
Physics Letters B 317 (1993) 102-106 PHYSICS LETTERS B 
North-Holland 

Fluid random surfaces with extrinsic curvature. II 
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We present the results of an extension of our previous work on large-scale simulations of dynamically triangulated 
toroidal random surfaces embedded in R 3 with extrinsic curvature. We find that the extrinsic-curvature specific heat 
peak ceases to grow on lattices with more than 576 nodes and that the location of the peak 2c also stabilizes. The 
evidence for a true crumpling transition is still weak. If we assume it exists we can say that the finite-size scaling 
exponent a/vd is very close to zero or negative. On the other hand our new data does rule out the observed peak as 
being a finite-size artifact of the persistence length becoming comparable to the extent of the lattice. 

r 

The theory of  2D fluid random surfaces embedded 
in R 3, with an extrinsic curvature term (bending rigid- 
ity) in the action, has received considerable analyti- 
cal and numerical attention in the last decade [ 1-3 ]. 
In [ 3 ] we presented the results of  a large-scale Monte 
Carlo simulation of  a dynamically-triangulated torus 
in R 3 with up to 576 nodes, corresponding to 1152 tri- 
angles. Although we observed a rapid crossover from 
a crumpled regime for 2 < 2c to a smooth regime for 
;t > 2c, where 2 is the extrinsic curvature coupling con- 
stant and 2c ~ 1.425, it was not at all clear whether a 
true continuous thermodynamic phase transition sep- 
arated the two regimes. In fact several alternative in- 
terpretations of  the data were discussed in [ 3 ]. Per- 
haps the simplest possibility, advocated in [4], is that 
the persistence length ~ describing the exponential de- 
cay of  the normal-normal two-point function in the 
crumpled (disordered) regime simply reaches the fi- 
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nite size of  the system at 2c. In this case the observed 
smooth regime would be a finite-size artifact with the 
true continuum theory really being crumpled for all 
couplings 2, in accordance with perturbative analyt- 
ical results [5-8] .  Since ~ grows exponentially with 
2, according to the one-loop beta-function, this inter- 
pretation would imply that 2c diverges logarithmically 
with system size N. To resolve this issue and to gain 
further insight into the model it was clearly desirable 
to extend the numerical simulations to larger lattice 
sizes and to clarify the influence of  finite-size effects. 
In this short letter we present an extension of  our pre- 
vious work to include toroidal lattices 1152 and 2304 
nodes. 

As in [ 3 ] we study the theory defined by the action 

S = Soau,~ + 2SE 

= _ _ U . n ~ ) ,  ( 1 )  x;) + z(1 
i,j,# ki  

where Cij is the adjacency matrix, X~ is the position 
in R 3 of  node i (i = 1 . . . . .  N)  and n~ is the normal 

vector to a triangle k in the cellular decomposition of  
a lattice discretization of  a torus. The discretization 
S~ of  a continuum extrinsic curvature term takes sup- 
port on the edges (links) of  the lattice and is known 
as the (discrete) edge extrinsic-curvature. The simu- 
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lat ion consists o f  a s tandard Metropolis  algori thm for 
the updat ing of  the nodes X/' and a DTRS-algor i thm 
[9,10] to sweep through the space o f  triangulations.  
The basic flip move is a t tempted  on randomly chosen 
links. After a set of  3N flips are performed,  3N ran- 
domly selected embedding coordinates are upda ted  
by random shifts from a fiat distr ibution.  

The observable o f  most  direct physical  interest is 
the edge extrinsic-curvature specific heat 

C ( ~ )  = "~( (SE2)  -- ( S E ) 2 ) .  (2) 

This exhibits a peak at a coupling 2c which depends 
on the exact discrete form of  the action chosen [ 11- 
16,2,3]. In [3] we found that  the max imum value of  
the specific heat  grows with the system size as Cm~ = 
A N  ~°, with oJ = 0.06 ± 0.05. In our new series of  sim- 
ulations on lattices with 1152 nodes we ran 54 mil- 
lion sweeps at 2 = 1.425, 21 mil l ion sweeps at Z = 
1.430 and 18 mil l ion sweeps at 2 = 1.435 ¢1. On the 
data  from these three points  we use mult i-histogram 
reconstruction [ 17-19 ]. This works well in that three 
different reconstructions give coherent results. On lat- 
tices o f  2304 nodes we have poorer  statistics. We ran 
17 mil l ion sweeps at 2 = 1.425 plus approximate ly  5 
mil l ion sweeps at 2 = 1.40, 1.42 and 1.43 as a consis- 
tency check. On the 2304 lattice his togramming does 
not work well. This is to be expected since the statis- 
tics are not good enough for such a large lattice. Still 
we have checked that  our measurements  at 2 = 1.425 
give consistent results, that  the error est imate is reli- 
able and that  we are, with good accuracy, at the peak 
of  the specific heat. In all these simulat ions required 
the equivalent o f  approximate ly  one year  o f  CPU t ime 
on an HP 9000 (720 series) workstation. 

