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The type IIB matrix model is conjectured to be a nonperturbative definition of type IIB superstring

theory. In this model, spacetime is a dynamical quantity and compactification of extra dimensions

can be realized via spontaneous symmetry breaking (SSB). In this work, we consider a simpler,

related, six dimensional model in its Euclidean version and study it numerically. Our calculations

provide evidence that the SO(6) rotational symmetry of the model breaks down to SO(3), which

means that the theory lives in a vacuum where 3 out of the 6 dimensions are large compared to the

other 3. Our results show the same SSB pattern predicted by the Gaussian expansion method and

that they are in quantitative agreement. The Monte Carlo simulations are hindered by a severe

complex action problem which is addressed by applying the complex Langevin method.
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1. Introduction

Superstring theory is the most promising fundamental theory for the unification of all interac-

tions, including gravity. The theory is defined in 10 spacetime dimensions and the connection to

the real world, where 4 dimensions are macroscopic, is realized via compactification of the extra

dimensions. This requires the introduction of many arbitrary parameters in the theory, leading to

the problem of the string landscape. The IKKT or IIB matrix model [1], formally obtained by

the dimensional reduction of ten-dimensional N = 1 super-Yang-Mills theory to zero dimensions,

is conjectured to be a non-perturbative definition of superstring theory in the large-N limit of the

size of the matrices N. In this model, spacetime emerges dynamically from the eigenvalues of the

bosonic degrees of freedom. Therefore, the scenario of the dynamical compactification of extra di-

mensions becomes possible. Monte Carlo simulations and analytic calculations using the Gaussian

Expansion Method (GEM), provide evidence that dynamical compactification of extra dimensions

occurs via Spontaneous Symmetry Breaking (SSB) of the rotational symmetry of space. Monte

Carlo simulations [2–4] provide evidence that an infinite time emerges dynamically and 3 dimen-

sional space undergoes expansion leaving the remaining 6 space dimensions small, showing that

the model may realize phenomenologically interesting cosmology. The Euclidean version of the

IIB model, obtained after a Wick rotation of the temporal dimension, has been studied using the

GEM, providing evidence that dynamical compactification occurs via SSB of the SO(10) rotational

symmetry down to SO(3) [5].

The Monte Carlo simulation of the Euclidean IIB matrix model, referred to simply as the

IIB model in the following, can be thought of being the analog of lattice QCD simulations for

superstring theory. Early attempts include the simulation of simpler, related models in lower di-

mensions or effective models that are thought to capture the central dynamical properties of the

model that result in the SSB of the rotational symmetry [6–10]. The simulation of the IIB model

is hindered by the complex action problem. The effective action which results after the integra-

tion of the fermionic degrees of freedom is complex, and it has been conjectured that the wild

fluctuations of its complex phase is the reason that causes the SSB [11]. Configurations which

are close to being lower dimensional result in milder fluctuations of the complex phase, therefore

making them dominant in the path integral. This effect has been examined in [12–18]. It should

be noted that the absence of the complex phase, like in the D = 4 IIB model [8, 10] or the phase

quenched models [17, 18] implies absence of SSB. The complex action problem was addressed

using a reweighting-based method [13], but it turned out to be very hard to determine the pattern

of the SSB [18]. The complex Langevin method (CLM) [19, 20] has been applied successfully in

several models with the complex action problem. CLM defines a stochastic process which can be

used to calculate the expectation values of the observables. It is computationally simple, but it has

the disadvantage of leading to wrong results in several known cases. Recent work [21–26] has clar-

ified the conditions that are necessary and sufficient for justifying the CLM and has provided new

techniques that make possible to meet these conditions for a larger space of parameters [27–34].

