Geometry Transition in Covariant LQG

Charalampos Theofilis

Supervisors: Marios Christodoulou, IQOQI Kostas Anagnostopoulos, NTUA

< 同 ト < 三 ト < 三 ト

Structure

- Introduction: Why we need QG and why it's difficult to have it. The spirit of LQG
- Classical GR
- Kinematics of LQG
- Dynamics of LQG
- Estimation of the transition amplitude in a tree-order truncation Marios Christodoulou, Fabio D'Ambrosio, and Charalampos Theofilis, "Geometry Transition in Spinfoams," (2023) arXiv:2302.12622 [gr-qc]

・ 何 ト ・ ヨ ト ・ ヨ ト

Since every interaction we are aware of is of quantum nature we expect the same to be true for Gravity. Except for that, the singularities that arise in GR imply that it is only an effective description of the physical reality and not a fundamental theory.

< □ > < □ > < □ > < □ > < □ > < □ >

Two primary reasons

- The standard Dirac procedure leads to Wheeler-DeWitt equation which is ill defined.
- The standard QFT-inspired split $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ leads to a non-renormalizable theory.

< ロ > < 同 > < 回 > < 回 > < 回 > <

LQG is a background-independet, non-perturbative theory of Quantum Gravity from the Relativist's perspective spacetime \leftrightarrow gravitational field. The quantum object considered is spacetime itself. There are two versions of the theory; the canonical and the covariant. Here we present the covariant.

< ロ > < 同 > < 回 > < 回 > < 回 > <

$(\mathcal{H},\mathcal{A},\mathcal{W})$

- \mathcal{H} : Hilbert space
- \mathcal{A} : Set of operators
- \mathcal{W} : rule for Dynamics. Here the path integral

We are going to construct everything step by step.

・ 何 ト ・ ヨ ト ・ ヨ ト

The essence of CLQG in one picture

э

イロト イポト イヨト イヨト

- $S[g]_{EH} = \int d^4x \sqrt{-g} R[g]$ • $e_I = e_I^{\alpha} \partial_{\alpha}$
- $e_I^{\alpha} e_{\alpha}^J = \delta_j^I$ $e_I^{\beta} e_{\alpha}^I = \delta_{\alpha}^{\beta}$
- $e_{\alpha I} \equiv g_{\alpha \beta} e_I^{\beta}$
- $g = g_{\alpha\beta}dx^{\alpha}dx^{\beta} = e_{\alpha I}e_{\beta}^{I}dx^{\alpha}dx^{\beta} = e_{\alpha I}e_{\beta J}\eta^{IJ}dx^{\alpha}dx^{\beta} = e_{I}e_{J}\eta^{IJ} = e_{I}e^{I}$
- When $e^{I}
 ightarrow \Lambda_{K}^{I} e^{K}$, g
 ightarrow g. Local SO(1,3) symmetry.

(人間) トイヨト イヨト ニヨ

•
$$S[e]_{EH} = \int d^4x |\det e| R[e]$$

• $e^0 \wedge e^1 \wedge e^2 \wedge e^3 = \det(e) d^4x$
• $S_{EH}[e] = \int e^0 \wedge e^1 \wedge e^2 \wedge e^3 R(e)$
• $R(e) = \frac{1}{4} \epsilon_{IJCD} \epsilon^{CDKL} R^{IJ}_{KL}(e)$

イロト イ部ト イヨト イヨト 二日

•
$$S[e]_{EH} = \int d^4x |\det e|R[e]$$

• $e^0 \wedge e^1 \wedge e^2 \wedge e^3 = \det(e)d^4x$
• $S_{EH}[e] = \int e^0 \wedge e^1 \wedge e^2 \wedge e^3R(e)$
• $R(e) = \frac{1}{4}\epsilon_{IJCD}\epsilon^{CDKL}R^{IJ}{}_{KL}(e)$
• $S_{EH}[e] = \frac{1}{2}\int \star(e \wedge e)_{IJ} \wedge F^{IJ}(e)$
• $F^{KL} := R^{KL}{}_{AB}e^A \wedge e^B$
• $\star(e \wedge e)_{KL} = \frac{1}{2}\epsilon_{IJKL}e^I \wedge e^J$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

•
$$S_{EH}[e] = \int \star(e \wedge e) \wedge F[e]$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

- $S_{EH}[e] = \int \star(e \wedge e) \wedge F[e]$
- Palatini formulation of GR: $S_P[g,\Gamma] = \int d^4x \sqrt{-g} R[g,\Gamma]$
- We do the same here: $S_P[e,\omega] = \int \star(e \wedge e) \wedge F[\omega]$

э

イロト イポト イヨト イヨト

- $S_{EH}[e] = \int \star(e \wedge e) \wedge F[e]$
- Palatini formulation of GR: $S_P[g,\Gamma] = \int d^4x \sqrt{-g} R[g,\Gamma]$
- We do the same here: $S_P[e,\omega] = \int \star(e \wedge e) \wedge F[\omega]$
- We add the extra term $\frac{1}{\gamma}\int e \wedge e \wedge F[\omega]$ where γ is called the Barbero-Immirzi parameter.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- $S_{EH}[e] = \int \star(e \wedge e) \wedge F[e]$
- Palatini formulation of GR: $S_P[g,\Gamma] = \int d^4x \sqrt{-g} R[g,\Gamma]$
- We do the same here: $S_P[e,\omega] = \int \star(e \wedge e) \wedge F[\omega]$
- We add the extra term ¹/_γ ∫ e ∧ e ∧ F[ω] where γ is called the Barbero-Immirzi parameter. This corresponds to the canonical transformation from ADM variables to the Ashtekar variables and doesn't affect the classical EOM.

イロト 不得下 イヨト イヨト

- $S_{EH}[e] = \int \star(e \wedge e) \wedge F[e]$
- Palatini formulation of GR: $S_P[g,\Gamma] = \int d^4x \sqrt{-g} R[g,\Gamma]$
- We do the same here: $\mathcal{S}_{P}[e,\omega]=\int\star(e\wedge e)\wedge \mathcal{F}[\omega]$
- We add the extra term ¹/_γ ∫ e ∧ e ∧ F[ω] where γ is called the Barbero-Immirzi parameter. This corresponds to the canonical transformation from ADM variables to the Ashtekar variables and doesn't affect the classical EOM.

•
$$\frac{1}{\gamma}\int e \wedge e \wedge F[\omega] = \frac{1}{\gamma}\int d^4x \sqrt{-g}\epsilon^{\mu\nu\rho\sigma}R_{\mu\nu\rho\sigma} \to 0$$
 when on shell

イロト 不得下 イヨト イヨト

- $S_{EH}[e] = \int \star(e \wedge e) \wedge F[e]$
- Palatini formulation of GR: $S_P[g,\Gamma] = \int d^4x \sqrt{-g} R[g,\Gamma]$
- We do the same here: $S_P[e,\omega] = \int \star(e \wedge e) \wedge F[\omega]$
- We add the extra term ¹/_γ ∫ e ∧ e ∧ F[ω] where γ is called the Barbero-Immirzi parameter. This corresponds to the canonical transformation from ADM variables to the Ashtekar variables and doesn't affect the classical EOM.
- $\frac{1}{\gamma}\int e \wedge e \wedge F[\omega] = \frac{1}{\gamma}\int d^4x \sqrt{-g}\epsilon^{\mu\nu\rho\sigma}R_{\mu\nu\rho\sigma} \rightarrow 0$ when on shell
- (Analogy with QCD $S_{QCD} = \int F \wedge \star F + \theta_{QCD} \int F \wedge F$)

• Holst action
$$S_H[e,\omega] = \int \left(\star(e \wedge e) + rac{1}{\gamma} e \wedge e
ight) \wedge F[\omega]$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

- Holst action $S_H[e,\omega] = \int \left(\star(e \wedge e) + \frac{1}{\gamma} e \wedge e \right) \wedge F[\omega]$
- $S_H[e,\omega] = \int B[e] \wedge F[\omega]$
- $B[e] := \star(e \land e) + \frac{1}{\gamma}e \land e$. Simplicity constraint
- This type of theories are called "BF" theories and are well-studied. GR is special because the bivector *B* is simple.

イロト イヨト イヨト ・

- Holst action $S_H[e,\omega] = \int \left(\star(e \wedge e) + \frac{1}{\gamma} e \wedge e \right) \wedge F[\omega]$
- $S_H[e,\omega] = \int B[e] \wedge F[\omega]$
- $B[e] := \star(e \land e) + \frac{1}{\gamma}e \land e$. Simplicity constraint
- This type of theories are called "BF" theories and are well-studied. GR is special because the bivector *B* is simple.
- $F = d\omega + \omega \wedge \omega$, the usual field strength of gauge theories. ω is an so(1,3) or equivalently $sl(2,\mathbb{C})$ valued form.

