

中國科學院為能物招加完備 Institute of High Energy Physics Chinese Academy of Sciences

RECENT RESULTS FROM ATLAS

Xuai Zhuang (IHEP, Beijing, China) On behalf of ATLAS Collaboration

Workshop on the Standard Model and Beyond Corfu, Aug. 27 - Sep. 7, 2023

Corfu Summer Institute Hellenic School and Warkshops on Elementary Particle Physics and Gravity

ATLAS experiments @LHC

ATLAS collected an integrated luminosity good for all physics of ~139 fb⁻¹ (66 fb⁻¹) at \sqrt{s} = 13 (13.6) TeV in Run2 (Run3).

ATLAS has released ~1200 papers, ~260 Full Run 2 and already few Run 3 results

Will highlight some recent Run2 and Run3 results in this talk.

Excellent detector performance

- Thanks excellent understanding of detector performance, and development of rec. and ID algorithms
- Precision object performance: el-ID<0.5% (pt~4-250GeV), mu-ID<0.1% (pt<450 GeV), JES unc. ~1% (pt~100-1000GeV)

After higgs discovery in both ATLAS and CMS in 2012, the main physics purpose of LHC:

- **Higgs boson precision measurements**
- **BSM searches**
- SM precision measurements

Rainer Mankel's talk

Recent physics results

Higgs boson precision measurements

Higgs properties

0

Results are consistent with the SM!

- Higgs mass: 0.09% uncert.
 ATLAS 4l+γγ Run1+2: 125.11 ± 0.11 GeV
 - **Higgs width:** ATLAS 4l+2l2v Run2: $\Gamma_{H} = 4.5^{+3.3}_{-2.5}$ MeV
- **CP: even, consistent with SM pred.** Pure CP odd excluded for H-tau and H-top interactions
- Couplings: agree with SM predictions Higgs strength: μ= 1.05+0.06
 5-12

5-12% uncert.

Nature 607, 52-59 (2022)

Higgs production and decays

Decay mode

 $H \rightarrow WW^*$

 $H \rightarrow b\bar{b}$

H
ightarrow au au

 $H \rightarrow c \bar{c}$

 $H \rightarrow ZZ^*$

 $H
ightarrow \gamma \gamma$

 $H
ightarrow Z\gamma$

 $H \rightarrow \mu \mu$

 $H
ightarrow \gamma^* \gamma$

Br.

57.7%

21.5%

6.3%

2.9%

2.6%

0.23%

0.15%

0.02%

0.01%

- All main production processes and decay channels established: move to precision measurement
 - → Decays to **bosons** and **third-generation fermions**
- Searches for decays to second-generation fermions and other rare decays start sensitive
 - \rightarrow Evidence for H $\rightarrow \mu\mu$ and H $\rightarrow ll\gamma$
 - \rightarrow First evidence for $H \rightarrow Z\gamma$
- Searches for HH production getting closer to SM predictions → constraints on Higgs potential

ATLAS+CMS: First evidence for H\rightarrowZ\gamma N_{ew}

- *H*→ *Z*γ decay has small
 BR; sensitive to many
 BSM scenarios with BR to diff from SM
- Using $Z \rightarrow ee/\mu\mu$ (mll>50 GeV) + isolated photon, b/g from DY+ γ , DY+jets
- First evidence for the $H \rightarrow Z\gamma$ process is found with 3.4 σ significance by ATLAS and CMS comb.
- Measured BR= (3.4 ± 1.1) $\times 10^{-3}$, which is within 1.9 σ of the SM.

Comprehensive Higgs EFT/BSM study New!

EFT and BSM interpretation using 10 year's Higgs anniversary Nature 607, 52-59 (2022). In addition uses differential x-sec combined results for $H \rightarrow \gamma\gamma$ (JHEP 08 (2022) 027) and ZZ decays (EPJC 80 (2020) 942).

Relative sign of W/Z coupling

- **VBF WH process is sensitive to** $\lambda_{WZ}(=\kappa_W/\kappa_Z)$ sign
 - $\sigma(VBF,WH)$ enhanced by a factor of ~6 for negative λ_{WZ}
- Positive λ_{WZ} in the SM (custodial symmetry)
- Search BSM through negative λ_{WZ}

Negative λ_{WZ} excluded >8 σ \rightarrow Consistent with SM

HH production Phys. Lett. B 843 (2023) 137745

The potential energy of Higgs field:

$$V(\Phi) = \frac{1}{2}m_H^2\phi^2 + \sqrt{\frac{\lambda}{2}}m_H\phi^3 + \frac{1}{4}\lambda\phi^4$$

- The H self-coupling determines the shape of the potential, and has significant impact on the nature of EW symmetry breaking and the vacuum stability of the Universe
- It can be measured via Higgs pair prod.
 - 10³ times smaller than single H process

The upper limit of signal strength is less than 3 times the SM prediction

HH+H combination

k_λ enters at loop level for H production affecting σ and kinematics

The statistical combination of HH and H searches achieves the most stringent constraint on κ_λ $-0.4 < \kappa_{\lambda} < 6.3$

Phys. Lett. B 843 (2023) 137745

Nen

Higgs Mass

New !

Higgs Width

arXiv:2304.01532

Nev

- Standard Model predicts Γ_H~ 4 MeV
- Direct measurement strongly limited by experimental resolution

Assuming equal on-shell and offshell couplings: $\begin{array}{l} \text{JHEP 1208 (2012) 116,}\\ \text{PRD88 (2013) 054024} \end{array}$ $\sigma_{\text{gg}\rightarrow\text{H}\rightarrow\text{ZZ}^*}^{\text{on -shell}} \sim \underbrace{g_{\text{ggH}}^2 g_{\text{HZZ}}^2}_{m_{\text{H}}\Gamma_{\text{H}}} \qquad \underbrace{\mu_{\text{off-shell}}}_{\mu_{\text{on-shell}}} = \frac{\Gamma}{\Gamma_{\text{SM}}}$

- Indirect measurement from the onshell/off-shell Higgs boson production
- Measured in the H→ZZ(4l+2l2v) decay channels

- 3.3 σ obs (2.2 σ exp) exclusion of $\mu_{off-shell} = 0$
- μ_{off-shell}=1.1^{+0.7}-0.6

Recent physics results

- SM fits the experimental data very well at EW scale, while has problem in Planck scale.
 - Naturalness and "hierarchy" problem
 - Unification of gauge coupling
 - Dark Matter

New Physics beyond the SM

- SUSY establishes a symmetry between fermions (matter) and bosons (forces)
 - Unification
 - Solve hierarchy problem without "fine tuning"
 - Provide Dark Matter candidate

Otilia Anamaria Ducu's talk

OUR WORLD...

