigated originally by Ambjorn et ai. il ii
and is inspired hy the Polyakov action for Eudidean strings with extriusic curvature [12,13].

The main justification for studying phantom surfaces as models oi realistic membranes is

that in the flat phase self-avoidance
is irrelevant [10,14]. Although self-avoidance is expected to

change the scaliiig behaviour at the cntical point ~c and the nature oi crumpled phase, it ares

flot affect the scaling behaviour in the flat phase. As membranes with strong self-avoidance

(and the resultant non-local interactions) are harder to simulate numerically, it is sensible to

leave out self-avoidance when possible.
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Table I. The n~mber of thermalised sweeps collected pet data point in the flat phase. The

last col~mn indicates the a~tocorrelation time for the slowest mode in the system, the radi~s

of gyration. The a~tocorrelation time is comparable for bath ual~es of ~. The critical slowing
clown ezponent z m 2, as ezpected for a local algorithm.

L ~=1.1 ~=2.0 TR~L~

32 31 x
lo~ 26 x 10~ 3 x

lo~

46 Si x
10~ 42 x

10~ 7 x
10~

64 47 x 10~ 44 x
10~ 1.2 x

105

128 74 x
10~ 5 x

105

The partition iunction oi this model is given by the trace oi the Boltzmann weight over ail

possible configurations oi the embedding variables x:

Z
= /idxj ôjxcm) expj-7iixj). j5)

Here xcm is the centre oi mass, which is held fixed to eliminate the translational zero mode.

Expectation values are given by

lO)
=

j
/ldxl ôlxcm)Olxl exPl-~ilxl). 16)

We wiII consider the case oi surfaces with the topology of the disk and iree boundary conditions.

Most experimental realisatious oi membranes have either this topology or spherical topology.
Dur choice also has certain technical advantages. To describe the flat phase we need to measure

the limite-size-scaling oi the thickness oi the surface and the asymptotic behaviour oi the

normal-normal correlation iunction. With spherical or toroidal topology one would have to

subtract the effects of the global shape of the surface.

2.1. NUMERICAL SIMULATIONS. To evaluate the integral of equation (6) we use the Monte

Carlo algorithm with a Metropolis update. lu our case the Metropolis update corresponds to

changing the position of a node by a triai vector e chosen randomly (and uniformly) in a box

of size (26)~ centred on the old node position. The update is accepted if the change in the

Hamiltonian is such that

exp(7ioid 7inew) > r, (7)

where r is a uniformly distributed random variable with values in the interval [0,1). The

value oi à is adjusted to keep the acceptance ratio around 50%. For a surface of Iinear size L,

one Monte Carlo sweep corresponds to Metropolis update oi aII L~ nodes. We used a Iagged
Fibonacci pseudo-random number generator.

For the simulations we used both scalar and parallel machines: a MASPAR MPI massively
parallel processor, a 12-node IBM SP2 and an 8-node DEC Alpha iarm. The SP2 and the

Alphas were used as single independent CPUS, but we used a parallel Monte Carlo algorithm
for the simulation oi the Iargest lattice IL

=
128) on the MPI. We show in Table I the amount

of thermalised data collected for the various Iattice sizes and couplings in the flot phase. For

the largest Iattice we thermalised our surfaces by discarding about 10~ sweeps. In addition we

have periormed simulations close to the crumpling transition. This work is still in progress but

preliminary results are discussed in Section 3.
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r~

Fig. 2. Two of the hexagons used to derme the averages of the integrated observables. The
arrow

indicates the radius of the largest hexagon.

Previous studies oi the critical behaviour oi crystalline surfaces used more elaborate simu-

lation algonthms which combine a Langevin update with Fast Fourier Acceleration [15-21].
This algorithm is known to be more effective in reducing cntical slowing down. We chose

not to use this approach for several reasons. First oi aII it is very hard to implement the

Fast Fourier Transiorm (FFT)
on a 2-dimensional surface with free boundaries. Secondly the

parallel computer we are using is Iess effraient on floating point intensive algorithms, such as

Fourier Transiorms. Finally, the Langevin algorithm suffers irom systematic errors induced by
the finite time step At. This necessitates an extrapolation to At

=
0, which con itself become

time consuming.
Dur statistical errors were estimated using two methods: the first is a direct measurement

of the autocorrelation in the data and a corresponding correction of the standard deviation.

The second is the standard jackknife algorithm. Both methods give consistent results.

2.2. I30UNDARY EFFECTS. The optimal shape for a triangulated surface with free bound-

ariesis a hexagon. In our simulations the use ofthe parallel computer MPI makes the hexagonal
mesh inconvenient, since the Iayout of the CPUS is a square grid. When we map the regular
triangulation to the square grid, the resulting surface has a rhomboidal shape, as can be seen

irom Figure 2. In particular the regions in the shaded areas oi Figure 2 wiII be strongly influ-

enced by the boundaries. For a generic observable Ou we want to be able to quantiiy the effect

oi the boundary and oi the anisotropy. In order to achieve this we integrate the observable

over hexagonal subsets oi the mesh, centred with respect to the surface. Figure 2 shows two oi

these subsets with darker Iines. For a surface oilinear size L we construct L/2 such integrated
observables by

Or
= ÙJa (8)ÎÎ ~

~ aEHr

where Hr is a hexagon of radius r and Nr the appropriate normalization. The shaded areas of

Figure 2 are discarded from the integration. By Iooking at Iarger and Iarger hexagons we can

see when the boundaries start to affect the data. For very small hexagons the discretisation

eflects are large. In practice we find that the results are strongly influenced by the boundary
for hexagons of radius r > L/4.