- Holst action $S_H[e,\omega] = \int \left(\star(e \wedge e) + \frac{1}{\gamma} e \wedge e\right) \wedge F[\omega]$
- $S_H[e,\omega] = \int B[e] \wedge F[\omega]$
- $B[e] := \star(e \wedge e) + \frac{1}{\gamma}e \wedge e$. Simplicity constraint
- This type of theories are called "BF" theories and are well-studied. GR is special because the bivector *B* is simple.
- $F = d\omega + \omega \wedge \omega$, the usual field strength of gauge theories. ω is an so(1,3) or equivalently $sl(2,\mathbb{C})$ valued form.
- On a t = const boundary, B is the derivative of the action with respect to $\partial \omega / \partial t$, since the quadratic part of the action is $\sim B \wedge d\omega$. Thus B is the momentum canonical to the connection, thus related to the Lorentz transformations.

Pick a spacelike surface Σ that bounds spacetime. n_I is the vector normal to the surface. We can decompose B into its electric and magnetic part

- Electric part: $K^I = n_J B^{IJ}$
- Magnetic part: $L^{I} = n_{J}(\star B)^{IJ}$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Pick a spacelike surface Σ that bounds spacetime. n_I is the vector normal to the surface. We can decompose B into its electric and magnetic part

- Electric part: $K^I = n_J B^{IJ}$
- Magnetic part: $L^{I} = n_{J}(\star B)^{IJ}$
- $n_I K^I = n_I n_J B^{IJ} = 0$

•
$$n_I L^I = n_I n_J (\star B)^{IJ} = 0$$

- $K^{I} \rightarrow K^{i}$
- $L^{I} \rightarrow L^{i}$

Choose locally $n_l = (1, 0, 0, 0)$ (time gauge). Then $K^i = B^{i0}, \quad L^i = \frac{1}{2} \epsilon^i{}_{jk} B^{jk}.$

3

イロト イポト イヨト イヨト

Choose locally $n_l = (1, 0, 0, 0)$ (time gauge). Then $\mathcal{K}^i = B^{i0}, \quad L^i = \frac{1}{2} \epsilon^i{}_{jk} B^{jk}$. It is very easy to show that • $\vec{\mathcal{K}} = \gamma \vec{\mathcal{L}}$. This is called the Linear Simplicity Constraint.

< 日 > < 同 > < 三 > < 三 > <

- Choose locally $n_l = (1, 0, 0, 0)$ (time gauge). Then $K^i = B^{i0}$, $L^i = \frac{1}{2} \epsilon^i{}_{jk} B^{jk}$. It is very easy to show that
 - $\vec{K} = \gamma \vec{L}$. This is called the Linear Simplicity Constraint.
 - Physical meaning of \vec{K} and \vec{L} : *B* is the Generator of Lorentz transformations. In the time gauge K^i is a boost in the *i*-direction and L^i is the generator of the rotation around the *i*-axis.

< 回 > < 回 > < 回 >

SU(2), $SL(2,\mathbb{C})$ and the Y_{Γ} map

 $SL(2, \mathbb{C})$ is the double cover of SO(1, 3). It has six generators and two Casimirs $C_1 = |\vec{K}|^2 - |\vec{L}|^2$ and $C_2 = \vec{K} \cdot \vec{L}$. The unitary irreps are labelled by $p \in \mathbb{R}$ and $k \in \mathbb{Z}/2$. The Hilbert space $V^{(p,k)}$ is infinite dimensional and can be decomposed as $V^{(p,k)} = \bigoplus_{j=k}^{+\infty} \mathcal{H}^j$, where \mathcal{H}^j is the usual 2j + 1 dim irrep space that carries the usual j spin representation of SU(2). • states in $V^{(p,k)}$: $|p,k; j, m\rangle$

- ロ ト ・ 同 ト ・ 三 ト ・ 三 ト - -

SU(2), $SL(2,\mathbb{C})$ and the Y_{Γ} map

 $SL(2,\mathbb{C})$ is the double cover of SO(1,3). It has six generators and two Casimirs $C_1 = |\vec{K}|^2 - |\vec{L}|^2$ and $C_2 = \vec{K} \cdot \vec{L}$. The unitary irreps are labelled by $p \in \mathbb{R}$ and $k \in \mathbb{Z}/2$. The Hilbert space $V^{(p,k)}$ is infinite dimensional and can be decomposed as $V^{(p,k)} = \bigoplus_{j=k}^{+\infty} \mathcal{H}^j$, where \mathcal{H}^j is the usual 2j + 1 dim irrep space that carries the usual j spin representation of SU(2).

- states in $V^{(p,k)}$: $|p,k;j,m\rangle$
- Choose $p = \gamma k$ and k = j thus these special states have the form $|\gamma j, j; j, m \rangle$

SU(2), $SL(2,\mathbb{C})$ and the Y_{Γ} map

 $SL(2,\mathbb{C})$ is the double cover of SO(1,3). It has six generators and two Casimirs $C_1 = |\vec{K}|^2 - |\vec{L}|^2$ and $C_2 = \vec{K} \cdot \vec{L}$. The unitary irreps are labelled by $p \in \mathbb{R}$ and $k \in \mathbb{Z}/2$. The Hilbert space $V^{(p,k)}$ is infinite dimensional and can be decomposed as $V^{(p,k)} = \bigoplus_{j=k}^{+\infty} \mathcal{H}^j$, where \mathcal{H}^j is the usual 2j + 1 dim irrep space that carries the usual j spin representation of SU(2).

- states in $V^{(p,k)}$: $|p,k;j,m\rangle$
- Choose $p = \gamma k$ and k = j thus these special states have the form $|\gamma j, j; j, m\rangle$
- $\langle K^i \gamma L^i \rangle \approx 0$ in the large *j* limit. Central idea of the EPRL model that we will use.

・ロト ・四ト ・ヨト ・ヨト … ヨ

Both $|j, m\rangle$ and $|\gamma j, j; j, m\rangle$ totally described in terms of j and m. Thus \mathcal{H}^{j} and $V^{(p=\gamma j, k=j)}$ are isomorphic.

$$Y_{\gamma}: \mathcal{H}^{j} \longrightarrow V^{(p=\gamma j,k=j)}$$

 $|j,m\rangle \longmapsto |\gamma j,j;j,m\rangle$

イロト イボト イヨト イヨト

GR can be formulated as a *BF* theory with $SL(2, \mathbb{C})$ symmetry in the bulk, SU(2) symmetry on the boundary together with the linear simplicity constraint $\vec{K} = \gamma \vec{L}$ on the boundary.

イロト イボト イヨト イヨト

Elementary Geometry

The most economical and efficient way to describe a tetrahedron is in terms of four vectors $\vec{L}_0, \vec{L}_1, \vec{L}_2, \vec{L}_3$ normal to the faces that satisfy the closure condition $\vec{C} := \vec{L}_0 + \vec{L}_1 + \vec{L}_2 + \vec{L}_3 = 0$. Degrees of freedom: $4 \times 3 - 3 - 3 = 6$, the same number as the number of edges.

Elementrary Geometry

•
$$|\vec{L}_f|$$
 = area of the triangle f
• $V^2 = \frac{2}{9}(\vec{L}_1 \times \vec{L}_2) \cdot \vec{L}_3$

2

In GR spacetime \leftrightarrow gravitational field. Thus, quantum gravitational field \leftrightarrow quantum spacetime. We focus on space. We study a quantum of space which we take to be a tetrahedron and we promote every L_f^i into an operator that satisfy some algebra

•
$$[L_f^i, L_{f'}^j] =$$

< □ > < □ > < □ > < □ > < □ > < □ >

In GR spacetime \leftrightarrow gravitational field. Thus, quantum gravitational field \leftrightarrow quantum spacetime. We focus on space. We study a quantum of space which we take to be a tetrahedron and we promote every L_f^i into an operator that satisfy some algebra

• $[L_f^i, L_{f'}^j] = l_0^2 i \epsilon^{ij} {}_k L_f^k \delta_{ff'}$

•
$$I_0^2 = 8\pi\gamma\hbar G$$
, $L_{pl} = \sqrt{\hbar G}$

イロト 不得下 イヨト イヨト

In GR spacetime \leftrightarrow gravitational field. Thus, quantum gravitational field \leftrightarrow quantum spacetime. We focus on space. We study a quantum of space which we take to be a tetrahedron and we promote every L_f^i into an operator that satisfy some algebra

• $[L_{f}^{i}, L_{f'}^{j}] = l_{0}^{2} i \epsilon^{ij} {}_{k} L_{f}^{k} \delta_{ff'}$ • $l_{0}^{2} = 8\pi\gamma\hbar G, \ L_{pl} = \sqrt{\hbar G}$ • $A = l_{0}^{2}\sqrt{j(j+1)}, \quad j = 0, 1/2, 1, 3/2, ...$ The areas are quantized!