The CLM has been recently applied [31] to a simple matrix model with severe complex action

problem [14] which has SO(4) rotational symmetry that is expected to spontaneously break down

to SO(2) [35]. By deforming the original model, the singular drift problem [23] was avoided by the

resulting shift of the eigenvalues of the Dirac operator away from zero [36]. By extrapolating back

1



Dynamical compactification of extra dimensions Stratos Kovalkov Papadoudis

to the original model, it was possible to reproduce the results of the GEM [35]. A similar problem

occurs in many interesting problems with a complex fermionic effective action, like finite density

QCD at low temperatures.

In this talk, we present the results in [37] where the work in [31] is extended to the 6D ver-

sion of the IIB matrix model. This model suffers from a severe complex action problem due to a

complex determinant appearing in the effective action after the integration of the fermionic degrees

of freedom. GEM calculations provide evidence that the complex phase of the effective action

causes SSB of the SO(6) symmetry down to SO(3) [38]. Using CLM and the methods employed

in [31], we were able to reproduce the pattern of the SSB which was only marginally possible by

using a reweighting-based method [17]. SSB is probed by perturbing the model with explicit SO(6)

symmetry breaking operators 〈λµ〉 representing the extent of spacetime in each direction, with the

magnitude of the perturbation controlled by a parameter ε . ε is later extrapolated to 0 after taking

the large-N limit. The singular drift problem is addressed by deforming the model with a fermionic

operator with deformation parameter mf. For finite mf, the distribution of the eigenvalues is shifted

away from 0 and the singular drift problem is avoided. This is checked directly by computing the

eigenvalue distribution for small matrices, but it can also be easily checked for all of our mea-

surements by applying a simple criterion proposed in [24]. In [24], it was shown that the singular

drift problem does not appear when the distribution of the magnitude of the drift u is suppressed

exponentially or faster for large values of u.

In order to obtain the SSB pattern, a careful extrapolation to the original model must be taken.

First the large-N limit is obtained for finite mf and ε values. Then, the limit ε → 0 is taken in

order to determine the SSB pattern for a given value of mf. For finite mf, SO(6) is explicitly broken

down to SO(5). This is not a problem, however, because we are looking for SSB to SO(d) for

d < 5. Finally the mf = 0 extrapolation is taken and we find SSB to SO(3), with results that are

quantitatively consistent with GEM.

These methods are currently applied to the original D = 10 dimensional IIB model [39]. In

this case, GEM predicts that SO(10) is broken down to SO(3) instead of the desired SO(4) for a

four dimensional spacetime [5] and a first principle calculation is desired. The success of the defor-

mation method in the IIB model is encouraging attempts to apply it to other physically interesting

systems with severe complex action problems, like in finite density QCD [40].

2. The Model

Our model is obtained by reducing the N = 1 pure super SU(N) Yang-Mills theory in D = 6

dimensions to a point. One obtains a matrix model with D = 6 bosonic traceless Hermitian N ×N

matrices (Aµ)i j, µ = 1, . . . ,6, i, j = 1, . . . ,N and 2D/2−1 = 4 fermionic traceless N ×N matrices

with Grassmann entries (ψα)i j, α = 1, . . . ,4. The action Sb +Sf is given by the bosonic part Sb and

the fermionic part Sf

Sb = −1

4
Ntr[Aµ ,Aν ]

2 (2.1)

Sf = Ntr
(

ψ̄α(Γµ)αβ [Aµ ,ψβ ]
)

, (2.2)

2
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and the model is defined by the partition function

Z =

∫

dAdψdψ̄ e−(Sb+Sf) . (2.3)

The action is invariant under SO(6) rotations, under which Aµ transform as a vector and ψα as a

Weyl spinor. The 4×4 gamma matrices Γµ ontained after Weyl projection can be taken to be

Γ1 = iσ1 ⊗σ2 , Γ2 = iσ2 ⊗σ2 , Γ3 = iσ3 ⊗σ2 ,

Γ4 = i1⊗σ1 , Γ5 = i1⊗σ3 , Γ6 = 1⊗1 , (2.4)

where σi, i = 1,2,3 are the Pauli matrices.

