
J
H
E
P
0
7
(
2
0
0
0
)
0
1
1

Received: May 26, 2000, Accepted: July 6, 2000
HYPER VERSION

Monte Carlo studies of the IIB matrix model

at large N

Jan Ambjørn and Jun Nishimura∗

Niels Bohr Institute, Copenhagen University, Blegdamsvej 17

DK-2100 Copenhagen Ø, Denmark

E-mail: ambjorn@nbi.dk, nisimura@nbi.dk

Konstantinos N. Anagnostopoulos

Department of Physics, University of Crete

P.O. Box 2208, GR-71003 Heraklion, Greece

E-mail: konstant@kiritsis.physics.uoc.gr

Wolfgang Bietenholz

NORDITA, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark

E-mail: bietenho@nordita.dk

Tomohiro Hotta
Institute of Physics, University of Tokyo, Komaba

Meguro-ku, Tokyo 153-8902, Japan

E-mail: hotta@hep1.c.u-tokyo.ac.jp

Abstract: The low-energy effective theory of the IIB matrix model developed by

H. Aoki et al. is written down explicitly in terms of bosonic variables only. The

effective theory is then studied by Monte Carlo simulations in order to investigate

the possibility of a spontaneous breakdown of ten-dimensional Lorentz invariance.

The imaginary part of the effective action, which causes the so-called sign problem

in the simulation, is dropped by hand. The extent of the eigenvalue distribution of

the bosonic matrices shows a power-law large-N behavior, consistent with a simple

branched-polymer prediction. We observe, however, that the eigenvalue distribution

becomes more and more isotropic in the ten-dimensional space-time as we increase

N . This suggests that if the spontaneous breakdown of Lorentz invariance really

occurs in the IIB matrix model, a crucial rôle must be played by the imaginary part

of the effective action.

Keywords: Superstrings and Heterotic Strings, Supersymmetry and Duality,

Matrix Models, Nonperturbative Effects.

∗Permanent address: Department of Physics, Nagoya University, Nagoya 464-8602, Japan

mailto:ambjorn@nbi.dk
mailto:nisimura@nbi.dk
mailto:konstant@kiritsis.physics.uoc.gr
mailto:bietenho@nordita.dk
mailto:hotta@hep1.c.u-tokyo.ac.jp
http://jhep.sissa.it/stdsearch?keywords=Superstrings_and_Heterotic_Strings+Supersymmetry_and_Duality+Matrix_Models+Nonperturbative_Effects
http://jhep.sissa.it/stdsearch?keywords=Superstrings_and_Heterotic_Strings+Supersymmetry_and_Duality+Matrix_Models+Nonperturbative_Effects


J
H
E
P
0
7
(
2
0
0
0
)
0
1
1

Contents

1. Introduction 1

2. The IIB matrix model 3

3. Low-energy effective theory 5

4. Results for the distribution of xi 11

5. Summary and discussion 13

A. The algorithm for the simulation 15

B. Optimization of the algorithm 19

1. Introduction

For more than two decades superstring theories have been studied as the most promis-

ing candidates for a unified theory of all the interactions including gravity. These

theories may have the potential to predict the space-time dimensionality, the gauge

group, the matter content, and so on, from first principles. The existence of infinitely

many perturbative vacua implies, however, that an understanding of nonperturbative

effects is crucial to extract information about the real vacuum of the theory. Recent

proposals for nonperturbative formulations of superstring theories [1]–[5] may there-

fore be of analogous importance for our understanding of non-perturbative aspects

of string theory as lattice gauge theory [6] has been in understanding nonperturba-

tive dynamics of gauge theories. The IIB matrix model [2], which is conjectured to

be a nonperturbative formulation of type-IIB superstring theory (for a review, see

ref. [7]), takes the form of a large-N reduced model [8], and in the same way that

Monte Carlo studies of lattice gauge theory clarified many important nonperturba-

tive aspects of the strong interaction, Monte Carlo studies of the IIB matrix model

might illuminate the nonperturbative dynamics of superstring theories.1 A number

of numerical studies have already been carried out [10]–[19] to pursue that direc-

tion. Earlier numerical studies of world-sheet perturbative aspects of superstring-like

theories can be found in refs. [20]–[22].
1Monte Carlo studies of Matrix Theory [1] would be technically more involved due to a lattice

discretization of the time direction [9].
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In this paper, we study the IIB matrix model at large N by Monte Carlo sim-

ulations. In particular, we investigate the possibility of a spontaneous symmetry

breakdown of Lorentz invariance using the low-energy effective theory of the IIB ma-

trix model proposed in ref. [23]. The authors of ref. [23] also study this issue, using

an approach where the bosonic and fermionic matrices are both decomposed into

diagonal and off-diagonal elements, and the off-diagonal elements are integrated out

first perturbatively. Such a perturbative expansion is valid when the bosonic diago-

nal elements, which can be regarded as coordinates of N points in ten-dimensional

flat space-time, are well separated from each other. In other words, what one obtains

after integrating over the off-diagonal elements perturbatively can be considered as

a low-energy effective theory of the IIB matrix model. Note that this perturbative

expansion has nothing to do with the string perturbative expansion with respect

to the world-sheet topology. Therefore, even at the one-loop level, the low-energy

effective theory is expected to include non-perturbative effects of superstring theory,

provided, of course, that the IIB matrix model conjecture is true.

In fact, in order to obtain the low-energy effective action only for the bosonic di-

agonal elements, one still has to perform the integration over the fermionic diagonal

elements, which is nontrivial, since their action turns out to be quartic. Although

the explicit form of the final low-energy effective theory has not been derived, the

theory was shown to be described by some complicated branched-polymer like sys-

tem, typically involving a “double-tree” structure, in a flat ten-dimensional space

time [23]. Thus, even at the one-loop level,2 the low-energy effective theory contains

highly nontrivial dynamics. It was further argued that the double-tree structure of

the one-loop low-energy effective theory might cause a collapse of the distribution of

the bosonic diagonal elements. The first Monte Carlo results of a branched-polymer

system with a double-tree structure was reported in ref. [7].