NEW WORLD?

Gluino, squark searches

- Has large xSec

New !

60F

40

20

0

150

200

250

350

400

450

 $m(\tilde{\chi}_{1}^{\pm})$ [GeV]

500

300

3L off-shell

3L on-shell arXiv:2106.01676

All Hadronic arXiv:2108.07586 2L2J

arXiv:2106.01676

arXiv:2204.13072 1L ATLAS-CONF-2022-059

20

between the individual analyses

ATLAS-CONF-2023-046

Electroweakinos via Wh/Zh/hh decay

New!

Sleptons

ATL-PHYS-PUB-2023-005

March 2023

Limits maybe different in case of cascade decays of the sleptons into lighter electroweakino states

Stau search

p

Final states with taus are challenging but interesting:

- Dark matter probe and light sleptons could play role in neutralino coannihilation in Early Universe
- Improved TauID based on Recurrent NN
- **BDT** based on kinematic variables used to signal signal candidates

First exclusion for stau_R only at LHC (up to 330 GeV) !

ATL-PHYS-PUB-2023-005

ATLAS SUSY Searches* - 95% CL Lower Limits March 2023

ATLAS Preliminary $\sqrt{s} = 13$ TeV

	Model	Signatu	r e ∫⊥dt	[fb ⁻¹	Mass limit			Reference
ñ	$\tilde{q}\tilde{q},\tilde{q}{\rightarrow}q\tilde{\chi}^0_1$	$0 e, \mu$ 2-6 jets mono-jet 1-3 jets	$E_T^{ m miss}$ 13 $E_T^{ m miss}$ 13	39 39	\tilde{q} [1×, 8× Degen.] \tilde{q} [8× Degen.]	1.0 1.85	m($\tilde{\chi}_1^0$)<400 GeV m(\tilde{q})-m($\tilde{\chi}_1^0$)=5 GeV	2010.14293 2102.10874
usive Searche	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$	0 <i>e</i> ,μ 2-6 jets	E_T^{miss} 13	39	ğ ğ Fort	dden 1.15-1.95	2.3 $m(\tilde{\chi}_1^0)=0 \text{ GeV} \\ m(\tilde{\chi}_1^0)=1000 \text{ GeV}$	2010.14293 2010.14293
	$\begin{array}{l} \tilde{g}\tilde{g}, \ \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}^{0}_{1} \\ \tilde{g}\tilde{g}, \ \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}^{0}_{1} \\ \tilde{g}\tilde{g}, \ \tilde{g} \rightarrow qqWZ\tilde{\chi}^{0}_{1} \end{array}$	1 e,μ 2-6 jets $ee,\mu\mu$ 2 jets 0 e,μ 7-11 jets SS e,μ 6 jets	$E_T^{\text{miss}} = 13$ $E_T^{\text{miss}} = 13$ $E_T^{\text{miss}} = 13$	39 39 39	ĝ č ĝ	2 2 1.97	2 $m(\tilde{x}_1^0) < 600 \text{ GeV}$ 2 $m(\tilde{x}_1^0) < 700 \text{ GeV}$ $m(\tilde{x}_1^0) < 700 \text{ GeV}$ $m(\tilde{x}_1^0) < 600 \text{ GeV}$ $m(\tilde{x}_1^0) = 700 \text{ GeV}$	2101.01629 2204.13072 2008.06032 1909.08457
Inc	$\tilde{g}\tilde{g}, \; \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_1^0$	$\begin{array}{ccc} 0-1 \ e, \mu & 3 \ b \\ \mathrm{SS} \ e, \mu & 6 \ \mathrm{jets} \end{array}$	E_T^{miss} 13	39 39 39	o 56 56	1.25	2.45 $m(\tilde{\xi}_1^0) < 500 \text{ GeV}$ $m(\tilde{g}) - m(\tilde{\chi}_1^0) = 300 \text{ GeV}$	2211.08028 1909.08457
	$ ilde{b}_1 ilde{b}_1$	0 <i>e</i> , μ 2 <i>b</i>	$E_T^{\rm miss}$ 13	39	$ \tilde{b}_1 \\ \tilde{b}_1 \\ 0.68 $	1.255	m($ ilde{\chi}_1^0$)<400 GeV 10 GeV<∆m($ ilde{ heta}_1, ilde{\chi}_1^0$)<20 GeV	2101.12527 2101.12527
arks tion	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	$\begin{array}{ccc} 0 \ e, \mu & 6 \ b \\ 2 \ \tau & 2 \ b \end{array}$	$E_T^{ m miss}$ 13 $E_T^{ m miss}$ 13	39 39	δ ₁ Forbidden 0.13-0.8	0.23-1.35	$ \Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, \ m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV} \\ \Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, \ m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV} $	1908.03122 2103.08189
3 rd gen. squa direct produc	$ \begin{split} \tilde{\iota}_1 \tilde{\iota}_1, \tilde{\iota}_1 \rightarrow t \tilde{\chi}_1^0 \\ \tilde{\iota}_1 \tilde{\iota}_1, \tilde{\iota}_1 \rightarrow W b \tilde{\chi}_1^0 \\ \tilde{\iota}_1 \tilde{\iota}_1, \tilde{\iota}_1 \rightarrow \tilde{\tau}_1 b \nu, \tilde{\tau}_1 \rightarrow \tau \tilde{G} \\ \tilde{\iota}_1 \tilde{\iota}_1, \tilde{\iota}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0 \end{split} $	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{ccc} E_T^{\rm miss} & 13\\ E_T^{\rm miss} & 13\\ E_T^{\rm miss} & 13\\ E_T^{\rm miss} & 36\\ E_T^{\rm miss} & 15\end{array}$	39 39 39 5.1	Ĩı Forbidden 0.65 Ĩı Forbidden Forbidden Ĩ Forbidden 80	1.25	$m(\tilde{x}_{1}^{0})=1 \text{ GeV}$ $m(\tilde{x}_{1}^{0})=500 \text{ GeV}$ $m(\tilde{\tau}_{1})=800 \text{ GeV}$ $m(\tilde{\tau}_{1})=800 \text{ GeV}$ $m(\tilde{x}_{1}^{0})=0 \text{ GeV}$	2004.14060, 2012.03799 2012.03799 2108.07665 1805.01649 2102.1824
ωD	$\tilde{i}_1 \tilde{i}_1, \tilde{i}_1 \rightarrow t \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h \tilde{\chi}_1^0$ $\tilde{i}_2 \tilde{i}_2, \tilde{i}_2 \rightarrow \tilde{i}_1 + Z$	$1-2 e, \mu$ $1-4 b$ $3 e, \mu$ $1 b$	E_T 13 E_T^{miss} 13 E_T^{miss} 13	39 39 39	1 0.35 ĩ ₁ ĩ ₂ Forbidden	.067-1.18	$m(\tilde{r}_1,c)$ - $m(\tilde{x}_1)$ =5 GeV $m(\tilde{\chi}_2^0)$ =500 GeV $m(\tilde{\chi}_1^0)$ =360 GeV, $m(\tilde{r}_1)$ - $m(\tilde{\chi}_1^0)$ = 40 GeV	2006.05880 2006.05880
EW direct	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	$\begin{array}{ll} \text{Multiple }\ell/\text{jets}\\ ee,\mu\mu &\geq 1 \text{ jet} \end{array}$	$E_T^{ m miss}$ 13 $E_T^{ m miss}$ 13	39 39	$egin{array}{ccc} & \hat{\chi}_{1}^{\pm}/\hat{\chi}_{0}^{0} & & & \\ & \hat{\chi}_{1}^{\pm}/\hat{\chi}_{0}^{2} & & & 0.205 \end{array}$.96	$m(\tilde{\chi}_1^0)=0, \text{ wino-bino}$ $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)=5 \text{ GeV}, \text{ wino-bino}$	2106.01676, 2108.07586 1911.12606
