

1

Probing H_0 isotropy and bulk flows with galaxy clusters and eROSITA

Konstantinos Migkas.

Oort fellow – Leiden University

Tensions in Cosmology – Corfu, Sept 2023

Cosmological Principle

Assumption: Universe is isotropic on large scales

Planck Collaboration 2013

But how large ..?

Cosmological Principle

Assumption: Universe is isotropic on large scales

Planck Collaboration 2013

Λ CDM: matter should converge to isotropy in CMB rest frame at ≥ 150 Mpc

Cosmological Principle

Assumption: Universe is isotropic on large scales

Planck Collaboration 2013

Crucial to test observationally!

Galaxy clusters can tell us if

• the Hubble constant the same in all directions

• bulk flows are consistent with ΛCDM

in the local (z<0.3) Universe

Cosmo-dependent cluster measurements

Luminosity Gas mass Isophotal radius X-ray: $L_{\rm X} \propto H_0^{-2} \ M_{\rm gas} \propto H_0^{-5/2} \ R_{50\%} \propto H_0^{-1}$

Total gas thermal energy Microwave: $Y_{
m SZ} \propto H_0^{-2}$

Biggest galaxy luminosity

Infrared:

$$L_{\rm gal} \propto H_0^{-2}$$

Observable + redshift \rightarrow assume H₀, etc. to get distance \rightarrow **Cluster property**

Cosmology-dependent!

Cluster scaling relations

> Many cluster properties scale with cluster mass and thus with each other

Theory+observations: Power laws relate physical quantities of clusters!

Cluster X-ray temperature is the key measurement for testing cosmic isotropy!

Galaxy clusters in X-rays

Extract spectrum of cluster

> Measure temperature via fitted models

Galaxy clusters in X-rays

T determination: cosmology-independent!

$$L_X E(z)^{-1} \propto T^{B_{LT}}$$

$$2\log H_0 + A_{LT} + G(\Omega_m, w, z) = \log f_X - B\log T$$

$$L_X E(z)^{-1} \propto T^{B_{LT}}$$

$$2\log H_0 + A \not = T + G(\Omega_m, \psi, z) = \log f_X - B\log T$$

Internal cluster property, same in all directions

Don't matter for local cluster sample (z<0.3)

$$L_X E(z)^{-1} \propto T^{B_{LT}}$$

$$2 \log H_0 + A_{XT} + G(\Omega_{X_0}, \mathcal{M}, z) = \log f_X - B \log T$$
Strong H₀ and bulk flow dependence! Determine observationally

Same for
$$Y_{SZ} - T$$
, $M_{gas} - T$, $R_{50\%} - T$, $M_{gas} - L_X$, etc

Scan the sky with a cone, constrain relations for each cone separately → all-sky color map

 \succ Quantify apparent H₀ variation and bulk flows

 $2\log H_0 + G(\mathfrak{M}_m, \mathfrak{K}, z) = \log f_X - B\log T - A_{LT}$ no cosmology! cosmology!

Important:

Done for every scaling relation \Rightarrow end up with several independent H₀/bulk flow constraints

Our sample & the 10 scaling relations

eeHIFLUGCS sample

> Homogeneously selected, ~350 brightest X-ray clusters, mostly z < 0.25

- > X-ray L_X and $R_{50\%}$ (ROSAT), and T (XMM+Chandra)
- > Microwave Y_{SZ} (Planck) and infrared L_{BCG} (2MASS)

10 multiwavelength cluster scaling relations!

Cosmological anisotropies

The $L_{\rm X} - T$ relation

20

The $Y_{SZ} - T$ relation

Apparent H_0 variation

Hubble diagram of clusters!

Combining all X-ray, microwave, and infrared cluster info with in-depth, exhaustive analysis... cluster low-z independention

First-ever multiwavelength H₀ anisotropy map!

Overall result: 5.4 σ ! (from Monte Carlo)

Exshaustive list of tested possible systematics

- Cluster morphology effects
- Malmquist bias
- Zone of Avoidance bias
- Different selection cuts
- Scatter correlation of $L_{
 m X}, Y_{
 m SZ}$
- MCMC for any cluster properties correlation
- X-ray temperature calibration
- Redshift evolution
- Several other tests

Migkas et al. 2020, A&A, 636, A15

Migkas et al. (2021), A&A, 651, 151

What if true $H_0 = isotropic?$

Then, we need a large bulk flow...

