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Plan of talk

• Modified gravity and quintessence in four spacetime dimensions

• Starobinsky model of inflation and (current/future) CMB measurements

(Planck, BICEP/Keck, LiteBIRD ) = Introduction

• Single-field extensions of the Starobinsky potential for inflation

• Production of primordial black holes (PBH) in generalized E- and T-models

• Production of PBH in F(R) modified gravity

• PBH dark matter, induced gravitational waves (GW) and their detection

• Conclusion
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Modified gravity

• Modified gravity theories are generally-covariant non-perturbative exten-

sions of Einstein-Hilbert gravity theory by the higher-order terms. These terms

are irrelevant in the Solar system but are relevant in the high-curvature regimes

(inflation, black holes) or for large cosmological distances (dark energy).

• A modified gravity action has the higher-derivatives and generically suffers

from Ostrogradsky instability and ghosts. However, there are exceptions. For ex-

ample, in the modified gravity Largrangian quadratic in the spacetime curvature,

the only ghost-free term is given by R2 with a positive coefficient. It leads to the

Starobinsky model (1980) of modified gravity with the action

SStar. =
M2

Pl

2

∫

d4x
√
−g

(

R+
1

6M2
R2
)

≡
M2

Pl

2

∫

d4x
√
−g F(R) ,

having the only (mass) parameter M , where MPl = 1/
√
8πGN ≈ 2.4 × 1018

GeV, the spacetime signature is (−,+,+,+, ).
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Starobinsky model of inflation

• In the high-curvature regime, the EH term can be ignored and the pure

R2-action becomes scale-invariant.

• The Starobinsky gravity has the special (attractor) solution in the FLRW

universe with the Hubble function

H(t) ≈
(

M

6

)2

(tend − t) ,

for M(tend − t) ≫ 0. This solution spontaneously breaks the scale invariance

of the R2-gravity and, hence, implies the existence of the associated Nambu-

Goldstone boson called scalaron.

• Scalaron is the physical (scalar) excitation of the higher-derivative gravity.

It can be revealed by rewriting the Starobinsky action into the quintessence form
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by the field redefinition (Legendre-Weyl transform)

ϕ =

√

3

2
MPl lnF ′(χ) and gµν → 2

M2
Pl

F ′(χ)gµν , χ = R ,

which leads to

S[gµν, ϕ] =
M2

Pl

2

∫

d4x
√
−gR−

∫

d4x
√
−g

[

1
2g

µν∂µϕ∂νϕ+ V (ϕ)
]

,

with the potential V (ϕ) = 3
4M

2
PlM

2
[

1− exp

(

−
√

2
3ϕ/MPl

)]2
≡ V0[1 − y]2.

This potential is suitable for describing slow-roll inflation with scalaron ϕ as the

inflaton of mass m due to the infinite plateau of the positive height ≈ V0 for

y ≪ 1.

• The UV cutoff of the potential is ΛUV = MPl. The higher-order curvature

terms are supposed to be suppressed by MPl ≫ M . A string theory derivation

of the Starobinsky inflation is still challenging (unknown).



Starobinsky model (1980) and CMB measurements (2020)

No phenomenological input was used so far. Nevertheless, the very simple

Starobinsky model of inflation is still in excellent agreement with the current CMB

measurements (Planck, BICEP/Keck).

A duration of inflation is usually measured by the e-foldings number

N =

∫ tend

t∗
H(t)dt ≈ 1

M2
Pl

∫ ϕ∗

ϕend

V

V ′dϕ .

The standard slow roll parameters are defined by

εsr(ϕ) =
M2

Pl

2

(

V ′

V

)2

and ηsr(ϕ) = M2
Pl

(

V ′′

V

)

.
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The amplitude of scalar (curvature) perturbations at the horizon crossing with

the pivot scale k∗ = 0.05 Mpc−1 is determined by the WMAP normalization,

As =
V 3
∗

12π2M6
Pl(V∗

′)2
=

3M2

8π2M2
Pl

sinh4
(

ϕ∗√
6MPl

)

≈ 1.96 · 10−9

that implies no free parameters in the Starobinsky model,

M ≈ 3 · 1013 GeV or
M

MPl
≈ 1.3 · 10−5 , and H ≈ O(1014) GeV .