Here, we write down explicitly the low-energy effective theory of the IIB matrix

model in terms of bosonic variables only. Instead of integrating over both bosonic

and fermionic off-diagonal elements first, we leave the bosonic off-diagonal elements

unintegrated. Then the action for the fermionic diagonal elements is still quadratic

and can be integrated explicitly, yielding a Pfaffian. Integration over the bosonic

off-diagonal elements as well as the bosonic diagonal elements can be done by Monte

Carlo simulation. In other words, the bosonic off-diagonal elements play the rôle of

auxiliary variables, which enable us to simulate the complicated branched-polymer

like system describing the dynamics of the bosonic diagonal elements.

The Pfaffian induced by the integration over the fermionic diagonal elements is

generically complex. In general, when the action of a theory has a non-zero imagi-

nary part, the number of configurations needed to extract any information increases

2The validity of the one-loop approximation for studying the low-energy dynamics of super-

symmetric large-N reduced models has been demonstrated in ref. [18] through the study of the

four-dimensional version of the IIB matrix model. We come back to this point is section 3.
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exponentially with the system size, except in a few situations, where alternative sam-

pling methods can be invented [24, 25]. This notorious technical problem in Monte

Carlo simulations is known as the “sign problem”. In fact, the problem exists al-

ready in Monte Carlo simulations of the original IIB matrix model and it is inherited

by the low-energy effective theory. In the present work, we simply use the absolute

value of the Pfaffian in order to avoid the sign problem and examine only the effect

of the modulus of the Pfaffian. Our results suggest that there is no spontaneous

symmetry breaking (SSB) of Lorentz invariance. From this we conclude that if the

SSB ever occurs in the IIB matrix model, the phase of the Pfaffian must play a

crucial rôle. We also study the six-dimensional version of the IIB matrix model for

comparison. The conclusion is the same, but we find an intriguing difference in the

finite-N effects.

This paper is organized as follows. In section 2, we describe the definition of

the IIB matrix model and review some important properties relevant for this work.

In section 3, we derive the low-energy effective theory of the IIB matrix model and

explain the model we investigate by Monte Carlo simulations. In section 4, we

present our results for the distribution of the bosonic diagonal elements. In particular,

we discuss the possibility of SSB of Lorentz invariance. Section 5 is devoted to a

summary and conclusions. In appendix A, we explain the details of the algorithm

we use for the Monte Carlo simulation. In appendix B, we present some systematic

studies for optimizing the parameters involved in the algorithm.

2. The IIB matrix model

The IIB matrix model [2] is formally a zero-volume limit of ten-dimensional pure

N = 1 supersymmetric Yang-Mills theory. The action, therefore, is given by

ZIIB =

∫
dAe−SbZf [A] ; Zf [A] =

∫
dψe−Sf , (2.1)

Sb = − 1
4g2
tr
(
[Aµ, Aν ]

2
)
, (2.2)

Sf = − 1
2g2
tr
(
ψα(Γ̃µ)αβ [Aµ, ψβ]

)
. (2.3)

Aµ (µ = 1, . . . , 10) and ψα (α = 1, . . . , 16) are N × N traceless hermitian matrices,
which can be expanded in terms of the generators ta of SU(N) as

(Aµ)ij =
N2−1∑
a=1

Aaµ (t
a)ij ; (ψα)ij =

N2−1∑
a=1

ψaα (t
a)ij , (2.4)

where Aaµ is a real variable and ψ
a
α is a real Grassmann variable. We assume that the
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generators ta are normalized as tr(tatb) = δab. The measure dψ in (2.1) is defined by

dψ =
16∏
α=1

N2−1∏
a=1

dψaα

=

16∏
α=1

[∏
i<j

{2 dRe(ψα)ijd Im(ψα)ij}
N∏
i=1

{d(ψα)ii} δ
(
1√
N

N∑
i=1

(ψα)ii

)]
, (2.5)

and similarly for dA. The model (2.1) appears after a Wick rotation, so that the

metric has euclidean signature. The 16× 16 matrices Γ̃µ are defined by
Γ̃µ = C Γµ , (2.6)

where Γµ are ten-dimensional gamma matrices after Weyl projection, and the unitary

matrix C is a charge conjugation matrix satisfying
C Γµ C† = (Γµ)> ; C> = C . (2.7)

Due to (2.7), the matrices Γ̃µ are symmetric.

An explicit representation of the gamma matrices is given by

Γ1 = i σ2 ⊗ σ2 ⊗ σ2 ⊗ σ2 ; Γ2 = i σ2 ⊗ σ2 ⊗ 1⊗ σ1 ;
Γ3 = i σ2 ⊗ σ2 ⊗ 1⊗ σ3 ; Γ4 = i σ2 ⊗ σ1 ⊗ σ2 ⊗ 1 ;
Γ5 = i σ2 ⊗ σ3 ⊗ σ2 ⊗ 1 ; Γ6 = i σ2 ⊗ 1⊗ σ1 ⊗ σ2 ;
Γ7 = i σ2 ⊗ 1⊗ σ3 ⊗ σ2 ; Γ8 = i σ1 ⊗ 1⊗ 1⊗ 1 ;
Γ9 = i σ3 ⊗ 1⊗ 1⊗ 1 ; Γ10 = 1⊗ 1⊗ 1⊗ 1 , (2.8)

for which the charge conjugation matrix C becomes a unit matrix and therefore
Γ̃µ = Γµ.

The model has a manifest ten-dimensional Lorentz symmetry, by which we ac-

tually mean an SO(10) invariance. Aµ transforms as a vector and ψα transforms as

a Majorana-Weyl spinor. The model is manifestly supersymmetric, and it also has

a SU(N) symmetry

Aµ 7−→ V AµV
† ; ψα 7−→ V ψαV

† , (2.9)

where V ∈ SU(N). All these symmetries are inherited from the super Yang-Mills
theory before taking the zero-volume limit. In particular, the SU(N) symmetry (2.9)

is a remnant of the local gauge symmetry.

The fermion integral Zf [A] in (2.1) can be obtained explicitly as

Zf [A] = Pf M , (2.10)

where

Maα,bβ = −i 1
g2
fabc(Γ̃µ)αβA

c
µ ,

fabc = −i tr
(
ta[tb, tc]

)
. (2.11)
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The real totally-antisymmetric tensor fabc gives the structure constants of SU(N) and

the matrixMaα,bβ is a 16 (N
2− 1)× 16 (N2− 1) anti-symmetric matrix, considering

each of (aα) and (bβ) as a single index.

