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Why we need Quantum Gravity

Since every interaction we are aware of is of quantum nature we expect
the same to be true for Gravity. Except for that, the singularities that arise
in GR imply that it is only an effective description of the physical reality
and not a fundamental theory.
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Why it’s difficult to quantize Gravity

Two primary reasons

The standard Dirac procedure leads to Wheeler-DeWitt equation
which is ill defined.

The standard QFT-inspired split gµν = ηµν + hµν leads to a
non-renormalizable theory.
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The spirit of LQG

LQG is a background-independet, non-perturbative theory of Quantum
Gravity from the Relativist’s perspective spacetime ↔ gravitational field.
The quantum object considered is spacetime itself. There are two versions
of the theory; the canonical and the covariant. Here we present the
covariant.
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The triplet of CLQG

(H,A,W)

H: Hilbert space

A: Set of operators

W : rule for Dynamics. Here the path integral

We are going to construct everything step by step.
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The essence of CLQG in one picture

M, g

W ∼
∫
q,K

D[g]e
i
h̄SHE [g]

q,K
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Action

S [g ]EH =
∫
d4x

√−gR[g ]

eI = eαI ∂α

eαI e
J
α = δIj

eβI e
I
α = δβα

eαI ≡ gαβe
β
I

g = gαβdx
αdxβ = eαI e

I
βdx

αdxβ = eαI eβJη
IJdxαdxβ = eI eJη

IJ = eI e
I

When e I → ΛI
Ke

K , g → g . Local SO(1, 3) symmetry.
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Action

S [e]EH =
∫
d4x |det e|R[e]

e0 ∧ e1 ∧ e2 ∧ e3 = det(e)d4x

SEH [e] =
∫
e0 ∧ e1 ∧ e2 ∧ e3R(e)

R(e) = 1
4ϵIJCDϵ

CDKLR IJ
KL(e)

SEH [e] =
1
2

∫
⋆(e ∧ e)IJ ∧ F IJ(e)

FKL := RKL
ABe

A ∧ eB

⋆(e ∧ e)KL = 1
2ϵIJKLe

I ∧ eJ
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Action

SEH [e] =
∫
⋆(e ∧ e) ∧ F [e]

Palatini formulation of GR: SP [g , Γ] =
∫
d4x

√−gR[g , Γ]

We do the same here: SP [e, ω] =
∫
⋆(e ∧ e) ∧ F [ω]

We add the extra term 1
γ

∫
e ∧ e ∧ F [ω] where γ is called the

Barbero-Immirzi parameter. This corresponds to the canonical
transformation from ADM variables to the Ashtekar variables and
doesn’t affect the classical EOM.
1
γ

∫
e ∧ e ∧ F [ω] = 1

γ

∫
d4x

√−gϵµνρσRµνρσ → 0 when on shell

(Analogy with QCD SQCD =
∫
F ∧ ⋆F + θQCD

∫
F ∧ F )
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Action

Holst action SH [e, ω] =
∫ (

⋆(e ∧ e) + 1
γ e ∧ e

)
∧ F [ω]

SH [e, ω] =
∫
B[e] ∧ F [ω]

B[e] := ⋆(e ∧ e) + 1
γ e ∧ e. Simplicity constraint

This type of theories are called “BF” theories and are well-studied.
GR is special because the bivector B is simple.

F = dω + ω ∧ ω, the usual field strength of gauge theories. ω is an
so(1, 3) or equivalently sl(2,C) valued form.

On a t = const boundary, B is the derivative of the action with
respect to ∂ω/∂t, since the quadratic part of the action is ∼ B ∧ dω.
Thus B is the momentum canonical to the connection, thus related to
the Lorentz transformations.
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Linear Simplicity Constraints

Pick a spacelike surface Σ that bounds spacetime. nI is the vector normal
to the surface. We can decompose B into its electric and magnetic part

Electric part: K I = nJB
IJ

Magnetic part: LI = nJ(⋆B)
IJ

nIK
I = nInJB

IJ = 0

nIL
I = nInJ(⋆B)

IJ = 0

K I → K i

LI → Li
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Linear Simplicity Constraints

Choose locally nI = (1, 0, 0, 0) (time gauge). Then
K i = B i0, Li = 1

2ϵ
i
jkB

jk .