	$ \begin{split} \tilde{\chi}_1^{\dagger} \tilde{\chi}_1^{\mp} & \text{via } WW \\ \tilde{\chi}_1^{\dagger} \tilde{\chi}_2^0 & \text{via } Wh \\ \tilde{\chi}_1^{\dagger} \tilde{\chi}_1^{\dagger} & \text{via } \tilde{\ell}_L/\tilde{\nu} \\ \tilde{\tau}_{\tau}, \tilde{\tau} \to \tau \tilde{\chi}_1^0 \\ \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \to \ell \tilde{\chi}_1^0 \end{split} $	$\begin{array}{l} 2 \ e, \mu \\ \text{Multiple } \ell/\text{jets} \\ 2 \ e, \mu \\ 2 \ \tau \\ 2 \ e, \mu \\ 0 \ \text{jets} \\ ee, \mu\mu \\ \geq 1 \ \text{jets} \end{array}$	$\begin{array}{ccc} E_T^{\rm miss} & 13\\ E_T^{\rm miss} & 13\end{array}$	39 39 39 39 39 39 39	$ \begin{array}{cccc} \tilde{\chi}_{1}^{+} & 0.42 \\ \tilde{\chi}_{1}^{+} / \tilde{\chi}_{2}^{0} & \textit{Forbidden} \\ \tilde{\chi}_{1}^{+} \\ \tilde{\tau} & [\tilde{\tau}_{L}, \tilde{\tau}_{R,L}] & 0.16\text{-}0.3 & 0.12\text{-}0.39 \\ \tilde{\ell} & 0.256 & 0.7 \\ \end{array} $	1.06 1.0	$\begin{split} & m(\tilde{x}_{1}^{0}) \!=\! 0, \text{ wino-bino} \\ & m(\tilde{x}_{1}^{0}) \!=\! 70 \text{ GeV, wino-bino} \\ & m(\tilde{\ell}, \tilde{\nu}) \!=\! 0.5 (m(\tilde{x}_{1}^{+}) \!+\! m(\tilde{x}_{1}^{0})) \\ & m(\tilde{\ell}^{1}, \tilde{\nu}) \!=\! 0 \\ & m(\tilde{\ell}^{1}) \!=\! 0 \\ & m(\tilde{\ell}^{0}) \!=\! 10 \text{ GeV} \end{split}$	1908.08215 2004.10894, 2108.07586 1908.08215 1911.06660 1908.08215 1911.12606
	ĤĤ, Ĥ→hĜ/ZĜ	$\begin{array}{llllllllllllllllllllllllllllllllllll$	E_T^{miss} 36 E_T^{miss} 13 E_T^{miss} 13 E_T^{miss} 13 E_T^{miss} 13	5.1 39 39 39 39	H 0.13-0.23 0.29-0.8 H 0.55 0.45-0 H 0.77 0.77	3 93	$\begin{array}{c} BR(\tilde{\chi}^0_1 \to h\tilde{\mathcal{C}}) = 1\\ BR(\tilde{\chi}^0_1 \to Z\tilde{\mathcal{C}}) = 1\\ BR(\tilde{\chi}^0_1 \to Z\tilde{\mathcal{C}}) = 1\\ BR(\tilde{\chi}^0_1 \to Z\tilde{\mathcal{C}}) = BR(\tilde{\chi}^0_1 \to h\tilde{\mathcal{C}}) = 0.5\end{array}$	1806.04030 2103.11684 2108.07586 2204.13072
J	$Direct \tilde{\chi}_1^* \tilde{\chi}_1^- \text{ prod., long-lived } \tilde{\chi}_1^\pm$	Disapp. trk 1 jet	E_T^{miss} 13	39	$ \tilde{\chi}^{\pm}_{1} $ 0.66 $ \tilde{\chi}^{\pm}_{1} $ 0.21		Pure Wino Pure higgsino	2201.02472 2201.02472
Long-live particles	Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$ $\tilde{\ell}\tilde{\ell}, \tilde{\ell} \rightarrow \ell \tilde{G}$	pixel dE/dx pixel dE/dx Displ. lep pixel dE/dx	$E_T^{ m miss}$ 13 $E_T^{ m miss}$ 13 $E_T^{ m miss}$ 13 $E_T^{ m miss}$ 13 $E_T^{ m miss}$ 13	39 39 39 39 39	$\begin{array}{c} \tilde{g} \\ \tilde{g} & [\tau(\tilde{g}) = 10 \text{ ns}] \\ \tilde{e}, \tilde{\mu} \\ \tilde{\tau} \\ \tilde{\tau} \\ \tilde{\tau} \\ 0.36 \end{array} \begin{array}{c} 0.7 \\ 0.36 \end{array}$	2.05 2	.2 $m(\tilde{\chi}_1^0)=100 \text{ GeV}$ $\tau(\tilde{\ell})=0.1 \text{ ns}$ $\tau(\tilde{\ell})=0.1 \text{ ns}$ $\tau(\tilde{\ell})=10 \text{ ns}$	2205.06013 2205.06013 2011.07812 2011.07812 2205.06013
RPV	$\begin{split} \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{+} / \tilde{\chi}_{1}^{0} , \tilde{\chi}_{1}^{+} \to \mathcal{Z}\ell \to \ell\ell\ell\ell \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{+} / \tilde{\chi}_{2}^{0} \to WW \mathcal{Z}\ell\ell\ell\ell\nu\nu\nu \\ \tilde{g}s, \tilde{g} \to qq\tilde{\chi}_{1}^{0} , \tilde{\chi}_{1}^{0} \to qqq \\ \tilde{t}i, \tilde{t} \to t\tilde{\chi}_{1}^{0} , \tilde{\chi}_{1}^{0} \to tbs \\ \tilde{t}i, \tilde{t} \to b\tilde{\chi}_{1}^{+} , \tilde{\chi}_{1}^{+} \to bbs \\ \tilde{t}i, \tilde{t}_{1}, \tilde{t}_{1} \to bs \\ \tilde{t}i, \tilde{t}_{1}, \tilde{t}_{1} \to q\ell \\ \tilde{\chi}_{1}^{+} / \tilde{\chi}_{0}^{0} / \tilde{\chi}_{0}^{0} , \tilde{\chi}_{0}^{0} \to tbs, \tilde{\chi}_{1}^{+} \to bbs \end{split}$	$\begin{array}{cccc} 3 \ e, \mu & & \\ 4 \ e, \mu & & 0 \ \text{jets} & \\ 4 \ -5 \ \text{large je} & \\ & & & \\$	E_T^{miss} 13 E_T^{miss} 13 36 36 36 36 36 36 36 36 36 3	39 39 5.1 5.1 5.7 5.7 5.1 36 39	$ \begin{split} \tilde{\chi}_{1}^{*}/\tilde{\chi}_{0}^{0} & [\text{BR}(Zr)=1, \text{BR}(Ze)=1] & \textbf{0.625} \\ \tilde{\chi}_{1}^{*}/\tilde{\chi}_{2}^{0} & [\lambda_{23}\neq 0,\lambda_{12k}\neq 0] \\ \tilde{g} & [m(\tilde{\chi}_{12}^{0})=200 \text{ GeV}, 1100 \text{ GeV}] \\ \tilde{f} & [m(\tilde{\chi}_{12}^{0})=200 \text{ GeV}, 1100 \text{ GeV}] \\ \tilde{f} & [\chi_{232}^{0}=2e\cdot4, 1e\cdot2] & \textbf{0.55} \\ \tilde{f} & Forbidden \\ \tilde{f}_{1} & [qg, bs] & \textbf{0.42} & \textbf{0.61} \\ \tilde{f}_{1} & [1e\cdot10<\lambda_{23k}'<1e\cdot8, 3e\cdot10<\lambda_{23k}'<3e\cdot9] \\ \tilde{\chi}_{2}^{0} & \textbf{0.2-0.32} \end{split} $	1.05 .95 1.3 1.05 .95 0.4-1.45 1.0 1.6	Pure Wino $m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}$ Large $\lambda'_{1/2}$ $m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}$, bino-like $m(\tilde{\chi}_{1}^{+})=500 \text{ GeV}$ $BR(\tilde{t}_{1} \rightarrow be/b\mu)>20\%$ $BR(\tilde{t}_{1} \rightarrow q\mu)=100\%$, $\cos\theta_{1}=1$ Pure hiadsino	2011.10543 2103.11684 1804.03568 ATLAS-CONF-2018-003 2010.01015 1710.07171 1710.05544 2003.11956 2106.09609
*Only	a selection of the available ma	iss limits on new state	Mass scale [TeV]					

phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

Exotics - various extensions of SM

Compositeness

• New forces/particles integrate out at low energies (SM)

Exotics: Jun Guo's talk; DM: Bisnupriya Sahu's talk

Heavy Higgs: Spyros Argyropoulos's talk

ATL-PHYS-PUB-2022-043

Extended Higgs sector – BSM Higgs

- $rac{}{}$ **2HDM+Singlet model**: Searches for H→aa→4γ
- ✓ Axion-like particles (ALPs) decaying into $\gamma\gamma$ is sensitive to various models that could explain (g-2) µ discrepancy

ATLAS-CONF-2023-040

- SM

SM

-SM

SM

Н

Pseudo-scalar a with top quarks

Light pseudoscalar $a \rightarrow \mu \mu$ is well-motivated

- Enables strong first-order EW phase transition
- Two searches: tta or tt with $t \rightarrow H^+b$, $H^+ \rightarrow Wa$

- Select eµµ or µµµ events with 12<m_{µµ} <77 GeV</p>
- Limits set on σ (pp \rightarrow tta) \times Br(a \rightarrow µµ)
- 0.5-3 fb, local 2.4σ excess at 27 GeV
- Also set limits on m_H and m_a
 120<m_{H+} <160 GeV
 15 GeV <m_a<72 GeV
- Statistically limited search → Run3 data

arXiv:2304.14247

Light Higgs search

2HDM and Axion-like particle models predict light Higgs

Two searches for yy resonance at low mass regions

Search for $\gamma\gamma$ resonances in the mass range [65, 110] GeV

First search for $\gamma\gamma$ resonances in the mass range [10, 70] GeV

Local (global) **3.1 (1.5)** σ @ m \approx 19.4 GeV

Local 1.7 σ @ m \approx 95.4 GeV

Heavy resonance X (\rightarrow HH, SH)

<u>2307.08567</u>

<u>2308.08521</u> **31**

Extended gauge sector – Resonance

arXiv:2307.01612

Signal width: 0%, 15%

32

Extended gauge sector – Resonance (VV)

Predicted by many BSM models:

• ED (Randall-Sundrum (RS) Graviton), Heavy Vector Triplet (HVT: W', Z'), DM mediator, ...

HVT model A: $g_F = -0.55$, $g_H = -0.56$

HVT model B: $g_F = 0.14$, $g_H = -2.9$ HVT model C: $g_F = 0$, $g_H = 1$

*small-radius (large-radius) jets are used in resolved (boosted) events

[†]with $\ell = \mu$, e

ATL-PHYS-PUB-2023-007

Excluded mass range [TeV]

Nev

New **Extended gauge sector – Leptoquarks (LQ)**

m_{u™} [GeV]

2308.02595

35 2304.09553

DM search at colliders

SUSY, simplified models, 2HDM+a, Higgs portal DM,...

Simplified models:

(mono-X: E_T^{miss}+X; mediator: resonance)

ATL-PHYS-PUB-2023-018

di-jet, bb, tt

DM search at colliders

SUSY, simplified models, 2HDM+a, Higgs portal DM,...