The convergence of the integration over the bosonic matrices in (2.1) is nontriv-

ial since the integration domain for the hermitian matrices is non-compact. Even

for finite N there is a potential danger of divergence when the eigenvalues of Aµ
become large. This issue has been addressed in ref. [23] using one-loop perturbative

arguments which pointed to the finiteness of the IIB matrix model given by (2.1)

for arbitrary N . This conclusion is in agreement with an exact result available for

N = 2 [31] and a numerical result obtained for N = 3 [12]. Thus it is conceivable

that the above conclusion, obtained by one-loop arguments, holds in general.

Since the model is well-defined without any cutoff, the parameter g, which is the

only parameter of the model, can be absorbed by rescaling the variables,

Aµ = g1/2Xµ , (2.12)

ψα = g3/4Ψα . (2.13)

Therefore, g is a scale parameter rather than a coupling constant, i.e. the g depen-

dence of physical quantities is completely determined on dimensional grounds.3 In

what follows, we take g = 1 without loss of generality.

For comparison, we also study the six-dimensional version of the IIB matrix

model. In this regard we recall that pure N = 1 supersymmetric Yang-Mills theory
can be also defined in 3D, 4D and 6D, as well as in 10D. Hence, by taking a zero-

volume limit of these theories, we arrive at supersymmetric large-N reduced models

which are D = 3, 4, 6 versions of the IIB matrix model. Using the one-loop argument

mentioned above, one concludes that the model is ill-defined for D = 3, but well-

defined for D = 4, 6, 10, irrespectively of N . For D = 4, Monte Carlo simulations

up to N = 48 further confirm this statement [18]. The effective action induced by

fermions (logarithm of the fermion integral Zf [A]) is real for D = 4. It is complex

in general for D = 6 and D = 10, however, which causes the sign problem in Monte

Carlo simulations.

3. Low-energy effective theory

In this section, we derive the low-energy effective theory of the IIB matrix model (2.1)

along the lines discussed in ref. [23]. We first decompose theN×N hermitian matrices
3The scale parameter g should be tuned appropriately as one sends N to infinity so that all

the correlation functions of Wilson loops have a finite large-N limit. Whether such a limit really

exists or not is one of the important dynamical issues, which was addressed in ref. [18] for the

four-dimensional version of the IIB matrix model. In fact, it turned out that this limit does exist

for g ∝ 1/√N .
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Aµ and ψα as

Aµ = x̂µ + âµ ,

ψα = ξ̂α + ϕ̂α , (3.1)

where x̂µ and ξ̂α represent the diagonal parts, while âµ and ϕ̂α represent the off-

diagonal parts. We also introduce N ten-dimensional vectors xi (i = 1, . . . , N)

through xiµ = (x̂µ)ii, andN ten-dimensional Majorana-Weyl spinors ξi (i = 1, . . . , N)

through ξiα = (ξ̂α)ii. For the off-diagonal elements, we use the notations aµij = (âµ)ij
and ϕαij = (ϕ̂α)ij, where i 6= j. Using the decomposition (3.1), the actions (2.2)

and (2.3) can be written as

Sb = − tr
(
−1
2
âν [x̂µ, [x̂µ, âν ]]− 1

2
[x̂µ, âµ]

2 + [x̂µ, âν ][âµ, âν ] +
1

4
[âµ, âν ]

2

)
, (3.2)

Sf = −1
2
(Γ̃µ)αβ tr

(
ϕ̂α[x̂µ, ϕ̂β]− ϕ̂α[ξ̂β, âµ]− âµ[ξ̂α, ϕ̂β] + ϕ̂α[âµ, ϕ̂β]

)
. (3.3)

The one-loop approximation amounts to keeping only the quadratic terms in a

and ϕ in the above expressions, neglecting the higher-order terms, i.e. the O(a3)

term and the O(a4) term in Sb and the O(aϕ
2) term in Sf . The quadratic term

in a in (3.2) has zero modes due to the fact that the original model (2.1) has the

SU(N) invariance (2.9). We thus have to “fix the gauge” properly. Following ref. [23],

we choose the “gauge-fixing” term (which is the reduced model counterpart of the

Feynman gauge in ordinary gauge theory) and the corresponding Faddeev-Popov

ghost term as

Sg.f. = −1
2
tr
(
[x̂µ, âµ]

2
)
,

Sgh = − tr
(
[x̂µ, b̂][x̂µ + âµ, ĉ]

)
, (3.4)

where b̂ and ĉ are the ghosts. In the ghost action Sgh, âµ can be neglected within the

one-loop approximation. Integration over the ghost fields b̂, ĉ then yields {∆(x)}2,
where ∆(x) is defined as

∆(x) =
∏
i<j

(xi − xj)2 . (3.5)

Therefore, the partition function in the one-loop approximation can be written as

Z
(1-loop)
IIB =

∫
dx da e−SG {∆(x)}2 Z(1-loop)f [x, a] , (3.6)

where

SG =
∑
i<j

(xi − xj)2|aµij|2 , (3.7)
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and the one-loop approximated fermion integral is

Z
(1-loop)
f [x, a] =

∫
dξ dϕ e−S

(2)
f , (3.8)

S
(2)
f = −

1

2
(Γ̃µ)αβ tr

(
ϕ̂α[x̂µ, ϕ̂β]− ϕ̂α[ξ̂β, âµ]− âµ[ξ̂α, ϕ̂β]

)
. (3.9)

In what follows we calculate Z
(1-loop)
f [x, a] explicitly. We first note that S

(2)
f can

be written as

S
(2)
f = −

1

2

∑
i6=j

ϕ̃αji(Γ̃µ)αβ(xiµ − xjµ)ϕ̃βij − 1
2

∑
ij

ξiαM
′
iα,jβξjβ , (3.10)

where ϕ̃αij are defined by

ϕ̃αij = ϕαij − (xiρ − xjρ)
(xi − xj)2

(
Γ̃†ρΓ̃σ

)
αβ
aσij(ξiβ − ξjβ) , (3.11)

and M ′
iα,jβ is a 16N × 16N matrix given as

M ′
iα,jβ =

(xiρ − xjρ)
(xi − xj)2

(
Γ̃µΓ̃

†
ρΓ̃σ

)
αβ
(aµjiaσij − aµijaσji) for i 6= j , (3.12)