It is very easy to show that

K⃗ = γL⃗. This is called the Linear Simplicity Constraint.

Physical meaning of K⃗ and L⃗: B is the Generator of Lorentz
transformations. In the time gauge K i is a boost in the i-direction
and Li is the generator of the rotation around the i-axis.
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SU(2), SL(2,C) and the YΓ map

SL(2,C) is the double cover of SO(1, 3). It has six generators and two
Casimirs C1 = |K⃗ |2 − |L⃗|2 and C2 = K⃗ · L⃗. The unitary irreps are labelled
by p ∈ R and k ∈ Z/2. The Hilbert space V (p,k) is infinite dimensional
and can be decomposed as V (p,k) =

⊕+∞
j=k Hj , where Hj is the usual

2j +1 dim irrep space that carries the usual j spin representation of SU(2).

states in V (p,k): |p, k ; j ,m⟩

Choose p = γk and k = j thus these special states have the form
|γj , j ; j ,m⟩〈
K i − γLi

〉
≈ 0 in the large j limit. Central idea of the EPRL model

that we will use.
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SU(2), SL(2,C) and the YΓ map

Both |j ,m⟩ and |γj , j ; j ,m⟩ totally described in terms of j and m. Thus Hj

and V (p=γj ,k=j) are isomorphic.

Yγ : Hj −→ V (p=γj ,k=j)

|j ,m⟩ 7−→ |γj , j ; j ,m⟩
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Summary

GR can be formulated as a BF theory with SL(2,C) symmetry in the bulk,
SU(2) symmetry on the boundary together with the linear simplicity
constraint K⃗ = γL⃗ on the boundary.
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Elementary Geometry

The most economical and efficient way to describe a tetrahedron is in
terms of four vectors L⃗0, L⃗1, L⃗2, L⃗3 normal to the faces that satisfy the
closure condition C⃗ := L⃗0 + L⃗1 + L⃗2 + L⃗3 = 0. Degrees of freedom:
4× 3− 3− 3 = 6, the same number as the number of edges.
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Elementrary Geometry

|L⃗f | = area of the triangle f

V 2 = 2
9(L⃗1 × L⃗2) · L⃗3
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Quantum Spacetime

In GR spacetime ↔ gravitational field. Thus, quantum gravitational field
↔ quantum spacetime. We focus on space. We study a quantum of space
which we take to be a tetrahedron and we promote every Lif into an
operator that satisfy some algebra

[Lif , L
j
f ′ ] =

l20 iϵ
ij
kL

k
f δff ′

l20 = 8πγℏG , Lpl =
√
ℏG

A = l20
√
j(j + 1), j = 0, 1/2, 1, 3/2, ... The areas are quantized!
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Quantum Spacetime

A candidate for the Hilbert space is H = Hj0 ⊗Hj1 ⊗Hj2 ⊗Hj3 .

But we

also have to impose the closure condition C⃗Ψ = 0 Ψ ∈ H. Thus, the
Hilbert space is K := InvSU(2)[Hj0 ⊗Hj1 ⊗Hj2 ⊗Hj3 ]

dim(K) = min(j0 + j1, j2 + j3)−max(|j0 − j1|, |j2 − j3|) + 1

dim(K) = min(j0 + j1, j2 + j3)−max(|j0 − j1|, |j2 − j3|) + 1 > 0

The volume operator is well-defined in K and has discrete eigenvalues.
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Quantum Spacetime

A state in K has the form |j0, j1, j2, j3, v⟩.

Five numbers instead of six! The
tetrahedron is fuzzy!

Charalampos Theofilis Geometry Transition in Covariant LQG 21 / 58



Quantum Spacetime

A state in K has the form |j0, j1, j2, j3, v⟩.Five numbers instead of six! The
tetrahedron is fuzzy!

Charalampos Theofilis Geometry Transition in Covariant LQG 21 / 58



Triangulation and Dual Triangulation

A triangulation in two dimensions. Each edge of the dual graph, shown in
red, is common to two faces. As an example, the segment in dotted black
is dual to the edge in dotted red, which is common to the two faces in
pale red.
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Triangulation and Dual Triangulation
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Triangulation and Dual Triangulation
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How to measure curvature

In 2D: Pick a frame and take a tour around a “hinge” by following
the edges. If the frame returns rotated you have detected curvature.