First bulk flow constraints from cluster scaling relations

Hubble diagram of clusters!

Cluster bulk flows

Cluster bulk flows

New, better results..!

Significant part of scatter comes from cluster core (complicated baryonic physics)

Use high-quality XMM-Newton data for 238 clusters

> Measure core-excised L_X and $R_{50\%}$

> Measure total and core-excised cluster gas mass M_{gas}

New, better results..!

Significant part of scatter comes from cluster core (complicated baryonic physics)

Reduced scatter & uncertainties, new scaling relations, better cosmological constraints..!

New scaling relation with reduced scatter

Migkas et al. (in prep.)

New results support detected anisotropy!

 $3.6\sigma \qquad \Delta H_0 = 11 \pm 3\%$

 $(l,b) \approx (242^\circ, -25^\circ)$

> 37° away from previous results, within uncertainties

eROSITA

Credit: MPE, Garching

- First X-ray all-sky survey in 30 years
- 8 full-sky scans, one/6 months
- $\sim 10^4$ of new galaxy clusters eventually!
- One sky half for Germany, one for Russia
- eRASS1 data (after 1st scan) fully available

Merloni+12, Predehl+21

First results on isotropy from eROSITA...

eROSITA

> 309 clusters at z<0.2 with spec-z and reliable T

Redshift z

eROSITA: L_X-T

- > Same anisotropy direction as in eeHIFLUGCS at z<0.2!
- > Slightly stronger variation (16.1 \pm 6.4% instead of 9.0 \pm 1.7%)

$eROSITA: L_X-T$

- > Same anisotropy direction as in eeHIFLUGCS at z<0.2!
- > Slightly stronger variation (16.1 \pm 6.4% instead of 9.0 \pm 1.7%)

eROSITA: M_{gas}-T

- > Same anisotropies again!
- > H_0 variation = 11.2 ± 4.9% (instead of 9.0 ± 1.7% from eeHIFL)

eROSITA: M_{gas}-T

> Same anisotropies again!

> H_0 variation = 11.2 ± 4.9% (instead of 9.0 ± 1.7% from eeHIFL)

For now, we cannot tell apart bulk flows from an H_0 anisotropy

Summary

Galaxy clusters provide a powerful, multiwavelength method to scrutinize cosmic isotropy

>Strong anisotropies at z<0.3: $9\% H_0$ anisotropy or 900 km/s bulk flow?

Summary

> New results & lower-scatter scaling relations support initial findings

$$M_{\rm gas} - T \Rightarrow \Delta H_0 = 11 \pm 3\% \Rightarrow 3.6\sigma$$

First eROSITA results on cosmic isotropy! Independently supports previously detected anisotropy in local Universe!

Back up slides

Future work with very low-scatter relations coming...

Migkas et al. (in prep.)

```
Core excised L_{\rm X} - M_{\rm gas}
```


Non-uniform SNIa sky distribution

X-CLASS

- > 1646 archival XMM-Newton cluster observations (Koulouridis+21)
- > 404 clusters at z>0.2 with spec-z and reliable T

X-CLASS

- > Does not see bulk flows (z~0.4)
- \succ "Expected" H₀ variation ~ uncertainties (for now), very large scatter
- > Upper limit for cosmic H_0 anisotropy:

$$\Delta H_0 \lesssim 11\%$$

Undiscovered X-ray absorption ..?

> 4 different tests for detecting previously unknown absorption

MCMC in 10-parameter space

- > Predict expected behavior from cosmology-independent cluster properties $(z, T, N_H, \sigma_{int}, \text{flux}, \text{metallicity}, \text{RASS exp. Time, Xray-BCG offset, etc.})$
- > Anisotropic region should behave the same as rest, average cluster properties!

Relaxed vs disturbed clusters

3 Independent samples

ACC

$L_{BCG} - T$ anisotropies

Apparent H_0 anisotropy from $L_X - T$

Migkas et al. 2020, A&A, 636, A15

 $\sim 4\sigma$ anisotropy!