M ′
iα,iβ = −

∑
j 6=i

M ′
iα,jβ . (3.13)

Integration over ϕ̃ can now be done yielding {∆(x)}8. We then integrate out ξNα
using the delta functions in (2.5), which yields a factor of 1/N8 followed by a re-

placement

ξNα =⇒ −
N−1∑
j=1

ξjα (3.14)

in (3.10). The integration over the ξiα (i = 1, . . . , (N − 1)) yields Pf M . The matrix
M is a 16(N − 1) × 16(N − 1) complex matrix defined as

Miα,jβ =M
′
iα,jβ −M ′

Nα,jβ −M ′
iα,Nβ +M

′
Nα,Nβ , (3.15)

where indices i and j run from 1 to N − 1. Note that there are identities

M ′
jα,iβ =M

′
iα,jβ , M ′

iβ,jα = −M ′
iα,jβ , (3.16)

and similarly for Miα,jβ. This means in particular that Miα,jβ is an anti-symmetric

matrix, considering each of (iα) and (jβ) as a single index. Thus the one-loop

approximated fermion integral is obtained as

Z
(1−loop)
f [x, a] = {∆(x)}8 1

N8
Pf M . (3.17)
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Figure 1: The distribution of distances ρ(r) for D = 10 is plotted against r for N = 192,

256, 384 and 512.

We have checked numerically that indeed

Zf [A] ' Z
(1−loop)
f [x, a] ; (Aµ)ij = xiµ δij + aµij , (3.18)

holds when the xi’s are well-separated and aµij are generated with the distribution

e−SG, where SG is given by (3.7). Note that the size of the matrix M in (3.17) is of
O(N), whereas the size of the matrixM in (2.10) is of O(N2). The huge reduction is
essentially because the integration over the fermionic off-diagonal elements has been

done explicitly yielding {∆(x)}8 in (3.17). This is the substantial gain from using
the one-loop approximation.

First we note that the model (3.6) as it stands has a singularity4 at xiµ = 0

due to the singularity in (3.12). Therefore if one simulates the model (3.6), the

distribution of xi collapses to the origin. We recall that such an ultraviolet singularity

does not exist in the original IIB matrix model. On the other hand, the one-loop

approximation is valid only when xi’s are well separated from each other. Therefore,

we have to introduce a UV cutoff to the distribution of xi in order to make the model

4This can be seen more clearly by rescaling aµij as in (A.1). Then, one finds that all the

xiµ-dependence of the partition function is contained in the Pfaffian, which has this singularity.
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Figure 2: The distribution of distances ρ(r) for D = 6 is plotted against r for N = 256,

512 and 768.

meaningful. As a UV cutoff, we introduce in the action the term

Scut =
∑
i<j

f
(√
(xi − xj)2

)
, (3.19)

where the function f(r) is taken to be

f(r) =

{
κ
2`2
(r − `)2 for r < `

0 for r ≥ ` .
(3.20)

The dimensionless “spring constant” κ should be taken to be large enough to prevent

the xi’s from coming closer to each other than the cutoff ` (see figures. 1 and 2). Thus

we arrive at the low-energy effective theory of the IIB matrix model (2.1)

ZLEET =

∫
dx da e−SG−Scut {∆(x)}10 Pf M , (3.21)

which is written in terms of bosonic variables only. We have omitted the irrelevant

constant factor 1/N8 in (3.17).

In fact, the UV cutoff parameter ` can be scaled away from the theory (3.21)

by rescaling the variables as xiµ 7→ `xiµ and aµij 7→ 1
`
aµij . This means that the

dependence of the results on the UV cutoff ` is determined completely on dimensional

grounds. In particular, dimensionless quantities are independent of `. When we are

interested in dimensionful quantities, and in particular in their large-N behavior, we

9
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have to know the N -dependence of the UV cutoff `. In ref. [23], it was argued that

` should be taken to be N -independent, based on a reasonable assumption that the

ultraviolet behavior of the space-time structure of the IIB matrix model is controlled

by the SU(2) matrix model. The issue is also addressed in the four-dimensional

version of the IIB matrix model in ref. [18]. There, an N -independent UV cutoff

was shown to be generated dynamically by treating the full model nonperturbatively

instead of making perturbative expansions around diagonal matrices. We therefore

take ` = 1 for all N in the following.

The Pfaffian Pf M in (3.21) is complex in general. This poses the notorious

“sign problem”, when one tries to study the model by Monte Carlo simulation.

Note, however, that the problem is simply inherited from the original IIB matrix

model (2.1), as can be seen from (3.18). In the present work, we take the absolute

value |Pf M | and omit the phase by hand. This corresponds to taking the absolute
value |Pf M| of the Pfaffian in the IIB matrix model and studying its low-energy
effective theory. In section 5, we comment on the meaning of this modification.

To summarize, the model we simulate is given by the partition function

Z =

∫
dx da e−SG−Scut {∆(x)}10 |Pf M | . (3.22)

SG and Scut are given by (3.7) and (3.19) respectively, and M is defined through

(3.12), (3.13) and (3.15). Note that the model (3.22) still has the 10D Lorentz

invariance. We would like to investigate whether the 10D Lorentz invariance breaks

down, say, to 4D Lorentz invariance. The model corresponding to the six-dimensional

version of the IIB matrix model can be obtained similarly.

The validity of the one-loop approximation for studying the low-energy dynamics

of supersymmetric large-N reduced models has been addressed in ref. [18] by studying

the four-dimensional version of the IIB matrix model without any approximations. It

was found that the large-N behavior of the extent of the distribution of xi agrees with

the prediction from the one-loop, low-energy effective theory. We therefore expect

that a low-energy phenomenon such as SSB of Lorentz invariance can be studied

with the low-energy effective theory.