2HDM+a model:

The results w or w/o MET signatures also used to constrain a 2HDM with pseudo-scale mediator "a" model

A statistical combination of the three most sensitive searches is performed:

- MET+ $H \rightarrow bb$
- MET+leptonically decaying Z bosons
- charged Higgs bosons with top and b quarks

DM search at colliders

SUSY, simplified models, 2HDM+a, Higgs portal DM,...

Higgs portal DM:

Direct coupling H-DM will enhance H invisible decays (SM ~0.1%)

Phys. Lett. B 842 (2023) 137963

- The combination of results (all H prod.) are interpretated in Higgs portal DM
 - The limits are setting on the scattering cross section of WIMP and nucleons

Long-lived particles

Long lifetimes result from a few simple physical mechanisms:

- Small couplings (ex. RPV SUSY)
- Limited phase space: small mass splitting (ex. compressed SUSY, ...)
- Heavy intermediate states

.

Displaced dark photon

- Many BSM predict the existence of dark sectors that are weakly coupled to the SM
- The scenario where the SM and the dark sector interact through a Higgs portal to produce BSM states has been studied
- A search for displaced dark photons with masses between 0.1 GeV and 15 GeV
- Upper limits on the Higgs boson to dark photon BR as function of decay length

Highly ionizing particles (HIP)

- Dirac's theory of magnetic monopoles offers an explanation for the quantization of electric charge
- Search for magnetic monopoles and stable particles with high-electric-charges
 - First ATLAS limits on photon-fusion pair production mechanism
 - DY: Improves by factor 3 the previous xsection limits by ATLAS 36 fb⁻¹

ATLAS

Dirac Magnetic Monopoles

spin-1/2

spin-(

INTERNAL 13 TEV DY

5

Charge [g_]

TLAS 13 TeV P

ATLAS 13 TeV DY

3

2308.04835

- Targeting heavy, long-lived charged particles
- Using large E depositions in pixel detector by including calorimeter ToF info