・ロト ・四ト ・ヨト ・ ヨト

A candidate for the Hilbert space is $\mathcal{H} = \mathcal{H}_{j_0} \otimes \mathcal{H}_{j_1} \otimes \mathcal{H}_{j_2} \otimes \mathcal{H}_{j_3}$.

э

イロト イヨト イヨト イヨト
A candidate for the Hilbert space is $\mathcal{H} = \mathcal{H}_{j_0} \otimes \mathcal{H}_{j_1} \otimes \mathcal{H}_{j_2} \otimes \mathcal{H}_{j_3}$. But we also have to impose the closure condition $\vec{C}\Psi = 0 \quad \Psi \in \mathcal{H}$.

< □ > < □ > < □ > < □ > < □ > < □ >

A candidate for the Hilbert space is $\mathcal{H} = \mathcal{H}_{j_0} \otimes \mathcal{H}_{j_1} \otimes \mathcal{H}_{j_2} \otimes \mathcal{H}_{j_3}$. But we also have to impose the closure condition $\vec{C}\Psi = 0 \quad \Psi \in \mathcal{H}$. Thus, the Hilbert space is $\mathcal{K} := Inv_{SU(2)}[\mathcal{H}_{j_0} \otimes \mathcal{H}_{j_1} \otimes \mathcal{H}_{j_2} \otimes \mathcal{H}_{j_3}]$

< □ > < □ > < □ > < □ > < □ > < □ >

A candidate for the Hilbert space is $\mathcal{H} = \mathcal{H}_{j_0} \otimes \mathcal{H}_{j_1} \otimes \mathcal{H}_{j_2} \otimes \mathcal{H}_{j_3}$. But we also have to impose the closure condition $\vec{C}\Psi = 0 \quad \Psi \in \mathcal{H}$. Thus, the Hilbert space is $\mathcal{K} := Inv_{SU(2)}[\mathcal{H}_{j_0} \otimes \mathcal{H}_{j_1} \otimes \mathcal{H}_{j_2} \otimes \mathcal{H}_{j_3}]$

- dim(\mathcal{K}) = min($j_0 + j_1, j_2 + j_3$) max($|j_0 j_1|, |j_2 j_3|$) + 1
- dim(\mathcal{K}) = min($j_0 + j_1, j_2 + j_3$) max($|j_0 j_1|, |j_2 j_3|$) + 1 > 0
- The volume operator is well-defined in ${\cal K}$ and has discrete eigenvalues.

Quantum Spacetime

A state in \mathcal{K} has the form $|j_0, j_1, j_2, j_3, v\rangle$.

э

イロト イボト イヨト イヨト

Quantum Spacetime

A state in \mathcal{K} has the form $|j_0, j_1, j_2, j_3, v\rangle$. Five numbers instead of six! The tetrahedron is fuzzy!

(日) (四) (日) (日) (日)

Triangulation and Dual Triangulation

A triangulation in two dimensions. Each edge of the dual graph, shown in red, is common to two faces. As an example, the segment in dotted black is dual to the edge in dotted red, which is common to the two faces in pale red.

• • = • • =

Triangulation and Dual Triangulation

23 / 58

э

イロト イポト イヨト イヨト

Triangulation and Dual Triangulation

Triangulation and 2-complex in four dimensions

• In 2D: Pick a frame and take a tour around a "hinge" by following the edges. If the frame returns rotated you have detected curvature.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- In 2D: Pick a frame and take a tour around a "hinge" by following the edges. If the frame returns rotated you have detected curvature.
- In 3D: Pick a frame and take a tour around a segment by following the edges. If the frame returns rotated you have detected curvature.

- In 2D: Pick a frame and take a tour around a "hinge" by following the edges. If the frame returns rotated you have detected curvature.
- In 3D: Pick a frame and take a tour around a segment by following the edges. If the frame returns rotated you have detected curvature.
- In 4D: Pick a frame and take a tour around a triangle by following the edges. If the frame returns rotated you have detected curvature.

Inside the 4D bulk the frame rotation is the outcome of the individual rotations that take place every time we jump from one 4-simplex to the other by following the edges. Thus, we assign to each edge an group element $g \in SL(2, \mathbb{C})$.

- 4 回 ト 4 三 ト 4 三 ト

Inside the 4D bulk the frame rotation is the outcome of the individual rotations that take place every time we jump from one 4-simplex to the other by following the edges. Thus, we assign to each edge an group element $g \in SL(2, \mathbb{C})$. By the same reasoning the assign to each link of the boundary dual graph an element $h \in SU(2)$. The boundary dual graph has now the structure of a spin network.

Hilbert space is defined on the boundary. The only variables we have are the SU(2) elements of total number L. Thus, a candidate is $\tilde{\mathcal{H}}_{\Gamma} = L_2[SU(2)^L]$

э

< 日 > < 同 > < 回 > < 回 > < 回 > <

Hilbert space is defined on the boundary. The only variables we have are the SU(2) elements of total number L. Thus, a candidate is $\tilde{\mathcal{H}}_{\Gamma} = L_2[SU(2)^L]$. But we have the freedom to choose a rotated frame and do the same thing. In total we have N frames where N is the total number of the nodes of the spin network. Thus, the Hilbert space that corresponds to a triangulation Γ is $\mathcal{H}_{\Gamma} = L_2[SU(2)^L/SU(2)^N]_{\Gamma}$.

Hilbert space is defined on the boundary. The only variables we have are the SU(2) elements of total number L. Thus, a candidate is $\tilde{\mathcal{H}}_{\Gamma} = L_2[SU(2)^L]$. But we have the freedom to choose a rotated frame and do the same thing. In total we have N frames where N is the total number of the nodes of the spin network. Thus, the Hilbert space that corresponds to a triangulation Γ is $\mathcal{H}_{\Gamma} = L_2[SU(2)^L/SU(2)^N]_{\Gamma}$.

• $\vec{C}_n \Psi = 0$ for $\Psi \in \tilde{\mathcal{H}}_{\Gamma}$, where $\vec{C}_n = \vec{L}_{l_1} + \vec{L}_{l_2} + \vec{L}_{l_3} + \vec{L}_{l_4}$ is the generator of the total SU(2) transformation of the *n* node.

ヘロト 不得 トイヨト イヨト 二日

In standard QM he have the operators

$$\hat{x}\Psi(x) = x\Psi(x), \quad \hat{p}\Psi(x) = -i\hbar \frac{d\Psi(x)}{dx}.$$
 Here:
• $\hat{h}_{l}\Psi(h_{l}) = h_{l}\Psi(h_{l})$

イロト イ部ト イヨト イヨト 一日

In standard QM he have the operators $\hat{x}\Psi(x) = x\Psi(x), \quad \hat{p}\Psi(x) = -i\hbar \frac{d\Psi(x)}{dx}.$ Here:

•
$$\hat{h}_l \Psi(h_l) = h_l \Psi(h_l)$$

• What about the derivative?

э

イロト 不得 トイヨト イヨト

There exist natural derivatives in SU(2) which correspond to the left-invariant vector fields $(J^i\Psi)(h) = -i\frac{d}{dt}\Psi(he^{t\tau^i})|_{t=0}$, where $\tau^i = -\frac{\sigma^i}{2}$. To be dimensionally correct we use the operators

•
$$\vec{L}_I = 8\pi\gamma\hbar G \vec{J}_I$$
.

イロン イヨン イヨン

There exist natural derivatives in SU(2) which correspond to the left-invariant vector fields $(J^i\Psi)(h) = -i\frac{d}{dt}\Psi(he^{t\tau^i})|_{t=0}$, where $\tau^i = -\frac{\sigma^i}{2}$. To be dimensionally correct we use the operators

• $\vec{L}_I = 8\pi\gamma\hbar G \vec{J}_I$. Well-defined in $\tilde{\mathcal{H}}_{\Gamma}$ but non in \mathcal{H}_{Γ} .