The specific heat peak for N = 576, 1152 and 2304 
is shown in fig. 1. In table 1 we give our results for 
the max imum of  the specific heat  and the associated 
coupling 2c as a function o f  N ~2. 

=1 Since the autocorrelation time ~ is of order 400000 
sweeps on the 1152 lattice these runs have at least 45~ 
measurements. 

#2 We have reanalyzed the data presented in ref. [3], us- 
ing a different method of weighting relative errors when 
combining histograms. Thus, some of the errors quoted 
here are smaller than the respective uncertainties in 
ref. [3]. 
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Fig. 1. The edge extrinsic-curvature specific heat C(2) as 
a function of 2. Multi-histogram with errors are shown for 
N = 576 (long and short-dashed lines) and N = 1152 
(solid lines). Four individual data points are also shown for 
N = 2304 (solid circles). One sees that the specific heat 
peak has saturated - it is not growing with the system size 
N above 576. 

Table 1 
The maximum of the specific heat and its position, with 
errors, for different lattice sizes. 

N C (max) 2c 

36 3.484 -4- 0.008 1.425 -4- 0.035 
72 4.571 4- 0.015 1.410 -4- 0.015 

144 5.37 + 0.08 1.395,4, 0.017 
288 5.55 4- 0.05 1.410 + 0.015 
576 5.81 -4- 0.06 1.425 + 0.010 

1152 5.69 -4-0.04 1.425.4.0.010 
2304 5.75 -4- 0.10 1.425 4- 0.010 

Clearly the max imum of  the specific heat curve 
Cmax is effectively constant for surfaces with 576 or 
more nodes. The (pseudo)-cri t ical  coupling 2c is also 
constant  for N = 576 and above. With  the present 
data  we can definitely exclude the presence o f  a diver- 
gence in the specific heat. The growth o f  the specific 
heat  peak observed on small lattices [ 11-13 ] does not  
reflect true asymptotic  behaviour.  These results also 
invalidate the interpretat ion raised in the introduc- 
tion [4,3]. A one-loop renormalizat ion group caleu- 
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Fig. 2. The specific heat C(fl) of the two-dimensional 0(3) 
non-linear sigma model as a function offl for lattice volumes 
N = 16, 25, 64, 100, 900, 2500, 4900 and 10000. The peak 
saturates quickly for N >1 100 and "tic" does not increase 
with the volume. 

lation shows that the persistence length ~ grows with 
bending rigidity 2 as exp((3/47t)2). Equating ~ with 
the spatial extent of  the lattice N lids, where din is 
the intrinsic Hausdorff dimension of the lattice, one 
sees that they become comparable at a coupling 2c 
(3/47tdin) In(N).  In the continuum limit N - ,  or, 2c 
diverges. Since, for reasonable values of din, we do not 
see the increase in 2c with N predicted by the above 
relationship we can state with some confidence that 
the origin of the observed specific heat peak is not ex- 
plained by the persistence length becoming compara- 
ble to the extent of the lattice. 

In [3] we also discussed other, more subtle, possi- 
bilities that could account for the observed behaviour 
of C (2) without invoking a phase transition. One was 
based on the analogy between the present model and 
the O (3) sigma-model in 2D [21 ]. This model is also 
asymptotically free and consequently disordered at 
all non-zero temperatures. Yet numerical simulations 
show a distinct peak in the specific heat which grows 
for small lattices and then saturates, just as we find 
in the model of a rigid string treated here. This may 
be seen in fig. 2 where we have plotted the specific 
heat C(fl) for the two dimensional 0 (3 )  model. The 

simulations were done on square lattices of volume 
N = 16, 25, 64, 100, 900, 2500, 4900 and 10000 us- 
ing the Wolff algorithm [22]. For each point of the 
N = 25 100 and 10 000 lattices we used 100 000 mea- 
surements. We took a measurement every time the 
Wolff clusters updated a volume exceeding 30 times 
the volume of the lattice #3 . For each point of the 
N = 16, 64, 900, 2500 and 4900 lattices we used 
20 000 measurements. We took a measurement every 
time the Wolff clusters updated a volume exceeding 
3 times the volume of the lattice. It is very clear that 
the peak levels offquickly for N >t 100 and that "tic" 
is not increasing with the size of the lattice. Measure- 
ments of the asymptotic value of C (fl) have been re- 
ported in the past [23,24]. The authors of [25-27] 
explain the peak as the excitation of an extra degree 
of freedom, the so-called a-particle [28 ]. The would- 
be transition occurs when the mass of the a-particle 
becomes comparable to the inverse correlation length 
of the O (3) model. It may be that there is a similar 
interpretation of the observed peak of C (2). 