ATLAS Heavy Particle Searches* - 95% CL Upper Exclusion Limits Status: July 2021

ATLAS Preliminary

 $\int \mathcal{L} dt = (3.6 - 139) \text{ fb}^{-1}$ \sqrt{s} = 8, 13 TeV

	Model	<i>ℓ</i> ,γ	Jets†	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	⁻¹]	Limit				Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow WV \rightarrow \ell\gamma qq$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu, \tau, \gamma \\ 2 \ \gamma \\ - \\ 2 \ \gamma \\ multi-channe \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$\begin{array}{c} 1-4j\\ -\\ 2j\\ \geq 3j\\ -\\ 2j/1J\\ \geq 1b,\geq 1J/;\\ \geq 2b,\geq 3j \end{array}$	Yes - - - Yes Yes Yes	139 36.7 37.0 3.6 139 36.1 139 36.1 36.1	М _D Ms Mth Mth Gкк mass Gкк mass Gкк mass gкк mass KK mass		2.3 2.0 Те 1.8 ТеV	11.2 Te 8.6 TeV 8.9 TeV 9.55 TeV 4.5 TeV TeV V 3.8 TeV	V $n = 2$ n = 3 HLZ NLO n = 6 $n = 6, M_D = 3$ TeV, rot BH $k/\overline{M}_{PI} = 0.1$ $k/\overline{M}_{PI} = 1.0$ f/m = 15% Tier (1,1), $\mathcal{B}(A^{(1.1)} \to tt) = 1$	2102.10874 1707.04147 1703.09127 1512.02586 2102.13405 1808.02380 2004.14636 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} {\rm SSM} \ Z' \to \ell\ell \\ {\rm SSM} \ Z' \to \tau\tau \\ {\rm Leptophobic} \ Z' \to bb \\ {\rm Leptophobic} \ Z' \to tt \\ {\rm SSM} \ W' \to \ell\nu \\ {\rm SSM} \ W' \to t\nu \\ {\rm SSM} \ W' \to \tau\nu \\ {\rm SSM} \ W' \to th \\ {\rm HVT} \ W' \to WZ \to \ell\nu qq \ {\rm model} \ {\rm B} \\ {\rm HVT} \ W' \to WH \ {\rm model} \ {\rm B} \\ {\rm LRSM} \ W_R \to \mu N_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ \tau \\ B \\ 0 \ e, \mu \\ 0 \ e, \mu \\ 2 \ \mu \end{array}$	- 2 b ≥1 b, ≥2 c - 2 j / 1 J 1-2 b ≥1 b, ≥2 c 1 J	– – Yes Yes J – Yes Yes J –	139 36.1 36.1 139 139 139 139 139 139 139 139 80	Z' mass Z' mass Z' mass W' mass W' mass W' mass W' mass Z' mass W' mass Z' mass W' mass		2.4; 2.1 T	5.1 TeV 2 TeV eV 4.1 TeV 6.0 TeV 5.0 TeV 4.4 TeV 4.3 TeV 3.2 TeV 5.0 TeV 5.0 TeV	$\label{eq:gv} \begin{split} & \Gamma/m = 1.2\% \\ & g_V = 3 \\ & g_V = 3 \\ & g_V = 3 \\ & m(N_R) = 0.5 \text{TeV}, g_L = g_R \end{split}$	1903.06248 1709.07242 1805.09299 2005.05138 1906.05609 ATLAS-CONF-2021-025 ATLAS-CONF-2021-043 2004.14636 ATLAS-CONF-2020-043 2007.05293 1904.12679
CI	Cl qqqq Cl ℓℓqq Cl eebs Cl μμbs Cl tttt	2 e, μ 2 e 2 μ ≥1 e,μ	2 j - 1 b ≥1 b, ≥1 j	- - - Yes	37.0 139 139 139 36.1	Λ Λ Λ Λ		1.8 TeV 2.0 Te 2.5	V 57 TeV	$\begin{array}{c c} \textbf{21.8 TeV} & \eta_{\bar{L}L} \\ \textbf{35.8 TeV} \\ \textbf{g}_{*} = 1 \\ C_{4t} = 4\pi \end{array} \qquad \eta_{L} \\ \end{array}$	1703.09127 2006.12946 2105.13847 2105.13847 1811.02305
MD	Axial-vector med. (Dirac DM) Pseudo-scalar med. (Dirac DM) Vector med. Z' -2HDM (Dirac DM Pseudo-scalar med. 2HDM+a Scalar reson. $\phi \rightarrow t\chi$ (Dirac DM	0 e, μ, τ, γ 0 e, μ, τ, γ Λ) 0 e, μ multi-channe) 0-1 e, μ	1 – 4 j 1 – 4 j 2 b el 1 b, 0-1 J	Yes Yes Yes Yes	139 139 139 139 36.1	m _{med} m _{med} m _{med} m _φ	376 GeV 560 Ge	2.1 T	eV 3.1 TeV 3.4 TeV	$\begin{array}{l} g_q = 0.25, \ g_{\chi} = 1, \ m(\chi) = 1 \ {\rm GeV} \\ g_q = 1, \ g_{\chi} = 1, \ m(\chi) = 1 \ {\rm GeV} \\ {\rm tan} \beta = 1, \ g_{\chi} = 0.8, \ m(\chi) = 10 \ {\rm GeV} \\ {\rm tan} \beta = 1, \ g_{\chi} = 0.8, \ m(\chi) = 10 \ {\rm GeV} \\ {\rm tan} \beta = 1, \ g_{\chi} = 1, \ m(\chi) = 10 \ {\rm GeV} \\ {\rm y} = 0.4, \ \lambda = 0.2, \ m(\chi) = 10 \ {\rm GeV} \end{array}$	2102.10874 2102.10874 ATLAS-CONF-2021-006 ATLAS-CONF-2021-036 1812.09743
ГО	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	$2 e$ 2μ 1τ $0 e, \mu$ $\geq 2 e, \mu, \geq 1 \tau$ $0 e, \mu, \geq 1 \tau$	$ \begin{array}{c} \geq 2 \ j \\ \geq 2 \ j \\ 2 \ b \\ \geq 2 \ j, \geq 2 \ b \\ \tau \geq 1 \ j, \geq 1 \ b \\ \tau = 0 - 2 \ j, 2 \ b \end{array} $	Yes Yes Yes Yes Yes Yes	139 139 139 139 139 139 139	LQ mass LQ mass LQ" mass LQ ⁴ mass LQ ⁴ mass LQ ³ mass		1.8 TeV 1.7 TeV 1.2 TeV 1.24 TeV 1.43 TeV 1.43 TeV 1.26 TeV	I	$\begin{array}{l} \beta = 1 \\ \beta = 1 \\ \mathcal{B}(LQ_{3}^{u} \to b\tau) = 1 \\ \mathcal{B}(LQ_{3}^{u} \to t\nu) = 1 \\ \mathcal{B}(LQ_{3}^{d} \to t\tau) = 1 \\ \mathcal{B}(LQ_{3}^{d} \to b\nu) = 1 \end{array}$	2006.05872 2006.05872 ATLAS-CONF-2021-008 2004.14060 2101.11582 2101.12527
Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Zt + X \\ VLQ \ BB \rightarrow Wt/Zb + X \\ VLQ \ T_{5/3} \ T_{5/3} \ T_{5/3} \rightarrow Wt + X \\ VLQ \ T \rightarrow Ht/Zt \\ VLQ \ T \rightarrow Ht/Zt \\ VLQ \ B \rightarrow Hb \end{array} $	$2e/2\mu/\ge 3e,\mu$ multi-channe $2(SS)/\ge 3e,\mu$ $1e,\mu$ $1e,\mu$ $0e,\mu$	$\begin{array}{l} \mu \geq 1 \ b, \geq 1 \ j \\ e \\ \mu \geq 1 \ b, \geq 1 \ j \\ \geq 1 \ b, \geq 3 \ j \\ \geq 1 \ b, \geq 1 \ j \\ \geq 2b, \geq 1j, \geq \end{array}$	– Yes Yes Yes 1J –	139 36.1 36.1 139 36.1 139	T mass B mass T _{5/3} mass T mass Y mass B mass		1.4 TeV 1.34 TeV 1.64 TeV 1.8 TeV 1.85 TeV 2.0 Te	v	$\begin{array}{l} & \mathrm{SU(2)\ doublet} \\ & \mathrm{SU(2)\ doublet} \\ & \mathcal{B}(T_{5/3} \rightarrow Wt) = 1,\ c(\ T_{5/3}\ Wt) = 1 \\ & \mathrm{SU(2)\ singlet,}\ \kappa_T = 0.5 \\ & \mathcal{B}(Y \rightarrow Wb) = 1,\ c_R(Wb) = 1 \\ & \mathrm{SU(2)\ doublet,}\ \kappa_B = 0.3 \end{array}$	ATLAS-CONF-2021-024 1808.02343 1807.11883 ATLAS-CONF-2021-040 1812.07343 ATLAS-CONF-2021-018
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton γ^*	- 1 γ - 3 e, μ 3 e, μ, τ	2 j 1 j 1 b, 1 j –		139 36.7 36.1 20.3 20.3	q* mass q* mass b* mass ℓ* mass ν* mass		2 1.6 TeV	6.7 TeV 5.3 TeV .6 TeV 3.0 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0$ TeV $\Lambda = 1.6$ TeV	1910.08447 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$	2,3,4 e, μ 2 μ 2,3,4 e, μ (SS 3 e, μ , τ - - = 13 TeV	≥2 j 2 j 6) various 6) – – – –	Yes Yes - - 3 TeV	139 36.1 139 36.1 20.3 36.1 34.4	N ⁰ mass N _R mass H ^{±±} mass H ^{±±} mass multi-charged particle mass monopole mass	350 GeV 400 GeV	910 GeV 870 GeV 1.22 TeV 2.37	3.2 TeV	$\begin{split} m(W_R) &= 4.1 \text{ TeV}, g_L = g_R \\ \text{DY production} \\ \text{DY production} \\ \text{DY production}, \ \mathcal{B}(H_L^{\pm\pm} \to \ell \tau) = 1 \\ \text{DY production}, \ q = 5e \\ \text{DY production}, \ g = 1g_D, \text{ spin } 1/2 \end{split}$	ATLAS-CONF-2021-023 1809.11105 2101.11961 1710.09748 1411.2921 1812.03673 1905.10130
	pa		full d	ata		10		1	1	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

Recent physics results

Higgs boson precision measurements

BSM searches

SM precision measurements

Elvira Rossi's talk

SM precision measurement, Probe new physics

Overall good agreement with SM

Just highlight some recent results

Standard Model Production Cross Section Measurements

Status: February 2022

Vector Boson Scattering Progress

Key test of EW symmetry: → vector boson self-interactions

 $\mathscr{L}_{\rm SM} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + i \overline{\psi} \mathcal{D} \psi + \psi_i y_{ij} \psi_j \phi + \text{hc} + |D_{\mu} \phi|^2 - V(\phi)$

ATLAS has observed all relevant VBS channels, probing EW symmetry breaking and setting constraints on anomalous couplings

Some recent results:

ATLAS-CONF-2023-024

arXiv:2305.19142

Inclusive WW xSec measurement

Excellent agreement with prediction is observed

Total WW cross section: 127 ± 4 pb (~3%)

New !