・ロト ・四ト ・ヨト ・ヨト

There exist natural derivatives in SU(2) which correspond to the left-invariant vector fields $(J^i\Psi)(h) = -i\frac{d}{dt}\Psi(he^{t\tau^i})|_{t=0}$, where $\tau^i = -\frac{\sigma^i}{2}$. To be dimensionally correct we use the operators

- $\vec{L}_I = 8\pi\gamma\hbar G \vec{J}_I$. Well-defined in $\tilde{\mathcal{H}}_{\Gamma}$ but non in \mathcal{H}_{Γ} .
- Easy! We consider $G_{II'} = \vec{L_I} \cdot \vec{L'_I}$

・ロト ・四ト ・ヨト ・ヨト

There exist natural derivatives in SU(2) which correspond to the left-invariant vector fields $(J^i\Psi)(h) = -i\frac{d}{dt}\Psi(he^{t\tau^i})|_{t=0}$, where $\tau^i = -\frac{\sigma^i}{2}$. To be dimensionally correct we use the operators

- $\vec{L}_I = 8\pi\gamma\hbar G \vec{J}_I$. Well-defined in $\tilde{\mathcal{H}}_{\Gamma}$ but non in \mathcal{H}_{Γ} .
- Easy! We consider $G_{II'} = \vec{L_I} \cdot \vec{L'_I}$
- When I = I' the norm $A_I = \sqrt{G_I}$ is of course the area of the triangle punctured by the link I with spectrum $A_I = 8\pi\gamma\hbar G\sqrt{j_I(j_I+1)}$

イロト イヨト イヨト 一座

There exist natural derivatives in SU(2) which correspond to the left-invariant vector fields $(J^i\Psi)(h) = -i\frac{d}{dt}\Psi(he^{t\tau^i})|_{t=0}$, where $\tau^i = -\frac{\sigma^i}{2}$. To be dimensionally correct we use the operators

- $\vec{L}_I = 8\pi\gamma\hbar G \vec{J}_I$. Well-defined in $\tilde{\mathcal{H}}_{\Gamma}$ but non in \mathcal{H}_{Γ} .
- Easy! We consider $G_{II'} = \vec{L_I} \cdot \vec{L'_I}$
- When l = l' the norm $A_l = \sqrt{G_l}$ is of course the area of the triangle punctured by the link l with spectrum $A_l = 8\pi\gamma\hbar G\sqrt{j_l(j_l+1)}$
- $V_n^2 = \frac{2}{9} (\vec{L}_{l_1} \times \vec{L}_{l_2}) \cdot \vec{L}_{l_3}$
- State: $|\Gamma, j_l, v_n\rangle$

The path integral of a BF theory

BF path integral: $Z = \int \mathcal{D}B\mathcal{D}\omega e^{\frac{i}{\hbar}\int B\wedge F}$.

э

イロト イボト イヨト イヨト

BF path integral: $Z = \int \mathcal{D}B\mathcal{D}\omega e^{\frac{i}{\hbar}\int B \wedge F} B$ is a two-form, thus integrated on triangles or **faces** of the dual graph. ω is an one-form and is integrated on edges of the dual graph. From it we extract a group element U_e via $U_e = \mathcal{P}e^{\int \omega_e}$. Hence, we have

•
$$Z = \int \mathcal{D}B_f \int_{\mathcal{G}} dU_e e^{\frac{i}{\hbar}\sum_f B_f \prod_{e \in f} U_e}$$

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

BF path integral: $Z = \int \mathcal{D}B\mathcal{D}\omega e^{\frac{i}{\hbar}\int B \wedge F} B$ is a two-form, thus integrated on triangles or **faces** of the dual graph. ω is an one-form and is integrated on edges of the dual graph. From it we extract a group element U_e via $U_e = \mathcal{P}e^{\int \omega_e}$. Hence, we have

•
$$Z = \int \mathcal{D}B_f \int_{\mathcal{G}} dU_e e^{\frac{i}{\hbar}\sum_f B_f \prod_{e \in f} U_e}$$

• From $\int dp e^{ipx} \sim \delta(x)$ we can write $Z = \int_{\mathcal{G}} dU_e \prod_f \delta(\prod_{e \in f} U_e)$

The path integral of a BF theory

$$Z = \int_{G} dU_e \prod_f \delta(\prod_{e \in f} U_e)$$

A D N A B N A B N A B N

By definition
$$g_{ve}^{-1} = g_{ev}$$

 $Z = \int_G dg_{ev} \prod_f \delta(g_{ve}g_{ev'}g_{v'e'}g_{e'v''}...)$

э

The path integral of a BF theory

$Z = \int_{G} dg_{ev} \prod_{f} \delta(g_{ve}g_{ev'}g_{v'e'}g_{e'v''}...)$

We focus on a face f and we trade the group element that terminates in vertex and the group element that emanates from the same vertex with one group element h_{vf} . We do it for every vertex of the face and for every face in the bulk.

$Z = \int_{G'} dh_{vf} \int_{G} dg_{ev} \prod_{f} \delta(h_{vf} h_{v'f} ...) \prod_{v} \prod_{f \in v} \delta(g_{e'v} g_{ve} h_{vf})$

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

$Z = \int_{G'} dh_{vf} \int_{G} dg_{ev} \prod_{f} \delta(h_{vf} h_{v'f} \dots) \prod_{v} \prod_{f \in v} \delta(g_{e'v} g_{ve} h_{vf}).$

3

イロト 不得 トイヨト イヨト

 $Z = \int_{G'} dh_{vf} \int_{G} dg_{ev} \prod_{f} \delta(h_{vf} h_{v'f} ...) \prod_{v} \prod_{f \in v} \delta(g_{e'v} g_{ve} h_{vf}).$ By rearranging some terms we can write it as

- $Z = \int_{G'} dh_{vf} \prod_f \delta(h_{vf} h_{v'f} \dots) \prod_v A_v(h_{vf})$
- $A_v(h_{vf}) = \int_G dg_{ev} \prod_{f \in v} \delta(g_{e'v}g_{ve}h_{vf})$ is called the vertex amplitude.

 $Z = \int_{G'} dh_{vf} \int_{G} dg_{ev} \prod_{f} \delta(h_{vf} h_{v'f} ...) \prod_{v} \prod_{f \in v} \delta(g_{e'v} g_{ve} h_{vf}).$ By rearranging some terms we can write it as

•
$$Z = \int_{G'} dh_{vf} \prod_f \delta(h_{vf} h_{v'f} \dots) \prod_v A_v(h_{vf})$$

- $A_v(h_{vf}) = \int_G dg_{ev} \prod_{f \in v} \delta(g_{e'v}g_{ve}h_{vf})$ is called the vertex amplitude.
- The delta function on a group can be expanded as $\delta(U) = \sum_{j_f=0}^{+\infty} (2j_f + 1) \operatorname{Tr}_{j_f}[U]$ (similar to $\delta(\theta) = \sum_n e^{in\theta}$).

 $Z = \int_{G'} dh_{vf} \int_{G} dg_{ev} \prod_{f} \delta(h_{vf} h_{v'f} ...) \prod_{v} \prod_{f \in v} \delta(g_{e'v} g_{ve} h_{vf}).$ By rearranging some terms we can write it as

•
$$Z = \int_{G'} dh_{vf} \prod_f \delta(h_{vf} h_{v'f} \dots) \prod_v A_v(h_{vf})$$

- $A_v(h_{vf}) = \int_G dg_{ev} \prod_{f \in v} \delta(g_{e'v}g_{ve}h_{vf})$ is called the vertex amplitude.
- The delta function on a group can be expanded as $\delta(U) = \sum_{j_f=0}^{+\infty} (2j_f + 1) \operatorname{Tr}_{j_f}[U]$ (similar to $\delta(\theta) = \sum_n e^{in\theta}$).
- $A_v(h_{vf}) = \sum_{\{j_f\}} \int_G dg_{ev} \prod_f (2j_f + 1) \operatorname{Tr}_{j_f}[g_{e'v}g_{ve}h_{vf}]$

The path integral of a special BF theory, GR

- $A_v(h_{vf}) = \sum_{\{j_f\}} \int_G dg_{ev} \prod_f (2j_f + 1) \operatorname{Tr}_{j_f}[g_{e'v}g_{ve}h_{vf}]$
 - A vertex is dual to a 4-simplex thus, vertex amplitude \leftrightarrow 4-simplex amplitude

イロト 不得下 イヨト イヨト

The path integral of a special BF theory, GR

- A 4-simplex is bounded by five tetraedra ↔ five nodes around the vertex, one on every edge.
- Between the 5 nodes there are 10 links that correspond to the 10 h_{vf} .

A (10) < A (10) < A (10) </p>

The path integral of a special BF theory, GR

Now, we need to remember that we are not quantizing a general BF theory but GR. GR is characterised by $SL(2, \mathbb{C})$ symmetry in the bulk, SU(2) on the boundary plus $\vec{K} = \gamma \vec{L}$ on the boundary.

• h_{vf} are assigned to the **links** of the boundary of the 4-simplex thus are SU(2) elements.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Now, we need to remember that we are not quantizing a general BF theory but GR. GR is characterised by $SL(2, \mathbb{C})$ symmetry in the bulk, SU(2) on the boundary plus $\vec{K} = \gamma \vec{L}$ on the boundary.

- h_{vf} are assigned to the **links** of the boundary of the 4-simplex thus are SU(2) elements.
- g_{ev} are assigned to the **edges** of the bulk dual graph thus are $SL(2, \mathbb{C})$ elements.
Now, we need to remember that we are not quantizing a general BF theory but GR. GR is characterised by $SL(2, \mathbb{C})$ symmetry in the bulk, SU(2) on the boundary plus $\vec{K} = \gamma \vec{L}$ on the boundary.