The CMB measurements give the tilt of scalar perturbations ns ≈ 1 + 2ηsr −
6εsr ≈ 0.9649 ± 0.0042 (68%CL) and restrict the tensor-to-scalar ratio as

r ≈ 16εsr < 0.032 (95%CL). The Starobinsky inflation gives r ≈ 12/N2 ≈
0.003 and ns ≈ 1− 2/N , with the best fit at N ≈ 55.



Single-field extensions of Starobinsky potential

The Starobinsky inflaton potential can be generalized to the α-attractors (Kallosh,

Linde, 2013) either by modifying the exponential term as (called E-models)

y = exp



−
√

2

3α

ϕ

MPl





with the parameter α > 0, or/and by using another function (called T-models)

V (ϕ) = V0 tanh
2

(

ϕ/MPl√
6α

)

≡ V0u
2 , u = tanh

ϕ/MPl√
6α

.

These extensions maintain the Mukhanov-Chibisov formula for the tilt of scalar

perturbations, ns ≈ 1− 2
N but modify the tensor-to-scalar ratio as rα ≈ 12α

N2 , so

that rα ≈ 3α(1− ns)2.
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Further generalizations of T-models and E-models

It is possible to go further, while keeping agreement with CMB observations, by

defining the generalized T-type α-attractors with the scalar potential (Kallosh,

Linde, 2013)

VT−gen.(ϕ) = f2
(

tanh
ϕ/MPl√

6α

)

≡ f2(u) ,

and the generalized E-type α-attractors (Vernov, Pozdeeva, SVK, 2021) with the

potential

VE−gen.(ϕ) =
3
4M

2
PlM

2
[

1− y + y2ζ(y)
]2

,

with regular functions f(u) and ζ(y) that do not significantly affect the CMB tilts.

The idea: use this functional freedom to produce PBH on the scales below the

inflationary scale. (See also Dalianis, Kehagias, Tringas, 2019). The Starobinsky

model is reproduced with α = 1, ζ(y) = 0 and f(u) =
√
3M2

PlM
2u/(1+ u).
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Power spectrum of perturbations

Primordial scalar perturbations (ζ) and tensor perturbations g (primordial GW)

are defined by a perturbed FLRW metric,

ds2 = dt2 − a2(t)
(

δij + hij(~r)
)

dxidxj , i, j = 1,2,3 ,

where

hij(~r) = 2ζ(~r)δij +
∑

b=1,2

g(b)(~r)e
(b)
ij (~r) , H =

da/dt

a
,

in terms of a local basis e(b) with e
i(b)
i = 0, g

(b)
,j e

j(b)
i = 0, e

(b)
ij eij(b) = 1.

The primordial spectrum Pζ(k) of scalar (density) perturbations is defined by the

2-point correlation function of scalar perturbations,
〈

δζ(x)

ζ

δζ(y)

ζ

〉

=

∫

d3k

k3
eik·(x−y)Pζ(k)

P0
.
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For instance, the observed CMB power spectrum is described by the Harrison-

Zeldovich fit,

PHZ
ζ (k) ≈ 2.21+0.07

−0.08 × 10−9
(

k

k∗

)ns−1

with the pivot scale k∗ = 0.05 Mpc−1. In the slow-roll (SR) approximation,

relevant for inflation, one finds

Pζ =
H2

8M2
Plπ

2

(

1

εsr

)

.

Therefore, it is possible to generate a large peak (enhancement) in the power

spectrum by engineering ǫsr → 0, called the ultra-slow-roll (USR) regime or the

PBH production mechanism based a near-inflection point in the potential. This

implies the double inflation scenario (SR → USR → SR) with two plateaus in the

potential V (ϕ) and in the Hubble function H(t). Warning: USR is not SR !