W rare decays

- New !
- None of exclusive hadronic W decays (W→ Mγ with M = {π, K, ρ}) predicted by SM have been observed
- May provide novel studies of QCD factorisation.
- 2 topologies track+γ and τ+γ studied

ATLAS-CONF-2023-056

Expected and observed upper limits on $W^{\pm} \rightarrow \pi^{\pm} \gamma$, $W^{\pm} \rightarrow K^{\pm} \gamma$ and $W^{\pm} \rightarrow \rho^{\pm} \gamma$ at 95% CL.

	Expected branching fraction $\times 10^{-6}$	Observed branching fraction $\times 10^{-6}$
$W^{\pm} \to \pi^{\pm} \gamma$	$1.2^{+0.5}_{-0.3}$	1.9
$W^{\pm} \to K^{\pm} \gamma$	$1.1\substack{+0.4 \\ -0.3}$	1.7
$W^{\pm} \to \rho^{\pm} \gamma$	$6.0^{+2.3}_{-1.7}$	5.2

- Best upper limit on B(W[±] $\rightarrow \pi^{\pm}\gamma$) at 95% CL
- First limits on $B(W^{\pm} \rightarrow \rho^{\pm} \gamma)$ and $B(W^{\pm} \rightarrow K^{\pm} \gamma)$
- Still far from SM (10⁻⁹,10⁻¹⁰)

W boson mass with 7 TeV data

Extremely sensitive probe of and constraint on new physics

- Revisited measurement from 2017, using the same data, but with more modern PDFs, and new log-likelihood fit to constrains systematic uncertainties with data
- Reduce systematics from 18 MeV to 16 MeV

 $m_W = 80360 \pm 5 \text{ (stat.)} \pm 15 \text{ (syst.)} = 80360 \pm 16 \text{ MeV}$

In agreement with SM !

Strong coupling constant α_s

New

- The strong force is still not well known interaction of nature
- Two α_s determinations at NNLO or N3LO from ATLAS

Most precise experimental singlemeasurement of α_s (m_Z) (~0.7%)

Good agreement with the renormalisation group equation and with previous analyses

ATLAS Phase-1 upgrade (Run3)

TDAQ Upgrade briefing

RPC (8 chambers installed)

First Run3 results:

Based on ~30 fb⁻¹ of data recorded by ATLAS in Run 3 (2022):

- Excellent muon, electron, photon and jet performance
- Good luminosity calibration with 31.4 ± 0.7 fb⁻¹ (2.2%)
- Simplified analyses w/o categorization
- Preliminary understanding of systematics

"Rediscover" Higgs at Run3

arXiv:2306.11379

New top and ZZ xSec. measurement at 13.6 TeV

Consistent with NNLO theoretical predictions

(ATLAS: eµ channel; CMS: dilepton, lepton+jets)

ATL-PHYS-PUB-2023-014

ATLAS-CONF-2023-062

New !

Summary and Outlook

Fruitful results from Run-2, thanks to the outstanding performance of the LHC and ATLAS

- Higgs behaves as SM Higgs, reaching 5–10% constraints on main H-V couplings
- Explored **rare processes**: $Z\gamma$ (3.4 σ), or HH prod. (σ/σ_{SM} < 2.4)
- Wide program for **BSM search** at high-energy or through small couplings

Run-3 has started with $\sqrt{s} = 13.6$ TeV

- Expect to collect ~double of Run-2 dataset by 2025
- First Run3 results from Higgs, top and ZZ cross section measurements
- BSM searches with Run2+partial Run3 to be coming at next year

Stay tuned!

Related talks at Corfu2023

- 1. <u>Higgs physics in ATLAS and CMS</u>, Rainer Mankel (Mon. 28/8)
- 2. <u>SM (QCD+EW) in ATLAS and CMS</u>, Elvira Rossi (Tue. 29/8)
- 3. <u>Constraining EW baryogenesis with searches for decays of heavy Higgs</u> <u>bosons in ATLAS</u>, Spyros Argyropoulos (Tue. 29/8)
- 4. Exotics and BSM (non SUSY, non DM) in ATLAS and CMS, Jun Guo (Wed. 30/8)
- 5. **SUSY in ATLAS and CMS**, Otilia Anamaria Ducu (Wed. 30/8)
- 6. Dark matter in ATLAS and CMS, Bisnupriya Sahu (Wed. 30/8)
- 7. **Top physics in ATLAS and CMS**, Markus Cristinziani (Sun. 03/9)

Thanks for your attention!

backup

LHC / HL-LHC Plan

0.00

ATLAS Phase-2 upgrade (HL-LHC)

- ITK: all silicon tracker up to |η| = 4 with 50x increase in channels
- New inner muon systems for improved trigger acceptance
- New high-granularity timing detector for pile-up rejection
- **Trigger**: 1 MHz Level-0 rate 150 kHz full-scan tracking
- LAr/Tile/muons electronics
 upgrade
- Additional smaller upgrades

This ambitious upgrade program supports our ambitious physics goals.

Muon Spectrometer ($|\eta|$ <2.7): air-core toroids (B ~ 0.5 / 1T in barrel/ end-cap) with gas-based muon chambers Muon trigger and measurement with momentum resolution < 10% up to E_{μ} ~ 1 TeV

ATL-PHYS-PUB-2021-009

ATLAS Preliminary

ATLAS Long-lived Particle Searches* - 95% CL Exclusion

Status: March 2021

60

Higgs mass

arXiv:2308.04775

New $H \rightarrow \gamma \gamma$ measurement using full Run 2 data:

New!

59

- Increased data sample (~4x)
- Improved estimation of photon energy scale with significantly reduced ($\sim 3x$) uncertainties
- Optimized event classification strategy

Source	Systematic uncertainty on m_H [MeV]
$e/\gamma E_{\rm T}$ -independent $Z \to ee$ calibration	44
$e/\gamma E_{\rm T}$ -dependent electron energy scale	28
$H \to \gamma \gamma$ interference bias	17
e/γ photon lateral shower shape	16
e/γ photon conversion reconstruction	15
e/γ energy resolution	11
$H \to \gamma \gamma$ background modelling	10
Muon momentum scale	8
All other systematic uncertainties	7

Evidence for H to 2nd gen. lepton

Higgs rare decays ($H \rightarrow II\gamma$)

Low invariant mass range: dominated by $H \rightarrow \gamma * \gamma$ (mll< 30 GeV)