Integrating out the fermionic degrees of freedom, we obtain

detM =

∫

dψdψ̄ e−S f , (2.5)

where M is a 4(N2 −1)×4(N2 −1) matrix, representing the linear transformation

Ψα 7→ (M Ψ)α ≡ (Γµ)αβ [Aµ ,Ψβ ] , (2.6)

acting on the linear space of traceless complex N ×N matrices Ψα . The determinant detM takes

complex values in general and we define its phase Γ by detM = |detM |eiΓ.

Eq. (2.3) becomes

Z =

∫

dAe−Sb detM =

∫

dAe−S , (2.7)

where the effective action is

S = Sb − lndetM . (2.8)

In [11], it was shown that Aµ configurations that are close to d-dimensional configurations

3≤ d ≤ 6 leads to milder fluctuations of Γ for smaller values of d. A “d–dimensional configuration”

is one that, by an appropriate SO(6) transformation, we can set Ad+1 = . . .= A6 = 0. For d = 2, we

have that detM = 0, showing that these configurations are suppressed in Eq. (2.7). This indicates

that SO(6) maybe broken down to SO(3), but whether this is realized is a dynamical question

depending on the competition with the larger entropy of configurations close to higher dimensional

configurations. This question was addressed using the GEM in [38], where the free energy of the

SO(d) vacuum was calculated up to fifth order and it was found that the SO(3) vacuum has the

lowest free energy, which implies SSB to SO(3). The extent of spacetime

λµ =
1

N
tr(Aµ)

2 (2.9)

in the SO(d) vacuum has expectation values 〈λµ〉 which are large in d directions and small in the

remaining (6− d) directions. This was calculated up to fifth order in the GEM and the result for

the SO(3) vacuum is

〈λµ〉 ≈
{

1.7 for the three extended directions,

0.2 for the three shrunken directions.
(2.10)

3
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3. The CLM Applied to the 6D Type IIB Matrix Model

The degrees of freedom in the model given by Eq. (2.7) are the Hermitian traceless matrices

Aµ . The complex Langevin equation is the stochastic differential equation in the fictitious time t

involving the general complex traceless matrices Aµ(t) [19, 20]

d(Aµ)i j(t)

dt
=− ∂S

∂ (Aµ) ji

∣

∣

∣

∣

Aµ=Aµ(t)

+(ηµ)i j(t) , (3.1)

where the ηµ(t) are traceless Hermitian matrices whose elements are random variables obeying

the Gaussian distribution ∝ exp

(

−1

4

∫

tr{ηµ(t)}2 dt

)

and S is the effective action (2.8). The drift

term in the above equation is the term −∂S/∂ (Aµ) ji, which is given explicitly by

∂S

∂ (Aµ) ji

=
∂Sb

∂ (Aµ) ji

−Tr

(

∂M

∂ (Aµ) ji

M
−1

)

, (3.2)

where Tr represents the trace of a 4(N2−1)×4(N2−1) matrix. The second term in the above equa-

tion is not Hermitian, which makes the use of general complex traceless matrices Aµ(t) necessary.

The expectation value 〈O[Aµ ]〉 of an observable O[Aµ ],

〈O[Aµ ]〉=
1

Z

∫

dAe−S , (3.3)

can be calculated from a solution of Eq. (3.2) from

〈O[Aµ ]〉=
1

T

∫ t0+T

t0

O[Aµ(t)]dt , (3.4)

where t0 is the thermalization time and T is large enough in order to obtain satisfactory statistics.