For non-integrated observables, such as the normal-normal correlation function, translational

invanance in the s~rface is broken by the presence of the free boundary. Thus we always
consider the correlation iunction irom the centre oi the surface to ail the other nodes. The
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effect oi the boundary can then be seen dearly on the correlations at a distance oi order L/4.
This boundary data is discarded irom the lits.

3. Crumpling lkansition

Beiore examining the flat phase oi the mortel oi equation (4) we would like to review the existing
evidence for a "crumpling" transition. In recent years the crumpling transition has been

the locus oi extensive numencal and analytical investigation. Within the condensed-matter

community it is customary to work with models with effective potentials like equation (2) and

free boundaries [10, 22, 23]. Numerical simulations of these models provide direct evidence for

a phase transition, such as a diverging specific heat, although the accuracy is not yet sufficient

for a reliable determination of the specific heat exponent a. When strong self-avoidance is

included in the models described by equation (2), there is numerical evidence that the crumpling
transition disappears altogether, with the system being flat for aII bending rigidities [24-28j.

Some studies of flexible impenetrable plaquettes. however, do find a crumpled phase [29-31j.
The Gaussian spring models have been studied numerically in iii,15-21,32j using periodic
boundary conditions, with emphasis on the precise nature of the phase transition. A growing
peak in the specific heat is observed and the best estimate of the related critical exponent is

a =
o.,58(10) [21j.

There is thus strong evidence that models of phantom polymerised membranes have a con-

tinuous phase transition. We are also currently investigating this transition, and in the rest of

this section we discuss our preliminary results.

3.1. SPEcific HEAT. Let us now turn to the energy fluctuations in our model. We write

the total bending energy as

Se
=

~j
na nb. (9)

(ab)

Denoting the number of Iinks (or edges) in the surface by Ne, it is simple to show [16j that the