- h_{vf} are assigned to the **links** of the boundary of the 4-simplex thus are SU(2) elements.
- g_{ev} are assigned to the **edges** of the bulk dual graph thus are $SL(2, \mathbb{C})$ elements.
- $Z = \int_{SU(2)} dh_{vf} \prod_f \delta(h_{vf} h_{v'f} \dots) A_v(h_{vf})$
- $A_v(h_{vf}) = \sum_{\{j_f\}} \int_{SL(2,\mathbb{C})} dg_{ev} \prod_f (2j_f + 1) \operatorname{Tr}_{j_f}[g_{e'v}g_{ve}h_{vf}]$

- $A_v(h_{vf}) = \sum_{\{j_f\}} \int_{SL(2,\mathbb{C})} dg_{ev} \prod_f (2j_f + 1) \operatorname{Tr}_{j_f}[g_{e'v}g_{ve}h_{vf}]$
- The trace in the vertex amplitude seems to involve both *SU*(2) and *SL*(2, \mathbb{C}) elements. Odd, but easy to fix

イロト 不得 トイヨト イヨト

- $A_v(h_{vf}) = \sum_{\{j_f\}} \int_{SL(2,\mathbb{C})} dg_{ev} \prod_f (2j_f + 1) \operatorname{Tr}_{j_f}[g_{e'v}g_{ve}h_{vf}]$
- The trace in the vertex amplitude seems to involve both *SU*(2) and *SL*(2, C) elements. Odd, but easy to fix
- $A_v(h_{vf}) = \sum_{j_f} \int_{SL(2,\mathbb{C})} dg_{ev} \prod_f (2j_f + 1) \operatorname{Tr}_{j_f} [Y_{\gamma}^{\dagger} g_{e'v} g_{ve} Y_{\gamma} h_{vf}]$
- $\operatorname{Tr}_{j}[Y_{\gamma}^{\dagger}gY_{\gamma}h] = \sum_{m} \langle j, m | Y_{\gamma}^{\dagger}gY_{\gamma}h | j, m \rangle = \sum_{m} \sum_{n} \langle j, m | Y_{\gamma}^{\dagger}gY_{\gamma} | j, n \rangle \langle j, n | h | j, m \rangle = \sum_{m,n} D_{jm,jn}^{(\gamma j,j)}(g) D_{nm}^{(j)}(h)$

・ロト ・ 同ト ・ ヨト ・ ヨト

• $W_{\mathcal{C}}(h_{\ell}) = \mathcal{N} \int_{SU(2)} dh_{vf} \prod_{f} \delta(h_{vf} h_{v'f}...) \prod_{v} A_{v}(h_{vf})$: function of the variables on the boundary.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- $W_{\mathcal{C}}(h_{\ell}) = \mathcal{N} \int_{SU(2)} dh_{vf} \prod_{f} \delta(h_{vf} h_{v'f} ...) \prod_{v} A_{v}(h_{vf})$: function of the variables on the boundary.
- The final transition amplitude is abstractly defined as the limit in the most possible refined truncation

(日)

- $W_{\mathcal{C}}(h_{\ell}) = \mathcal{N} \int_{SU(2)} dh_{vf} \prod_{f} \delta(h_{vf} h_{v'f} ...) \prod_{v} A_{v}(h_{vf})$: function of the variables on the boundary.
- The final transition amplitude is abstractly defined as the limit in the most possible refined truncation
- UV finite.
- There can be IR divergences but the version of the theory with cosmological constant is proved to be IR finite.

- ロ ト ・ 同 ト ・ 三 ト ・ 三 ト - -

Semiclassical states

In the boundary we have a semiclassical (also known as coherent) state of geometry. Semiclassical states are quantum states that resemble classical states as much as possible.

(4) (日本)

Semiclassical states

In standard QM a semiclassical state (Gaussian wavepacket) has the form $\Psi_{x_0,p_0}^t(x) \propto \int dp e^{-(p-p_0)^2 t + ipx_0} \psi(p,x)$, where $\psi(p,x) = e^{-ipx}$. It is peaked in momentum p_0 and position x_0 .

(日)

Semiclassical states

In standard QM a semiclassical state (Gaussian wavepacket) has the form $\Psi_{x_0,p_0}^t(x) \propto \int dp e^{-(p-p_0)^2 t + ipx_0} \psi(p,x)$, where $\psi(p,x) = e^{-ipx}$. It is peaked in momentum p_0 and position x_0 . In LQG a semiclassical state has the form $\Psi_{\Gamma,H_\ell}^t(h_\ell) \propto \sum_{\{j_\ell\}} \prod_\ell d_{j_\ell} e^{-(j_\ell - \omega_\ell)^2 t + i\gamma\zeta_\ell j_\ell} \psi_{\Gamma,j_\ell,\vec{n}_{s(\ell)},\vec{n}_{t(\ell)}}(h_\ell)$, where $\psi_{\Gamma,j_\ell,\vec{n}_{s(\ell)},\vec{n}_{t(\ell)}}(h_\ell) = \sum_{m_s,m_t} D_{j_\ell m_t}^{j_\ell}(n_{t(\ell)}^\dagger) D_{m_t m_s}^{j_\ell}(h_\ell) D_{m_s j_\ell}^{j_\ell}(n_{s(\ell)})$ • $t = \left(\frac{l_p^2}{A}\right)^n$ with $n \in [0,2]$ controls the spread of the Gaussians. Since the area A is macroscopic $t \ll 1$.

- $\omega_{\ell} := \frac{\eta_{\ell} t}{2t} \approx \frac{\eta_{\ell}}{2t}$ where $\eta_{\ell} \in \mathbb{R}^+$ is related to the area dual to the link ℓ and is taken $\gg 1$.
- $\zeta_{\ell} \in [0, 4\pi)$ is the distributional extrinsic curvature.
- $n_{t_{(\ell)}}$, $n_{s_{(\ell)}}$ nodes of the source and the tagret of the link ℓ .

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

The transition amplitude again

An equivalent and useful form of the transition amplitude is $W_{\mathcal{C}}(h_{\ell}) = \mathcal{N} \int_{SL(2,\mathbb{C})} (\prod_{v} dg_{ve}) (\prod_{f \in \mathcal{B}} A_{f}) (\prod_{f \in \Gamma} A_{f}(h_{\ell}))$ where A_{f} are the internal (bulk) faces and $A_{f}(h_{\ell})$ are boundary faces.

Bulk face amplitude

$$\begin{split} & A_{f} := \sum_{j_{f}} d_{j_{f}} \operatorname{Tr}_{j_{f}} \left[\prod_{v \in f} Y^{\dagger} g_{ve}^{-1} g_{ve'} Y \right] := \\ & \sum_{j_{f}} d_{j_{f}} \operatorname{Tr}_{j_{f}} \left[Y^{\dagger} g_{ev} g_{ve'} Y Y^{\dagger} g_{e'v'} g_{v'e''} Y \dots Y^{\dagger} g_{e^{(n)}v^{(n)}} g_{v^{(n)}e} Y \right] \text{ for } f \in \mathcal{B} \\ & \text{where } \operatorname{Tr}_{j_{f}} \left[\prod_{v \in f} Y^{\dagger} g_{ve}^{-1} g_{ve'} Y \right] = \\ & \sum_{\{me\}} D_{j_{f}m_{e}j_{f}m_{e'}}^{(\gamma j_{f}, j_{f})} (g_{ev} g_{ve'}) D_{j_{f}m_{e'}j_{f}m_{e''}}^{(\gamma j_{f}, j_{f})} (g_{e'v'} g_{v'e''}) \dots D_{j_{f}m_{e}(n)j_{f}m_{e}}^{(\gamma j_{f}, j_{f})} (g_{e^{(n)}v^{(n)}} g_{v^{(n)}e}) \end{split}$$

æ

Bulk face amplitude

To calculate this we are going to work in the principal series representation

э

Bulk face amplitude

To calculate this we are going to work in the principal series representation. A representation space of the j-irrep of SU(2), \mathcal{V}^{j} , is spanned by the homogeneous complex polynomials of degree 2j. $P_{m}^{j}(\mathbf{z}) = \left[\frac{(2j)!}{(j+m)!(j-m)!}\right]^{\frac{1}{2}} z_{0}^{j+m} z_{1}^{j-m}, \quad m \in \{-j, ..., j\}, \quad \mathbf{z} = (z_{0}, z_{1})^{\mathsf{T}} \in \mathbb{C}^{2}.$ By acting on P with the Y map we obtain the principal series representation of $SL(2, \mathbb{C})$ $\phi_{m}^{(\gamma;j)}(\mathbf{z}) := Y \triangleright P_{m}^{j}(\mathbf{z}) = \sqrt{\frac{d_{j}}{\pi}} \langle \mathbf{z} | \mathbf{z} \rangle^{i\gamma j - j - 1} P_{m}^{j}(\mathbf{z}).$