In order for the Eq. (3.3) and Eq. (3.4) to give the same result, the probability distribu-

tion P(A
(R)
µ ,A

(I)
µ ; t) of the (general complex traceless matrix) solutions Aµ(t) of Eq. (3.1), where

A
(R)
µ (t) = (Aµ(t)+A

†
µ(t))/2, A

(I)
µ (t) = (Aµ(t)−A

†
µ(t))/2i, must satisfy the relation

∫

dAµ ρ(Aµ ; t)O[Aµ ] =

∫

dA
(R)
µ dA

(I)
µ P(A

(R)
µ ,A

(I)
µ ; t)O[A

(R)
µ + iA

(I)
µ ] . (3.5)

On the LHS of the above equation, Aµ are the original Hermitian matrices in the model given by

Eq. (2.7) and ρ(Aµ ; t) is a complex weight which is a solution of a Fokker-Planck equation, such

that lim
t→∞

ρ(Aµ ; t) = e−S/Z, giving the desired 〈O[Aµ ]〉 in the t → ∞ limit. On the RHS of Eq. (3.5),

we have the (real positive) probability distribution P(A
(R)
µ ,A

(I)
µ ; t) of the complex matrix solutions

Aµ(t) of Eq. (3.1) and the analytic continuation of O[Aµ ] 7→ O[A
(R)
µ + iA

(I)
µ ]. For large enough t,

the RHS of Eq. (3.5) is calculated using the RHS of Eq. (3.4). A necessary and sufficient condition

for the equality in Eq. (3.4) to hold is that the probability distribution of

u =

√

√

√

√

1

6N3

6

∑
µ=1

N

∑
i, j=1

∣

∣

∣

∣

∂S

∂ (Aµ)i j

∣

∣

∣

∣

2

, (3.6)

4
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in P(A(R),A(I); t) falls off exponentially or faster [24]. There are two basic reasons for violating

this condition. The first one is the “excursion problem”, where the solutions of Eq. (3.1) drift deep

into the anti–Hermitian direction. The second one is the “singular drift problem”, which occurs

due to the appearance of M−1 in Eq. (3.2) when some eigenvalues of M accumulate near zero

frequently.

The excursion problem can be avoided by using the gauge cooling technique [27]. We mini-

mize the “Hermitian norm”

NH(t) =− 1

6N

6

∑
µ=1

tr
{

(

Aµ(t)−Aµ(t)
†
)2
}

, (3.7)

by performing an SL(N,C) transformation Aµ(t) 7→ g(t)Aµ g(t)−1, where g(t) = exp{−αG(t)} and

G(t) =
1

N

6

∑
µ=1

[Aµ(t),Aµ(t)
†]. G(t) is the gradient of NH(t) wrt the SL(N,C) transformation [31].

The real positive parameter α is computed so that NH(t) is minimized. In [24, 28], it was shown

that gauge cooling does not affect the argument for the justification of the CLM.

The singular drift problem can be avoided by deforming the fermionic action by adding the

term

∆Sf = Nmftr
(

ψ̄α(Γ6)αβ ψβ

)

(3.8)

to the action, so that Sf 7→ Sf +∆Sf. mf ≥ 0 is the deformation parameter. This term modifies the

matrix M of Eq. (2.6), so that

Ψα 7→ (M Ψ)α ≡ (Γµ)αβ [Aµ ,Ψβ ]+mfΨα , (3.9)

and shifts its eigenvalues in the real direction. A typical case is shown in figure 1. This method

was successfully applied in [31] in an SO(4) symmetric matrix model with a complex fermion

determinant and a severe complex action problem. For mf large enough, the eigenvalues of M

-4

-2

 0

 2

 4

-4 -2  0  2  4

Im

Re

(ε,mf)=(0.10,0.65)

-4

-2

 0

 2

 4

-4 -2  0  2  4

Im

Re

(ε,mf)=(0.25,0.65)

Figure 1: The effect of the deformation ∆Sf of Eq. (3.8) on the eigenvalues of the matrix M for a

typical configuration for N = 24, mf = 0.65, ε = 0.10 (Left) and ε = 0.25 (Right). By increasing

mf, the eigenvalues shift in the direction of the real axis. Notice also that by increasing ε for given

mf, the spread of the eigenvalues in the real direction decreases.

avoid zero and we don’t have the singular drift problem. This term breaks the SO(6) symmetry
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down to SO(5). Since we are looking for SO(d) SSB patterns with d < 5, this is not a problem.