specific heat is given by

~~
~~2 ~~

~

ÎÎ
~~~~~ ~~~~~~ ~~~~

Here the brackets indicate a statistical average over surfaces (3) We henceforth drop the

constant piece from our analysis.
We plot in Figure 3 the measured specific heat vernis bending rigidity, for surfaces consisting

of up to 64~ nodes. As expected we see a sharp peak at ~ m 0.79 growing with system size.

The critical behaviour of Cv close to the phase transition is govemed by an exponent a,

Cv
mJ

[~ ~c[~°, and for a < 1 the phase transition is continuous las the first derivative of the

free energy does not diverge). Hence it is important to determine the value of a. The most

convenient way of doing so is using finite size scaling, which predicts that the value of the peak

should scale with volume as

Cv * co + CIL", Ill

where, assuming hyperscaling, the specific heat exponent a =

) and co and ci are non-

universaI constants. Dur best estimate of ~o, from the data shown in Figure 3, is ~o =
0.5(1),

consistent with previous results [21,32j. The corresponding value of a is 0.4(1).

(~) As our
statistics close to the phase transition are not as

good as in
the fiai phase, we have net

attempted to use the more sophisticated method described in Section 2.2 to ebminate boundary elfects

frorn this data.
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Fig. 3. The specific heat ~ersus trie reduced variable ~/(1+ ~).

3.2. RADIUS OF GYRATION. While the specific heat peak is one signal for the existence of a

phase transition, it reveals little about the nature of the phases each side of the transition. An

observable more sensitive to the geometry of the surface is the square of the radi~s of gyration,

R(
=
l~ ~j

xa xa
,

(12)
~~

a

which measures the average spatial extent of the surface. Rg defines a linear length scale for

the surface and can be used to define a fractal or Hausdorff dimension dH in the embedding

space via

Rg
mJ

N~/~H. (13)

The Hausdorfl dimension dH is related to the conventional Flory exponent u (Rg
mJ

L") via

dH
"

2 lu. For a flat surface, ~ > ~c, the radius of gyration scales Iinearly with the internai size,
and hence dH

=
2. In the high-temperature phase, on the other hand, Rg scales loganthmically

with the volume of the surface, Rg
mJ

Iog(N). In this case we say that the Hausdorfl dimension

is infinite iv
=

0). This justifies the terminology cr~mpled phase. This behavior can be

computed exactly for ~ =
0 il ii, while mean field theory or numerical methods are necessary for

~ < ~c [15-21, 32j. Experimentally one can determine the Hausdorff dimension by measuring
the structure fuuction of diffracted light. A comparison with numerical simulations can be

found in reference [33j.
At the transition itself one might expect au intermediate behaviour (semi-crumpled surfaces)

with dH > 2. Indeed this has been observed in il ii, where it is claimed that dH
=

4 at ~c.

In Figure 4 we show our measurements of the radius of gyration uersw the bending rigidity
for surfaces up to 64~ nodes. As expected, we see a dramatic change in their spatial extent as

we pass through the phase transition. The surfaces literally blow up. This is better illustrated

in Figure 5, where we show snapshots of the surfaces: (a) in the crumpled phase, (b) at the

phase transition and (c) in the flat phase.

We have only determined directly the Hausdorfl dimension
in the flat phase (for ~ =

1.1),
where we have good statistics for surfaces up to 128~ nodes. The corresponding scaling plot is
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Fig. 4. Trie radius of gyration as a
function of

~
for various systern sizes.

In the inset we show
a

power-law fit for Rg w. L ai ~ =
1.1 for L up to 128. We gel v =

o.95(5).

a b

c

Fig. 5. Snapshot of trie surfaces with L
=

46 ai (a)
~ =

o-à, (b)
~ =

0.8 and (c)
~ =

2.0. The

average link length in each surface is
comparable.
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Fig. 6. The correlation function G(r) for various values of the bending rigidity ~.

mduded in Figure 4. A Iinear fit for surfaces Iarger than 16~ yields dH
=

2.1(1).
or u =

0.95(5),

as expected for a flat surface.

3.3. NORMAL-NORMAL CORRELATION FuNcTioNs. As mentioned in Section 1, the dilfer-

ent phases of a crystalline membrane can also be distinguished by the behaviour of the surface

normais. In the flat phase the normais will have true long-range order, with the correlation

function approaching a non-zero asymptote. In the crumpled phase the normais eventually
decorrelate.

We define the normal-normal correlation function G(r)
as the scalar product of two normais

on the surface separated by a distance of
r along the surface:

Gir)
=

(no .nr). i14)

Here o refers to the centre of the surface.

In the crumpled phase we expect Gir) to decay rapidly to zero. In fact in the exactly solvable

~ =
0 Gaussian model one finds that

GIT)
= ci

~Î~
~Î, Ils)

r r

where ci and c2 are cutofl-dependent constants and à(r) is the two-dimensional regularised
à-function iii]. In the discrete case, the normais become decorrelated over a few Iattice steps.

We have measured G(r) for several bending rigidities, both in the crumpled and flat phase.
In Figure 6 we illustrate this on Iattices with 64~ uodes. For a more detailed discussion of how

we perform the measurements we refer to Appendix B,

In the crumpled phase GIT) decays very rapidly to zero and, for ~ =
0, we indeed see a

negative correlation between the normais at short distances, as expected from equation (15).
On a highly crumpled surface neighbounng triangles fold

on each other. As ~ increases the

normais become positively correlated at short distance, although G(r) still becomes negàtive
(for ~ < Kc) before decaymg to zero.
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At the critical point the normal-normal correlation function is expected to decay alge-
braically,

Gir)
mJ

,

(16)
r

with an exponent ij diflerent from the Gaussian value 4. This is consistent with our numerical

results. A simple scaling argument [23] shows that ij is related to the size (Flory) exponent

u by q
=

4(1 vi. As we enter the critical region (~
m

0.79) the normal-normal correlation

iunction still decays to zero, but now stays positive for ail values of r. It is also dear that it

decays to zero more slowly thon in the crumpled phase. A crude estimate oi the exponent ij,
using a surface with 64~ nodes and ~ =

o.79, yields ij m o.71(5). This implies a size exponent

u =
0.82(1) and hence Hausdorff dimension dH

"
2A(2). This is consistent with previous

numerical results [23] and maybe be compared with two theoretical predictions: dH
#

3 from

a
1Id renormalization group calculation [34, 35], applied to d

=
3, and dH

"
2.73 from the

self-consistent screening approximation [36j.
Finally, we show in Figure 6 a measurement oi GIT) for ~ =

I.I, i e. m the flot phase. In

that case we see a non-zero asymptote indicating true long-range-order in the normais. Fitting
G(r) to an algebraic decay plus a constant term excludes convincingly the possibility of a

slow fait-off to zero, although eventually Gir) becomes zero due to boundary eflects. This

behaviour is found consistently for surfaces of various sizes. We will retum to the behaviour

of the normal-normal correlation function in the flot phase in Section 4.4.

4. Fiat Phase

Here we shall describe the current theoretical understanding of the flot phase of crystalline
membranes. Given the Mermin-Wagner theorem it is important to understand what could

stabilize an ordered phase in this two-dimeiisional system. This is most easily described in the

Monge representation of a surface

xa =
haï + ru, (17)

where ha is the height of the surface w-r-t- the base plane k § and ru is the projection of xa

on the base plane. We define the phonon fluctuations ua of the surface by

r, = sa + ua (18)

where sa are the equilibrium positions of the nodes. An effective Hamiltoman for the fiai

phase [9,37] is a sum of bending and elastic stretching energies

~(h, u)
=

~ / d~a (i7~h)~ +
~ / d~a(2~ u$~ + u(~), (19)

2 2

where ~ and are the bare in-plane Lamé coefficients,
~ is the bending iigidity and un~ is

the strain tensor. This tensor measures the deformation of the induced metric from the flat

metric, and is given by

un~ =
(ônx ô~x ôn~) (20)

=
(i7nu~ + i7~un + i7nhi7~h). (21)

to linear order in u. The indices a, fl run over the internai coordinate a =
lai, a2).

One can integrate out trie phonou degrees of freedom by performing the Gaussian integra-
tion [8j. One finds that the phonons give rise to an effective long-range twc-point interaction
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for the scalar curvature. This interaction flattens the surface by stiffening the bending rigidity

at large distances.

A more precise understanding may be obtained from self-consistent calculations of the renor-

malized bending rigidity [9,36j, mean-field calculations [38j, the e-expansion le
=

4 D, with

D the dimensionahty of the surface) [39, 40j and the 1Id expansion (where d is the embed-

ding dimension) [34, 41]. Generally one finds that the renormalized bending rigidity is scale

dependent with a non-vanishing anomalous dimension

~ÉR(q) ~
q~~. (22)

At long wavelength ~R(q) is stiflened by short wavelength undulations of the membrane. It is

also found that the elastic moduli ~ and are softened at long wavelength

llR(q)
~

ÀR(q)
~

q~~ (23)

The exponents ~ and ~u are not independent. Rotational invariance [39], or self consistent

integral equations for the renormalized bending ngidity, imply

il=1-(~. 124)

An immediate implication of these anomalous dimensions or power-law singularities are non-

trivial roughness exponents and height and in-plane displacement fluctuations or correlations.

Defining a roughness exponent ( by the finite-size-scaling of the mean-square height fluctuations

in a box of size L

(h~)
mJ

L~~, (25)

we see from equation (19) that

jh~j
~J