- ロ ト - (周 ト - (日 ト - (日 ト -)日

To calculate this we are going to work in the principal series representation. A representation space of the j-irrep of SU(2), \mathcal{V}^{j} , is spanned by the homogeneous complex polynomials of degree 2j. $P_m^j(\mathbf{z}) = \left[\frac{(2j)!}{(i+m)!(i-m)!}\right]^{\frac{1}{2}} z_0^{j+m} z_1^{j-m}, \quad m \in \{-j, ..., j\}, \quad \mathbf{z} = (z_0, z_1)^{\mathsf{T}} \in \mathbb{C}$ \mathbb{C}^2 . By acting on P with the Y map we obtain the principal series representation of $SL(2,\mathbb{C})$ $\phi_m^{(\gamma j,j)}(\mathbf{z}) := Y \rhd P_m^j(\mathbf{z}) = \sqrt{\frac{d_j}{\pi}} \langle \mathbf{z} | \mathbf{z} \rangle^{i\gamma j - j - 1} P_m^j(\mathbf{z}).$ Then, $D_{i\,m\,i\,m'}^{(\gamma j,j)}(g) \equiv \langle jm | \ Y^{\dagger}gY | jm' \rangle = \int_{\mathbb{CP}^1} \mathrm{d}\Omega \ \overline{\phi_m^{(\gamma j,j)}(z)} \ \phi_{m'}^{(\gamma j,j)}(g^{\intercal}z)$ where $\mathrm{d}\Omega = \frac{i}{2}(z^0\mathrm{d}z^1 - z^1\mathrm{d}z^0) \wedge (\overline{z}^0\mathrm{d}\overline{z}^1 - \overline{z}^1\mathrm{d}\overline{z}^0)$ is a homogeneous and $SL(2,\mathbb{C})$ invariant measure on $\mathbb{C}^2 \setminus \{0\} \simeq \mathbb{C}P^1$

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

The face amplitude takes the form

$$\begin{split} A_{f} &= \sum_{j_{f}} d_{j_{f}} \prod_{e \in f} \frac{d_{j_{f}}}{\pi} \int_{\mathbb{C}P^{1}} \mathrm{d} \tilde{\Omega}_{\text{vef}} \; e^{j_{f} S_{f}[g_{\text{ve}}, \mathbf{z}_{\text{vf}}]} \quad \forall f \in \mathcal{B} \text{ where} \\ S_{f}[g_{\text{ve}}, \mathbf{z}_{\text{vf}}] &:= \log \frac{\langle \mathbf{Z}_{\mathsf{v}e'f} | \mathbf{Z}_{\mathsf{v}e'f} \rangle^{2}}{\langle \mathbf{Z}_{\mathsf{ve}f} | \mathbf{Z}_{\mathsf{v}e'f} \rangle \langle \mathbf{Z}_{\mathsf{v}e'f} | \mathbf{Z}_{\mathsf{v}e'f} \rangle} + i\gamma \log \frac{\langle \mathbf{Z}_{\mathsf{v}e'f} | \mathbf{Z}_{\mathsf{v}e'f} \rangle}{\langle \mathbf{Z}_{\mathsf{ve}f} | \mathbf{Z}_{\mathsf{v}e'f} \rangle}, \\ \mathbf{Z}_{\text{vef}} &:= g_{\text{ve}}^{\dagger} \; \mathbf{z}_{\text{vf}} \quad , \quad \mathbf{Z}_{\text{ve}'f} &:= g_{\text{ve}'}^{\dagger} \; \mathbf{z}_{\text{vf}} \end{split}$$

æ

Boundary face amplitude

$$\begin{aligned} & \mathcal{A}_{\mathsf{f}}(h_{\ell}) := \\ & \sum_{j_{\mathsf{f}}} d_{j_{\mathsf{f}}} \operatorname{Tr}_{j_{\mathsf{f}}} \left[Y^{\dagger} g_{\mathsf{vn}'}^{-1} g_{\mathsf{ve}'} Y \left(\prod_{\mathsf{v} \in \mathsf{f}} Y^{\dagger} g_{\mathsf{ve}'}^{-1} g_{\mathsf{ve}} Y \right) Y^{\dagger} g_{\mathsf{v}^{(n)} \mathsf{e}^{(n)}}^{-1} g_{\mathsf{v}^{(n)} \mathsf{n}} Y h_{\ell}^{-1} \right] \text{ for } \\ & \mathsf{f} \in \mathsf{\Gamma} \end{aligned}$$

æ

Boundary face amplitude

$$\begin{split} &A_{f}(h_{\ell}) := \\ &\sum_{j_{f}} d_{j_{f}} \operatorname{Tr}_{j_{f}} \left[Y^{\dagger} g_{\mathsf{vn}'}^{-1} g_{\mathsf{ve}'} Y \left(\prod_{\mathsf{v} \in f} Y^{\dagger} g_{\mathsf{ve}'}^{-1} g_{\mathsf{ve}} Y \right) Y^{\dagger} g_{\mathsf{v}^{(n)} \mathsf{e}^{(n)}}^{-1} g_{\mathsf{v}^{(n)} \mathsf{n}} Y h_{\ell}^{-1} \right] \text{ for } \\ &f \in \Gamma. \text{ By the same technique of the principal series representation we obtain.} \\ &\operatorname{Tr}_{j_{f}} \left[Y^{\dagger} g_{\mathsf{vn}'}^{-1} g_{\mathsf{ve}'} Y \left(\prod_{\mathsf{v} \in f} Y^{\dagger} g_{\mathsf{ve}'}^{-1} g_{\mathsf{ve}} Y \right) Y^{\dagger} g_{\mathsf{v}^{(n)} \mathsf{e}^{(n)}}^{-1} g_{\mathsf{v}^{(n)}} Y h_{\ell}^{-1} \right] = \\ &\left(\prod_{\mathsf{e} \in f} \frac{d_{j_{f}}}{\pi} \int_{\mathbb{C} P^{1}} \mathrm{d} \tilde{\Omega}_{\mathsf{ve}} \right) \left(\frac{d_{j_{f}}^{3}}{\pi^{3}} \int_{(\mathbb{C} P^{1})^{3}} \mathrm{d} \tilde{\Omega}_{\mathsf{n}\ell\mathsf{n}'} \right) \, \mathsf{e}^{j_{f} S_{f}[g_{\mathsf{ve}}, \mathsf{z}_{\mathsf{v}}] + j_{f} B_{\ell}[g_{\mathsf{vn}}, h_{\ell}, \mathsf{z}_{\ell}]}, \text{ where } \\ &B_{\ell}[g_{\mathsf{vn}}, h_{\ell}, \mathsf{z}_{\ell}] := \\ &\log \frac{\langle \mathsf{Z}_{\mathsf{vn}'f} | \mathsf{Z}_{\mathsf{v}} \rangle^{2}}{\langle \mathsf{Z}_{\mathsf{v}} | \mathsf{z}_{\ell} \rangle \langle \mathsf{z}_{\ell} | \mathsf{z}_{\ell} \rangle} + \log \frac{\langle h_{\ell}^{\mathsf{T}} \mathsf{z}_{\ell} | \mathsf{Z}_{\mathsf{v}^{(n)} \mathsf{n}_{f}} \rangle^{2}}{\langle \mathsf{Z}_{\mathsf{v}^{(n)} \mathsf{n}_{f}} | \mathsf{Z}_{\mathsf{vn}' \mathsf{n}_{f}} \rangle} + i\gamma \log \frac{\langle \mathsf{Z}_{\mathsf{v}^{(n)} \mathsf{n}_{f}} | \mathsf{Z}_{\mathsf{vn}' \mathsf{n}_{f}} \rangle}{\langle \mathsf{Z}_{\mathsf{vn}' \mathsf{n}_{f}} | \mathsf{Z}_{\mathsf{vn}' \mathsf{n}_{f}} \rangle} \end{aligned}$$

æ

The full amplitude

$$\begin{aligned} \mathcal{W}_{\mathcal{C}}(h_{\ell}) &= \mathcal{N} \sum_{\{j_{f}\}} \int_{SL(2,\mathbb{C})} \left(\prod_{v} \mathrm{d}g_{ve} \right) \left(\prod_{f \in \mathcal{C}} d_{j_{f}} \prod_{e \in f} \frac{d_{j_{f}}}{\pi} \int_{\mathbb{C}\mathsf{P}^{1}} \mathrm{d}\tilde{\Omega}_{vef} \right) \times \\ & \times \left(\prod_{\ell \in \Gamma} \frac{d_{j_{f}}^{3}}{\pi^{3}} \int_{(\mathbb{C}\mathsf{P}^{1})^{3}} \mathrm{d}\tilde{\Omega}_{\mathsf{n}\ell\mathsf{n}'} \right) \mathrm{e}^{\sum_{f \in \mathcal{C}} j_{f} S_{f} + \sum_{\ell \in \Gamma} j_{f} B_{\ell}} \end{aligned}$$
(1)