In the end, the mf → 0 limit will be taken in order to obtain the D = 6 IIB model. Assuming

that nothing dramatic happens in the mf = 0 region, the extrapolation from the region of small mf

will give the correct pattern of SSB of the undeformed model, as it happened in [31], where the

expected SO(4) to SO(2) breaking was observed. When mf → ∞, the fermions decouple and we

obtain a matrix model with only bosonic degrees of freedom. In this case, it is known that the SO(6)

symmetry is not broken [7]. Therefore, the deformation parameter mf can be seen as interpolating

between the bosonic matrix model and the D = 6 IIB model.

The numerical solution of Eq. (3.1) is computed by discretizing the fictitious time t

(Aµ)i j(t +∆t) = (Aµ)i j(t)−∆t
∂S

∂ (Aµ) ji

∣

∣

∣

∣

Aµ=Aµ (t)

+
√

∆t (ηµ)i j(t) . (3.10)

The
√

∆t comes from the chosen normalization of the ηµ(t) ∝ exp

(

−1

4
∑
j

tr{ηµ(t)}2

)

. The step-

size ∆t is chosen adaptively, so that the drift term remains small [41]. The details of the numerical

computation can be found in [37].

The order parameters of the SSB are taken to be the spacetime extensions in the µ–direction

λµ =
1

N
tr
(

Aµ

)2
, (3.11)

where no sum over µ is taken. In order to calculate 〈λµ〉, we add the term

∆Sb =
1

2
Nε

6

∑
µ=1

mµ tr
(

Aµ

)2
(3.12)

to the action, so that Sb 7→ Sb +∆Sb, where we take 0 < m1 ≤ . . .≤ m6 and ε > 0. This term breaks

the SO(6) symmetry explicitly, and SSB is probed by first taking the large–N limit and then sending

ε → 0. Notice that, although λµ(t) is not real for a configuration Aµ(t), the expectation values 〈λµ〉
are real due to the symmetry of the drift term (3.2) under Ai 7→ A

†
i for i = 1, . . . ,5 and A6 7→ −A

†
6.

Due to the chosen ordering of the mµ , we will have that

〈λ1〉 ≥ 〈λ2〉 ≥ . . .≥ 〈λ6〉 . (3.13)

When we take the large-N limit and then ε → 0 and find that the 〈λµ〉 are not equal, we conclude

that the SO(6) symmetry is spontaneously broken. For finite mf, SSB occurs if we find that some

of the 〈λµ〉 are not equal for µ = 1, . . . ,5.

In this work, we take

mµ = (0.5,0.5,1,2,4,8) . (3.14)

This choice retains the SO(2) symmetry, but since we do not expect the SSB to SO(2) to occur, this

is not a problem. It is preferable to keep the spectrum of the mµ not too wide in order to take the

ε → 0 extrapolation without introducing large systematic errors.

6
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4. Results

To summarize, the model that we investigate numerically using the CLM is given by Eq.

(3.10), where we have taken S 7→ S+∆Sb +∆Sf. We use (3.4) to compute the expectation values

〈λµ〉mf,ε ,N
. In order to check for the large excursion and singular drift problems, we measure the

norm NH of Eq. (3.7) and the magnitude of the drift u of Eq. (3.6) and plot their histograms

and time histories. In figure 2 we plot the histogram p(u) for N = 24 and mf = 0.65,0.90. For

10-6

10-5

10-4

10-3

10-2

10-1

100

101

 2  4  10  20  30  40  50

p(
u)

u

mf=0.65

ε=0.100
ε=0.125
ε=0.150
ε=0.200
ε=0.400
ε=0.500

10-5

10-4

10-3

10-2

10-1

100

101

 2.5  3  3.5  4

p(
u)

u

mf=0.90

ε=0.025
ε=0.050
ε=0.075
ε=0.100
ε=0.300
ε=0.350

Figure 2: The probability distribution p(u) of u defined in Eq. (3.6) for N = 24 with mf = 0.65