~~~ ~~~
~J

~~~ ~~~
~J

L~-~, j26)
1IL (27~)~ ~IR(~) q~ 1IL (27~)~ q~ ~

implying (
=

1 ~/2. In the above a is a short-distance regularisation eut-off. Similarly there

is a non-trivial exponent for phonon fluctuations [42]

llU~l)
~

L~~ 127)

In the framework of the self-consistent screening approximation it is possible to obtain analytic
predictions for these exponents [36]. By assuming the scaling relations of equations (22) and

(23) one can sum the terms in the perturbative expansion which renormalize KR(q) and solve

for the exponent ~. In subsequent sections we shall describe our numerical measurements of

these exponents.
Finally, a measure of long-range order in the flat phase is provided by the normal-normal

correlation function. In the Monge representation a normal to the surface at point a is given by:

'~"

~Î~Î ~ÎÎ~ÎÎ ~~

'
~~~~

where ai and a2 are the components of the intrinsic coordinate
a.

TO compute (na na) we

rotate the surface so that the normal at the ongin coincides with the à axis. Hence

~" ~~' ~' ~~
l

Îi7ha[2
" Î~~~'~~ ~~~~
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The correlation function then follows from the height-field propagator,

~~' ~°~ ~

~Î~ Î~ÎÎ2 RÎ~)
q~

~

~ ~
'

~~~~

where
r is the geodesic distance between the point at a and the origin o in the embedding space.

Thus a power-law decay of the normal-normal correlation function to a non-zero asymptote
provides a direct measure of the bending ngidity anomalous exponent ~.

4.1. SHAPE TENSOR. We now return to our numerical results. Detailed information about

the shape of the surface in the embedding space is provided by examining averages of the

eigenvalues of the inertia tensor. More precisely we study the shape tensor, defined as the

anisotropic part of the inertia tensor:

ÀJ14
"

j ~ ~~1°)~J1°), l~~)

a

where and j refer to the components of
x.

The fuit inertia tensor has an additional isotropic

contribution proportional to [~ this scales like R(. As the shape tensor L~ is strongly
influenced by the boundary (in fact contributions from the boundary region dominate the sum

Eq. (31)),
we restrict our measurements to a hexagonal subset of the mesh, as described in

Section 2.2. If we refer the surface to the body-fixed frame defined by the eigenvectors and its

centre of mass, the eigenvalues of L~, À~, are nothing but the dispersion of the 1-th component

of x, averaged over the surface

À~ =

~j ((a)1,
(32)

~~~
aeH~

where Nr is the number of nodes inside a hexagon of radius r.

We obtain the eigenvalues À~ by diagonalising Lj. The distribution of these eigenvalues,

p(À), is distinctly different in the two phases. In Figure 7 we show three examples of this.

In the crumpled phase la) p(À) has a single peak, implying a three-fold degeneracy of the

eigenvalues (~). This is a simple consequence of the isotropy of a crumpled surface in the

embedding space. The position of the peak indicates the average extension of the surface,

while its width is related to the fluctuations about that value. At the phase transition 16)

there is still a single peak in p(À), but now accompanied by a significant tait extending to

large eigenvalues. This is due to increasing fluctuations in the size of the surface in the critical

region.
The behaviour is very different for a

flat surface (c). We now see two well resolved peaks in

p(À) indicating, as expected, a broken O(3) symmetry. There is a single minimum eigenvalue,

corresponding to the left peak, which con be identified with the average square thickness of

the surface. But there are also two almost degenerate large eigenvalues, as con be established

by measuring the area of the right hand peak. This is a result of the remnant O(2) symmetry

in the plane. If we did not restrict our measurements to a hexagonal subset of the mesh, we

would actually see three peaks m p(À), due to the anisotropy of the boundary.