In 3D: Pick a frame and take a tour around a segment by following
the edges. If the frame returns rotated you have detected curvature.

In 4D: Pick a frame and take a tour around a triangle by following the
edges. If the frame returns rotated you have detected curvature.
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How to measure curvature

Inside the 4D bulk the frame rotation is the outcome of the individual
rotations that take place every time we jump from one 4-simplex to the
other by following the edges. Thus, we assign to each edge an group
element g ∈ SL(2,C).

By the same reasoning the assign to each link of the
boundary dual graph an element h ∈ SU(2). The boundary dual graph has
now the structure of a spin network.
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Hilbert Space

Hilbert space is defined on the boundary. The only variables we have are
the SU(2) elements of total number L. Thus, a candidate is
H̃Γ = L2[SU(2)L]

. But we have the freedom to choose a rotated frame
and do the same thing. In total we have N frames where N is the total
number of the nodes of the spin network. Thus, the Hilbert space that
corresponds to a triangulation Γ is HΓ = L2[SU(2)L/SU(2)N ]Γ.

C⃗nΨ = 0 for Ψ ∈ H̃Γ, where C⃗n = L⃗l1 + L⃗l2 + L⃗l3 + L⃗l4 is the
generator of the total SU(2) transformation of the n node.
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Operators

In standard QM he have the operators
x̂Ψ(x) = xΨ(x), p̂Ψ(x) = −iℏdΨ(x)

dx . Here:

ĥlΨ(hl) = hlΨ(hl)

What about the derivative?
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Operators

There exist natural derivatives in SU(2) which correspond to the

left-invariant vector fields (J iΨ)(h) = −i ddtΨ(hetτ
i
)|t=0, where τ

i = −σi

2 .
To be dimensionally correct we use the operators

L⃗l = 8πγℏGJ⃗l .

Well-defined in H̃Γ but non in HΓ.

Easy! We consider Gll ′ = L⃗l · L⃗′l
When l = l ′ the norm Al =

√
Gl is of course the area of the triangle

punctured by the link l with spectrum Al = 8πγℏG
√

jl(jl + 1)

V 2
n = 2

9(L⃗l1 × L⃗l2) · L⃗l3
State: |Γ, jl , vn⟩
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The path integral of a BF theory

BF path integral: Z =
∫ DBDωe i

ℏ
∫
B∧F .

B is a two-form, thus integrated
on triangles or faces of the dual graph. ω is an one-form and is integrated
on edges of the dual graph. From it we extract a group element Ue via
Ue = Pe

∫
ωe . Hence, we have

Z =
∫ DBf

∫
G dUee

i
ℏ
∑

f Bf
∏

e∈f Ue

From
∫
dpe ipx ∼ δ(x) we can write Z =

∫
G dUe

∏
f δ(
∏

e∈f Ue)
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The path integral of a BF theory

Z =
∫
G dUe

∏
f δ(
∏

e∈f Ue)

By definition gve
−1 = gev

Z =
∫
G dgev

∏
f δ(gvegev′gv′e′ge′v′′ ...)

Charalampos Theofilis Geometry Transition in Covariant LQG 31 / 58



The path integral of a BF theory

Z =
∫
G dgev

∏
f δ(gvegev′gv′e′ge′v′′ ...)

We focus on a face f and we trade the group element that terminates in
vertex and the group element that emanates from the same vertex with
one group element hvf . We do it for every vertex of the face and for every
face in the bulk.

Z =
∫
G ′ dhvf

∫
G dgev

∏
f δ(hvf hv′f ...)

∏
v

∏
f ∈v δ(ge′vgvehvf )
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The path integral of a BF theory

Z =
∫
G ′ dhvf

∫
G dgev

∏
f δ(hvf hv′f ...)

∏
v

∏
f ∈v δ(ge′vgvehvf ).

By
rearranging some terms we can write it as

Z =
∫
G ′ dhvf

∏
f δ(hvf hv′f ...)