We are currently histogramming our data to exam- 
ine as well the behaviour of the complex zeroes of the 
partition function when 2 is allowed to become com- 
plex. For SU(2) lattice gauge theory, which also ex- 
hibits a specific heat peak without an associated phase 
transition, it has been shown that there are complex 
zeroes which are near the real axis but do not con- 
verge to it in the infinite-volume limit [ 17,18]. High- 
temperature expansions also indicate that the O (3) 
model susceptibility has a complex singularity near 
the real axis [29]. Our search has been so far in- 
conclusive. We used the single histogramming tech- 
nique [17,18] for N = 36, 72, 144, 288, and 572. We 
checked our code by reproducing the results of [ 18 ] 
for N = 64. The modulus of the partition function 
becomes quite small near the real axis and we were 
not able to see the complex zeroes due to statistical 
fluctuations. For N = 36 and 144, for example, the 
complex zeroes have Ira2 > 0.3 and 0.1 respectively. 
Higher statistics and an improvement of the method 
[20] would help to probe deeper into the complex 
2 plane and study the scaling of the complex zeroes 
with the volume. Using single histogramming and the 

#3 For the N = 16, 64, 900 and 4900 lattices the integrated 
autocorrelation times were between 1 and 2 Wolff up- 
datings of the entire lattice. 
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simulations of  the two dimensional O (3) model men- 
tioned in the previous paragraph, we were not able to 
see the complex zeroes of  the O (3) partition function 
reported in [29] either. 

It is still possible that there is a true continuous 
phase transition, the crumpling transition, occurring 
at he. Assuming a continuous transition, a standard 
finite-size-scaling argument only tells us that to = 
a/vd < 0, where a is the exponent governing the di- 
vergence of the specific heat, C(2) ~ [ 2 -  2c] -~, v is 
the analogous exponent for the correlation length and 
d is the intrinsic Hausdorff dimension of the surface. 
In other words there may be a cusp singularity at he as, 
for example, in the case of  the superfluid (2) transi- 
tion in 4He [30,31 ], for which a = -0.01274-0.0026. 
Since we do not have a measurement of vd, which 
may even be rather large, we have no reliable idea of 
the exponent a itself. Generally speaking one finds 
that second order transitions on fixed lattices become 
higher order on dynamical lattices, as for example in 
the case of the 2D-Ising model [32,33]. Since there 
seems to be a 2nd order crumpling transition for non- 
self-avoiding tethered (fixed-triangulation) surfaces 
[35-38 ], it would be consistent for the transition to 
be higher than 2nd order when the model is coupled 
to gravity. 

All told our work gives only weak evidence for a con- 
tinuum crumpling transition. The strongest evidence 
in favour of such a transition, at present, is the scaling 
behaviour of the string tension and mass gap reported 
in [2]. This highlights the need for more extensive 
measurements on these important observables. 

We have also measured the fluctuations of  the ex- 
trinsic Gaussian curvature l/q, defined as the aver- 
age magnitude of the deficit angle at each vertex as 
measured in the embedded space. Likewise, we have 
also computed the fluctuations of the mean defect co- 
ordination number Iq - 6[, which is proportional to 
the intrinsic Gaussian curvature. In ref. [3] we had 
observed that fluctuations of these observables were 
quite large near the coupling he but then drop quite 
dramatically for slightly higher 2. We find that on 
larger lattices the fluctuations of these observables at 
he also do not grow with N; thus their behaviour does 
not provide unequivocal evidence of the presence of 
a phase transition. In table 2 we give the mean-square 
fluctuations of both observables. 

Finally we note the behaviour of the gyration ra- 

Table 2 
The mean square fluctuations of the extrinsic Gaussian cur- 
vature/C and the defect coordination number q - 6, with 
errors, for different lattice sizes. 

N F[K] F [ q - 6 ]  

576 5.71 + 0.08 8.39 q- 0.04 
1 1 5 2  5.59+0.05 8.32+0.03 
2304 5.70 ± o. 10 8.37 -4- 0.06 

dius at he (which we will take as being 1.425 in the 
following). For large 2 (> 2), the scaling of R(N)  
N 2/aH with N gives a Hausdorff dimension close to 2 
(as we expect for flat surfaces). In the crumpled re- 
gion the Hausdorff dimension rapidly increases with 
diminishing 4. We had pointed out in [3] that finite 
size effects were relevant in the sector close to he and 
that we could not estimate a reliable number from the 
lattice sizes analyzed. Here the largest lattice we simu- 
lated (N = 2304) does not give useful data, since the 
error in R is too large, but on the 1152 and 576 node 
lattices we get a fairly precise estimate of R, which 
allows us to estimate for the Hausdorff dimension at 
the pseudo-critical point he the value dH = 4.354- 0.3. 
This is an intriguing result, since 4 is the extrinsic 
Hausdorffdimension of a class of branched polymers, 
as constructed, for instance, in ref. [39]. Such con- 
figurations are expected to dominate the string func- 
tional integral for large embedding dimension D. 
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