(~) In fact this degeneracy is Dot likely to be exact. In a
body-fixed fratrie there is

always a
hierarchy

of eigenvalues. Figure 7a shows that ibis elfect is very srnall.
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p~À)
K =

0.5

a

K=0.8

b

,

K=1.1

,,

8 12

Fig. 7. The distribution of eigenvalues p(À) of trie inertia tensor. The nurnber of modes is 46~ and

the hexagon radius is 17.

4.2. ROUGHNESS EXPONENT. To measure the height fluctuations in the flot phase, and

the corresponding roughness exponent (, we need an estimate of the out-of-plane fluctuations.

This is provided by the minimum eigenvalue oi the shape tensor which. as discussed in last

section, is simply the average squared height. Hence

Àmm
mJ /d~ah$)

mJ

L~~. (33)

In Figure 8 we plot the minimum eigenvalue Àmm uersw the (normalized) radius oi the hexag-
onal subsets we used, rH =

2r/L. This is shown for four different size surfaces at ~ =
I.I.

A comment on how we treat the data: as we con only use hexagonal subsets of certain radii

(discrete units of the lattice spacing), measurements on surfaces of diflerent sizes will yield
measurements at different values of the normalized radius rH. To compare measurements irom

surfaces oi differeiit sizes, at the same value oi rH, we must thereiore interpolate between the

data points. These are the solid hnes in Figure 8. For the interpolation we used a polynomial
fit, with the degree oi the polynomials sufficiently large to yield a stable fit. We checked that

different interpolation methods did not affect the results.

The roughness exponent ( is then determined irom the finite-size sc~ling of the minimum

eigenvalue for a fixed value of rH. The result is shown in Figure 9. The sohd fine is ((rH) while

the dashed fines indicate the errer. There are large discretisation effects for small values of rH>

as expected. For 0.2 < rH < o-S there is a reasonably stable value of the roughness exponent.
Dur best estimate irom this intermediate region is (

=
0.64(2). This should be compared to

the theoretical predictions (
=

0.590 [36] and (
=

2/3 [34] and irom measurements on the

spectrin network (
=

o.65(la) [5]. Previous numencal investigations of models of tethered

surfaces have found a wide range of values for (. These include o-à [43], o.53 [44j, o.56(2) [5j,
o.59 [45j, o.6 [46j, o.64 [26, 47,48j, o.65 [42, 49j and o.70 [31,soi. From the scaling relation

~ =
2(1 ()

we find ~ =
o.72(4). For larger values of rH we see clear evidence of boundary

effects. Indeed, if we did not work with hexagonal subsets, we would not be able to extract a

rehable estimate for (.
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~min
K =

1,1

o-1
~32~

~H46~

-- 642

+~ 128~

0.01

0 0.2 0.4 0.6 0.8
~

H

Fig. 8. The minimum eigenvalue Àm~n ~ersus
the radius of the hexagon for various lattice sizes and

~ =
l.l. The solid fines

are
obtained frorn

a
polynornial fit aud the points are

simply to guide the eye.

o.7

0.6

'

',

K= 1-1

o.5

0 0.2 0.4 0.6 0.8
~H

Fig. 9. The roughness exponent ( ~ersus the norrnalized radius of the hexagon. We extract the

value of ( frorn the plateau region. The dashed fines mdicate the size of the
error

bars. The bending

ngidity is ~ =
l-1-

We have also measured ((rH) for ~ =
2.o, although the largest surface simulated in this case

had only 642 nodes. Once again a finite-size-scaling analysis yields a stable value of ( in the

same
interval of r~l. In this case the result is (

=
0.71(2). This value is 3a larger than the

corresponding value at the same lattice size for
~ =

l.l. We believe that this is due to larger
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Q~

,

,

'

'

'_
'

'

'

K= Î-1

0 0.2 0.4 0.6 0.8
~

H

Fig. 10. The exponent ~u as a
function of trie hexagon radius. The dashed fines indicate the size

of trie errer bars.

finite size eflects and that our results are consistent with having universal cntical exponents in

the flot phase as predicted by the fixed point of references [35, 39,40,slj.