∏
v Av(hvf )

Av(hvf ) =
∫
G dgev

∏
f ∈v δ(ge′vgvehvf ) is called the vertex amplitude.

The delta function on a group can be expanded as
δ(U) =

∑+∞
jf =0(2jf + 1)Trjf [U] (similar to δ(θ) =

∑
n e

inθ).

Av(hvf ) =
∑

{jf }
∫
G dgev

∏
f (2jf + 1)Trjf [ge′vgvehvf ]
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The path integral of a special BF theory, GR

Av(hvf ) =
∑

{jf }
∫
G dgev

∏
f (2jf + 1)Trjf [ge′vgvehvf ]

A vertex is dual to a 4-simplex thus, vertex amplitude ↔ 4-simplex
amplitude
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The path integral of a special BF theory, GR

A 4-simplex is bounded by five tetraedra ↔ five nodes around the
vertex, one on every edge.

Between the 5 nodes there are 10 links that correspond to the 10 hvf .
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The path integral of a special BF theory, GR

Now, we need to remember that we are not quantizing a general BF
theory but GR. GR is characterised by SL(2,C) symmetry in the bulk,
SU(2) on the boundary plus K⃗ = γL⃗ on the boundary.

hvf are assigned to the links of the boundary of the 4-simplex thus
are SU(2) elements.

gev are assigned to the edges of the bulk dual graph thus are
SL(2,C) elements.

Z =
∫
SU(2) dhvf

∏
f δ(hvf hv′f ...)Av(hvf )

Av(hvf ) =
∑

{jf }
∫
SL(2,C) dgev

∏
f (2jf + 1)Trjf [ge′vgvehvf ]
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The transition amplitude

Av(hvf ) =
∑

{jf }
∫
SL(2,C) dgev

∏
f (2jf + 1)Trjf [ge′vgvehvf ]

The trace in the vertex amplitude seems to involve both SU(2) and
SL(2,C) elements. Odd, but easy to fix

Av(hvf ) =
∑

jf

∫
SL(2,C) dgev

∏
f (2jf + 1)Trjf [Y

†
γ ge′vgveYγhvf ]

Trj [Y
†
γ gYγh] =

∑
m ⟨j ,m|Y †

γ gYγh |j ,m⟩ =∑
m

∑
n ⟨j ,m|Y †

γ gYγ |j , n⟩ ⟨j , n| h |j ,m⟩ =∑m,n D
(γj ,j)
jm,jn (g)D

(j)
nm(h)
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The transition amplitude

WC(hℓ) = N ∫
SU(2) dhvf

∏
f δ(hvf hv′f ...)

∏
v Av(hvf ): function of the

variables on the boundary.

The final transition amplitude is abstractly defined as the limit in the
most possible refined truncation

UV finite.

There can be IR divergences but the version of the theory with
cosmological constant is proved to be IR finite.
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Semiclassical states

M, g

W ∼
∫
q,K

D[g]e
i
h̄SHE [g]

q,K

In the boundary we have a semiclassical (also known as coherent) state of
geometry. Semiclassical states are quantum states that resemble classical
states as much as possible.
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Semiclassical states

In standard QM a semiclassical state (Gaussian wavepacket) has the form
Ψt

x0,p0(x) ∝
∫
dpe−(p−p0)2t+ipx0ψ(p, x), where ψ(p, x) = e−ipx . It is

peaked in momentum p0 and position x0.

In LQG a semiclassical state has
the form Ψt

Γ,Hℓ
(hℓ) ∝

∑
{jℓ}
∏

ℓ djℓ e
−(jℓ−ωℓ)

2t+ iγζℓjℓ ψΓ,jℓ,n⃗s(ℓ),n⃗t(ℓ)(hℓ),

where ψΓ,jℓ,n⃗s(ℓ),n⃗t(ℓ)(hℓ) =
∑

ms ,mt
D jℓ
jℓmt

(n†t(ℓ)) D
jℓ
mtms (hℓ) D

jℓ
ms jℓ

(ns(ℓ))

t =
(
l2p
A

)n
with n ∈ [0, 2] controls the spread of the Gaussians.

Since the area A is macroscopic t ≪ 1.

ωℓ :=
ηℓ−t
2t ≈ ηℓ

2t where ηℓ ∈ R+ is related to the area dual to the link
ℓ and is taken ≫ 1.