3

We contract the full amplitude with the coherent states to impose the semiclassicality of the geometry $W_{\mathcal{C}}^{t_{\ell}}(H_{\ell}) := \left\langle W_{\mathcal{C}} \middle| \Psi_{\Gamma,H_{\ell}}^{t_{\ell}} \right\rangle := \int_{SU(2)^{L}} \left(\prod_{\ell \in \Gamma} \mathrm{d}h_{\ell} \right) W_{\mathcal{C}}(h_{\ell}) \Psi_{\Gamma,H_{\ell}}^{t_{\ell}}(h_{\ell})$

イロト 不得 トイヨト イヨト

Approximations

- We are going to consider tree-level two-complexes \mathcal{T} : there are no faces which lie completely in the bulk. $W_{\tau}^{t}(H_{\ell}) =$ $\mathcal{N}\sum_{\{j_\ell\}\in D_\omega^k}\mu_j\,\mathrm{e}^{-t\sum_\ell (j_\ell-\omega_\ell)^2}\,\mathrm{e}^{i\gamma\sum_\ell\zeta_\ell j_\ell}\int_{D_{\sigma,\mathbf{z}}}\mathrm{d}\mu_{g,\Omega}\,\mathrm{e}^{\sum_\ell j_\ell F_\ell(g,\mathbf{z};\mathbf{n}_{\ell(n)})}$ • $F_{\ell}[g_{ve}, \mathbf{z}_{n\ell}; \mathbf{n}_{n(\ell)}] := S_{\ell}[g_{ve}, \mathbf{z}_{n\ell}] + \log \frac{\langle \overline{\mathbf{n}}_{s(\ell)} | \mathbf{z}_{n\ell} \rangle^2 \langle \mathbf{z}_{n'\ell} | \overline{\mathbf{n}}_{t(\ell)} \rangle^2}{\langle \mathbf{z}_{n\ell} | \mathbf{z}_{n\ell} \rangle^2 \langle \mathbf{z}_{n'\ell} | \mathbf{z}_{n\ell} \rangle^2} +$ $\log \frac{\langle \mathbf{Z}_{\mathsf{vn}\ell}|\mathbf{Z}_{\mathsf{vn}\ell}|^2 \langle \mathbf{z}_{\ell}|^2 \langle \mathbf{z}_{\ell}|\mathbf{Z}_{\mathsf{vn}\ell}\rangle^2}{\langle \mathbf{Z}_{\mathsf{vn}\ell}|\mathbf{Z}_{\mathsf{vn}\ell}\rangle \langle \mathbf{Z}_{\mathsf{vn}\ell}|\mathbf{Z}_{\mathsf{vn}\ell}\rangle \langle \mathbf{Z}_{\mathsf{vn}\ell}|\mathbf{Z}_{\mathsf{vn}\ell}\rangle^2} + i\gamma \log \frac{\langle \mathbf{Z}_{\mathsf{vn}\ell}|\mathbf{Z}_{\mathsf{vn}\ell}|^2 \langle \mathbf{Z}_{\mathsf{vn}\ell}\rangle^2}{\langle \mathbf{Z}_{\mathsf{vn}\ell}|\mathbf{Z}_{\mathsf{vn}\ell}\rangle \langle \mathbf{Z}_{\mathsf{vn}\ell}|\mathbf{Z}_{\mathsf{vn}\ell}\rangle^2}$ • $\mu_j := \left(\prod_{\mathsf{f}\in\mathsf{\Gamma}}\prod_{\mathsf{e}\in\mathsf{f}}\mathsf{d}_{j_\ell}\right)\left(\prod_{\ell\in\mathsf{\Gamma}}\mathsf{d}_{j_\ell}^4\right)$ • $\int_{D_{\sigma}} \mathrm{d}\mu_{g,\Omega} :=$ $\int_{\mathcal{SL}(2,\mathbb{C})} \left(\prod_{v} \mathrm{d}g_{ve}\right) \left(\prod_{f \in \Gamma} \prod_{e \in f} \int_{\mathbb{C}\mathsf{P}^{1}} \mathrm{d}\tilde{\Omega}_{vef}\right) \left(\prod_{\ell \in \Gamma} \int_{(\mathbb{C}\mathsf{P}^{1})^{4}} \mathrm{d}\tilde{\Omega}_{s\ell t}\right)$ • D^k_i: an appropriate domain that satisfies the triangular inequalities between the spins
- $j_\ell = \lambda a_\ell + s_\ell$ with $\omega_\ell \equiv \lambda a_\ell$

Tree-level holomorphic amplitude

$$\begin{split} & \mathcal{W}_{\Gamma}^{t}(\mathcal{H}_{\ell}) = \mathcal{N} \int_{D_{g,z}} \mu_{j} \mathrm{d}\mu_{g,\Omega} \mathcal{U}(g, \mathbf{z}; t, \mathcal{H}_{\ell}) \, \mathrm{e}^{\lambda \sum (a_{\ell}, g, \mathbf{z}; \mathbf{n}_{\ell(n)})} \text{ where} \\ & \mathcal{U}(g, \mathbf{z}; t, \mathcal{H}_{\ell}) := \prod_{\ell} \left(\sum_{s_{\ell} \in D_{\omega}^{k}} \mathrm{e}^{-s_{\ell}^{2}t + (i\gamma\zeta_{\ell} + F_{\ell}(g, \mathbf{z}; \mathbf{n}_{\ell(n)}))s_{\ell}} \right) \\ & \Sigma(a_{\ell}, g, \mathbf{z}; \mathbf{n}_{\ell(n)}) := \sum_{\ell} (a_{\ell}F_{\ell}(g, \mathbf{z}; \mathbf{n}_{\ell(n)}) + i\gamma\zeta_{\ell}a_{\ell}) \end{split}$$

э

Tree-level holomorphic amplitude

$$\begin{split} W_{\Gamma}^{t}(H_{\ell}) &= \mathcal{N} \int_{D_{g,z}} \mu_{j} \mathrm{d}\mu_{g,\Omega} \mathcal{U}(g,\mathbf{z};t,H_{\ell}) \,\mathrm{e}^{\lambda \Sigma(a_{\ell},g,\mathbf{z};\mathbf{n}_{\ell(n)})} \text{ where} \\ \mathcal{U}(g,\mathbf{z};t,H_{\ell}) &:= \prod_{\ell} \left(\sum_{s_{\ell} \in D_{\omega}^{k}} \mathrm{e}^{-s_{\ell}^{2}t + (i\gamma\zeta_{\ell} + F_{\ell}(g,\mathbf{z};\mathbf{n}_{\ell(n)}))s_{\ell}} \right) \\ \Sigma(a_{\ell},g,\mathbf{z};\mathbf{n}_{\ell(n)}) &:= \sum_{\ell} (a_{\ell}F_{\ell}(g,\mathbf{z};\mathbf{n}_{\ell(n)}) + i\gamma\zeta_{\ell}a_{\ell}). \\ \text{Stationary phase theorem:} \\ W_{T}^{t}(H_{\ell}) &= \\ \mathcal{N}\sum_{c} \mu_{j}\lambda^{M_{\mathcal{C}}^{c}}\mathcal{H}_{c}(a_{\ell},\mathbf{n}_{\ell(n)})\mathcal{U}(g_{c},z_{c};t,H_{l}) \,\mathrm{e}^{\lambda\Sigma(a_{\ell},g,\mathbf{z};\mathbf{n}_{\ell(n)})} \left(1 + \mathcal{O}(\lambda^{-1})\right) \end{split}$$

- c: the critical points. Each critical point comes with a 2^N degeneracy, corresponding to the different configurations for the orientation s(v) where s(v) takes the values ± 1 on each vertex of C
- \mathcal{H}_c : the Hessian of Σ which we are going to ignore

(4) (日本)

Charalampos Theofilis

æ

*F*_ℓ(g, z; n_{ℓ(n)}) = −iγ φ_ℓ(s_{c(v)}, a_ℓ, n_{ℓ(n)}), where φ_ℓ(s_{c(v)}, a_ℓ, n_{ℓ(n)}) is the Palatini deficit angle which also depends on s(v) and reduces to the usual Regge deficit angle when s(v) is uniform, i.e. it is either +1 or −1 for all vertices of C

•
$$\mathcal{U}(g_c, \mathbf{z}_c; t, H_\ell) = \prod_\ell \left(\sum_{s_\ell \in D_\omega^k} e^{-s_\ell^2 t + i\gamma(\zeta_\ell - \phi_\ell(g, \mathbf{z}; \mathbf{n}_{\ell(n)}))s_\ell} \right)$$