4.3. PHONON FLucTuATioNs. We now examine the issue oi the in-plane elastic degrees
oi ireedom

in the flot phase oi our model. For convenience, we rotate the surface so that

the eigenvector associated to the smallest eigenvalue points in the à direction. Projecting the

surface onto the k-f plane gives us a discretised analogue of the field ru oi equation iii).
The first siep in the analysis must be to determine the phonon field u,. We therefore need

to determine the field sa giving the equilibrium positions of the nodes. As before, we restrict

our analysis to the hexagonal subsets Hr of Section 2.2. We assume that the equilibrium
positions of the nodes lie exactly on a regular hexagon in the k-y plane. In the course of the

Monte Carlo simulation, the surface fluctuates in the embedding space so that the orientation

oi its principal axes and its overall extent change constantly. Thus we need to find the regular
hexagon sa for each configuration we analyse. We define the iunctional

F
=

~j(r,-s,)~
=

~ju$, (34)

a a

and ~ve choose the equilibrium position oi the mesh to be best represented by the hexagon
which minimises F. The regular hexagon s can be parametrised by the position oi its centre,

a rotation angle and a scale iactor (. The centre oi the hexagon is trivially set to coincide

with the centre oi mass oi the projected surface. Minimizing the iunctional F with respect to

the angle and the scale ( yields a unique solution up to the six-iold symmetry oi the regular
hexagon

- + gr/6. This six-fold degeneracy of the minimum of F can be eliminated by
requiring that the internai labels oi the s, overlap with the ones oi the r,.

We determine the charactenstic scahng exponent ~u, defined in equation (27), by a power

iaw fit of (u~)r~ to L, for fixed values oi rH. Figure la shows the result of the fit for
~ =

l.l.

We extract the value oi the exponent from the plateau
in the figure. This gives ~u =

o.50(1)
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G(r)
~~

0.7
-46

-- 64

0.6
--128

o.5

0.4 ', '-
i

0.3

K= i-1

0.2

0 20 40 60 80 100

r

Fig. ii. The Gir) fall-off for L
=

32, 46, 64 and 128. Representative data points are shown to

guide the eye. The dashed lines are the best lits to equation (30).

at ~ =
l.l. The corresponding value oi ~ obtained irom the scaling relation oi equation (24) is

~ =
o.750(5). We also quote the results oi the same analysis at ~ =

2,o: ~u =
0.40(1).

4.4. CORRELATIONS IN THE FLAT PHASE. In this section we treat the normal-normal cor-

relation iunction in the flat phase. The measured correlation iunctions are shown in Figure ii.

We fit this correlation iunction to the expected power-law behaviour oi equation (30)

Gir)
=

C +
~

,

(35)

using a correlated least squares algorithm. We find a non-zero asymptote C whose value tends

to increase with lattice size. This is shown in Figure 12.

The correlated least squares algorithm attempts to minimise a X~ iunction oi the iorm

N

x~
=

~~r ~ ~~
jj

iY~ f~) c~é (yé lé ). 136)

The data y~ is fitted to a iunctional iorm f~
=

f~(pi, PP) where1 is the (lattice) geodesic

distance and pi are the variationjl parameters in the fit. The matrix C~k is the inverse oi the

correlation matrix

~ ~f-lj j3?j
~k ~~

where

Mrr'
"

(G (T) G (T'))c (38)

Note that for uncorrelated data the matrix M is diagonal, and equation (36) reduces to the

usual definition oi x~. The inversion oi this matrix is typically a delicate operation. Because

oi limited statistics it will oiten be close to singular and the smallest eigenvalues will only be

poorly estimated irom the data. In this situation it is necessary, and indeed correct, to restrict
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G(r)
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0.6 --128

o.5

0.4 =

0.3

K =
1-1
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r/L

Fig, 12. A plot of G(r) with
r

rescaled to show the finite-size elfects on the asyrnptote (~
=

l-1).
This rescaling demonstrates that the asyrnptote stabilizes as the lattice size increases.

Table II. Fit ta the correlation f~nction Gir).

~ =
I.1 ~ =

2.o

L C q
;~/dof C ~

x2/dof

32 o.181(16) o.331(7) 8.6 o.240(32) o.141(5) 14.8

46 0.274(9) 0.397(5) 1.66 0.309(21) 0.154(4) 2.32

64 0.321(5) 0.447(6) 0.96 0.448(30) 0.203(4) 2.19

128 0.383(6) 0.521(6) 1.14

the inversion to an appropriate subspace that is spanned by eigenvectors with eigenvalues which

are large enough to be estirnated reliably irorn the data. This can be achieved through singular
value decomposition techniques. The dimension of the subspace is referred to as the singular
value decomposition (SVD) cut. For more details we reier the reader to [52j.

In assessing the results oi trie fitting procedure we examined cases with a range oi values

oi initial and final distances and SVD cuts. To obtain a x~ oi order unity we usually had to

discard data tram the last third of the path to the boundary and roughly one quarter of the

eigenvalues.
In Table II we show the fitted values oi trie asymptote C and the exponent ~. The lits

are obtained including ail the short distance data and we show only errors irom the fit. It is

clear that a more important source oi error is finite size effects. Clearly both the constant C

and the exportent ~ exhibit a shift with L well in excess of the fitted errors. But this shift

is systematic and indeed can be quantified by assuming a naive
1IL correction term to the

correlation function GIT). In that case the leading correction to C will be 1IL, while it is

log(L) IL for the exponent ~. This conjecture is in excellent agreement with our data, at least

for ~ =
l.l, and implies infinite volume values oi C m 0.45 and ~ m 0.62. This is in quantitative

agreement with our previous estimates.
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Table III. Ejfect of the short distance data (~
=

l.1).