ζℓ ∈ [0, 4π) is the distributional extrinsic curvature.

nt(ℓ) , ns(ℓ) nodes of the source and the tagret of the link ℓ.
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The transition amplitude again

An equivalent and useful form of the transition amplitude is
WC(hℓ) = N ∫

SL(2,C) (
∏

v dgve)
(∏

f∈B Af

) (∏
f∈Γ Af(hℓ)

)
where Af are the

internal (bulk) faces and Af(hℓ) are boundary faces.

(a) Bulk face (b) Boundary face
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Bulk face amplitude

Af :=
∑

jf
djf Trjf

[∏
v∈f Y

†g−1
ve gve′Y

]
:=∑

jf
djf Trjf

[
Y †gevgve′YY

†ge′v′gv′e′′Y . . .Y †ge(n)v(n)gv(n)eY
]
for f ∈ B

where Trjf
[∏

v∈f Y
†g−1

ve gve′Y
]
=∑

{me}D
(γjf,jf)
jfmejfme′

(gevgve′)D
(γjf,jf)
jfme′ jfme′′

(ge′v′gv′e′′) . . .D
(γjf,jf)
jfme(n)

jfme
(ge(n)v(n)gv(n)e)
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Bulk face amplitude

To calculate this we are going to work in the principal series
representation

. A representation space of the j-irrep of SU(2), V j , is
spanned by the homogeneous complex polynomials of degree 2j .

P j
m(z) =

[
(2j)!

(j+m)!(j−m)!

] 1
2
z j+m
0 z j−m

1 , m ∈ {−j , ..., j}, z = (z0, z1)
⊺ ∈

C2. By acting on P with the Y map we obtain the principal series
representation of SL(2,C)

ϕ
(γj ,j)
m (z) := Y ▷ P j

m(z) =
√

dj
π ⟨z|z⟩iγj−j−1 P j

m(z).Then,

D
(γj ,j)
j m j m′(g) ≡ ⟨jm|Y †gY |jm′⟩ =

∫
CP1 dΩϕ

(γj ,j)
m (z)ϕ

(γj ,j)
m′ (g⊺z) where

dΩ = i
2(z

0dz1 − z1dz0) ∧ (z0dz1 − z1dz0) is a homogeneous and
SL(2,C) invariant measure on C2\{0} ≃ CP1
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Bulk face amplitude

To calculate this we are going to work in the principal series
representation. A representation space of the j-irrep of SU(2), V j , is
spanned by the homogeneous complex polynomials of degree 2j .

P j
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(2j)!

(j+m)!(j−m)!

] 1
2
z j+m
0 z j−m
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⊺ ∈
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Bulk face amplitude

The face amplitude takes the form

Af =
∑

jf
djf
∏

e∈f
djf
π

∫
CP1 dΩ̃vef e

jfSf[gve,zvf] ∀f ∈ B where

Sf[gve, zvf] := log
⟨Zv′e′f|Zve′f⟩

2

⟨Zvef|Zvef⟩⟨Zve′f|Zve′f⟩
+ iγ log

⟨Zve′f|Zve′f⟩
⟨Zvef|Zvef⟩ ,

Zvef := g †
ve zvf , Zve′f := g †

ve′ zvf
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Boundary face amplitude

Af(hℓ) :=∑
jf
djf Trjf

[
Y †g−1

vn′ gve′Y
(∏

v∈f Y
†g−1

ve′ gveY
)
Y †g−1

v(n)e(n)
gv(n)nYh

−1
ℓ

]
for

f ∈ Γ

. By the same technique of the principal series representation we
obtain.
Trjf

[
Y †g−1

vn′ gve′Y
(∏

v∈f Y
†g−1

ve′ gveY
)
Y †g−1

v(n)e(n)
gv(n)nYh

−1
ℓ

]
=

(∏
e∈f

djf
π

∫
CP1 dΩ̃vef

)(d3
jf

π3

∫
(CP1)3 dΩ̃nℓn′

)
ejfSf[gve,zvf]+jfBℓ[gvn,hℓ,zℓ], where

Bℓ[gvn, hℓ, zℓ] :=

log
⟨Zvn′f|zℓ⟩

2

⟨Zvn′f|Zvn′f⟩⟨zℓ|zℓ⟩
+ log

⟨h⊺ℓ zℓ|Zv(n)nf
⟩2

⟨zℓ|zℓ⟩⟨Zv(n)nf
|Z

v(n)nf
⟩ + iγ log

⟨Z
v(n)nf

|Z
v(n)nf

⟩
⟨Zvn′f|Zvn′f⟩
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The full amplitude