Our generalized E-model

is defined by the potential with the dimensionless parameters (α, β, γ, θ) as

V (ϕ) =
3

4
M2

PlM
2
[

1− y + θy−2 + y2(β − γy)
]2

, y = exp



−
√

2

3α

ϕ

MPl



 .

Let us replace (β, γ) with the new parameters (φi, ξ) having better meaning as

β =
1

1− ξ2
exp





√

2

3α

φi
MPl



 , γ =
1

3(1− ξ2)
exp



2

√

2

3α

φi
MPl



 .

When ξ = 0, the potential has an inflection point at φ = φi; when 0 < ξ ≪ 1,

there is also a local minimum (dip) y−ext on the r.h.s. of φi and a local maximum

(bump) y+ext on the l.h.s. of φi, while both extrema are equally separated from

the inflection point, y±ext = yi (1± ξ), (see also Iacconi, Assadullahi, Fasiello,

Wands, 2021, for using this parametrization).
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Good features of our model

(i) the existence of an attractor inflationary solution in good agreement with CMB

measurements of the scalar tilt ns ≈ 0.965 within 1σ and the tensor-to-scalar

ratio r < 0.032,

(ii) the two extra terms with the fine-tuned coefficients (β, γ) are needed for

engineering a near-inflection point in the scalar potential and a large enhance-

ment (peak) in the power spectrum of scalar perturbations, with the factor of 107

against the CMB level,

(iii) adding another term with a negative power of y and a small negative coef-

ficient θ removes the infinite (Starobinsky) plateau, thus restricting from above

the total number of e-folds for inflation, while being also needed for better (within

1σ) agreement with the observed tilt ns of CMB.

9



USR regime

To study the USR regime, we introduce the Hubble flow functions

ε(t) = − Ḣ

H2
, η(t) =

ε̇

Hε
.

During the USR regime, the function ε(t) drops to very low values, whereas the
function η(t) goes from nearly zero to (−6) and back.

A standard procedure of (numerically) computing the power spectrum PR(k)

of scalar (curvature) perturbations depending upon scale k is based on the
Mukhanov-Sasaki (MS) equation. We used both approaches in our models and
found that the difference between the results from numerically solving the MS
equation and those derived from the SR formula is small.
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Numerical results 

11

with    α=0.743,  ξ=0.012



Numerical results
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Comparison of our results from  the Mukhanov-Sasaki equation 
 for perturbations and from the slow-roll approximation formula
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PBH masses

PBH are supposed to be formed by gravitational collapse of large (scalar) density

perturbations. The masses of PBH can be estimated from given peaks (power

spectrum enhancement) as follows (Pi, Sasaki, 2017):

MPBH ≃
M2

Pl

H(tpeak)
exp

[

2(Ntotal −Npeak) +
∫ ttotal

tpeak
ε(t)H(t)dt

]

that is very sensitive to the value of ∆N = Ntotal − Npeak, while the integral

gives a sub-leading correction. Increasing ∆N leads to decreasing the tilt ns of

CMB, which limits ∆N by 20 from above. On the other hand, ∆N cannot be too

small when MPBH have to exceed the Hawking (black hole) evaporation limit of

1015 g, which restricts ∆N from below (above 13).

After fine-tuning the parameters ξ and θ, we obtained the PBH masses in the

asteroid-size range between 1017 g and 1021 g. Compare M⊙ ≈ 2 · 1033 g.
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Quantum Corrections

One-loop quantum corrections attracted a lot of attention in the recent literature.

For instance, it was found that validity of the classical results is in danger be-

cause of the one-loop perturbative bound (Kristiano and Yokoyama, 2022)

1
4(∆η)2

(

1.1+ log
ke
ks

)

∆2
peak ≪ 1, when (∆η)2 ≈ 36 and ∆2

peak ∼ 10−2 ,

where ks correspond to the USR start and ke corresponds to the USR end.

However, later it was found (Riotto, 2023) that the bound can be removed when

the transition from the USR phase to the 2nd SR phase is mild, as is the case

in our model also (a sharp transition was adopted by Kristiano and Yokoyama).