The constant C The exponent ~

rmjn L
=

46 L
=

64 L
=

128 L
=

46 L
=

64 L
=

128

0.274(9) 0.321(5) 0.383(6) 0.397(5) 0.458(7) 0.521(6)
2 0.262(15) 0.325(7) 0.388(7) 0.376(10) 0.492(9) 0.546(9)
3 0.262(17) 0.327(7) 0.405(7) 0.388(14) 0A81(9) 0.658(15)

Another source oi systematic error stems irom discarding some oi the short distance data.

In Table III we show the results oi lits to C and ~ obtained by discarding data at distance

r < rn~in. It is clear that the values change with rn~m, although not a great deal. Discarding
short distance data increases the value oi ~ for the large lattices. This improves the comparison
with the expected value.

Finally, a iew comments on the data at K =
2.0. The values oi ~ quoted in Table III do not

agree well with the values obtained at ~ =
I.I. But it should be mentioned that the lits to

equation (35) are not as good in this case, which is reflected in higher values oi the X~.

5. Conclusions

In this paper we used a large scale Monte Carlo simulation to show that an extremely simple
model oi a crystalline membrane has a

well-defined flat phase. In this phase the critical

exponents are consistent both with previous simulations oi tethered membranes and with

theoretical predictions. In particular, the model we study has dynamically generated elastic

moduli. The flat phase is convincingly demonstrated by the existence oi a non-zero asymptote

for the normal-normal correlation iunction, which strengthens with increasing system size. The

flat phase exponents we find at ~ =
I.I are: size (Flory) exponent u =

0.95(5) (dH
"

2.1(1)),
roughness exponent (

=
0.64(2), ~u =

0.50(1). A check on the consistency oi our results for

( and ~u is obtained by comparing their respective scaling predictions for ~. Dur value oi

( implies ~ m 0.72 and our value oi ~u implies ~ m 0.75. These are consistent within our

statistical errors. A direct measurement oi q from the power law decay of the normal-normal

correlation functions is more difficult and is discussed in Section 4.4. For L
=

128 and rn~jn =
3

we obtain ~ =
0.658(15 ). At higher bending rigidity we obtain somewhat different exponents,

but we believe this is due to larger finite-size effects.

For completeness, we also establish that the model we consider has a crumpling transition.

Prehminary determination of the critical exponents ai the transition gives results consistent

with existing simulations for related models.
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Appendix A

Elastic Constants in the Gaussian Model

As we noted in the introduction, there are several potential pathologies m a model in which

the tethering potential contains no hard core repulsion, such as the one we treat in this paper.

The effective elastic constants may vanish or be too weak to generate a stable flat phase. Even

if the model possesses a flat phase it may belong to a diflerent universality Mass from a model

with bare elastic constants.

The simplest argument supporting such concems arises from a mean field theory calculation

of the elastic moduli oi our discrete tethering potential along the fines of [54]. Consider an

equilibrium spring length parameter a in the pair potential of equation (4):

7iT (a)
=

jj (lxa xa,1 a)~ (A.i)

(aa~i

=

~ ~ llx« x,,1 a)~ lÀ.2)

In the second sum a' runs over the neighbour nodes oi
a.

Note that we have chosen units such

that the spring constant k/(kBT)
=

and x, u and
a are dimensionless. For a sufficiently

large we may describe the location oi the nodes x, by

Ix« x~,)~
=

jô~~ + un~) s(~,, lA.3)

where sa spans a regular hexagonal lattice, sua, = sa sa> and [saa,
= a. a and fl

=
1, 2 are

intrinsic coordinate indices on the surface. Then

[xa x,,[~
=

(ô~~ + 2itn~ + u~~u~~) sQ~,s$,, (AA)

=
a~ + (2uo~ + un~u~~) s$,,s$~,. (A.5)

At this point we redefine u[~
= un~ + )uo~itp~ and subsequently drop the primes. This will

not affect the end result to quadratic order. Expanding for small fluctuations ita~ « 1 we have

[xa xa, = (a~ + 2un~sQ~, s$~, ~ (A.6)
~

~
~ ~ ~""~~~"'~~"' 213""~"~~~~"'~~"'~~"'~~"' ~' ~~'~~

To evaluate equation (A.2), consider the 6 unit lattice vectors db of a regular hexagonal lattice

where b
=

1,.
,

6. Performing the sum over the neighbours a' gives

7iT(a)
=

)~j~j(auopd/d() (A.8)
~

~

a =i

= (a~ ~j (à°~ô~~ + à°~ô~~ + à°~ô~~) u~pu~ô (A.9)

=

~a~ ~j (2unpitpn + u(~) (A.10)