(Left) and mf = 0.90 (Right).

mf = 0.65, we see that p(u) falls off exponentially or faster for ε ≥ 0.150, whereas it develops a

power-law tail for ε ≤ 0.125. Therefore, we can trust only the results for ε ≥ 0.150. For mf = 0.90

we see that no power law tail exists for all values of ε investigated.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07

1/N

(ε,mf)=(0.25,0.65)

(<λ1>+<λ2>)/2
<λ3>
<λ4>
<λ5>
<λ6>

Figure 3: The expectation values 〈λµ〉mf,ε ,N
for mf = 0.65, ε = 0.25 and N = 24,32,40,48 together

with a fit of the form a+b/N. The fit is used for the large-N extrapolation discussed in the text and

the fitting parameter a gives 〈λµ〉mf,ε
= lim

N→∞
〈λµ〉mf,ε ,N

.

In order to probe the SSB, first we have to take the large–N limit 〈λµ〉mf,ε
= lim

N→∞
〈λµ〉mf,ε ,N

For

that, we plot 〈λµ〉mf,ε ,N
as a function of 1/N, as in figure 3. We consider the average (〈λ1〉+〈λ2〉)/2

instead of 〈λ1〉 and 〈λ2〉 separately due to the choice (3.14) and in order to increase statistics. The

large-N extrapolation is done by fitting the data to a linear form a+ b/N. Our data fits nicely for

all values of (mf,ε) considered and for 24 ≤ N ≤ 48 and the coefficient a gives 〈λµ〉mf,ε
.
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Then we have to take the ε → 0 limit. We compute the ratio [31]

ρµ(mf,ε) =
〈λµ〉mf,ε

6

∑
ν=1

〈λν〉mf,ε

, (4.1)

instead of 〈λµ〉mf,ε
, because some of the finite ε effects cancel between the numerator and the de-

nominator. In figure 4 we show the plots of ρµ(mf,ε) as a function of ε for mf = 0.65,1.00,1.40,1000.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.1  0.2  0.3  0.4  0.5

ρ µ
 (

ε,
 m

f=
0.

65
)

ε

(ρ1 + ρ2)/2
ρ3
ρ4
ρ5
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ρ µ
 (

ε,
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1.

00
)

ε

(ρ1 + ρ2)/2
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ρ6
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 0.35

 0.4
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 m
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1.

40
)

ε

(ρ1 + ρ2)/2
ρ3
ρ4
ρ5
ρ6

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  0.05  0.1  0.15  0.2

ρ µ
 (

ε,
 m

f=
10

00
)

ε

(ρ1 + ρ2)/2
ρ3
ρ4
ρ5
ρ6

Figure 4: The ratio ρµ(mf,ε) defined in Eq. (4.1) as a function of ε for mf = 0.65 (Top-Left),

mf = 1.00 (Top-Right), mf = 1.40 (Bottom-Left) and mf = 1000 (Bottom-Right). Only the values

of ε where the singular drift problem is absent are shown. The lines are a fit to a+bε + cε2.

We plot only the data that do not suffer from the singular drift problem by applying the criterion

of exponential or faster suppression of the tail of p(u) (see figure 2). We also consider the average

(ρ1 +ρ2)/2 instead of ρ1 and ρ2 due to the choice (3.14) and in order to reduce statistical errors.