- Significance: 3.2 σ (2.1 σ) for obs. (exp.) \rightarrow First evidence of $H \rightarrow II\gamma$ (I=e/ μ)
- Signal strength $\mu = 1.5 \pm 0.5$
- Fiducial xSec×B ($H \rightarrow ll\gamma$) = 8.7 _{-2.7} +2.8 fb
- Complementary result for $H \rightarrow Z\gamma$ (mll ~ mZ)
 - Significance of 2.2 σ (1.2 σ) obs. (exp.)
 - $Obs(Exp) \le 3.6(2.6) \times SM @95\%CL.$

Electroweakinos March 2023 ATLAS Preliminary s=13 TeV, 36,1-139 fb⁻¹ All limits at 95% CL 450 $m(\tilde{\chi}_1^0)$ [GeV] - - · Expected limits 400 Observed limits s=13 TeV, 36.1-139 fb All limits at 95% CL March 2023 ATLAS Preliminary 450 m($\widetilde{\chi}_{1}^{0}$) [GeV] 350 $\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow WZ \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}$ - - · Expected limits RJR 2I + RJR 3I 400 Observed limits 300 Soft 21 + 3 250 350 $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0}$ via vXiv:1911.12606 200 WZ 0I, 2I, 3 21 + jets 300 arXiv:1806.02293 arXiv:2204.13072 150 arXiv:1911.12606 01 arXiv:2106.01676 250 arXiv:2108.07586 arXiv:2108.07586 100 arXiv:2204.1307 200 50 Wh lbb, 0I arXiv:1909.05226 150 100 arXiv:2108.07586 200 300 400 500 600 700 800 900 1000 1100 m($\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0$) [GeV] $\tilde{\chi}_1^* \tilde{\chi}_1^$ via 100 $\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{\pm} \rightarrow WZ \ \widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}$ higgsino m($\widetilde{\chi}_{1}^{\pm}$)=(m($\widetilde{\chi}_{2}^{0}$) + m($\widetilde{\chi}_{1}^{0}$))/2 60 WW 01, 21 $\Delta m(\tilde{\chi}_{2}^{0},\tilde{\chi}_{1}^{0})$ [GeV] 50 arXiv:1908.08215 arXiv:2209.13935 50 arXiv:2108.0758 100 800 900 1000 1100 200 300 700 400 500 600 ATLAS m($\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0$) [GeV] 40 √s=13 TeV. 139 fb⁻¹ All limits at 95% CL -- Expected Limit (± 10 mm $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0)$ [GeV] 30 Observed Limit (± 1σ., 50 Expected limit $(\pm 1\sigma_{exp})$ Obs. Limit off-shell Observed limit $(\pm 1\sigma_{\text{theory}})$ Obs. Limit compressed $W^{(*)}$ LEP $\tilde{\chi}_1^{\pm}$ excluded 20 LEP excluded ATLAS 13 TeV 36 fb⁻¹ excluded higgsino ATLAS 8 TeV excluded 10 $ilde{\chi}^0_2$ 10 Soft 2I+3 $Z^{(*)}$ ATLAS 5 160 180 200 220 240 260 280 300 m($\tilde{\chi}_{2}^{0}$) [GeV] **1**00 120 140 $\frac{\pm}{1}W$ $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ ee/µµ, m/ shape fit Wino Eur. Phys. J. C 81 (2021) 1118 All limits at 95% CL $\tilde{\chi}^0_2$ $pp \rightarrow \tilde{\chi}_{2}^{0} \tilde{\chi}_{1}^{\pm}$ (Wino) Soft 2 1 $\tilde{\chi}_2^0 \rightarrow Z^* \tilde{\chi}_1^0, \tilde{\chi}_1^\pm \rightarrow W^* \tilde{\chi}_1^0$ < 2σ excess for higgsino $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0}) > 0$ 0.5 ∆m~25 GeV 100 150 200 250 300 350 400 $m(\tilde{\chi}_2^0) = m(\tilde{\chi}_1^{\pm})$ [GeV] *Phys. Rev. D* 101 (2020) 052005 CMS: ~2 σ for higgsino Δ m ~ 20 ₆₈ GeV JHEP 04 (2022) 091 ~ 2σ excess for wino Δm ~20 GeV

Examples of pMSSM parameters compatible with μ g-2 anomaly

To-do: Cover gaps at low/compressed mass region from experiments

NEW Search for Highly Ionizing Particles ATLAS-CONF-2023-044

Search for heavy, long-lived, charged particles with large ionization energy loss

Mass from average of pixel dE/dx & calo ToF

Mass from pixel dE/dx

ATLAS, JHEP 06 (2023) 158

using two independent methods $f(x) = p/p^{2}$

Highly ionizing particles

New

 Cross-section upper limits for spin-0 (1/2) magnetic monopoles of magnetic charge (g) and for high-electric-charge objects of electric charge |z| (20 – 100), for masses between 0.2-4 TeV

4 top

xSec -ttbar

New W mass measurement from ATLAS

ATLAS-CONF-2023-004

Determine the W boson mass from the dependence of the leptonic transverse momentum (p_T) and the transverse mass (m_T)

Revisited measurement from 2017, using the same data, but with more advanced physics model and profile likelihood fitting:

- Advantage: Reduce systematic uncertainties during the fit
- Disadvantage: Computational expensive, challenging to investigate systematics 27

W mass: physics modeling and analysis improvements

Physics modeling

- Baseline: Pythia AZ tune (based on Z boson)
 - Z Boson Data, Parton Shower Variations
- New Verifications:
 - AZ tune describes hadronic recoil spectrum of W's in low-pileup data at 5 TeV within experimental uncertainties
 - DYTurbo (resumed calculation) also agrees with AZ Tune.
- Treatment of angular coefficients unchanged
- Parton Distribution Functions:
 - Studied full set of available PDF Sets at NNLO: CT10, CT14, CT18, MMHT2014, MSHT20, NNPDF3.1, NNPDF4.0
 - New Baseline CT18

Analysis improvements

- Multijet Background Estimation
 - Systematic shape variations using PCA
 - New transfer function from CR to SR
 - Reduction of uncertainty by 2 MeV
- EWK uncertainty evaluated at detector level
 - increase uncertainty by 1-2 MeV
- Recovering data in the electron channel
 - Increased statistics by 1.5%
- Add W width as NP parameter
- Improving random generator setup for the electron energy calibration

Obs.	Mean	Elec.	PDF	Muon	\mathbf{EW}	PS &	Bkg.	Γ_W	MC stat.	Lumi	Recoil	Total	Data	Total
	[MeV]	Unc.	Unc.	Unc.	Unc.	A_i Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	sys.	stat.	Unc.
p_{T}^ℓ	80360.1	8.0	7.7	7.0	6.0	4.7	2.4	2.0	1.9	1.2	0.6	15.5	4.9	16.3

75