WC(hℓ) = N
∑

{jf}

∫

SL(2,C)

(∏

v

dgve

)(∏

f∈C
djf
∏

e∈f

djf
π

∫

CP1
dΩ̃vef

)
×

×
(∏

ℓ∈Γ

d3
jf

π3

∫

(CP1)3
dΩ̃nℓn′

)
e
∑

f∈C jfSf+
∑

ℓ∈Γ jfBℓ

(1)
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The homomorphic amplitude

We contract the full amplitude with the coherent states to impose the
semiclassicality of the geometry

W tℓ
C (Hℓ) :=

〈
WC Ψtℓ

Γ,Hℓ

〉
:=
∫
SU(2)L

(∏
ℓ∈Γ dhℓ

)
WC(hℓ)Ψ

tℓ
Γ,Hℓ

(hℓ)

Charalampos Theofilis Geometry Transition in Covariant LQG 47 / 58



Approximations

We are going to consider tree-level two-complexes T : there are no
faces which lie completely in the bulk. W t

T (Hℓ) =

N ∑
{jℓ}∈Dk

ω
µj e

−t
∑

ℓ(jℓ−ωℓ)
2
eiγ

∑
ℓ ζℓjℓ

∫
Dg,z

dµg ,Ω e
∑

ℓ jℓFℓ(g ,z;nℓ(n))

Fℓ[gve, znℓ;nn(ℓ)] := Sℓ[gve, znℓ] + log
⟨ns(ℓ)|znℓ⟩2⟨zn′ℓ|nt(ℓ)⟩2

⟨znℓ|znℓ⟩2⟨zn′ℓ|zn′ℓ⟩
2 +

log
⟨Zvn′ℓ|zn′ℓ⟩2⟨znℓ|Zv(n)nℓ

⟩2

⟨Zvn′ℓ|Zvn′ℓ⟩⟨Zv(n)nℓ
|Z

v(n)nℓ
⟩ + iγ log

⟨Z
v(n)nℓ

|Z
v(n)nℓ

⟩
⟨Zvn′ℓ|Zvn′ℓ⟩

µj :=
(∏

f∈Γ
∏

e∈f djℓ
) (∏

ℓ∈Γ d
4
jℓ

)

∫
Dg,z

dµg ,Ω :=
∫
SL(2,C) (

∏
v dgve)

(∏
f∈Γ
∏

e∈f
∫
CP1 dΩ̃vef

)(∏
ℓ∈Γ
∫
(CP1)4 dΩ̃sℓt

)

Dk
ω: an appropriate domain that satisfies the triangular inequalities

between the spins

jℓ = λaℓ + sℓ with ωℓ ≡ λaℓ
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Tree-level holomorphic amplitude

W t
Γ (Hℓ) = N ∫

Dg,z
µjdµg ,ΩU(g , z; t,Hℓ) e

λΣ(aℓ,g ,z;nℓ(n)) where

U(g , z; t,Hℓ) :=
∏

ℓ

(∑
sℓ∈Dk

ω
e−s2ℓ t+(iγζℓ+Fℓ(g ,z;nℓ(n)))sℓ

)

Σ(aℓ, g , z;nℓ(n)) :=
∑

ℓ(aℓFℓ(g , z;nℓ(n)) + iγζℓaℓ)

.
Stationary phase theorem:
W t

T (Hℓ) =

N
∑

c µjλ
Mc

CHc(aℓ,nℓ(n))U(gc , zc ; t,Hl) e
λΣ(aℓ,g ,z;nℓ(n))

(
1 +O(λ−1)

)

c: the critical points. Each critical point comes with a 2N degeneracy,
corresponding to the different configurations for the orientation s(v)
where s(v) takes the values ±1 on each vertex of C
Hc : the Hessian of Σ which we are going to ignore
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Evaluation at critical points