The ε → 0 extrapolation is done by fitting our data to a quadratic function a+ bε + cε2 and the

fitting parameter a gives

ρµ(mf) = lim
ε→0

ρµ(mf,ε) . (4.2)

The fitting ranges that satisfy the singular drift problem criterion and fit well to this function

are 0.150 ≤ ε ≤ 0.475 for mf = 0.65, 0.025 ≤ ε ≤ 0.175 for mf = 1.00, 0.025 ≤ ε ≤ 0.200 for

mf = 1.40, 0.010 ≤ ε ≤ 0.150 for mf = 1000. For mf = 0.65 we see that the curves (ρ1+ρ2)/2 and

ρ3 intersect at ε = 0, implying that the SO(5) symmetry of the deformed model is spontaneously

broken to SO(3). For mf = 1.00 we see that the curves (ρ1 +ρ2)/2, ρ3 and ρ4 intersect at ε = 0,
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implying that the SO(5) symmetry of the deformed model is spontaneously broken to SO(4). For

mf = 1.40 we see that the curves (ρ1 +ρ2)/2, ρ3, ρ4 and ρ5 intersect at ε = 0, implying that the

SO(5) symmetry is not spontaneously broken. Finally, for mf = 1000, all the ρµ curves intersect at

ε = 0, implying that the SO(6) symmetry is not spontaneously broken. This is consistent with the

fact that at mf → ∞ the fermions decouple and the deformed model reduces to the bosonic matrix

model.

 0
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 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.5  1  1.5  2

ρ µ
 (

ε=
0,

 m
f)

mf
2

(ρ1 + ρ2)/2
ρ3
ρ4
ρ5
ρ6

 0

 0.05

 0.1

 0.15

 0.2

 0.25
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 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

mf
2

(ρ1 + ρ2 + ρ3)/3
(ρ4 + ρ5 + ρ6)/3

Figure 5: (Left) The values ρ(mf) of Eq. (4.2) as a function of m2
f for mf =

0.65,0.70,0.75,0.80,0.85,0.90,1.0,1.10,1.20,1.30,1.40. The filled squares are the GEM predic-

tions of Eq. (4.3). (Right) The averages (ρ1 +ρ2 +ρ3)/3 and (ρ4 +ρ5 +ρ6)/3 as a function of m2
f

for mf ≤ 0.9, corresponding to the SO(3) symmetric phase. The solid lines are fits to a+bm2
f +cm4

f

and the dashed lines are similar fits constrained to pass through the mf = 0 points (4.3) predicted

by GEM.

Finally, we consider the mf → 0 limit, which will give the undeformed D = 6 IIB matrix

model. In figure 5 we plot the values ρµ(mf) of Eq. (4.2). We see that an SO(3) vacuum develops

for mf . 0.90, whereas an SO(4) vacuum develops for 1.00 . mf . 1.30. Considering the fact that

an SO(2) vacuum does not realize due to the vanishing detM , we conclude that as mf → 0 the

SO(3) vacuum survives. We conclude that in the undeformed model mf = 0, the SO(6) rotational

symmetry is spontaneously broken to SO(3), in agreement with the GEM prediction.

From Eq. (2.10) we obtain

ρ1 = ρ2 = ρ3 ≃
1.7

5.7
≃ 0.3 , ρ4 ≃ ρ5 ≃ ρ6 ≃

0.2

5.7
≃ 0.035 . (4.3)

These values are put in the plots of figure 5. The left plot of figure 5 shows the averages (ρ1 +ρ2 +

ρ3)/3 and (ρ4+ρ5+ρ6)/3 as a function of m2
f for mf ≤ 0.9, corresponding to the SO(3) symmetric

phase. Due to the symmetry mf 7→ −mf, as mf → 0, the asymptotic behavior of these functions is

expected to be a power series in m2
f . We fit the corresponding data to a polynomial a+bm2

f + cm4
f

for 0.65 ≤ mf ≤ 0.90. The mf → 0 extrapolation gives

ρ1 +ρ2 +ρ3

3
= 0.33(2) ,

ρ4 +ρ5 +ρ6

3
= 0.046(3) , (4.4)

which are close to the values (4.3) predicted by the GEM. We should note that the GEM has

systematic errors due to the truncations involved in the calculations. Therefore we conclude that
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the results calculated by the CLM Eq. (4.4) are in reasonable quantitative agreement with the GEM

results of Eq. (4.3).
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