On the other hand we note that from a technical point of view the one-loop

approximation offers certain advantages which are essential in the present work. We

recall that even in the four-dimensional version of the IIB matrix model, the largest

N one can achieve for the full model (without the one-loop approximation) is around

N = 48 using supercomputers. In order to detect even a small trend of SSB of

Lorentz invariance from 10D to 4D, say, one would expect that N should be larger

than 44 = 256. Due to the fact that the size of the matrix M in (3.22) is order

of N smaller than the size of the matrix M in (2.10), the one-loop approximation

enables us to reach N = 512. The algorithm used for the simulation is a variant

of the Hybrid Monte Carlo algorithm [26] which is one of the standard algorithms

10
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used in the study of systems with dynamical fermions. Details about the algorithm

are presented in appendix A. The computational effort of the algorithm is estimated

to be O(N3)∼O(N7/2), which should be compared with an estimate O(N5) for the
algorithm used for the full model in ref. [18].

4. Results for the distribution of xi

First we look at the distribution ρ(r) of the distance r between xi’s, where the

distance between two arbitrary points xi 6= xj is measured by
√
(xi − xj)2. In

figure 1, we plot the results for D = 10 with N = 192, 256, 384 and 512. Figure 2

shows the results for D = 6 with N = 256, 512 and 768. We note that in both

cases the distribution at small r falls off rapidly below r ∼ `, where ` = 1 is the UV

cutoff introduced in (3.20). The small penetration into the r < ` region is due to κ

being finite. However, the results show that the values of κ we have taken (κ = 300

for D = 10 and κ = 100 for D = 6) are large enough to make the penetration

reasonably small.

In order to see the spontaneous breakdown of Lorentz invariance, we consider

the moment of inertia tensor of N points xi (i = 1, . . . , N) in a flat D-dimensional

space-time.5 It can be defined as

Tµν =
2

N(N − 1)
∑
i<j

(xiµ − xjµ)(xiν − xjν) , (4.1)

which is a D×D real symmetric matrix. The D eigenvalues λ1 > λ2 > · · · > λD > 0

of the matrix T represent the principal moments of inertia. We measure λµ for

each configuration and take an average 〈λµ〉 over all the configurations generated
by the Monte Carlo simulation. If Lorentz invariance is not spontaneously broken,

〈λµ〉 must be all equal in the large-N limit, representing an isotropic distribution
of xi. We therefore search for a trend which differs from such a large-N behav-

ior.

We first note that if the system that describes the dynamics of xi were a simple

branched polymer in a flat D-dimensional space-time, spontaneous breakdown of

Lorentz invariance would certainly not occur, and moreover, the large-N behavior of

〈λµ〉 could be expected to be 〈λµ〉 ∼ N1/2. This is due to the fact that the Hausdorff

dimension of a branched polymer is dH = 4 irrespectively of the dimension D of

the space-time in which it is embedded. For this we note that the extent of the

distribution of xi is given by

R =
√
Tµµ =

√√√√ D∑
µ=1

λµ , (4.2)

5Such a quantity has also been studied in refs. [14, 23].
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Figure 3: The 10 eigenvalues of the moment of inertia tensor normalized by N1/2 are

plotted against 1/N for N = 192, 256, 384, 512.

which is related to the number N of points through N ∼ (R/`)dH . Here ` is the UV
cutoff taken to be ` = 1. Therefore, we find R ∼ N1/dH ∼ N1/4, which leads to the

announced large-N behavior 〈λµ〉 ∼ N1/2.

In figure 3 we plot the normalized eigenvalues 〈λµ〉/N1/2 against 1/N for D = 10
with N = 192, 256, 384, 512. We find that the smallest (normalized) eigenvalue

〈λ10〉/N1/2 is almost constant and the larger ones are monotonously decreasing to-
wards the same constant. Thus the observed large-N behavior suggests that there

is no spontaneous breakdown of Lorentz invariance and the large-N behavior of the

extent of the x-distribution is consistent with a simple branched-polymer prediction.

In particular, we see no trend for a gap developing between the fourth and the fifth

largest eigenvalues, which could have been observed if the 10D Lorentz invariance

were broken down to a four-dimensional one. In figure 4 we present the results

for D = 6 with N = 192, 256, 512, 768. The qualitative behavior is the same as

in D = 10.

The results for D = 10 might suggest that the leading finite-N effect is given by

1/N . For example, a linear extrapolation in 1/N using the data for N = 384, 512

leads to almost the same results for all the ten (normalized) eigenvalues at N =∞.
It is therefore tempting to speculate that finite-N effects in the IIB matrix model

are given by a 1/N expansion. Such a form of finite-N effects, if it is true, is in

remarkable contrast to the “bosonic” case, in which the fermions in the IIB matrix

model (2.1) is omitted by hand. In that case, the large-N behavior of correlation
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Figure 4: The 6 eigenvalues of the moment of inertia tensor normalized by N1/2 are

plotted against 1/N for N = 192, 256, 512, 768.

functions was determined analytically [14] to all orders in the 1/D expansion and

finite-N effects were found to be given by a 1/N2 expansion.

For D = 6, the linear extrapolation gives almost the same results up to the

third smallest eigenvalue, but not for the larger ones. Thus, as far as reproducing

an isotropic distribution of xi in the large-N limit is concerned, D = 6 seems to

have larger finite-N effects. This rather counter-intuitive result might be understood

by considering the branched-polymer representation of the low-energy effective the-

ory [23]. The attractive potential between two xi’s connected by a bond is given by

r−3(D−2), where r =
√
(xi − xj)2. Therefore, it is much stronger for D = 10 than for

D = 6. Since the branched-polymer system in both cases is not a simple maximal

tree but something more complicated, typically involving a double-tree structure, it

may well be that the stronger the attractive potential is, the more the distribution

of xi tends to become isotropic.

5. Summary and discussion

In this paper, we have studied the IIB matrix model (and its six-dimensional version)

at large N by using the low-energy effective theory developed in ref. [23]. Unlike in

the four-dimensional version studied in ref. [18], the fermion integral yields a Pfaffian

(or a determinant in the 6D case) which is complex in general. In the present paper

we omitted the phase of the Pfaffian by hand in order to avoid the sign problem

in the Monte Carlo simulations, and we studied the effect of the modulus only.
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We have seen that the distribution of xi becomes more and more isotropic as we

increase N . Based on this observation we conclude that if the SSB ever occurs in

the original IIB matrix model, the phase of the Pfaffian induced by fermions must

play a crucial rôle.