- ロ ト ・ 同 ト ・ 三 ト ・ 三 ト - -

• $F_{\ell}(g, \mathbf{z}; \mathbf{n}_{\ell(n)}) = -i\gamma \phi_{\ell}(s_{c(v)}, a_{\ell}, \mathbf{n}_{\ell(n)})$, where $\phi_{\ell}(s_{c(v)}, a_{\ell}, \mathbf{n}_{\ell(n)})$ is the Palatini deficit angle which also depends on s(v) and reduces to the usual Regge deficit angle when s(v) is uniform, i.e. it is either +1 or -1 for all vertices of C

•
$$\mathcal{U}(g_c, \mathbf{z}_c; t, H_\ell) = \prod_\ell \left(\sum_{s_\ell \in D_\omega^k} e^{-s_\ell^2 t + i\gamma(\zeta_\ell - \phi_\ell(g, \mathbf{z}; \mathbf{n}_{\ell(n)}))s_\ell} \right)$$

• The sum is dominated by the exponential damping factor $\exp(-s_{\ell}^2 t)$. It can reasonably be expected that due to this exponential damping the sum converges very fast and that it is therefore a good approximation to remove the cut-off k and sum s_{ℓ} from $-\infty$ to ∞ for all $\ell \in \Gamma$

•
$$\sum_{s_{\ell}=-\infty}^{\infty} e^{-s_{\ell}^2 t + i\gamma(\zeta_{\ell} - \phi_{\ell})s_{\ell}}$$

•
$$\sum_{s_{\ell}=-\infty}^{\infty} e^{-s_{\ell}^{2}t + i\gamma(\zeta_{\ell} - \phi_{\ell})s_{\ell}} = 2\sqrt{\frac{\pi}{t}} e^{-\frac{\gamma^{2}}{4t}(\zeta_{\ell} - \phi_{\ell})^{2}} \vartheta_{3}\left(-\frac{i\pi\gamma(\zeta_{\ell} - \phi_{\ell})}{t}, e^{-\frac{4\pi^{2}}{t}}\right)$$

• $\vartheta_3(u,q) := 1 + 2\sum_{n=1}^{\infty} q^{n^2} \cos(2nu)$:third Jacobi theta function

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

•
$$\sum_{s_{\ell}=-\infty}^{\infty} e^{-s_{\ell}^{2}t + i\gamma(\zeta_{\ell} - \phi_{\ell})s_{\ell}} = 2\sqrt{\frac{\pi}{t}} e^{-\frac{\gamma^{2}}{4t}(\zeta_{\ell} - \phi_{\ell})^{2}} \vartheta_{3}\left(-\frac{i\pi\gamma(\zeta_{\ell} - \phi_{\ell})}{t}, e^{-\frac{4\pi^{2}}{t}}\right)$$

•
$$\vartheta_{3}(u, q) := 1 + 2\sum_{n=1}^{\infty} q^{n^{2}} \cos(2nu) \text{ :third Jacobi theta function}$$

•
$$\mathcal{U}(g_{c}, \mathbf{z}_{c}; t, H_{\ell}) \approx \prod_{\ell} 2\sqrt{\frac{\pi}{t}} e^{-\frac{\gamma^{2}}{4t}(\zeta_{\ell} - \phi_{\ell})^{2}} \vartheta_{3}\left(-\frac{i\pi\gamma(\zeta_{\ell} - \phi_{\ell})}{t}, e^{-\frac{4\pi^{2}}{t}}\right)$$

2

Final estimation of the transition amplitude

•
$$\mathcal{U}(g_c, \mathbf{z}_c; t, H_\ell) \approx \prod_{\ell} 2\sqrt{\frac{\pi}{t}} e^{-\frac{\gamma^2}{4t}(\zeta_\ell - \phi_\ell)^2} \vartheta_3\left(-\frac{i\pi\gamma(\zeta_\ell - \phi_\ell)}{t}, e^{-\frac{4\pi^2}{t}}\right)$$

э

Final estimation of the transition amplitude

•
$$\mathcal{U}(g_c, \mathbf{z}_c; t, H_\ell) \approx \prod_{\ell} 2\sqrt{\frac{\pi}{t}} e^{-\frac{\gamma^2}{4t}(\zeta_\ell - \phi_\ell)^2} \vartheta_3\left(-\frac{i\pi\gamma(\zeta_\ell - \phi_\ell)}{t}, e^{-\frac{4\pi^2}{t}}\right)$$

- If $\gamma \leq \frac{1}{2}$ (as it seems to be from the LQG derived BH entropy formula) then $\theta_3 \approx 1$
- $\mathcal{U}(\mathbf{g}_{c}, \mathbf{z}_{c}; t, H_{\ell}) \approx \prod_{\ell} 2\sqrt{\frac{\pi}{t}} e^{-\frac{\gamma^{2}}{4t}(\zeta_{\ell} \phi_{\ell})^{2}}$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Final estimation of the transition amplitude

•
$$\mathcal{U}(g_c, \mathbf{z}_c; t, H_\ell) \approx \prod_{\ell} 2\sqrt{\frac{\pi}{t}} e^{-\frac{\gamma^2}{4t}(\zeta_\ell - \phi_\ell)^2} \vartheta_3\left(-\frac{i\pi\gamma(\zeta_\ell - \phi_\ell)}{t}, e^{-\frac{4\pi^2}{t}}\right)$$

• If $\gamma \leq \frac{1}{2}$ (as it seems to be from the LQG derived BH entropy formula) then $\theta_3 \approx 1$

•
$$\mathcal{U}(g_c, \mathbf{z}_c; t, H_\ell) \approx \prod_\ell 2\sqrt{\frac{\pi}{t}} e^{-\frac{\gamma^2}{4t}(\zeta_\ell - \phi_\ell)^2}$$

• By substituting everything to the transition amplitude to obtain the estimation $W^t_{\mathcal{T}}(\mathcal{H}_\ell) \approx 2^{-2}$

$$\mathcal{N}\sum_{\{\mathfrak{s}(\mathsf{v})\}}\lambda^{N}\mu(\mathfrak{a})\prod_{\ell}e^{\frac{-\gamma^{2}}{4t}(\zeta_{\ell}-\phi_{\ell})^{2}+i\gamma(\zeta_{\ell}-\phi_{\ell})\omega_{\ell}}\left(1+\mathcal{O}(\lambda^{-1})\right)$$

- ロ ト - (理 ト - (ヨ ト - (ヨ ト -)

- Black Hole to White Hole transition $p \sim e^{-\frac{m^2}{m_{pl}^2}}$
- Bouncing Cosmology?

3

• What happens when we include bulk faces?

э

Thank you!

Thank you!

3

•
$$S_{EH}[g] = \int d^4x \sqrt{-det(g)}R$$

• $S_T[e] = \int \star(e \wedge e) \wedge F$

3

•
$$S_{EH}[g] = \int d^4x \sqrt{-det(g)}R$$

• $S_T[e] = \int \star(e \wedge e) \wedge F$
• $S_{EH}[e] = \int d^4x |det(e)|R[e]$

•
$$S_T[e] = \int d^4 x det(e) R[e]$$

3

The classical limit

$$A_{
m v} \sim c e^{i S_{Regge}} + c' e^{-i S_{Regge}}$$

3
In the path integral of harmonic oscillator if we consider q = q(t) then $S_N(q_n) = \sum_{n=1}^N m \frac{(q_{n+1}-q_n)^2}{2} - \frac{\Omega^2}{2} q_n^2$. We then take the limit $N \to \infty$ and $\Omega \to 0$.

イロト 不得 トイヨト イヨト

In the path integral of harmonic oscillator if we consider q = q(t) then $S_N(q_n) = \sum_{n=1}^N m \frac{(q_{n+1}-q_n)^2}{2} - \frac{\Omega^2}{2} q_n^2$. We then take the limit $N \to \infty$ and $\Omega \to 0$.If we consider $t = t(\tau)$ and $q = q(\tau)$ then $S_N = \sum_{n=1}^N \frac{m}{2} \frac{(q_{n+1}-q_n)^2}{(t_{n+1}-t_n)} - (t_{n+1}-t_n) \frac{1}{2} \omega^2 q_n^2$.

In the path integral of harmonic oscillator if we consider q = q(t) then $S_N(q_n) = \sum_{n=1}^N m \frac{(q_{n+1}-q_n)^2}{2} - \frac{\Omega^2}{2} q_n^2$. We then take the limit $N \to \infty$ and $\Omega \to 0$. If we consider $t = t(\tau)$ and $q = q(\tau)$ then $S_N = \sum_{n=1}^N \frac{m}{2} \frac{(q_{n+1}-q_n)^2}{(t_{n+1}-t_n)} - (t_{n+1}-t_n) \frac{1}{2} \omega^2 q_n^2$. We only have to take $N \to \infty$, there is no critical parameter!

・ロト ・ 四 ト ・ 回 ト ・ 回 ト …