Fℓ(g , z;nℓ(n)) = −iγ ϕℓ(sc(v), aℓ,nℓ(n)), where ϕℓ(sc(v), aℓ,nℓ(n)) is the
Palatini deficit angle which also depends on s(v) and reduces to the
usual Regge deficit angle when s(v) is uniform, i.e. it is either +1 or
−1 for all vertices of C
U(gc , zc ; t,Hℓ) =

∏
ℓ

(∑
sℓ∈Dk

ω
e−s2ℓ t+iγ(ζℓ−ϕℓ(g ,z;nℓ(n)))sℓ

)

The sum is dominated by the exponential damping factor exp
(
−s2ℓ t

)
.

It can reasonably be expected that due to this exponential damping
the sum converges very fast and that it is therefore a good
approximation to remove the cut-off k and sum sℓ from −∞ to ∞ for
all ℓ ∈ Γ∑∞

sℓ=−∞ e−s2ℓ t+iγ(ζℓ−ϕℓ)sℓ
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Evaluation at critical points

∑∞
sℓ=−∞ e−s2ℓ t+iγ(ζℓ−ϕℓ)sℓ =

2
√

π
t e

− γ2

4t
(ζℓ−ϕℓ)

2
ϑ3

(
− iπγ(ζℓ−ϕℓ)

t , e−
4π2

t

)

ϑ3(u, q) := 1 + 2
∑∞

n=1 q
n2 cos(2nu) :third Jacobi theta function

U(gc , zc ; t,Hℓ) ≈
∏

ℓ 2
√

π
t e

− γ2

4t
(ζℓ−ϕℓ)

2
ϑ3

(
− iπγ(ζℓ−ϕℓ)

t , e−
4π2

t

)
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Final estimation of the transition amplitude

U(gc , zc ; t,Hℓ) ≈
∏

ℓ 2
√

π
t e

− γ2

4t
(ζℓ−ϕℓ)

2
ϑ3

(
− iπγ(ζℓ−ϕℓ)

t , e−
4π2

t

)

If γ ≤ 1
2 (as it seems to be from the LQG derived BH entropy

formula) then θ3 ≈ 1

U(gc , zc ; t,Hℓ) ≈
∏

ℓ 2
√

π
t e

− γ2

4t
(ζℓ−ϕℓ)

2

By substituting everything to the transition amplitude to obtain the
estimation W t

T (Hℓ) ≈
N ∑

{s(v)} λ
Nµ(a)

∏
ℓ e

−γ2

4t
(ζℓ−ϕℓ)

2+iγ(ζℓ−ϕℓ)ωℓ
(
1 +O(λ−1)

)
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Applications

Black Hole to White Hole transition p ∼ e
− m2

m2
pl

Bouncing Cosmology?
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Future work

What happens when we include bulk faces?
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Thank you!

Thank you!
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The sign

SEH [g ] =
∫
d4x

√
−det(g)R

ST [e] =
∫
⋆(e ∧ e) ∧ F

SEH [e] =
∫
d4x |det(e)|R[e]

ST [e] =
∫
d4xdet(e)R[e]

Charalampos Theofilis Geometry Transition in Covariant LQG 56 / 58



The sign

SEH [g ] =
∫
d4x

√
−det(g)R

ST [e] =
∫
⋆(e ∧ e) ∧ F

SEH [e] =
∫
d4x |det(e)|R[e]

ST [e] =
∫
d4xdet(e)R[e]

Charalampos Theofilis Geometry Transition in Covariant LQG 56 / 58



The classical limit

Av ∼ ce iSRegge + c ′e−iSRegge
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Why there is no critical parameter

In the path integral of harmonic oscillator if we consider q = q(t) then

SN(qn) =
∑N

n=1m
(qn+1−qn)2

2 − Ω2

2 q2n. We then take the limit N → ∞ and
Ω → 0.

If we consider t = t(τ) and q = q(τ) then

SN =
∑N

n=1
m
2
(qn+1−qn)2

(tn+1−tn)
− (tn+1 − tn)

1
2ω

2q2n.We only have to take
N → ∞, there is no critical parameter!
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