It is interesting to compare with the situation in perturbative superstring the-

ory. Also in that case the fermionic degrees of freedom can be integrated out explic-

itly [27], leaving us with an effective bosonic string theory, where the action consists

of three parts: the ordinary bosonic string action, an extrinsic curvature term, and

(in euclidean space-time) a purely imaginary Wess-Zumino-like term. This means

that if we can neglect the imaginary part, the superstring theory is equivalent to a

bosonic string theory with extrinsic curvature. While this equivalence has not been

disproved directly, it does not have much support, either, from numerical simulations

or analytical calculations [20, 28, 29].

In ref. [30] a deformation of the IIB matrix model by introducing an integer

parameter ν which couples to the phase of the Pfaffian has been considered. The

original IIB matrix model corresponds to ν = 1. The deformed model continues

to be well defined, and preserves Lorentz invariance, the SU(N) symmetry, and the

cluster property. In this language the present work corresponds to the study of the

case ν = 0 using the low-energy effective theory. The opposite extreme, the limit

ν = ∞, has been studied analytically in ref. [30], and a spontaneous breakdown
of Lorentz invariance has been discovered. Of particular interest is the fact that

different conclusions have been obtained for ν = ∞ and for ν = 0, which already
implies that a phase transition should occur in between. If the original IIB matrix

model (ν = 1) belongs to the same phase as ν =∞, we can investigate the dynamics
of the IIB matrix model by studying the ν =∞ model using Monte Carlo simulation
as suggested in ref. [30]. It would be extremely interesting if we can obtain a flat

four-dimensional space-time in that way. We hope that the Monte Carlo technique

developed in the present work is useful for such future studies and eventually enables

us to explore the dynamics of the IIB matrix model.
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A. The algorithm for the simulation

In this appendix, we explain the algorithm6 we use for the Monte Carlo simulation

of our model defined by (3.22).

We first simplify the model by introducing rescaled variables bµij as

bµij =
√
(xi − xj)2 aµij . (A.1)

The model we have to simulate then reads

Z =

∫
dx db e−SG−Scut |Pf M | , (A.2)

where

SG =
∑
i<j

|bµij |2 , (A.3)

and (3.12) can be rewritten in terms of bij as

M ′
iα,jβ =

(xiρ − xjρ)
{(xi − xj)2 + (ε`)2}2

(
Γ̃µΓ̃

†
ρΓ̃σ

)
αβ
(bµjibσij − bµijbσji) for i 6= j , (A.4)

where we have also introduced the dimensionless regularization parameter ε to reduce

numerical instabilities. The regularization parameter ε should be taken to be small

enough not to affect the system. For both cases, 6D and 10D, we took ε = 0.1. We

note also that with this regularization, the model is well-defined without introducing

the cutoff term (3.19). However, by simulating such a model, we find that all the

xi’s become densely packed within the extent ε` as we increase N . Therefore, we

still need the cutoff term (3.19) in order to make our model valid as a low-energy

effective theory of the original IIB matrix model. For convenience we combine our

dynamical variables xiµ and bµij (i 6= j, bµji = b∗µij) into a hermitian matrix Bµ as
(Bµ)ij = xiµ δij + bµij .

The algorithm we use to simulate the model (A.2) is a variant of the Hybrid

Monte Carlo algorithm [26]. The first step of the Hybrid Monte Carlo algorithm is

to apply molecular dynamics [33]. We introduce a conjugate momentum for Bµij
as Xµij , which satisfies Xµji = (Xµij)

∗; Xµ are hermitian matrices. The partition

6Reference [32] gives an overview of effective algorithms for dynamical fermions.
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function can be rewritten as7

Z =

∫
dX dB e−H , (A.5)

where H is the “hamiltonian” defined by

H =
1

2

∑
µij

|Xµij|2 + SG[B] + Scut[B]− 1
2
ln | detM | . (A.6)

The update of Xµij can be done by just generating Xµij with the probability distri-

bution exp(−1
2

∑ |Xµij |2). In order to update Bµij , we solve the Hamilton equation
given by

dBµij(τ)

dτ
=

∂H

∂Xµij
= Xµji , (A.7)

dXµij(τ)

dτ
= − ∂H

∂Bµij
=
1

4
Tr

(
∂D

∂Bµij
D−1

)
− ∂SG
∂Bµij

− ∂Scut
∂Bµij

, (A.8)

where we have defined D = M †M . Note that when taking the derivatives in (A.8),
(Bµ)ij and (Bµ)ji should be treated as independent complex variables. Along the

“classical trajectory” given by the Hamilton equation,

(i) H is invariant,

(ii) the motion is reversible,

(iii) the phase-volume is preserved; i.e.

∂(B(τ), X(τ))

∂(B(0), X(0))
= 1 , (A.9)

where (B(τ), X(τ)) is the point on the trajectory after evolution for fixed τ

from (B(0), X(0)).

Therefore, generating new sets of (B,X) by solving the Hamilton equation for

a fixed “time” interval τ satisfies the detailed balance. This procedure, together

with the proceeding generation of Xµij with the gaussian distribution, is called “one

trajectory”, which corresponds to “one sweep” in ordinary Monte Carlo simulations.

When solving the Hamilton equation numerically, we have to discretize the equa-

tion. A discretization which preserves the properties (ii) and (iii) is known. The

7Unlike in the standard Hybrid Monte Carlo algorithm [26], we do not introduce the so-called

pseudo-fermions. Note, in this regard, that our system (A.2) is different from ordinary field theories

with dynamical fermions in the following respects. (1) The number of fermion flavors should be

strictly one in order to respect supersymmetry. (2) The size of the matrix M is much smaller than

the system size. (3) The matrix M is not sparse.
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property (i) cannot be preserved and yields a small violation of the hamiltonian con-

servation. In order to still satisfy the detailed balance exactly, we can perform a

Metropolis accept/reject at the end of each trajectory.