Moreover, the value of ∆2
peak can be lower by the one order of magnitude.
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Energy density of PBH induced GW

The present-day GW density function ΩGW in the 2nd order with respect to

perturbations is given by (Espinosa, Racco, Riotto, 2018)

ΩGW(k)

Ωr
=

cg

72

∫ 1√
3

− 1√
3

dd
∫ ∞

1√
3

ds





(s2 − 1
3)(d

2 − 1
3)

s2 + d2





2

× Pζ(kx)Pζ(ky)
(

I2c + I2s
)

,

where the constant cg ≈ 0.4 in the SM, and Ωr = 8.6 · 10−5 according to the

present CMB temperature.

The variables (x, y) are related to the integration variables (s, d) as

x =

√
3

2
(s+ d) , y =

√
3

2
(s− d) .

13



The functions Ic and Is of x(s, d) and y(s, d) are (Espinosa, Racco, Riotto,

2018)

Ic = −36π
(s2 + d2 − 2)2

(s2 − d2)3
θ(s− 1) ,

Is = −36
s2 + d2 − 2

(s2 − d2)2

[

s2 + d2 − 2

s2 − d2
ln

∣

∣

∣

∣

∣

d2 − 1

s2 − 1

∣

∣

∣

∣

∣

+2

]

.

With these equations, the GW density can be numerically computed for a given

power spectrum.

In our models, for broad peaks with the width σ > 1 and ∆2
peak of the order

10−3, we obtained ΩGW(k) ∼ 10−6P2
R(k). For sharp peaks with σ < 1 the

shape of the GW spectrum is different, being far from Gaussian (see also Balaji,

Domenech, Silk, 2022).



Numerical results 
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   with the peak width σ



PBH production in modified gravity after Starobinsky inflation

We propose the modified Appleby-Battye-Starobinsky (ABS) model (2010) of

F(R) gravity for that purpose, defined by the smooth F -function

F(R) = (1− g1)R+ gEAB ln







cosh
(

R
EAB

− b
)

cosh(b)





+
R2

6M2
− δ

R4

48M6
,

where g1 = −g tanh b, g ≈ 2.25 and b ≈ 2.89, 0 < δ < 4 · 10−6, and

EAB =
R0

2g ln(1 + e2b)
with R0 ≈ 3M2, M ∼ 10−5MPl .

It is consistent with Starobinsky inflation and CMB measurements, has no ghosts

(F ′(R) > 0, F ′′(R) > 0), and the corresponding inflaton potential has two

plateaus, leading to a large peak in the power spectrum. The last term can be

interpreted as a quantum correction.

14



Consistency with CMB, and PBH masses

Demanding:

(i) a large enhancement (peak) in the power spectrum by the factor of 107

against the CMB level of 10−9,

(ii) consistency with the latest CMB measurements,

ns = 0.9649± 0.0042 (within 1σ) and r < 0.032, and

(iii) PBH masses beyond 1015 g,

we found ∆N must be restricted between 17 and 22 e-folds, while the total du-

ration of inflation is between 54 and 66 e-folds.

The possible range of the parameter δ is between 1.02 ·10−8 and 8.74 ·10−8.

The PBH masses found are between 1016 g and 1020 g, i.e. of the asteroid-size

again.
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Numerical results 

1
8

   Potential and dynamics



Numerical results 

1
8

    Hubble flow parameters and power spectrum



Conclusion

• Our approach is phenomenological: from viable inflation to efficient PBH

production included on smaller scales, and the induced GW.

• The PBH masses are possible in the window between 1017 g and 1021

g, where they can form (the whole or part of) current dark matter.

• It is necessary to fine-tune some of the parameters in order to get that.

• The modified gravity origin of inflation and PBH formation is possible.

• The PBH-induced GW may be detectable by the future space-based grav-

itational interferometers (LISA, DECIGO, TianQin, Taiji).

Thank you for your attention!
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