~
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For sufficiently large N, and a fixed, one can approximate the above discrete sum with an

integral.

~~~~~ "

Î ~Î ~Î~~~"~"~" ~
Î~~"~~~

'

~~'~~~

where e is the intrinsic lattice spacing. Often one is interested in the case e ct a. We keep the

e
and a dependence since we are interested in the case a =

0, e # 0.

To determine the elastic constants recall that the most general continuum action for a crys-

taIline membrane is [38j

7i
=

/
d~(

~
ô~x ô~x + u

(ônx ôpx)~ + u (ô~x ô~x)~ + (ônx ôpx)
2 2

=

d~( ~ô~X ô~X + ~un#upn + ~u~~ + Tut
,

(À,12)
2

2

where un~ =
)(ô~x ô~x ônp) is the strain tensor equation (20). The couplings in the two

expressions in equation (A.12) are related by

u=

(, u=(, t=T-~1-À. (À.13)

Thus the bare elastic constants, dimensionless in our units, arising from the lattice action (A.2)

are ~1=À=~(,
T=0. (A.14)

Notice that if e = a the elastic constants are independent of the lattice spacing. The model

we have studied corresponds to the limit a -
0 and

e
fixed. In this limit fluctuations become

large and the above calculation breaks down.

Appendix B

Measuring Correlation Functions

A necessary premise for measuring the normal-normal correlations function Gir) is that we

know the distance between two triangles on the surface. This distance can either be measured

in the intrinsic metric (in which case it is trivial) or in the induced metric. For comparison we

tested both methods.

Let us first describe our algorithm for determining distances in the induced metric at the

discrete level. Given two points on the surface, we must find the shortest path, in the induced

metric, along the surface. The problem here is that there are iany definitions of "geodesic"
which are equivalent in the continuum limit but differ at the discrete level. The algorithm we

use is the following: given a triangle to we find the distance from its centre to the centre of ail

its neighbours. Then we find the distance from those triangles to their neighbours (excluding
triangles already visited). Iterating this procedure we find the minimum distance to each

triangle from to, subject to the constraint that we have to pass through the centre of each

triangle traversed. This is a piecewise linear approximation to the shortest path, which should

be good for sufficiently large paths.
Similarly, for the intrinsic metric, we can either define the distance in units oi jumps irom

triangle to triangle or, given that the vertices have explicit (ai, a2) coordinates in the intrinsic

formulation, we can define the shortest distance between them as a
straight fine.
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Fig. 13. The comparison of trie three methods used to measure trie geodesic distance r. Methods A

and B use the intrinsic metric. For method A we construct a piecewise hnear path through trie centre

of each triangle, while for method B
we construct a straight bue between the centre of the starting

and ending triangle. Method C is the same as A, except thon it
uses the induced metric to compute

the distances between the triangles.

We have verified that these different definitions oi distances give identical results for the

normal-normal correlation function measured in the flat phase (modulo
a trivial rescaling of

the r-axis). This is illustrated in Figure 13. The relevance of this result goes beyond a simple
consistency check: the fact that the geodesics defined intrinsically and extrinsically coincide

means also that intrinsic and the extrinsic metric overlap in the flat phase.
Ail of the normal-normal correlation functions presented in the paper are obtained using

method A.

Appendix C

Parallel Monte Carlo Algorithm

In this appendix we describe the parallel algorithm used on the MASPAR MPI. This machine

is an old-style massively parallel computer with 16384 CPUS arrangea in a 2-D (128 x 128)
mesh with nearest neighbour connections. Each individual CPU is a relatively small processor

(8 bit) with no floating-point unit.

A standard problem in using a parallel machine is the fact that the amount of parallelisation,
and consequently the performance increase, is hmited by the inter-dependence of the data. In

order to ensure detailed balance in a Monte Carlo simulation, only a fraction of the lattice can

be updated concurrently. In our case only 25% of the nodes can be updated. This translates

into a huge performance loss as 75% oi the nodes remain idle.

In order to overcome this limitation we implemented an improved parallelisation scheme.

Instead oi simulating one surface we consider 4 independent Monte Carlo simulations. The

4 corresponding meshes are "interleaved" in 4 arrays which store the node positions. Each

surface is
distributed onto the 4 arrays as shown in Figure 14. The parallel machine updates
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Fig. 14. The improved parallelisation scheme. On the left we show the connectivity of the 4

different surfaces m the simulation, while on the right
we

show the actual internai representation. It

is
clear that, on

the right,
no

node
ever

has
a

neighbour of the same type.

one array at a time, but now each array holds independent data and thereiore ail oi it can be

updated in parallel.
We have compared the performance oi this algorithm to the traditional parallelisation and

to the sequential code. On the MASPAR, the traditional parallelisation, 1-e- a Monte Carlo

simulation oi a single surface, can achieve a maximum speed oi 80 Mflops (millions oi floating-
point operations per second). Dur improved code is capable oi 280 Mflops, almost a jour-iold

increase. This number is to be compared with the peak performance oi this machine which,
measured with the Linpack method, is around 440 Mflops. Dur scalar code on an IBM RS /6000

390 with a clock of 66.5 MHz has a speed oi 17 Mflops, compared to a Linpack peak performance
of 54 Mflops.

The parallel algonthm also requires a careful implementation of the pseudo-random number

generator. While the intrinsic MASPAR random number generator is known not to be reliable,

using a sequential random number generator would be incredibly time consuming. The solution

to this problem is to have an independent random number generator on each CPU, e-g- to

regard it as an array-valued function. In order to avoid cross correlations between the random

sequences generated by the parallel routine, a second standard random number routine is used

to seed the array.
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