We introduce a short-hand notation for discretized Xµ(τ) and Bµ(τ) as

X(r)µ = Xµ(r∆τ) ; B(s)µ = Bµ(s∆τ) . (A.10)

Given a configuration (B
(0)
µ , X

(0)
µ ), the configuration (B

(ν)
µ , X

(ν)
µ ) after the evolution

for a fixed time τ = ν∆τ is obtained by solving the discretized Hamilton equation

B
(1/2)
µij = B

(0)
µij +

∆τ

2
X
(0)
µji ,

B
(n+1/2)
µij = B

(n−1/2)
µij +∆τX

(n)
µji ,

B
(ν)
µij = B

(ν−1/2)
µij +

∆τ

2
X
(ν)
µji , (A.11)

X
(m+1)
µij = X

(m)
µij −∆τ

∂H

∂Bµij

(
B(m+1/2)µ

)
, (A.12)

where n = 1, 2, . . . , ν − 1 and m = 0, 1, . . . , ν − 1. Note that the first and the final
steps in the evolution (A.11) of Bµ are treated with special care. This particular

discretization, which is called as “leap-frog discretization”, preserves the properties

(ii) and (iii). At the end of the trajectory, we make a Metropolis accept/reject with

the probability P = min(1, e−∆H), where ∆H is the difference of the hamiltonian H
defined in (A.6) for the configurations (B

(0)
µ , X

(0)
µ ) and (B

(ν)
µ , X

(ν)
µ ). Optimization of

∆τ and ν is discussed in appendix B.

In the evolution (A.12) of Xµ, one needs to calculate

Tr

(
∂D

∂Bµij
D−1

)
= Tr

(
∂M

∂Bµij
M−1

)
+ Tr

(
∂M †

∂Bµij
M †−1

)
. (A.13)

If we write the first term as Tµij , the second term can be written as T
∗
µji. In what

follows, we calculate Tµij explicitly. We first note that

Tµij =

N−1∑
k,l=1

∑
αβ

∂Mkα,lβ
∂Bµij

Clβ,kα =

N∑
k,l=1

∑
αβ

∂M ′
kα,lβ

∂Bµij
C ′lβ,kα , (A.14)

where Ciα,jβ is defined as

Ciα,jβ = (M
−1)iα,jβ , (A.15)

and C ′iα,jβ is defined as

C ′iα,jβ = Ciα,jβ ; C ′iα,Nβ = −
N−1∑
k=1

Ciα,kβ ,

C ′Nα,jβ = −
N−1∑
k=1

Ckα,jβ ; C ′Nα,Nβ =
N−1∑
k,l=1

Ckα,lβ . (A.16)
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The indices i, j in (A.15) and (A.16) run from 1 to N −1. We further rewrite Tµij as

Tµij =

N∑
k=1

N∑
l 6=k

∑
αβ

∂M ′
kα,lβ

∂Bµij
C ′′lβ,kα , (A.17)

where we have introduced C ′′iα,jβ through

C ′′iα,jβ = C
′
iα,jβ − C ′jα,jβ . (A.18)

Then we calculate
∂M ′kα,lβ
∂Bµij

explicitly, which yields

Tµij =
∑
αβ

(xiρ − xjρ)
{(xi − xj)2 + (ε`)2}2

{
(Γ̃σΓ̃

†
ρΓ̃µ)αβ − (Γ̃µΓ̃†ρΓ̃σ)αβ

}
bσjiC

′′′
iβ,jα (A.19)

for i 6= j and

Tµii =
N∑
k 6=i

∑
αβ

[
δµρ

{(xi − xk)2 + (ε`)2}2 −
4(xiµ − xkµ)(xiρ − xkρ)
{(xi − xk)2 + (ε`)2}3

]
×

×
(
Γ̃σΓ̃

†
ρΓ̃τ

)
αβ
(bσkibτik − bσikbτki)C ′′′iβ,kα , (A.20)

where we defined C ′′′iα,jβ through

C ′′′iα,jβ = C
′′
iα,jβ + C

′′
jα,iβ = C

′
iα,jβ − C ′jα,jβ − C ′iα,iβ + C ′jα,iβ . (A.21)

Let us comment on the required computational effort of our algorithm. The

dominant part comes from calculating the inverse in (A.15), which requires O(n3)

arithmetic operations, where n is the size of the matrix to be inverted. In the

present case n is of O(N). In order to keep the acceptance rate at the Metropolis

accept/reject procedure reasonably high, one has to decrease the step size ∆τ as one

goes to larger N . We have seen from simulations that the step size should be taken to

be ∆τ ∼ 1/√N , which is consistent with a general formula ∆τ ∼ V −1/4 in ref. [34],
where the system size V should be replaced by O(N2) in our case. Accordingly, the

number of steps for one trajectory increases as ν ∼ √N . Therefore, the required
computational effort is estimated to be O(n3 · ν) = O(N7/2).
In fact, one can reduce the computational effort by omitting the Metropolis

accept/reject procedure, since in that case one can keep the step size ∆τ fixed to a

small constant for all N . The required computational effort becomes O(N3). The

price one has to pay is that the algorithm then suffers from a systematic error due

to the small violation of the hamiltonian conservation. The systematic error can be

estimated to be O((∆τ)2), see appendix B.
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B. Optimization of the algorithm

In this appendix, we first discuss the optimization of the parameters in the algorithm

with the Metropolis accept/reject procedure. We then move on to the case when the

Metropolis accept/reject procedure is omitted. We also specify the algorithm and

the parameters used for each run.

First we note that the algorithm of appendix A can be generalized by taking the

step size ∆τx for the diagonal elements to be different
8 from the step size ∆τ for the

off-diagonal elements of Bµij and Xµij . We have fixed the ratio ∆τx/∆τ to be the

ratio of the mean magnitudes of xiµ and bµij , which we found from simulations to be

approximately 1 for D = 6 and 1/2 for D = 10, respectively.

We still have two parameters in the algorithm, ∆τ and ν (the number of molec-

ular dynamics steps for each trajectory), which can be optimized in a standard

way [35, 36]. The key point of the optimization is that the autocorrelation time

(in units of accepted trajectory) depends only on ν∆τ = τ , but not on ∆τ and ν

separately. This allows us to perform the optimization in two steps. First, one fixes

ν∆τ = τ and optimize ∆τ so that the effective speed of motion in the configuration

space, given by acceptance rate times ∆τ , is maximized. Second, using the optimized

∆τ for each τ , one minimizes a typical autocorrelation time in units of molecular

dynamics step with respect to τ .

In figure 5, we show the acceptance rate times ∆τ as a function of ∆τ for D = 6,

N = 16 with fixed τ = 1.5. We find that the optimal ∆τ is 0.0375. ForD = 6, N = 32

with fixed τ = 1.5, we find that the optimal ∆τ is 0.02142, which is smaller than for

N = 16 as expected. For both cases, the acceptance rate at the optimal ∆τ is found

to be 50 ∼ 60%.
Using the optimal ∆τ obtained in the above way for each τ , we minimize a

typical autocorrelation time (in units of molecular dynamics step) with respect to

τ . Here, we measure the autocorrelation time of the extent R of the xi-distribution

defined in (4.2) and plot it as a function of τ . Figure 6 shows the result for D = 6

with N = 16. We see that it has a minimum around τ ∼ 1.5. Similar experiments
for N = 32 showed that the optimal τ is almost independent of N .

When we omit the Metropolis accept/reject procedure, the algorithm suffers from

a systematic error, as is explained in appendix A. Here we fix ν∆τ to the optimal τ

obtained for the case with the Metropolis accept/reject procedure and study the ∆τ

dependence of the systematic error. As a quantity which shows a large systematic

error, we take 〈λ1〉, the expectation value of the largest eigenvalue of the moment
of inertia tensor defined by (4.1). In figure 7, we plot the result against (∆τ)2 for

8This is not the case for the full model [18], where ∆τ should be taken universally for each

element of Aµij in order to respect the SU(N) invariance. In the present case, since the SU(N)

“gauge” invariance is fixed by the “gauge-fixing” (3.4), we only have to respect the invariance under

permutation of the SU(N) indices.
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Figure 5: The acceptance rate times ∆τ is plotted against ∆τ for D = 6,N = 16 with

fixed τ = 1.5.
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Figure 6: The autocorrelation time (in units of molecular dynamics step) of the extent R

of the xi-distribution is plotted against τ for D = 6,N = 16. ∆τ is chosen for each τ so

that the acceptance rate times ∆τ is maximized.

D = 6, N = 16 with τ = 1.5. The systematic error is seen to vanish as O((∆τ)2),

which can be also understood theoretically along the lines of the analysis described

in ref. [36].
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Figure 7: The expectation value of the largest eigenvalue of the moment of inertia tensor is

measured by simulations without Metropolis accept/reject procedure. The result is plotted

against (∆τ)2 for D = 6,N = 16 with fixed τ = 1.5. The filled circle at ∆τ = 0 represents

the result obtained by a simulation with Metropolis accept/reject procedure. The straight

line is a fit to the predicted (∆τ)2 behavior of the systematic error.

Finally, let us comment on the algorithms and the parameters we used in our

simulations at large N . The runs for D = 6 with N = 192, 256 included the

Metropolis accept/reject procedure. The parameters were ∆τ = 0.0048, ν = 60

for N = 192, and ∆τ = 0.004, ν = 50 for N = 256. The numbers of configurations

used for the measurements are 560 and 1732 for N = 192 and N = 256, respectively.

(The optimization described in this appendix was not completed when we started

these runs. Accordingly, we needed significantly larger numbers of configurations

compared to the cases below.) For the other cases, we omitted the Metropolis ac-

cept/reject procedure in order to obtain a sufficient statistics. The parameters were

∆τ = 0.0075, ν = 200 in D = 10 for N = 192, 256, 384, 512, and ∆τ = 0.005, ν = 300

in D = 6 for N = 512, 768. The numbers of configurations used for the measure-

ments are 88, 40, 84, 44 in D = 10 for N = 192, 256, 384, 512, and 64, 50 in D = 6

for N = 512, 768, respectively.

References

[1] T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M-theory as a matrix model: a

conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043].

[2] N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A large-N reduced model as

superstring, Nucl. Phys. B 498 (1997) 467 [hep-th/9612115].

21

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD55%2C5112
http://xxx.lanl.gov/abs/hep-th/9610043
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB498%2C467
http://xxx.lanl.gov/abs/hep-th/9612115


J
H
E
P
0
7
(
2
0
0
0
)
0
1
1

[3] R. Dijkgraaf, E. Verlinde and H. Verlinde, Matrix string theory, Nucl. Phys. B 500

(1997) 43 [hep-th/9703030];

V. Periwal, Matrices on a point as the theory of everything, Phys. Rev. D 55 (1997)

1711 [hep-th/9611103];

T. Yoneya, Schild action and space-time uncertainty principle in string theory, Prog.

Theor. Phys. 97 (1997) 949 [hep-th/9703078];

J. Polchinski, M-theory and the light cone, Prog. Theor. Phys. Suppl. 134 (1999) 158

[hep-th/9903165];

H. Sugawara, F- and M-theories as gauge theories of area preserving algebra,

hep-th/9708029;

H. Itoyama and A. Tokura, USp(2k) matrix model: F-theory connection, Prog. Theor.

Phys. 99 (1998) 129 [hep-th/9708123];

H. Itoyama and A. Tokura, USp(2k) matrix model: nonperturbative approach to ori-

entifolds, Phys. Rev. D 58 (1998) 026002 [hep-th/9801084];

K. Ezawa, Y. Matsuo and K. Murakami, Matrix model for Dirichlet open string, Phys.

Lett. B 439 (1998) 29 [hep-th/9802164].

[4] N. Kim and S.-J. Rey, M(atrix) theory on an orbifold and twisted membrane, Nucl.

Phys. B 504 (1997) 189 [hep-th/9701139];

T. Banks and L. Motl, Heterotic strings from matrices, J. High Energy Phys. 12 (1997)

004 [hep-th/9703218];

D.A. Lowe, Heterotic M(atrix) string theory, Phys. Lett. B 403 (1997) 243

[hep-th/9704041];

S.-J. Rey, Heterotic M(atrix) strings and their interactions, Nucl. Phys. B 502 (1997)

170 [hep-th/9704158];
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